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1. Introduct ion  

In 1969, H6non ([H6I] and [H62]) began the investigation of the mappings 

F :  ~ , where a + 0 ,  
x 

as mappings having roughly the same behavior as a particular Poincar~ section of the 
Lorenz differential equation. H~non demonstrated numerically that for certain values 
of the parameters the mappings appeared to have a strange attractor. This has finally 
been established rigorously by Benedicks and Carleson ([BC], [MV]). 

There has since been an enormous amount of work on the dynamics of the H~non 
mappings (in particular, see [Ho], [HWh] and [HWi], which give further references). 
This work is all in the real domain. As far as we know, this paper ([H] was an early 
version) is the first attempt to understand the H~non mappings in C ~'. Recently others 
have done work in this area including Friedland and Milnor ([FM] and [M1]), Bedford, 
Lyubich, and Smillie ([B], [BS1], [BS2], [BS3], [BS4], [BLS], IS]), and Formess and 
Sibony ([FS]). 

In the study of iteration of polynomials of one variable, extending to complex 
values of the variable has been very useful, even when the original polynomials were 
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real. We hope that the same thing will happen here, more or less for the same reason. 
There is essentially nothing that can be said about real polynomials which is independent 
of the coefficients, largely because virtually all features independent of conjugation, 
such as periodic cycles, are likely to disappear under perturbation. In  the complex domain, 
the behavior is far more uniform. 

Our  work started from a different point of  view. In  1982, Calabi suggested that the 
computer should be used to investigate the basin of attraction of one of the two attractive 
fixed points of the mapping 

(;) (11 ) 
X 

The reason for examining this was that it provided an example of a Fatou-Bieber- 
bach domain. These are open subsets U C C" which are biholomorphically isomorphic 
to C" and whose complement, C ~ -- U, has non-empty interior. When an automorphism 
of C" has an attractive fixed point or attractive cycle, the basin is always such a domain. 
Fatou and Bieberbach ([17], [Bi]) first constructed examples of such domains as basins 
of attractive fixed points. They have been extensively studied in [BS2] and [FS]. 
�9 Despite considerable numerical work, we were unable to work out the topology 

of the closures of the basins and decided to look at simpler automorphisms of C ~, with 
quadratic polynomials as coordinates. Section 2 shows that the Htnon  family encompasses 
a significant part  of this family. 

T h e  eas t  o f  p l a y e r s .  Most of the work on Htnon  mappings in the real case has 
focused on attractors. In  the complex, attractors are uninteresting since the only attrac- 
tors are points. The invariant subsets considered here are inspired by the dynamics of 
polynomials, as explained below. For any mapping f ,  l e t f  ~ denote the n-fold composition 
o f f  or f - 1  depending on whether n is positive or negative. 

Our approach has been inspired by the study of complex polynomials of a single 
variable. Given a polynomial p(z), the natural set to study is 

K~ = { z [p~ does not tend to oo as n ~ ~ } 

and its boundary J~ = 0Kr, also known as the Julia set ofp.  Another definition of J~ is 

J~ = { z [ on no neighborhood of z is the sequence { pO, } normal }. 

The sets studied here are defined in imitation of the one-dimensional case. For a 
H tnon  mapping, the obvious generalization of the Julia set is 

J~ = { ( ; ) ~  n~ neighb~176176 ~  ( ; )  is the sequence { F~ • } n~ } ' 
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where a sequence of functions on U C (I 3 with values in C ~' is defined to be normal if 

every subsequence has a subsequence which converges uniformly on compact subsets 
to a function with values in p2, the complex projective plane. 

Define for a Hdnon mapping F the following sets: 

and [l o (;Ill oo-o,,en  o  } 
= C 2 - -  K +  

- ~ C 2 - - K  . 

Further, define J •  = OK:~, K ----- K+ c~ K_ ,  and J = J+  n J _ .  
It  will be seen that K and J are compact and of  course invariant under F. These 

are the spaces which we most wish to understand. 

Ma~n r e s u l t s .  This paper contains three main results: two concern the structure 
of  C 2 -- K~ .  Topologically, we will show that this set is homeomorphic to a fibration 
over the reals with fiber a 3-sphere with a solenoid removed (Theorem 6.1).  Analytically, 
C 2 --  K•  is isomorphic to a quotient of  (C -- D) X C, where D C C is the unit disc, 
by  a group of automorphisms which we determine explicitly (Section 8). The third 
result gives a compactification (I 2 to which the Hrnon mappings extend canonically, 
analogous to compactifying C by  adding a circle at infinity (Theorem 9.1).  

The proofs of these results require both some analydc and some topological pre- 
liminaries. Most of the topology (Sections 3 and 4) concerns solenoidal mappings, one of 
which plays much the same role with respect to Hrnon  mappings as multiplying angles 
by d does for iteration of polynomials. We go into more details than is strictly necessary 
for our purposes, but  we feel that viewing the surrounding countryside makes our pard- 
cular mappings easier to understand, and the classification of  solenoidal mappings 
(Theorem 3.10) is of  independent interest. 

For the analytical results, the most important construction is the analog of  the 

Brttcher coordinate ([M2]). When p is a monic polynomial, this is the function ?~ 
defined in a neighborhood of  o0 such that 

= 

and ~ ( z )  = z + 0(1) near oo. 

The function q~(z) is constructed by making sense of the following 

O~(z) = lim (p~ 
n ..-~ o o  

This is a standard scattering theory construction: go toward oo via p and return via 

the unperturbed mapping z ~ z d. The fractional power is not a priori defined, and has 

to be dealt with carefully. 
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The problem of the branches of the roots can be circumvented by defining 

1 
G~(z) = lirno ~; log+ Ip~ 

where log+(x) = sup{log(x), 0 }, which is the Green's function of K~. 
This construction generalizes for H6non mappings as follows. Let a subscript I 

or 2 denote the projection onto the first or second coordinate as in (F~ = pr t o F ~ 
Now define the limits (;) 1 

G• -= l i m  ~ log+ II F~ • "(x) II, 

o f  course, the matter of where these are defined and the convergence of the limits must 
be dealt with (and are, in Section 5). Since the first version of this paper was written, 
much further work on G• has been done, more particularly by considering the closed 
(1, 1)-currents 

~ • = dd  ~ G +  

which are analogs of the Brohlin measure ([BS1], [FS]). The measure ~ = ~+ ^ ~_ 
has also turned out to be very important. 

As far as we know, the complex analytic mappings ?• have not received similar 
attention, but they are even more important to our development. 

More particularly, the argument of the B6ttcher coordinate has led to the theory 
of external angles and is fundamental to the combinatorial study of the dynamics of 
polynomials ([DH], [T]). When the functions q0• are combined with the compactifica- 
tion in Section 9, more particularly Corollary 9.4, we find that there is an analogous 
theory of external angles for H6non mappings; perhaps we can hope to use the techniques 
using external rays, etc., to combinatorially describe H6non mappings. A case in point is 
the Benedicks-Carleson result in [BC], where the combinatorics is so reminicent of puzzles 
and tableaux as in [Y], [BH] and [HY]. 

Continuations of this paper will present results about Hdnon mappings as pertur- 
bations of polynomials ([HO]). The paper [O] studies the dynamics of complex horse- 

shoes using techniques from these papers. 
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M. Shishikura, N. Sibony, L. Carleson, M. Benedicks, C. Bardos, T. Bousch, D. Faught, 
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2. An algebraic characterization of  H~non mappings 

The family of mappings on C a with quadratic coordinate functions depends a priori 

on 19 parameters. The H6non mappings 

= , a4= 0, 
x 

represent some conjugacy classes of quadratic automorphisms. In this section it is shown 
that the only other conjugacy classes are represented by the elementary mappings, 

where k 1 = 1 implies b = 1 and k 2 = 1 implies either b = d +  1 or d---- 1. Note that 
the elementary mappings consist of several one- and two-parameter families: 

A + & t '  b , 0 ,  b ,  1, 

D = 

Note that every polynomial mapping, G, of degree 2 can be written in the form 
13 =- G0 + G1 + G~, with each G k homogeneous of degree k and that every polynomial 
automorphism has constant Jacobian determinant. The following theorem gives the 
Jacob!an Conjecture in this context, i.e., any polynomial mapping of degree 2 with 
non-zero constant Jacobian determinant is an automorphism. 

Remark. - -  If  G~ satisfies the non-degeneracy condition G~-I(0) ----- 0, then the 
mapping G extends to give an endomorphism of P~, which will be of degree 4. More 



10 J O H N  H. HUBBARD AND RALPH W. OBERSTE-VORTH 

generally, i f  the mapping  were given b y  polynomials o f  any degree d, and the leading 
terms G a were non-degenerate,  then the mapping  defines an endomorphism of  pa of  
degree d a. O f  course, this is incompat ible  with G being an automorphism.  Since G a is 
degenerate,  G~-l(0) is a line t0, and Ga(C ~) is a line r Ei ther  go and gi coincide, in which 
case the mapping  is elementary,  or  they do not  coincide, and  the mapping  is a genera- 

lized Hdnon  mapping.  

Theorem 2.1 .  - -  For every polynomial mapping G : C a -+ C 2 of  degree ~ with constant 
non-zero Jacobian determinant, the image of Gz and the set on which Gz vanishes are lines through 
the origin. I f  these lines are linearly independent, then G is conjugate to a Hdnon mapping. Otherwise, 
G is conjugate to an elementary mapping. 

Proof. - -  The  general polynomial  mapping  of  degree two is 

= a s + b a x + c a y + d a x  2 + e a x y + f a y z ] "  

The  quadra t ic  terms of  the J acob i an  de te rminant  generally yield the relations 

dl ei f i  

da eg f a  ' 

So the image of  the quadra t ic  terms is a line, gl; assume that  dz = e9 = f a  = O. The  
linear terms of  the J a c o b i a n  de te rminant  generally yield the relations 

e~ ba ca = 4dlf~ be ca. 

Since G is injective, bz and c a cannot  both  be  0. So Ga vanishes on a line, t o. 
I fg  o and t i  are l inearly independent ,  then assume di = 1 and el = f i  = 0 (sending 

to to they-axis) .  The  J acob i an  condit ion shows that  ca = 0 and this is a Hdnon  mapping.  
Otherwise assume that  fa = 1 and  di = ei = 0 by  sending to to the x-axis. The  

J a c o b i a n  condit ion shows that  b 2 = 0. So G is of  the form 

Note  that  bl 4= 0 and  c a 4 : 0  are invar iant  under  conjugations which do not  in t roduce 

new terms. The  different cases are listed below: 

c~4 = 1, b i = c a ,  2 a a +  

c9 4 = 1, b l = ca, 2az + 

ca 4: 1, b i4 : cz ,  b i 4 : 1  

ca4: 1, h i =  I, a l ( l - -  

ci(1 - -  ca) = 0 yields B with b = d = b i = c2, 

ci(1 - -  c~) 4= 0 yields A with b = b i ---- c~, 

yields B with b ---- ba, d = ca, 

ca) a + aa(1 - -  ca) + a~ = 0 yields B 
with b =  1, d = c a ,  



HI'NON MAPPINGS IN THE COMPLEX DOMAIN. I 11 

cz4: 1, b 1 =  1, ax(1--e2) 2 + a z ( 1 - c 2 )  + a ~ 4 = 0 y i e l d s  C 
with d = cs, 

c s =  1, a s 4 = 0 y i e l d s D w i t h b = b l ,  

c s =  1, a s-~O,  b a4= l y i e l d s B w i t h b = b x ,  d =  1, 

c s =  1, a s = O ,  b 1 =  1, 4 a x - - c ~ = O y i e l d s B w i t h b = d =  1, 

c s =  1, a s = O ,  b l =  1, 4a t - c ~ 4 = O y i e l d s C w i t h d ~ -  1. [] 

Remarks. - -  The H6non family of mappings can be written in different forms. 
For example, Hdnon ([H~I] and [H62]) actually studied the family 

= ~x , ~ 4= 0. 

Note that Fa., is conjugate to H_,.  _a. Thus, mappings of the form Fa, 0 were omitted 
in this other form. 

A fixed line is a line which is mapped onto itself (but not necessarily pointwise). 
Consider the set of lines y = k for all k ~ C. Elementary mappings can be understood 
by how they map these lines: all lines fixed, a unique fixed line, or no fixed line. A fixed 
line may be fixed pointwise, or there may be a unique fixed point or no fixed point. 

3. Solenoidal mappings 

This section gives a classification up to conjugacy of unbraided solenoidal mappings, 

v : T  ~ T of degree d, satisfying appropriate expansion properties and topological 
conditions. Solenoidal mappings, which are defined below, are injective mappings of 
degree d/> 2 of the solid torus. The images of such mappings can be braided and quite 
complicated. We only understand how to classify those which are unbraided. 

We will show that up to conjugacy, such mappings, when they are appropriately 
expanding and contracting, are classified by an integer. Only one of these mappings 
seems relevant to the study of H6non mappings. On  the other hand, the authors puzzled 
about these mappings quite a bit while understanding the structure of H6non mappings, 
and we feel that it will be clearer if we study them all, if only to contrast the relevant 

one to the others. 

Theorem 3.1 holds for arbitrary mappings of degree d while Propositions 3.3, 
3.5, and 3.6 require the mappings to be solenoidal. The construction of solenoids is 
given before Proposition 3.6. Proposition 3.7 shows that solenoidal mappings of degree 2 
are unbraided while Proposition 3.8 requires unbraidedness. Theorem 3.11 is the classi- 

fication of conjugacy classes. 

Theorem 3.11 reduces the determination of a conjugacy class to the computation 
of an isotopy class and the verification of a hyperbolieity condition. 
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Solenoidal mappings. Let D be the disk of radius 2, T = S 1 • D, and denote 
by (E, z) the coordinates in T. 

Definition. - -  Let C+ and C_ denote the constant families of cones 

C+(~, z) = { ( ~ , u  I l~l~> lu[}  and C_(E, z) = { ( g , . )  I Igl~< I"1} 

in the tangent bundle of T.  

Definition. - -  A solenoidal mapping �9 : T -+ T of degree d is an injective C 1 immer- 
sion of degree d, such that, for all (E, z) e T and for some constant K > I, 

d,~,,, ~(c+(E, z)) c c+(<E, z)), 
(g, u) ~ C+(~, z) and dc~,, , -r(~, u) = (gx, ux) imply [gx [ > K IT [ 

I 
and (g, u) e C_(E, z) and d,;,,, ~(~, u) = (gx, ux) imply [ u x [ < K [ u [. 

Remark. - -  The  definition says roughly that  the derivatives of a solenoidal mapping 
preserve the family of cones G+ and are expanding in the g direction and contracting 
in the u direction in C+.  From the fact that  �9 is an immersion it follows that  the inverses 
of the derivatives of a solenoidal mapping  preserve the family of cones C_.  

Examples .  - -  L e t  S 1 --{E Cl I E I = 1 ) , D  ----{ z E C l [  z ]~< 2 } , a n d T  = S  1 • D. 
Define e 1 = { 1 } • 0 D and e~ = $ 1 •  { 2 ), each oriented by the counterclockwise 
orientation of the circle. We will examine very closely the following mappings, 
~ , , :  T -+ T, which are unbraided solenoidal for every integer d t> 2 and k ~ Z: 

E d 

The  reason for the shift in the exponent will become clear later: "~d, 0 has much  nicer 
properties than the others. 

Theorem 3.1.  - -  For every mapping f :  T -+ T of  degree d >>. 2, there exists exactly d - -  1 

continuous functions ~ : T ~ R / Z  of degree 1 such that the following diagram commutes: 

l 
T > T  

R/Z > R/Z 

For any two such mappings ~1 and ~z, there exists o with co a -  1 = 1 and ~x : -  o~2.  

Proof. - -  By the Lefschetz Fixed Point Theorem ([D]), f has 1 -- d fixed points 
counted with multiplicity. Since 1 - - d  4= 0, there is at least one fixed point t 0. 

To avoid difficulties with branches of d-th roots, lift f to f~: T ~ 1", where 
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= R • D is the universal covering space of  T, with base point  t o and the liftff:  T -+ T 

satisfying 3 ~ 0 )  = ~0. Let  y :  ~"--> 'F be  a generator  of  the fundamenta l  group.  Then  

a~V(7))---= y~ for every 7 e ~ .  

Consider the space 

II = { ~ : "~ -+ R [ ~ is continuous and ~(y(t))  = ~(t) + 1 } 

with the uniform metric, 8, which is well-defined because of  the periodicity. I n  this 
metric II is a complete  metric space. Define a mapping  q~ : II ~ 11 by  

1 
, ( ~ )  (7) = ~ ( f ( 7 ) ) .  

I f  ~ satisfies ~(ff(~ '))  = ~(~') + 1, then so does ~(~) .  

Lemma 3.9.. - -  The mapping ~ is strongly contracting. 

Proof. - -  I f  ~1, ~ e II, then 
... 1 1 ~ ~ 

I ~(~1) (7) - -  ~ ( ~ )  (7) 1 = 2 ] ~ 1 ( Y ( 7 ) )  - -  ~ ( f ( 7 ) )  [ ~ d 8(=1, ~ ) .  

[] ( L e m m a  3.2)  

Let  ~o be  the fixed point  of  ~ and n o be the mapping  T ---> R / Z  induced  b y  ~o. 
Clearly the mappings  rc k = e z'a~m-l~ % still semi-conjugate f to z ~-* z a. 

I f  rd : T -+ R / Z  is any  mapping  making the d iagram 

! 
T > T  

ze-> z d 

R / z  , R / z  

commute ,  then ='(to) is a fixed point  of  z F-+ z ~, so it must  be one of  the (d - -  1)-th roots 
o f  1 and there exists k with ='(t0) --= =k(t0). N o w  r~' --- %,  since the lift of  e -2~/~a-~ re' 
in H is a fixed point  of  % hence is 7:o. [] (Theorem 3.1)  

Proposition 3.3.  - -  I f  a mapping f o f  degree d is solenoidal, then the mappings = : T -+ R / Z  

in Theorem 3.1 are fibrations with fibers homeomorphic to disks. 

Proof. - -  Define H 0 C H, the family of  IApshitz fibrations consisting of  those ele- 

ments of  H whose fibers are disks which are graphs of  Lipshitz functions cr : D --> R 
(i.e. ] ~(zl) - -  ~(z~) I ~< [zz - -  z~ I)" S i n c e f f  -x  preserves the family of  cones e _ ,  the family 
of  IApshitz fibrations is stable under  ~. So the fixed point  =o is a limit of  IApshitz fibrations. 

T h e  space II 0 is not  closed in II, bu t  the fibers o f=  e II 0 are fairly easy to unders tand.  

Lemma 3 .4 .  - -  For any rc = lim rc~, with rcj e IIo, and for any x e R ,  there exist two 

Lipshitzfunctions o~(z) <. %(z) such that =-~(x) = {(y,  z) [ ~ ( z )  ~<y ~< ~,(z)}. 
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Proof. - -  We have 

= n u n , ;l(txo - xo + 
�9 >0 i > o  j~>i 

Decreasing intersections of  sets of  the form r~-l(x) = {(y, z) I ~l(z) ~< y ~< 0c2(z)} are still 
of  this form. Hence  it is enough to show that  

U n  ;l([xo - Xo + 

is of  this form. Now suppose that  

r~-~([x0 --  ~, x o + e]) = { ( y ,  z) ] %.~(z) ~<y~< ~j.~(z)}. 

T h e n  

U,>o  o - Xo + 

= {(y, z) [ lim_.soou p .  ~ ,  ~(z) ~< y ~< lim,_.~oinf ~,  ,(z)}. 

We need to show that  %,~(z) ~< ~,~(z) for all j and  ~ sufficiently large. For  any  fixed z, 
the function Y~-*~o(Y- z) is surjective, so there exists ~o with ~o(Y'o, z) = x 0. Choose I 
so large that  1 ~  --  ~o t < e f o r j  >t i. T h e n  ~j(y%, z) e [x o - -  e, Xo + ~]. So for all j >i i, 

%.,(z) ~<Yo~ ~, , (z ) .  [] (Lemma 3.4) 
Now if a fiber is not  a Lipshitz disk, then it has nonempty  interior. Also the fibers 

are compac t  and  their  projections onto R have bounded  length. I f  any  two points (xx, za) 
and  (x2, zz) satisfy I z2 - -  z~ ] < x 2 - -  x~ and  (x~, z~) = j ~ x , ,  z~), then x' 2 - -  x'l >i K(xz --  xa) 
for some K > 1. 

I f  a fiber is not  a Lipshitz disk, then let (xx, zx) and (x~, %) be two points of  the 
interior satisfying [z  2 - - z  x 1< x~ --  x 1. Let  ~,f""', z~" ' )=ff~ z~). These are still in 
the same fiber and x~- ~"~ --  x~ "1 i> K"(x z --  xx) for some K > 1. This contradicts that  the 
length of the projection onto R of  the fiber is finite. [] (Proposition 3.3) 

Proposition 3.5.  - -  The components 0 f f ~  n r:- l(z) have diameters tending to 0 as 

k -+ oo f o r  all z ~ S 1. 

Proof. - -  Suppose that  x , y  ~fk(T)  are in the same fiber and realize the maximal  
vertical diameter ,  d~, o f f k ( T ) .  Compare  this with the maximal  vertical diameter,  dk_l,  
of  f k-  I(T). Let  xx ----- f -  1 (x) and Yl = f -  1 (y) and  let t be the straight line joining them. 

T h e  s d e n o i d  N d. Given a space X with a mapping  f :  X - +  X, consider the 

projective limit 

X t = l i m ( X , f )  = { ( . . . , x ~ , x l ,  xo) l f (x,+l)  - = x  i for i =  0 , 1 , 2 , . . . } .  

W h e n  the mapping  f is clear, simply write X instead of  Xt" This construction is some- 
times referred to as the inverse limit construction. A point of  this projective limit is a 
point of  x 0 e X along with a " history of  the point " under  the i teration o f f  
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The mapping f induces f :  ~ -+ X by 

f ( .  . . ,  x , ,  x l ,  Xo) = ( .  . . , f ( x 2 ) , f ( x i ) , f ( X o ) )  -= ( . . . ,  Xl ,  Xo, f (Xo)  ) 

which is always bijective as 

f - l ( . . . ,  xl, x0) = ( . . . ,  xl). 

Consider the projective limit of the mapping 8:Si---~ S i given by ~ ( ~ ) =  ~a. 
Define Z a ----ljm(S i, 8) and the bijection ~ : Z  a -+ Z a as in the introduction above. 
This construction was studied carefully by Williams ([W]). The solenoid was first studied 

by Vietoris ([V]) and van Danzig ([vD]). 
Let r 9 be one of the d -- 1 mappings guaranteed by Theorem 3.1. 

Proposition 3.6.  - -  Let  Z I = ~ , f ~  The mapping 

X v-~ ( . . . ,  rr176 r c l ( f - l ( x ) ) ,  x1(x),  =i(f(x)))  

is a homeomorphism h~ : X f  ~ X a.  

Proof. - -  Let z = ( . . . ,  zl, z0) be a point of Z, and define 

X,, k = {x e l "  [ f - ' ( x )  is defined and ~ / f - ' ( x ) )  = z, for 0,< i,< k}. 

Then fok  maps ,:Ti(zk) bijectively to X,,~. In particular, Xz, k is a component of 

fo~(-~) n ~TX(z0). Since these components have diameters tending to 0 as k ~ 0% and 

h (z) = f l  Xz, , 
k 

we see that h~. is bijective. I t  is continuous, and the domain is compact, so it is a homeo- 

morphism. [] 

Definition. - -  An injective mapping v : T ~ T of degree d is unbraided if there exists 
a fiber homeomorphism q~ : T -+ T such that @ o -: sends the core circle S ~ X { 0 } into 
S 1 • S i as a (d, 1)-torus (un)knot. 

Fro. 3.1 
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Remark. - -  No embedding of T in S 3 is specified. In  particular, the (d, 1)-torus 
(un)knot and (d, d + 1)-torus knot are equivalent from this point  of view. Proposition 3.7 
shows that  ff d = 2, all solenoidal mappings are unbraided;  this is false for d t> 3. See 
Figure 3.1. 

Proposition 3 . 7 .  - -  For degree d = 2, all solenoidal mappings are unbraided. 

Proof. - -  We 

g :  

Note that  the pair 

will show that  there exists a fiber homeomorphism 

(T , f (S  z X {0}))  -+ (T, %,k(S 1 • {0  })). 

of sets (T, %,k(S 1 • { 0 })) is independent  of k. 
Both (T , f (S  t • ( 0 ) ) )  and (T,-r ~ • ( 0 ) ) )  are locally trivial fiber bundles 

over S 1 with fibers homeomorphic  to disks with two marked points. Locally trivial fiber 
bundles over S 1 are classified by the isotopy classes of their monodromy.  For the bundles 
under  consideration the monodromy homeomorphisms lie in Womeo (D, { a, b )). 

The  mapping M'omeo (D, { a, b }) -> ~erm { a, b } (the latter being the symmetric 
group on two elements) is surjective with contractible fibers ([Ha]). So the isotopy class 
of the monodromy of these bundles depends only on how they permute  the boundary 
components. For both bundles, the points are exchanged. So the bundles are fiber homeo- 
morphic. [] 

Proposition 3 . 8 .  - -  For every unbraided solenoidal mapping f there exists a unique integer k 

and a mapping h : T -  in t ( f (T) )  - + T -  int(-~d,,(T)) suck that the following diagram com- 

mutes: 

(3.9) 

h 
OT > OT 

0f(T) > ~d, , (T)  

Proof. - -  Step  1. There exists a fiber homeomorphism 

g : T -- in t ( f (T) )  -+ T -- int(va, k(T)) 

mapping  0T to ST. Note that  the set T -- int(vd, , (T))  is independent  of k. 
The  definition of unbraided says that  the bundles of pairs (T , f (S  1 • { 0 })) and 

(T, vd,,(S 1 • { 0)) )  are fiber-homeomorphic. Pick a base-point in S 1, and let D be 
the fiber above that  base-point, { a t , . . . ,  aa} = D nf (S1  • {0  }), with the points 
ordered along the circle f (S  1 •  {bl ,  . . . , b d } = D  c~%.k(S 1 X { 0 } )  ordered 
similarly. Then  the bundles of pairs above are classified by their monodromies m I 
and ma. k. The  definition of unbraided says that  there exists a homeomorphism q~ : D --> D 
with c?({ al,  . . . ,  aa }) = { bl ,  . . . ,  b a } and conjugating m s to md. k. 

Let U 1 , . . . ,  Ud be the components of D n f ( T ) ,  labeled so that  a~ ~U~, and 
Vt ,  . . . ,  V a be the components of D n va.k(T), labeled so that  b~ ~V~. Now deform 9 
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so that 9(U~) = V~. This is (unpleasant) 2-dimensional topology. First adjust ~ in the 
definition ofzd, ~ so that $(U~) c~V~ = 0 for i s s j .  Therefore the sets Vi II $(V~) have 
disjoint neighborhoods D~ homeomorphic to disks. 

Lemma 3.10. - -  I f  U and V are closed subsets of the open unit disk D, with 0 e (J c~ ~r 

and both homeomorphic to closed disks, then there exists a homeomorphism ~ : D ~ D which is 

the identity on 0 D and with ~b(U) = V. 

Proof. - -  Use conformal mapping to represent both D --  U and D -- V as stan- 
dard annuli, giving a system o f "  polar coordinates " where the radial curves are labeled 
by the points at which they intersect 0 D and the circular curves by their relative distance 
to 0 D. Then  making points with the same coordinates in D --  U and D -- V correspond 

gives a homeomorphism of D --  l~l onto V -- V. This can be continued to U and V 
since any homeomorphism of the boundary of a disk extends to a homeomorphism of 
the interior, by radial extension, for instance. [] (Lemma 3.10) 

Find a homeomorphism d~: (D,{ b x , . . . ,  b a } ) - + V  such that + o q~ is isotopic 
to ~p and + o ~p(U~)= V~. Unfortunately, this mapping does not now conjugate the 
monodromies, but  it does up to isotopy, and that is enough, since bundles are dassified 
by the isotopy classes of their monodromy. 

Step 2. Next it will be shown that k can be chosen so that  diagram (3.9) commutes 
on the level of homology. The homology group HI(0T ) is isomorphic to Z 2. Choose 
the basis { S 1 • { 2 }, { 1 } x 2S x }, the circles oriented counterclockwise in C. 

Consider the mapping g o f -  x o g -  1 o T 0. This is a fiber homeomorphism 0T -+ ~I', 

hence induces a mapping given by a matrix (I 0 i)  for some integer t on HI(0T). 

Since the construction of g is unique up to isotopy, t is an invariant o f f .  
Observe that ~a,, can be written -ra, 0 o w ~, where w is the twist mapping 

w ( L  = 

So g o f -  1 o g -  1 o "ra, k = g o f -  1 o g -  1 o "ra, o o w ~. Since w ~ induces the mapping given 

b y t h e m a t r i x  ( ;  kl) on Hl(OT), set k =  - - t  so that  g o f - l o g - ~ o ~ d ,  k induces the 

identity on the homology. 

Step 8. Finally, adjust g into h so that the desired diagram commutes. 
There exists a homotopy G~:0T  X I ~ T  with G o = . r ~ o g o f o g  -1 and 

G~ = Id. Let U C T -  int('ra, k(T)) be a narrow thickening of 0T homeomorphic to 

I • OT. Denote points in U by (t, x). Let 

' g (y ) ,  y Cg-a(U) 
h ( y )  = 

G,(x), y eg - a (U )  so that g(y )  = (t, x) 

3 
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on T --  in t ( f (T) ) .  Now for y ~ ST, set x = g ( y )  and compute 

0 - - 1  o f o  g-~) (x) ( f - l o h - 1  va,~oh ) (y) = f - ~ o g - i o . c a , ~ o  (z~,~ og  

: g-l(x) : y .  [] (Proposition 3.8) 

Next comes the classification of  the conjugacy classes of unbraided solenoidal 
mappings. 

Theorem ~.11. - -  Every unbraided solenoidal mapping is conjugate to one of  the va, k, and 

no two of these are conjugate. 

Proof. - -  The second part was proved above, when it was shown that different 
values of k lead to different values of l, which are conjugacy invariants. 

We wish to extend h from Proposition 3.8  to T. Take x ~ T. I f  x E X:, then define 
h(x) = ~a:k o ~: ~ X~a,k and if x r X:, then define h(x) = Va,~ o g ~oa,~-,~tx~ :, where m is 

such that f ~  in t ( f (T)) .  I f  f ~  0f(T) so that f~  0T, then 
both choices, m and m + 1, give the same value of h by Proposition 3.8. So the mapping 

is well-defined, bijective, and con juga tes f to  va, k" 
I t  remains to show that h is continuous on Z/. Take x 0 ~ X:. The sets 

U~, ~(x0) = { x ~ T ] f o - . ( x )  exists for all n ~< N 

and I ~ f ( f o -  ~(x)) --  ~ s ( f  ~ ) I <~ ~ for n ~< N } 

form a basis of  closed neighborhoods of x 0 as r -+ 0 and N -+ ~ .  Clearly k maps this 
basis of neighborhoods of x 0 to the corresponding basis of neighborhoods of f(xo). So 
h is continuous and hence a homeomorphism. [] 

4. E m b e d d i n g s  o f  the  s o l e n o i d  in  S a 

In  this section we will try to describe the inductive limit of T under -% 0. Intui- 
tively, this corresponds to taking a solid torus winding around d times in a larger torus 
which winds around d times in a yet larger torus, etc., and taking the increasing union. 
This intuitive picture is ambiguous. To make this precise, the embedding mapping 
each torus into the next must be specified. This is made precise in this section. Smale 
first studied solenoids as hyperbolic attractors in S 3 ([Sm]). 

Recall the mappings ~a,, from the example near the beginning of section 3. 

Proposition 4 . 1 .  - -  The mappings %,o extend to orientation-preserving homeomorphisms 

h a : S a -~ S a. 

Remark. - -  Note that *a,k obviously extends to S a for some k. After all, one can 

take a solid torus (think of a bicycle tire tube) and wrap it d times around itself. The 
outside of  the unwound tube and of the wound tube are both unknotted tori, so there 

exists a homeomorphism between them. This homeomorphism will map the inner rim 
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of the tube to some curve on the wound tube; the object of this proposition is to describe 

this curve. The skeptical reader might experiment with a tube for d = 2, 3. 
The proof of Proposition 4.1 depends on the following: 

Lemma 4 .2 .  - -  I f  T 1 and T~ are two solid tori, and f :  OT 1 -+ OT~ is a homeomorphism 

which sends curves on OT 1 which bound disks in T 1 into curves which bound disks in T~, then f extends 

to a homeomorphism T a -+ T~. 

Proof of Lemma 4.2. - -  We may suppose T 1 = T 2 = T = S 1 • D. The homeo- 
morphisms of a torus are classified up to isotopy by their action on 1-dimensional homo- 
logy. I f  a homeomorphism of 0T extends to T, then any isotopic homeomorphism extends 

also. Clearly the linear homeomorphisms mapping curves of the form { ~ } • 0 D 
extend. [] (Lemma 4.2) 

1 / 2 ~ 0  

/ 
FxG. 4.1 

Proof of  Proposition 4.1.  - -  The key point is that ~a,o maps curves on 0T which 
bound embedded disks in S 3 -- T into curves which bound embedded disks in S 3 -- "ra, 0(T). 
This can be seen in Figure 4.1.  This is a drawing of S 1 x D, with the disks { 1 } x D, 

{ i } X D, { --  1 } • D, { --  i ) x D; the reader is expected to fill in the other slices. 

Within these disks are d subdisks. The case d = 3 is represented, and the triangle formed 

by these three subdisks rotates by 1/3 of a turn while going around S 1 once. Thus these 

subdisks represent -rd, k(T). 
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The curves drawn on the outside of the disks represent a disk X in S 8 --  "rd, k(T). 

Verifying that this is indeed a disk is the essence of the proof. We leave to the reader to 
verify that X is a manifold with boundary OX C 0~d,~(T). To see that this manifold 
is simply connected, notice that it is clearly a deformation retract of the subset consisting 
of X n S 8 --  int(S 2 --  T), and the star above --  1. This is a contractible set: d disks, 
each with a leash and all leashes connected at one point, as in Figure 4.2.  

Now going around S 1 once, the angle at which X touches a subdisk rotates by 
-- ( d -  1)/d, so that altogether 0X is the curve 

e ~'~t ~ (e 2d'n', e~,et + ce~ im-d) ) .  

The mapping ~d,0 maps e~ (a curve bounding in S 3 --  T) to this curve, so ~a,0 extends 
as required, by Lemma 4.2.  [] (Proposition 4.1) 

Fxo. 4.2 

R e f l e c t i o n s  w i t h  r e s p e c t  t o  a t o r u s .  A different way of understanding the exten- 
sion of ~a,0 to S s will be given requiring a definition of reflection with respect to a torus. 

The simplest context in which to describe such reflections is to write 

S = = { ( u , v )  l l u l  2 + 1  vl 2 =  1}. 

Then S s = T '  to T " ,  

where T'={(u,v)~S'llulal/V'2} and T"={(u,v)~S31lvl<~l/V~}. 
These are two unknotted solid tori, and dear ly  they are exchanged by  the mapping 
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To give an intuitive description, we will work in S ~ = R 3 t3 { dO }. So this mapping  
needs to be translated into a mapping  R a t3( do ) ~  R 3 u {  dO }. Stereographic pro- 
jection from the point (0, i) maps S ~ to R 3 ~3 do according to the formula 

Re u/(1 -- I m  v)) 

( ~ ) ~  I m u / ( 1 - - I m v )  . 
Re v/(1 - I m  v) 

This mapping  takes the torus l u [ = e~~ Iv [ = e~~ to the parametrized 
torus in R a 

/cos 01/(v  - sin 

(01)0 v'- ' /sin 01/(3/2 - - s i n  0~)~, 
\ cos  0~/(A/~ --  sin 0~) ] 

which just  happens to be the torus of revolution obtained by rotating the circle of radius 1 

centered at (We2, O) in the (x, z)-plane around the z-axis. Conjugated by this change of 
variables, the mapping  p becomes ( z ) 

x ~ +  ( y - -  1) ~ + z  ~ x~ + y~ + z 2 -  1 . 
2x 

Note that  Pl commutes with reflection in the y-axis. 

Fro. 4.3 

C o n s t r u c t i o n  of  h a. Consider two unknot ted solid tori T O and T 1 embedded 
in R a, linked with linking number  d, as in Figure 4.3.  Then  R d : S 3 -+ S 8, the rotation 
by 7rid around the z-axis, is a homeomorphism of each onto the other. 

For any homeomorphism ~ : S 3 -+ S 8 set p~ = ~-1 o Pl o ~. 
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Proposition 4.3. - -  There exists an orientation-preserving homeomorphism 

such that 

a) ~ maps T O to T';  
b) ~ commutes with reflection in they-axis; 

c) the restriction of  h a : p~ o R a to T o is a solenoidal mapping conjugate to ~Va, o; 
d) h a is conjugate to its inverse. 

Proof. - -  Fiber both T O and T1 over the circle by the radial angles, as measured 
from they-axis, and similarly for T'. Choose first the restriction of the homeomorphism 
to To, so as to map the slice with a given radial angle of To to the corresponding disk 
of T '  and so that ~ commutes with symmetry with respect to the y-axis. 

Next choose a curve 7 winding d times around T', symmetric with respect to the 
y-axis and such that the " radial angle " of T"  is monotone along the curve, and a small 
tubular neighborhood S around it. Note that this radial angle of T "  will increase by 2dn 

along ~. Fiber S by the radial angle, starting at the highest intersection on the y-axis. 
See Figure 4.4. 

Fio. 4.4 

Next, define 0~ on T 1 by sending the slice at a given angle to the slice of S at d 
times that angle, still preserving the symmetry with respect to the y-axis. Extend the 
homeomorphism to S 3 so as to preserve the symmetry. 

With this choice of ~, a) and b) are clearly true. All the work was designed to 
satisfy c) and d): the restriction of ha simply multiplies radial angles by d in To, hence is 
expanding in that direction. By choosing the tubular neighborhood S of y sufficiently 
thin, ha can clearly be made contracting in the slices. Since y is unbraided in T",  the sole- 
noidal mapping ha : To -+ To is conjugate to va, k for some k, which must be 0 since ha 
extends to S 3. 

The inverse of ha is R a l o  p,, which is conjugate to p~o Ra 1. Conjugate the 
mapping by symmetry around the y-axis. This conjugates R a to R~ -1, and since the 
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reflection with respect to the y-axis commutes with p,, R o P0 is conjugated to its 
inverse. [] 

This shows that the mapping ha : S 3 -+ S 3 is a homeomorphism, which has two 
invariant solenoids Z+ C T O and Y,_ C T1, attracting and repelling, respectively; every 
point is attracted to ~+ under forward iteration of ha and is attracted to Z_ under itera- 
tion of h~ -1. 

hadue t lve  l lml t s .  Given a space X and a mapping f :  X -> X, define the inductive 
limit l im(X, f )  to be 

li_m(X,f) = X x N[,~, 

where the equivalence is generated by setting (x, m) ,~, ( f ( x ) ,  m + 1). 

The notion of inductive limit is pathological when f is not injective (the spaces 
created fail to be Hausdorff). We will use the notion only for injective mappings f ,  where 
it really is some sort of increasing union. 

Proposition 4.4. - -  The inductive limit lira(T,-cd,0) is homeomorphic to S 8 -  Z a and 

r.a = N.. ~2,o(T). 

Proof. - -  The mapping (x, m) F-. k~-'(x) induces a mapping 

lim(T, ~a, 0) -->Um ha re(T0). 

The mapping ha is conjugate to its inverse, and the conjugating mapping is a homeo- 

morphism of S ~ -- h~-re(T0) onto ha(T0). [] 

Corollary 4 .5 .  - -  The fundamental group nl(S 3 -- Za) is isomorphic to the additive group 

Z[1/d] of  rational numbers witk powers o l d  in the denominator. 

Proof. - -  Fundamental  groups commute with inductive limits, so, by Proposition 4.4, 
nl(S s -- Za) is isomorphic to the inductive limit of 

z L z L z . . . o  

Remark. - -  I t  is usually dangerous to speak of fundamental groups without spe- 
cifying a base point, but in this case the fundamental group is abelian, so there is no 

ambiguity. 

Knots and the mappings ~d,,. We Mll not need the following results in the 
sequel, but they may help the reader to understand why the mappings ~a,, are different. 

We will only discuss the case d = 2, but a similar discussion can be made for arbitrary d, 

and is a bit simpler in fact when d > 2. 
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Proposition 4 .6 .  - -  The solid tori "r~,~(T) are all unknotted i f  k = 0 and all knotted for 
n >i 2 i f  k # O, except that ~ ,  _a(T) is unknotted. 

Proof. - -  The  case k = 0 is dealt  with in Proposit ion 4 .1 .  
Next  show that  v~,~(T) is the (2, 2k - -  1) torus knot. This is genuinely knot ted  

unless k = 0 or 1. Since ~"+~rT~,k ~ j is a companion  of  ~ ,k(T) ,  this proves the result for 
all k except  k = - -  1, which requires a separate  argument .  

Observe  that  v~,k can be wri t ten v2,0 o w k, where  w is the twist w(~, z) = (~, ~z). 
Then  x~ ,~ (T)=  "r2,0ow~o'r2,0owk(T). The  w ~ on the right can be ignored since 
T = w~(T) and  since v2,0 extends to a homeomorph i sm of  S a, the v~, o on the left can 
be  ignored also. Th e  result follows from the computa t ion  

The  mapping  ~ ~-~ (~z, ~2k+1) is a parametr iza t ion of  the (2, 2k + 1)-torus knot, which 
is indeed knot ted  unless 2k § 1 = 4- 1. 

To  finish the proof, it must  be shown that  v~,_I(T ) is knotted.  As above,  

"r~,_l(T ) = vz, o o w -1  o "r2, o o w -1  o "r2, 0 o w - I ( T ) ,  

and again ignore the w -  ~ on the right and the %, 0 on the left. T he  reader  ma y  check 
that  the core of  the solid torus is then parametr ized  b y  ~ ~-~ (~4, ~-2 q_ r We  leave 
it to the reader  that  this is a parametr iza t ion of  the (2, - -  5)-torus knot. [] 

5. The  funct ions  G• mad q~• 

Recal l  the generalized H6non  mappings of  degree d, 

where  a # 0 and the degree of  q is less than d. Recall  also the definitions of  sets K•  

and U i f rom the introduct ion.  
Looking at the formula for the H6non  mappings,  note that  if  x is reasonably large 

and  large with respect  to y ,  then the p redominant  behavior  is tha t  the x-coordinate 
gets raised to the d-th power.  Th e  following definitions are designed to state this rigo- 
rously. Set  ~ to be  at least as large as the absolute value of  the largest root  of  

I x  I - I q(x)l - (I a I + 2) x = 0. 

I f  p(x) = x2q - c, then the following value of  ~ works: 

1 
~ = ~ ( [ a ]  q - 2 q - % / ( [ a  I + 2 )  2 q - 4 [ c [ ) .  
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and 

Define the regions V+, V_, and W C G ~ by 

V+ = ( ( ; ) [  lyl~< Ix] and Ix[~> ~z}, 

w = lx l .<  ~ and ly l .<  ~ 
Y 

Lemma 5.1. - -  The sets V+ and V _  have the following properties: 

a) V+ C U• and U+ = [.J,>~o F~ U_ = [-J.~>o F~ 
b) r (v+)  c V + ,  F-I(V_) CV_;  
c) i f  (x,y) e V + ,  then [(F~ 2" for n =  1 , 2 , . . .  and i f  (x,y) e V _ ,  then 

1( F~ 1 + as n =  1 , 2 , . . . ;  

d) F(W) c W u V+; 
e) if  (&y) eV_,  then I F,(x,y)l < lYl and if (x,y) eV+,  then I F~-a(x,y)l < Ix I" 

Proof. - -  First consider the statements for V+. To see part b) let (x,y) ~ V+, and 
calculate: 

[p(x) -ay  >>. ]p(x)]--]a[lyl>~ [p(x)]--[a[[x[>~ 2[x[. 

Thus F(V+) C V+ and 

for all n = 1, 2, . . .  Hence part r and also part a). 
Part d) is obvious since F(W)C{(x,y)l l y [ <  e}. Part e) is obvious also. 
For (x,y) ~ V_, the proofs are analogous using 

1 1 
[ a~l I P(Y) - -  x [ > / ~  I (P(Y)  I - I x l) 

/ > ~ ( I P ( y ) I - l y l ) > ~  1+ lyl. [] 

Remark. ~ The proof of part c) of Lemma 5.1 shows that the first coordinates of 
an orbit starting in V+ grow at least geometrically. This is actually misleading. Since 
the dominant term of F1 is of degree d, the growth is like k a", Lemma 5.1 shows that 
every point eventually lands in V+ u W. 

4 
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and 

Proposition 5.2.  - -  There exist unique analytic functions q~+ : V •  1 3 -  b suck that 

ep+ ( ; )  -- oo in V+ or V_,  respectively. 

Proof. - -  The function q~+ is constructed below and shown to have the required 
property. The proof for ~?_ is analogous. The proof of uniqueness will be given at the 
end of section 8. 

To simplify the formulas below set the notation x, = (F~ (x,y) and 
y ,  = (F~ (x,y). Note that x, is a polynomial in x and y of degree d" whose sole 
leading term is x a" and y ,  is a polynomial in x and y of degree d " -  ~ whose sole leading 

term is x a"-~. 
To define q~+, meaning must be given to the limit 

; )  lim x lldn 

or rather the equivalent telescoping infinite product 

( ; )  xl/d lid n+l 
X . "1 Xn + l 

cO+ x . . . . .  x ~  an  " " " 

Examine the individual terms of this infinite product: 

X~'l+11/dn+l - -  [4 -~- q ( x . )  - -  ayn] llan+l 
xlld n x~d n 

n 

For (x,y) ~V+,  F~ belongs to V+ and 

I q(x) - ay I q(x) l + l ly I ~< I q(x) l + I a II x I Ix I a - -  2 Ix ] / 
~< Ix Ix F <~ Ix I x 

2 2 
= 1 ixF_l~< 1 --  ~ - .  

Now, for the d"-th root use the principal branch of (1 + z) va". The infinite product 
converges as the series of the logarithms of the terms in the product converges. 

In the product above, consider the factor 



HI~NON MAPPINGS IN THE COMPLEX DOMAIN. I 27 

The terms of highest degree in both polynomials involve only x. Since ]y [ ~< [ x [, the 
term (q (x , )  - -  ay,)/xa, is of order 1/x a". Tha t  is, there exists a constant C such that  in V+ 

q(x , )  - -  ay ,  C 

which tends to 0 as ( x , y )  -+ oo in V+.  Therefore the product  is equivalent to its first 
term x. [] 

A refinement of this result will be needed, pushing the asymptotic development 
of ?:~ a bit further. We find it easiest to write 

= Uo(X) + u l ( x ) y  + . . . .  

as a convergent power series in y, with coefficients Laurent  series in x, which is clearly 
possible by the structure of V+.  

Proposition 5 . 4 .  ~ The  fo l lowing  asymptotic, development holds: 

Uo(X) = X + O(Ixl) ana u (x) = dx _ 1 +  o 

Proof. - -  The development of u 0 is already in Proposition 5.2. From (5.3) above, 
the second and higher factors of the product  cannot contribute larger terms than those 
given, and the first term gives the result. [] 

Proposition 5 . 5 .  - -  The  l imits  

exist, are continuous on C ~', are pluri-harmonic on U + , and have the properties that 

Moreover, 

Proof. - -  Again, the proof will be given for G+ and the proof for G_ is analogous. 
On  V+,  define G+ = log ] ~+ ]. Extend this definition to ( x , y )  ~ U+ as follows. 

By part  a)  of Lemma 5.1, there exists n > 0 such that  F~ e V+.  For such ( x , y ) ,  

define 

Further extend G+ to be zero on K+.  
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The definition is consistent: if a higher n had been used, then the result would be 
the same by Proposition 5.2 and clearly satisfies G+(F(x,y)) = dG+(x,y).  

The function G+ is harmonic on U+ since it is a real part of an analytic function 
on V+ and elsewhere the pullback of a pluri-harmonic function by an analytic mapping. 

I t  remains to see that it is continuous. Fix (x',y') ~J+.  Then there exists N such 
that [ [F~ ~ for all n/> N. For any M > N ,  there exists ~ so that if 
l[ (x" ,y")  - -  (x',y')II < =, then II F~ '') I[ < 0~. Note that F(W+) C W+ to V+. So 
the value of G+ on the first forward image of F~ '') which is in V+ is bounded by 
C = s u p { G + ( F ( x , y ) ) l ( x , y  ) e W } .  So, G+(x" ,y" )<  C/d ~. [] 

Remark. - -  The functions G~_ are obviously subharmonic. This fact has been 
observed by Bedford and Smillie ([BS2]) and by Fornaess and Sibony ([FS]). They use 
the fact that dd ~ G+ are positive (1, 1)-currents supported on J• to derive analogs of 
the Brolin measure ([Br]) for Hdnon mappings. Fornaess and Sibony also prove that 
G• are H61der continuous. 

6. The global topology of H~non mappings 

The behavior of G+ is partially described by the following, in which solenoids 
make their first appearance in this subject. 

Theorem 6.1. - -  The mapping G+ : U+ -+ R+ is a trivial fibration whose fibers are homeo- 
morph# to S 8 - -  Y"a, o, embedded using the mapping "ca, o as in section 3. 

Proof. - -  Represent the set U+(r) = G+l(log r) as the increasing union 

U+(r) = V+(r) to F-l(V+(r~)) to F-z(V+(r4)) t o . . . ,  

v+,., Jo+(;) / 
Proposition 6 .2 .  - -  a) For large s, V+ (s) is homeomorphic to a solid torus, and 

: V + ( s )  --+ { I I * I = s ) 

is a fibration with fibers homeomorphic to closed disks. 
b) The mapping G+ : V+ -+ R+ is a trivial bundle with fibers homeomorphic to solid tori 

above (R, oo)for R suffciently large. 

Proof of  Proposition 6.2. - -  For any z with ]zl~< 1 consider the function 
%(x) = 9+(x, zx). The function is defined and analytic for I x [ >  0r By Proposition 5.2, 
% has a simple pole at oo. The following lemma, which is an immediate consequence 
of Montel's Theorem, will be required. 
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Lemma 6.3. - -  Let R > 1 ; then the space o f  analytic functions f :  D -+ D~,  satisfying 
3,.(0) : 0 and f ' (O) : 1 # compact. In particular, there exist numbers R1 and R e such that all 
such functions f are injective on D~I , and satisfy f(DR1 ) D D ~ .  

Applying Lemma 6.3 to 

1 
~+ (l/x, z[x)' 

which maps the disk of radius 1/, < 1 to the disk of radius 1, we see that there exist R x 
and R~ such that if ~ > R 2 and [ z ] ~< 1, then there exists a unique x such that ] x I > Ri 
and ~0+(x, zx) = ~. This shows that the mapping • : (x,y) ~ (~+(x,y) ,y /x)  is a homeo- 
morphism V+(r) -+S i, • D for r~> Ri .  [] (Proposition 6.2) 

To compute F in the coordinates (~, z), asymptotic developments of x and y as 

functions of ~ and z must be found. 

Proposition 6 .4 .  - -  The following asymptot# development holds: 

Proof. - -  This is a standard inversion of an analytic function from Proposi- 

tion 5.3. [] (Proposition 6.4) 
Now compute F in the coordinates (~, z): 

(:) . 

\zx(~, z)] ~ x(~, z) p ( x ( ~ ,  z ) )  - azx(~, z)) 

Only the term ~a in the denominator contributes to the leading terms of the development 

of F, to give 

r = 1 + o  + + o  z + o ( I z l )  

This mapping is not quite one of the va,~'s from section 3, but almost. Change 
variables once more, to (~, ~), where ~ = z~. In  these coordinates, the following expres- 

sion holds: 

( t t tt ) (6.5) F(~)= +o(1~1)+ d~_i+o ~-t-o(l~l) " 

In  particular, it is conjugate to vd, o. 
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Consider 0V+(r) with r sufficiently large so that  L e m m a  5.2 applies. Let  y,  be 

the curve parametr ized by t ~-* (~ = e 2~", ~ = ~rd), 0 ~< t ~< 1, and  let ~ be the curve 
parametr ized by t ~ (~ = r, ~ = 0or a e2~t), 0 ~< t ~< 1. 

Proposition 6.6.  - -  I f  g : V+(r) -+ T is a homeomorphism with g(y,) a curve on T bounding 
a disk in S 3 --  T,  then there exists a homeomorphism g' : V+(r  a) -+ T such that the diagram 

V+(r) o > T 

V+(r d) -----+ T g' 

commutes. Moreover, g'(y,d) is again a curve which bounds in S 3 -  T.  

is an 

does 

Proof of Proposition 6.6.  - -  The existence of  g' and  its uniqueness up to homotopy 
unpleasant  topological generality. The  substance of the proposition is in what  g' 

to y,d. 
The  generality is a consequence of the following lemma.  

Lemma 6.7.  - -  Let X be a 2-sphere with three open disks with disjoint closures removed. 
Then the space of  homeomorphisms of X mapping each boundary component to itself is contractible. 

Proof of Lemma 6.7.  - -  See [EE] and  [Ha].  [] (Lemma 6.7) 
Both V+(r a) - - F ( V + ( r ) )  and  T -  Va.o(T) are locally trivial fiber bundles over 

the circle with fibers homeomorphic  to the sphere with three holes above. In  each case, 
the functions called ~ are the fibrations. The  following shows tha t  these two spaces are 

f iber-homeomorphic.  
Cut  the circle at  some point, to manufac ture  two bundles V+ (r) and "r of spheres 

with three holes over the interval I.  Both are trivial bundles, and  hence homeomorphic  

t o I  x X .  ~ , ~  
Choose trivializations v : I  x X ~ V + ( r )  and  u : I  x X 4 T .  These induce 

monodromy mappings 

m . =  (u l{1}xx)- '  o Ul~o}xx and  m . =  (VI{1}XX)--I 0 VI{O} XX. 

The  mapping  u o v -1 would induce the desired homeomorphism V+(r) --->T if  

m~ o m; -1 were the identity.  To arrange this, let m t be a family of homeomorphisms 

of  X such that  m0 =m~-Zom~ and m 1 - = I d  and define m : I  • X - - > I  X X by 
re(t, x) = (t, mr(x)). I f  u is replaced by the trivialization uj = u o m, then the require- 

ment  is satisfied. 
This manufactures a homeomorphism 

w = uz o v - Z : V + ( r  d) --  F(V+(r)) ~ T  --  vd, o(T). 
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I t  is clear from the construction that  its isotopy is unique (among fibered homeomor-  

phisms). 
I t  must  be shown tha t  w can be adjusted so as to coincide on 8(F(V+(r))) with 

za, 0 o g o F -  1 and tha t  w maps ~,r to a curve on T which bounds a disk in S a --  T. Both 
questions are homotopy class questions: the second one obviously and  the first because 

the restriction of  w to the boundary  can be adjusted to coincide with any  homeomor-  

phism in its homotopy class. 
Both of  these statements follow from the asymptotic expansion (6.5): 

+ ~ + ~(~, n) 

where the error term is so small tha t  if  a parameter  is pu t  in front of  it and  varied from 

1 to 0, then no homotopy classes are changed. Once the parameter  is 0, the formula 

looks exactly like the formula for zd, 0" This is slightly misleading since ~ and  B are in 

the circle of  radius r and  the disk of radius r, respectively, whereas the arguments  of  Cd, 0 
are in the circle of radius 1 and  disk of radius 2, respectively. We leave it to the reader  
to make the appropriate  scaling after which the ident i ty is a possible candidate  

for w. [] (Proposition 6.6) 
The  proof  of  Theorem 6.1 is completed by induction.  The  same construction as 

above gives a sequence of homeomorphisms g', g" ,  . . . ,  where g(k) : V+(rdk) _+ T.  Define 

G(k):F-k(V+(rak))---~'r~,ok(T) by G(k) = ~-ka, o o g(k~ o F k. T h a t  is, the following d iagram 
commutes: 

17+ (r) r ~ F-l(V+(rd)) r 

rd, O 

~.F-~(V+(rd2)) c ~F-s(V+(rdS)) c : . . . .  

F2 1 F3 G " ~ d~ G " F ~  d s 
" ~V+(r ) I,V+(rg.,~[ ) , . . .  

r _ ~ , )  * c g'[ r~o3(T) c .. . . .  �9 a,u- T.  ;- 

~ T  ~ T  ~ . . .  
r~0 r~o 

In  the end, U + ( r ) =  [.J~~ is homeomorphic  to 

IJ ~ s ~ k=o X~,ok(T) = _ Za, 0. 

This proves tha t  the fibers of  G+ are homeomorphic  to S 8 -  Za, 0 for r sufficiently 

large. 

Proposition 6 .6  admits parameters:  i f  gt were a family of homeomorphisms as 

in the proposition, depending on a parameter  t in an  interval, then there exists g~ depen- 
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ding continuously on t and satisfying the conditions of the proposition. In  particular, there 
exist homeomorphisms g, g', g", . . .  such that  the following diagram commutes: 

U,~>~V+(r) ~> U,>RdV+(r ) . . .  

T X [R, oo) ,d,% T X [R, oo) . . .  

Applying this extension of Proposition 6 .6  to the inductive proof above shows 
that  the mapping  G+ : U+ -+ R+ is a trivial bundle above (R, oo), with the same R as 
in Proposition 6.2. Now F ~ is a fiber homeomorphism of G+I((R/2 k, oo)) to G+I((R,  oo)), 
covering x ~ 2 k x. Thus  the mapping  G+ is a trivial fibration over any compact  subset 
of R+ ,  hence locally trivial over R+ ,  hence trivial since R+ is contractible. [] (Theo- 
rem 6.1) 

7. The foHations o f  U+ 

The fibers of G+ are 3-dimensional manifolds, and not obviously objects of complex 
analysis. But because G+ is a pluri-harmonic submersion, U+(s) is naturally foliated 
by Riemann  surfaces. We will show that  every leaf is isomorphic to C and dense in U+ (s). 
The  proof  also shows that  q~+ cannot be extended to all of U+.  

Lemma 7 .1 .  - -  Let W be open in C" and let h : W ~ R be a pluri-harmonic submersion. 

Set W(x) = h- l ( x ) .  Then each W(x) is a real (2n --  1)-dimensional manifold, and it is naturally 

foliated by complex manifolds of  dimension n - -  1, with tangent space at w E W(x) given by 
T~ W(x) tn iT,, W(x). 

Proof. - -  Each W(x) is a manifold by the Implicit  Function Theorem. The  uni- 
queness of the foliation follows from the fact that  a real hyperplane T of a complex vector 
space contains a unique complex hyperplane, namely T t% iT. 

The  existence can be seen by setting locally h ---- R e f  for some complex analytic 
function f ,  which is also a submersion, and observing that  W(x) = f - l ( {  z ] Re z ---- x}) 
is naturally foliated by the fibers of f ,  which are complex manifolds of dimen- 
sion n -  1. [] 

Theorem 7.2.  - -  The leaves of  the natural foliation 0fU+(s)  are isomorphic to C and each 

is dense in U+ (s). 

Proof. - -  Choose ~ e C -- D with [ E I - s, with s so large that  Proposition 6 .2  
applies. The  leaf through any point of ~+1(~) can be written 

?+1(~) u F-~(?+*(~a)) u F-~(?+l(~a")) v . . .  

By Proposition 6.2, this is an increasing union of simply-connected surfaces, hence 
simply connected. 
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F ~ (v+(s~)) / -  F -s(v+(ss)) 

/ 

) 
FIo. 7 .2  

~ I O O O Q ' ~  

To see that  this leaf is dense in U+(s), note that  

F-I(~I(~)) = U ~+I(o~) 
o~d= 1 

(see Figure 7) and more generally 

F o-,(~u = ~ U  ~u 1(~). 

Since the d*-th roots of 1 are dense in the unit  circle, each leaf is dense in V+ (s). Applying 
F repeatedly will make it dense in each term of the increasing union 

V+(s) kjF-I(V+(xd)) k./F-2(V+($a2)) kJ ..., 

which occurred in the proof of Theorem 6. I. 
I t  remains to show that  the leaves are isomorphic to C. This requires the following 

proposition. 

5 
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Proposition 7 .3 .  - -  Let X be a simply connected Riemann surface, and K C X a compact 

connected simply connected subset not reduced to a point. Suppose A0, A1, . . .  is a sequence of disjoint 

annuli in X --  K such that the inclusion of A~ into X --  K is of  degree 1. I f  

o o  

mod(A~) = 0% 
i f 0  

then the surface X is isomorphic to C. 

Proof. ~ The alternative is that  X is isomorphic to D and X --  D is an annulus 
with finite modulus M. However, by the subadditivity of moduli  of disjoint homotopic 
annuli  ([A], [BH]), ~E~~ 0 mod(A~) ~< M. [] (Proposition 7.3) 

So find a sequence of annuli in a leaf with a divergent series of moduli. This is 
actually easy, as the annuli  considered grow very rapidly. 

Consider the annulus 

1 

For ~ sufficiently large, the function y /x  is an isomorphism of A; onto the annulus 
1/2 ~< [ z [ ~< 1 of modulus (log 2)/(2rc). 

The  annuli  

A~, F-a(A;d), F-~(A;d,), ... 

have constant moduli .  They are embedded in the leaf which contains q~+l(~), disjoint 
by Lemma  5.1, and embedded with degree 1 in the leaf with ?+1(~) removed. So the 
leaf is isomorphic to C by Proposition 7.3 (see Figure 7.2). 

This proves the result for [ ~ 1 =  s sufficiently large. The  statement follows 
in general by observing that  F maps bijectively leaves in U+(s) onto leaves 
in U+(sd). [] (Theorem 7.2) 

Proposition 7 .4 .  - -  The mapping 

induces a bijection of the set of leaves onto the (non-Hausdorff) group R/Z[1/d] .  

Proof. - -  This was already shown in the proof of Theorem 6.2. [] 

Remark. - -  There are analogous results for those in Sections 7, 8, and 9 i f "  F-1 ,, 
replaces " F ". 
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8. An analytic description of U+ 

In  this section the analytic structure of U+ is analyzed completely. This is done 
by showing that the " Riemann surface of ~+ " is a covering space of U+ isomorphic 
to (C --  D) • C. Therefore U+ is a quotient of (C --  D) • C by some discrete group 

of automorphisms, isomorphic to Z [ 2 ] / Z .  The group of automorphisms of (C -- D) • C 

is infinite-dimensional, and since the covering group we are after is only defined up to 
conjugation, there is a good deal of freedom in the description. The particular choice 
is algebraically very pleasant, but may not be the best one from a dynamical point of 
view. 

T h e  R i e m ~ n n  s u r f a c e  o f  ?+.  Let U+ be the smallest quotient of the universal 
covering space of U+ on which ~+ is defined. This covering space should be thought 
of as the Riemann surface of ~+, but it cannot be defined as a subset of U+ • C since 
the fiber above a point of U+ is a coset of the group of dyadic angles, and hence not 
discrete in C, so the topology would be wrong. 

Being a covering space of an analytic manifold, U+ is a 2-dimensional complex 
manifold. The set V+ is naturally embedded as an open subset of U+,  using the natural 
definition of V+ on V+, and of course there is an analytic function ~+ : ~ +  -+ C -- 
which extends ? on V+. This mapping ~+ is a submersion, and its fibers are simply 
connected Riemann surfaces, hence isomorphic: to D, C, or the Riemann sphere. 

Theorem 8.1. - -  The fibers of  ~+ are isomorphic to C. 

Proof. - -  This follows from Theorem 7.2. [] 
I t  is unfortunately not true that a 2-dimensional complex manifold with a sub- 

mersion to a subset of C and with fibers isomorphic to C is a locally trivial family of 
copies of C. 

Example. - -  Let U ---- D • ~ ,  where ~ is the Riemann sphere. Choose some non- 

analytic continuous mapping , : D - +  C, such as ,(z) ----2. Consider the set 

U = U --  (graph of ~). 

The projection U -+ D does have all fibers isomorphic to C, but if it were analytically 
a locally trivial fiber bundle, then the section ~ would be analytic. 

However, with an extra condition, such submersions are locally trivial fiber 
bundles. Let X, Y be complex manifolds, and f :  Y ~ X an analytic submersion. Let 
the vertical tangent bundle Ty/x = k e r  dr. Recall that a vertical 1-form is a section 
of ~om(Ty/x,  C). 

Proposition 8 .2 .  - -  I f  all the fibers o f f  are isomorphic to C, and i f  Y carries an analytic 
vertical 1-form ~, such that the integral o f  ~ along a path in one fiber vanishes only i f  the path is 
closed, then the mapping f :  Y ~ X is a locally trivial fiber bundle. 
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Proof. - -  Choose any x ~ X, there exists a neighborhood U of x and a section 

~: U ~ Y o f f N o w d e f i n e a m a p p i n g g : f - l ( U )  -+ U • C bysendingy to ( f ( y ) ,  ~/~,, o~), 

where "t(Y) is a path in f - ~ ( f ( y ) )  joining r  toy .  There exists such a path since 
the fibers are connected, and the integral is independent of the choice since the fibers 
are simply connected, and all analytic 1-forms on a Riemann surface are closed. 

Clearly g makes the diagram 

f - ' ( u )  u x c  

XZ , 
U 

commute, and g is an isomorphism fiber by fiber. Indeed, the hypothesis implies that g is 
injecfive on each fiber, and an injective analytic mapping G ~ C is an isomorphism. [] 

Theorem 8.3. - -  The projection ~ + : U +  ~ G -  D is a trivial analytic fiber bundle. 

Proof. - -  By Cartan's Theorem B ([G]), it is enough to prove that it is locally 
trivial, since there are no topologically non-trivial affine-line bundles over C -  D. 
Moreover, C --  D is a Stein domain, so the topological and the analytic classifications 
of such bundles coincide. 

Since log ?+ is well defined up to an additive constant, the 1-form co = d log ~+ 
is well defined on U+.  Moreover, o~ has no zeros since any branch of log q~+ is a sub- 
mersion. Therefore one can locally find a function g on U+ such that dg A co --~ dx A dy. 
Let + be the restriction of ~'~_ dg to vertical tangent vectors. Since dg is well defined up 
a multiple of o~, this restriction gives a well defined vertical 1-form. 

To avoid conflict of notation with the exterior derivative set ~ = d in the following. 

Lemma 8 .4 .  - -  We have F* hb = (a/8) ~b. 

Proof. - -  Clearly F*eo = 8o~, and F*dx ^ dy = a dx ^ dy. Thus up to multiples 
of co, F* d g =  (a/~) dg. The result follows. [] (Lemma 8.4) 

Now to show that the criterion of Proposition 8.2 applies to +, project a curve 
in one fiber of U+ to U+.  This projection will be closed only if the original curve was 
closed. Further take forward images of the curve until it lies in V+(r), for sufficiently 
large r. This will change the integral of + by dividing it by a power of a[8. So it is enough 
to show that for ~ sufficiently large, the integral 

over a curve y in q~+(~) vanishes only if 3" is closed. By Proposition 5.2, ~+ ,~ x, so that 
,.~ dx/x, so that g can be chosen with dg ,-, x dy. Since the path y is nearly vertical, 

this term of dg contributes more than all other terms, and hence for such an integral to 
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vanish, they-coordinates of the endpoints must agree. But this means that the endpoints 

agree, by Proposition 6.2. [] (Theorem 8.3) 
Next the structure of the group F C Aut U+ such that U+ = U + / r  is examined. 

Proposition 8.5.  - -  The fibration ~J + ~ U+ induces an exact sequence of  fundamental 
groups 

0 , , �9 r , 0 

> Z  >Z Z >0 

where I is represented 

by the canonical generator of hi(V+). Since V+ lifts to U+ ,  this verifies that the left 

square is commutative, and the remainder follows. [] 

Proposition 8.6.  - -  There is a unique lift F o f F  to ~J + mapping V + to V+,  and it satisfies 
F(y(x)) ---- (8u F(x) for all y e F, where the composition law of  F is written additively. 

Proof. - -  Elementary covering space theory shows that the lift exists and is unique. 
The formula then comes from the fact that F : V+ --> V+ induces multiplication by  
on the fundamental groups. [] 

For the remainder of this section, let us restrict ourselves to degree 2, with 
p(x) = x ~ + c. I t  is possible to find similar formulas in higher degrees, but  they require 
inverting a power series, and the computations are difficult and do not lead to simple 

expressions. 

Theorem 8.7.  - -  There exists a unique isomorphism ~J + ---> (C, - -  I)) • G such that in 

that trivialization, the mapping F is written 

F(~, z) = ~2,~ z § ~ .  

Proof. - -  Choose a trivialization of the bundle U+ --> C -- D so that the zero 
section is tangent to a high order to the section s o : ~ ~ (x(~), O) at ~ .  There exists such 

1 
a trivialization: in any trivialization, s o is a power series in ~ which converges in some 

neighborhood of  oo. The sum s, of the first n terms of  this series is an analytic section 
over all of  C --  D and arbitrarily close to s o as n -+ oo. Now change trivializations so 

that s, becomes the zero section. 
Next an aymptotic expansion of F in this trivialization will be computed. 
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Lemma 8 .8 .  - -  I f  n is sufficiently large, then ff has an asymptotic expansion 

z)  = z + + o (1 )  . 

Proof. - -  Using a trivialization such that  dz corresponds to +, then by L e m m a  8.4,  
F* dz ---- (a/2) dz. This means that  ff will act on each fiber as z v-+ (a/2) z + constant, 
and we are left with comput ing the constant (which depends on the fiber, i.e., on ~, 
of course). 

This " constant " can be understood as follows: in the chosen trivialization, take 
the point s,(~), and integrate qb from s,(~ 2) to F(s,(~)) along a path  in the fiber. Return  
to the definition of de above. I t  was found from a function g on V+ satisfying 
d log  ~?+ ^ dg -~ dx ^ dy; so this integral is just  

g(F(s,(~))) -- g ( s , ( ~ ) ) .  

In  the formula above, replace s, by So, and only change arbitrarily small terms 
in the asymptotic expansion. Since q~+ is to first order x, setting g(x ,y )  ~ xy satisfies 
the equation d log q~+ ^ dg = dx ^ dy to first order. We invite the reader to check that  
ignoring the other terms of g will not affect the asymptotic expansion above. Setting 
(x(~), 0) = s0(E), compute 

g(x(~) 2 q- c, x(~) ) - -  g(x(~2), O) = (x(~)" q- c) x(~) q- terms to be neglected. 

In  Proposition 6.4, we started to compute x(~), but  dit not quite go to the required 
precision. In  fact, it would have been quite difficult to extract the relevant terms of 
the 0(1 ~ I) in arbitrary degree. The  goal is the following formula: 

x ( ; )  = + o  , 

which we leave to the reader to verify. Then  

g ( x ( ~ ) * - q - c , x ( ~ ) ) - - g ( x ( ~ * ) , O ) =  ~--~-~ q- ~ - - ~  q-0(1) 

2~ q- 0(1). [] (Lemma 8.8) 

To complete the proof of Theorem 8.7, the o(1) above must  be dealt with. This is 
I 

some function v(~) on 1 3 -  D which vanishes at infinity. Making a change of trivia- 
lization (~, z) ~ (~, z + u(~)), the expression of F in the new tHvialization is 

c a 
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a 

Next find u(~) so that  v(~) --  ~ u(~) + u(~ 2) = 0. This can be done by formal power 
series, or by setting 

Clearly this series formally solves the problem and it converges since I v(~ 2~') [ ~< C I ~ ] -2m 
for some constant C. 

This shows the existence of the required trivialization. The  uniqueness is clear 
from the uniqueness to the solution for u above. [] (Theorem 8.7) 

Finally the group P may be computed.  

Theorem 8.9.  - -  For each element j / 2  k e r ,  there exists a unique polynomial P~,k(~) suck 
that in the trivialization above, the element of  r corresponding to j]2 ~ is given by 

+ p~,~(~)/" 

Proof. - -  First, compute 7v2. By Proposition 8.6,  

c �9 
z + ~ - ~ ;  

This leads immediately to "~1/~(~, z) = -- ~, z + a 

More generally, suppose that  ~'j/~k-t has been determined. Then  Proposition 8 .6  
g i v e s  

z +  ~ 

which can be rewritten 

z _ c e2,~j/~k = ~8 _ ~ + P j - I , ~ ( ~  )~  + p j , ~ ( ~ )  + (e2"J/zk~) s ~ z + c 2 " 

This gives us pj,~(~). [] 
Finally, we fill in a gap in section 5, the uniqueness of q~• in Proposition 5.2. This 

actually requires knowing Theorem 8.7  for H6non mappings of any degree; the proof 
goes through with minor  changes. 
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and 

Proof of  uniqueness for  ~+. - -  Suppose ~b : V ---> C --  D satisfies 

(+([;])t 

First observe that + lifts to ~ : ~ +  -+ C --  D. This is an application of the lifting cri- 
teflon for covering spaces. For all n, the space ~ ,  = F -" (V+)  has the homotopy type 
of a circle, and F : V ,  ~ ~ , _  1 induces multiplication by d on the fundamental groups. 
Thus + can be lifted recursively to all ~ ,  by the formula 

and the proper choice of roots will guarantee that all lifts agree with t~ on V+. 
On each fiber of ~+,  the function ~' must be constant, since it is a mapping 

C ~ C -- D. Thus we can write q~ = ~ o ~+, where 0~ : C --  D ~ C -- D is an analytic 
function; by restriction to V+,  ~ = ~ o ~+. But a look at the functional equation shows 
that e must be of the form ~ ~-~ a~ k, with k a positive integer and a d- ~ = 1. Now the 

asymptotic expansion shows that a ----= 1 and k = 1. [] 

9. The canonical  compactif icatlon of  K+ 

Let C be the compactification of C adding a circle at infinity. Then any poly- 

nomial extends continuously to C and its restriction to the circle at infinity multiplies 
angles by the degree of the polynomial. 

This section contains a description of an analogous compactification C ~ of C 2, 
to which H~non mappings extend continuously. A 3-sphere is added at infinity and the 
mapping extends as the solenoidal mapping a on S 8. This further emphasizes the similar 

role which solenoidal mappings play for Hdnon mappings and angle doubling plays 

for quadratic polynomials. 
In  particular, the closures of K_  and K+ in ~2 are the solenoids 2]+ and Z_ res- 

pectively (note the reversal). This sometimes allows us to measure " angles of external 
rays " in K_  in the solenoid Y,+. This will turn out to be important in the description 

of the topology of these sets. 

Theorem 9.1.  - -  There exists a compact Hausdorff space X homeomorphic to a closed 

four-baU with underlying set C a • S s such that 

a) the induced topologies on C a and S 3 are the standard topologies; 

b) C a is dense in X; 
c) the H~non mapping F extends to a homeomorpkism F : X ~ X;  and 

d) the restriction of  F to S 3 is the solenoidal mapping v o. 
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Remark. -- This is a surprisingly difficult result to prove, considering that the 
analogous results have already been worked out at finite distance. The difficulty is that 
if a 3-sphere is added at infinity in the obvious way, with points corresponding to oriented 
directions in C 2, then all non-vertical directions are mapped to horizontal directions. 
In  particular, the Hdnon mapping does not extend continuously, and even where it is 
defined, it fails to be injective. To make the extension of the Hrnon  mapping injective, 
the horizontal (and vertical) directions will be examined with a microscope. 

More precisely, a delicate blowup of the circle at infinity in the x-axis will be 
made, replacing a point p by a way of approaching p, the method of approach which 
we focus on being the images of straight lines. 

Proof. -- Step 1. Blowing  u p  a c i rc le  in  S 3. Consider a compact differentiable 
curve F C S ~, and define the oriented blowup g~ of S 8 along r as follows. First choose 
a tubular neighborhood U of F such that there exists a unique geodesic of S ~ joining 
any point of U to F in U. For x ~ U, let ~ be the tangent vector at x to the geodesic 
joining x to F. Now define the blowup U r  as a subset of the unit tangent bundle TI (U ) 
to U C S 3 to be 

~jr={(x,~) ~Tl(SS) l {~:k~ f~176  
is perpendicular to I ~ if x ~ r 

The obvious mapping ~ : U r  -+ U is an isomorphism on U r  --  ~-~( r ) ,  so glue S 8 -- F 

onto U r  to make ~ .  Above F, there is a torus, mapping to F as a bundle of circles. 

Step 2. A first microscope. Consider the solid torus T 1 parametrized by 

{(X,~) ~ C Z l l X [  = 1,]~[~< 2}. 

The point (X, ~t) of this solid torus will be " at the end of " the ray 

t ~  t~tj .  

Let  F 1 be the c u r v e  of  equat ion  y = 0 in S 3. Glue 0T1 = { (~, ~) ] I X [ : 1, I ~ I = 2 } 
to 2"8 as follows: choose the circle in Ts above the point of F1 corresponding to ~- 1" 1 ~1"1 

the point in the circle at infinity on the x-axis in the direction X. Radial projection 

of the curve 

t~..[ xt'] 
L r~tJ 

onto the sphere at infinity gives a curve which approaches the circle orthogonally in a 

definite direction. Identify (X, ~) with this direction. 

Let $3 be the 3-sphere blown up along r 1 with the torus T 1 attached as above. 

6 
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Step  3. A second m~croscope.  Unfortunately, distinguishing these " eventually 

horizontal curves " do not resolve the images of straight lines. Blow up the circle U S 
of equation Vt 2 = X in this torus further to see the constant term in a ray of  the form 

More formally, consider the solid torus T2 I = 1, 14 la ] ) .  Glue T, 

to S~, by identifying the point (~, v) e 0T~ (i.e. I v I = [ a I) to the unit vector in the 
direction of v at (~ ,  ~). 

Let S~ be S~ blown up along I' 2 with the torus T2 attached as above. 

S tep  4. A topology on C 2 U ~s. A basis of neighborhoods of each point o f S  s is 

needed. There is no difficulty at those points which correspond to points of S 3 not on 
the x-axis: take the cone over a neighborhood of such a point, and cut it off at some 

radius. 
I t  is not much harder to define a basis of neighborhoods of a point (X0, ~0) in Tt  

which is not on the circle F2 or on the boundary of T 1. Take a neighborhood 

v--((x, )llx-z01<  01< 
of (X, bt) e T1 and let the neighborhood consist of V and the points which can be written 

(Xt ~, Bt) for t > T and (X, ~) e V. 
An analogous description is possible for the points inside T 2. Given ~0 with ] t~o ] = 1 

and v 0 with ] v o [ < [ a [, choose a neighborhood W of (b~0, v0) in the solid torus T2 defined 
by ] m u - - t Z o ] < r  o [ < , ,  and a number T > 0 .  Then a neighborhood of 
(~to, v0) will consist of W and the points of C 2 which can be written (~t 2 t 2, ~tt + v) 

with (~, v) E W and t >  T. 
I t  is a good bit harder to define a neighborhood basis for a point on the boun- 

dary OT 1 or 0T 2. Let P be the solid paraboloid of points in C ~ which can be written 
(Xt 2,vtt) with [ ~ t ] <  2 (i.e. the set defined by the inequality ]y]2~< 4 ] x D .  Choose 

(X0, ~t0) e 0Ta, i.e. ] X 0 I = 1 and [ ~0 ] = 2, and a neighborhood W1 of (X0, Vt0) in T 1. 
The intersection W 1 c~ 0T 1 corresponds to a set of unit vectors normal to r 1. Set W z 
to be the set of points in S 3 which are obtained by traveling a distance less than ~ from I~t 
on the geodesic tangent to such a normal vector. Now a neighborhood of (X0, ~t0) consists 
of Wt  u W~, and the points which can be written (Xt ~, # )  with (X, ~) e W 1 and t > T, 
and the points on rays through W2 of norm greater than T and outside the paraboloid P. 

We will leave to the reader the analogous construction for the boundary 0T2, 

as well as the proof of the following lemma. 

Lemma 9.2.  - -  The space C 9" U ~s with the topology above is compact Hausdorff. 

Step 5. The space C ~. The compacfification of C 2 constructed so far is adequate 

to do the HEnon mapping once in appropriate regions. It  needs to be adapted to the 
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H6non mapping as a dynamical system. One way of doing this would consist of making 
an infinite sequence of " blow u p s "  as above, so as to resolve the images of parabolic 
rays, etc., and taking the projective limit. A different method will be used, inspired 
by the fact that a model for the locus at infinity already exists, as a dynamical system. 

Let  S~ be a " new " copy of the 3-sphere, and ~ : S~ ~ S~ a solenoidal mapping. 
Let  T '  0 C $1 s be a solid torus, such that T~ = a(T'o) is contained in the interior of To. 
The reason for this funny notation will become clear below. 

Back in 2 3, consider the solid torus T O of equation 15 [ ~< I x [. A ray in the cone 
over the boundary of T O can be written (t% t~) with [ ~ [ = [ ~ [ = 1. The image of 
such a ray is the parametrized curve t ~ (~a tz -t- c - -  apt ,  ~t) ,  which is asymptotic to 

the curve 

( 9 . 3 )  s ~-~ ~a s z, ~s -t- ~ �9 

This last curve converges as s ~ oo to a point in 0T2, and it is easy to see that the first 
is sufficiently close to the second so it converges to the same point. 

o o 
I - -  P Choose a homeomorphism h : T  0 T 2 ~ T  o T2, conjugating the mapping 

: 0T 0 -+ 0T~ to the mapping T O ~ T 2 induced by the H t n o n  mapping as above. This 
is possible, by the classification of solenoidal mappings and the formula (9.3). Now put  
a topology on C ~ U S, 8 as follows. Attach T o - - T '  2 to C 2 by k. For any point p of 
S~ -- (~+ u Z_),  choose n such that ~ ( p )  e T o -- T; ,  choose a neighborhood U of ~"(p) 
and define a neighborhood o f p  to be F ~  c~ C 2) u ~ ~  n S~). 

This defines a neighborhood basis for all points in C 2 t_A SSl, except for those of 
the solenoids l~+ and Y~_. Recall that both solenoids are canonically homeomorphic 
to lira (S x, 2), and that there exists a unique mapping t~+ : T O ~ S 1 which semi-conjugates 

to angle-doubling (Theorem 3.1). A neighborhood of p = ( . . . ,  Pz, Pl, P0) e Y~+ is the 
union of the set of (x,y) ~ C a such that 

F ~  for all k~<N 

and ] v+(FO_k(x,y))[ - -Pk < r for all k ~< N 

and the set of points p in 

n o -~ To 
k~N 

such that I t~+(a~ --Pk ] < r 

The union C a I I  $81, with this topology, is the space C 2. 

S t e p  6. C o m p a c t n e s s  o f  C a. I t  remains to verify that C a is compact, Hausdorff, 

and that the mapping F : C 2 ~ C 2 which is F on C 2 and ~ on S~ is continuous. 
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To show compactness, take a sequence in C 2. Suppose that the sequence is in C ~ 
and that the norms of the elements ( x . , y . )  tend to infinity, as otherwise the sequence 
obviously has a convergent subsequence. Further, assume that the sequence lies in V+.  

Either there exists k and a subsequence (x.l,y.~) such that 

F~ r V+, 

or there isn't. In  the first case, recall the set P from step 4, and choose k and a sub- 
sequence, which will still be called (x , l , y , i )  such that 

FO-k t x  . ~,,)'nl/ ~ V +  m p .  

I f  a subsequence can be chosen so that the rays through these points converge to a non- 
horizontal ray, then this subsequence converges to the point of S~ corresponding to this 
ray. I f  the rays through these points tend to the horizontal, then choose a subsequence 
so that the directions of the rays tend to I~1 on a curve orthogonal to I" 1. This direction is 
then a point of S~, which is the limit of the subsequence. This shows that the F ~  ~(x m,y./) 
have a subsequenee which converges, and hence so does (x, i ,y ,~),  by the second part 

of sept 5. 
Now suppose that the number of times F-1 can be iterated on points of the sequence 

and stay in V+ tends to infinity. Then by the compactness of the circle and a diagonal 
argument,  a subsequence of the ( x , , y , )  can be chosen so that the sequences 

] 9+(V~ [ 

converge for all k, say to Pk. Clearly p~ = P~-I.  Let p = ( . . . ,  p~, Px, P0). The subse- 
quence clearly converges to p ~ Y~+. This shows compactness. 

Step 7. The  space  C 2 is  I - Iausdor~.  I t  remains to show that distinct points 

of C~ have disjoint neighborhoods. Clearly only points in S~ need to be considered, 
and Lemma 9.2 shows that only points in the solenoids need to be considered. Even 

1 
here there is no problem. I f  p0 ~: P'o, then let s = ~ [Po --  Po ]- Then the s-neighborhoods 

of p and p '  are disjoint. I f  p, = p~ for i < k and Pk ~e p~, then [ Pk --  P~ [ = 2 and so 

1 
the ~-neighborhoods are disjoint. 

Since clearly the mapping if, given by F on C * and a on S s, is continuous (the bases 
of neighborhoods are invariant under F), this ends the proof of Theorem 9.1. [] 

Corollary 9 . 4 .  - -  The closure of K+ in C 2 is K+ u ~ _  , and the closure o f  K _  is K _  u ]g + . 

Proof. - -  Clearly points of K and large norm are points where ~-  1 can be iterated 
many times staying in V+. Such points are in smaller and smaller neighborhoods of 

points of Y,+. [] 



HI 'NON MAPPINGS IN THE COMPLEX DOMAIN. I 45 

REFERENCES 

[A] 
[B] 

[BSl] 

[BS2] 

[BS3] 

[BS4] 

[BLS] 

[BC] 
[Bi] 

[BH] 

[Br] 
[D] 

[Dn] 

[EEl 
[F] 

[FS] 

[FM] 

[O] 

[Ha] 
[H41] 
[H42] 
[Ho] 

[HWh] 

[HWi] 

[H] 

[HY] 

[Ho] 

[Ml] 

AHLFORS, L., Conformal Invariants, McGraw-Hill, New York, 1973. 
BEDFORD, E., Iteration of polynomial automorphisms of C 2, Proceedings of the International Congress of Mathe- 
maticians, 1990, Kyoto, Japan, Springer-Verlag, Tokyo, Japan, 1991, 847-858. 
BEDFORD, E. and SMILUE,J., Polynomial diffeomorphisms of C~: currents, equilibrium measure, and hyper- 
bolicity, Invent. Math., 103 (1991), 69-99. 
BEDFORD, E. and SmLLm, J. ,  Fatou-Bieberbach domains arising from polynomial automorphisms, Ind/ana 
U. Math. J.,  40 (1991), 789-792. 
BEDFORD, E. and SmLLm, J. ,  Polynomial diffeomorphisms of C ~, II:  Stable manifolds and recurrence, 
J. Amer. Math. Soe., 4 (1991), 657-679. 
BEDFORD, E. and SMILLm, J. ,  Polynomial diffeomorphisms of C ~, III :  Ergodicity, exponents, and entropy 
of the equilibrium measure, Math. Ann. (to appear). 
BEDFORD, E., LYUBICH, M. and SMILLIE, J., Polynomial diffeomorphlsms of C 2, IV: The measure of 
maximal entropy and laminar currents, (to appear). 
BENEDICKS, M. and CARLESO~, L., The dynamics of the Hdnon map, Ann. Math., 138 (1991), 73-169. 
BIEBERBACH, L., Beispiel zweier ganzer Funktionen zweier komplexer Variabeln, welche eine schlicht 
volumetreue Abbildung des R 4 auf elnen Tell seiner selbst vermitteln, Sitzungsber. Preuss. Akad. Wiss. 
Berlin, Phys.-math. Kl. (1933), 476-479. 
BRANNER, B., HUBBARD, J. ,  The dynamics of cubic polynomials, I I: Patterns and parapatterns, Acta Math., 
169 (1992), 229-325. 
BI~OL*N, H.,  Invariant sets under iteration of rational functions, Ark. Math., 6 (1965), 103-144. 
DOLD, A., Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology, sk 
(1965), 1-8. 
DOUADY, A. et HUBBARD, J. ,  Etude dynamique des polyn6mes complexes, Publications math4matiques d'Orsay, 
Universlt4 de Paris-Sud (1984-1985). 
EARLE, C. and EELLS, J. ,  A fibre bundle description of Teichmfiller theory, J. Diff. Geom., 3 (1969), 33-41. 
FATOU, P., Sur les fonctions m4romorphes de deux variables, C. R. Aead. Sc. Paris, 175 (1922), 862-865; 
Sur certaines fonctions uniformes de deux variables, ibid., 175 (1922), 1030-1033. 
FORN,~SS, J. and SXBONY, N., Complex Hdnon mappings in C 2 and Fatou-Bieberbach domains, Duke Math. J., 
65 (1992), 345-380. 
FRIEDLAND, S. and MILNOR, J. ,  Dynamical properties of plane polynomial automorphisms, Ergod Th. 
& Dynam. Syst., 9 (1989), 67-99. 
GUNNINO, K., Introduction to Holomorphic Functions of Several Variables, Vol. III :  Homological Theory, Wads- 
worth & Brooks]Cole, Belmont, CA, 1990. 
HAGSTROM, M., Homotopy groups of the space of homeomorphisms, Ill. J. Math., 10 (1966), 563-573. 
H~NoN, M., Numerical study of quadratic area preserving mappings, Q. Appl. Math., 2"1 (1969), 291-312. 
H~sos,  M., A two-dimensional mapping with a strange attractor, Commun. Math. Phys., 50 (1976), 69-77. 
HOLMES, P., Bifurcation sequences in horseshoe maps: infinitely many routes to chaos, Phys. Lett. ,4, 104 
(1984), 299-302. 
HOLMES, P. and WmTLEY, R., Bifurcations of one- and two-dlmensional maps, Philos. Trans. Roy. Soc. 
London, Set. A, 311 (1984), 43-102. 
HOLMES, P. and WXLLXA~S, R., Knotted periodic orbits in suspensions of Smale's horseshoe: torns knots 
and bifurcation sequences, Arch. Rational Mech. Anal., 90 (1985), 115-194. 
HUBBARD, J. ,  The H4non mappings in the complex domain, in Chaotic Dynamics and Fractals (M. Barnsley 
and S. Demko, ed.), Academic Press, New York, 1986, pp. 101-111. 
HUBBARD, J. ,  Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoeeoz, in 
Topological Methods in Modem Mathematics: A Symposium in Honor of John Milnor's Sixtieth Birthday, Publish 
or Perish, Houston, Texas, 1993, pp. 467-511. 
HUBB~mD, J. and OBERSTE-Vo~TI~, R., H4non mappings in the complex domain, II: projective and 
inductive limits of polynomials, in Real and Complex Dynamics, Kluwer, Amsterdam, 1994. 
MILNOR, J. ,  Non-expansive H~non maps, Adv. in Math., 69 (1988), 109-114. 



46 JOHN H. HUBBARD AND RALPH W. OBERSTE-VORTH 

[M2] MILNOR, J., Dynamics in one complex variable: introductory lectures, preprint, Institute for Mathematical Sciences, 
strNy, Stony Brook (1990). 

[MV] Mogh, L. and VXANA, M., Abundance of strange attractors, Acta Math. (to appear). 
[O] OB~gSTE-VoRTH, R., Complex horseshoes (to appear). 
[Sin] S~ALE, S., Differentiable dynamical systems, Bull. Amer. Math. Sot., 78 (1967), 747-817; reprinted in The 

Mathematics of Time, Springer-Verlag, New York, 1980. 
[S] SMmLIE, J., The entropy of polynomial diffeomorphisms of C ~, Ergod. Th. and Dynam. Syst., 10 (1990), 

823-827. 
[T] THtrRSTON, W., The combinatorics of rational maps (to appear). 
[vD] VAN D~a~TZIO, D., l~ber topologisch homogene Kontinua, Fund. Math., 14 (1930), 102-105. 
IV] VIETORIS, L., l~lber den h6heren Zusammenhang kompakter Raume und eine Klasse von zusammen- 

hangstreuen Abbildungen, Math. Ann., 97 (1927), 454-472. 
[W] WILLn~S, R., One-dimensional nonwandering sets, Topology, 6 (1967), 473-487. 
[Y] Yoccoz, J., Sur la connectivit~ locale de M, unpublished (1989). 

J~ H~ 

Cornell University 
Ithaca 
New York 14850 

R. O.-V. 
University of South Florida 
Tampa 
Florida 33620-5700 

Manuscrit re~u le 5 janvier 1993 


