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THE STOKES PROBLEM FOR A POROUS PARTICLE 
WITH RADIALLY NONUNIFORM POROSITY 

I. V. C h e r n y s h e v  UDC 532.582.81:532.546.2 

The flow past a nonuniform porous spherical particle immersed in a uniform steady-state stream is studied in the Stokes approximation. For 
a power-law radial dependence of the particle permeability coefficient, an analytical solution for the velocity and pressure fields outside and 
inside the particle is obtained. 

The classical problem of slow uniform flow past a rigid sphere (the Stokes problem) and its generalization for a 
spherical liquid droplet (Hadamard and Rybchinskii) are discussed in many monographs, for example, in [1]. Uniform flow 
past a porous spherical particle is considered in [2, 3]. In [4], the solution is obtained for a porous particle immersed in an 
arbitrary shear flow. 

In many hydrodynamic chemical engineering processes, the particle porosity is nonuniform. For example, the catalyzer 
grains produced by calcination consist of layers with different porosities. In particular, a porous grain may have an 
impermeable core or, on the contrary, a low-permeability outer surface. Purely shear flow past a radially nonuniform particle 
was considered in [5]. In this paper, we give a solution of the problem of steady-state uniform flow past a porous particle 
with radially nonuniform porosity. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Consider a steady-state Stokes flow past a nonuniform spherical porous particle of radius a immersed in a uniform 
stream of viscous fluid. The origin of the spherical coordinate system r, 0, q~ coincides with the particle center. Due to axial 
symmetry (velocity component v,p=0), all the unknown functions are independent of % 

On the assumption that the Reynolds number is small Re=Uap/p < 1, outside the particle the velocity and the pressure 
are determined by the Stokes equations [1]: 

Av=grad p, div v=0  (1.1) 

The fluid flow inside the particle is described by Darcy's law with a permeability coefficient k that depends on the 
nondimensional radius r: 

V=-k ( r )  grad P,  div V=0 (1.2) 

Here, all the variables are nondimensional. The characteristic scales for the length, velocity, and pressure are the particle 
radius a, the free-stream velocity U, and po=pU/a, where p is the dynamic viscosity of the fluid. The permeability coefficient 
is scaled to a -~. 

Far away from the particle, the velocity field is uniform: 

1- - -~,  v, = cos 0, v0 =-s in  13 (1.3) 

On the particle surface, the external normal stress is equal to the internal pressure, the normal velocity component is 
continuous, and the tangential velocity component has a discontinuity proportional to the derivative of this component with 
respect to the outward normal [6, 7]: 

~Yr p - 2 ~ = P ,  v = V ,  ~,v/-k - av~ ' Or av--- 7 = ~ o - Vo (r= 1) ( 1.4) 

The nondimensional constant )~ depends on both the physical nature of the porous material and the geometry of its 
surface. According to the data of [6, 7], 0.25 < )~ <_ 10. This dependence is valid only for very small values of the 
permeability coefficient on the surface. 
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, E X T E R N A L  A N D  I N T E R N A L  H Y D R O D Y N A M I C  F I E L D S  

We seek the solution for the external field in the form: 

v,(r, 0)=fj(r) cos 0, v0(r, 0)=f2(r) s in0,  p(r, 0)=f3(r) cos 0 (2.1) 

Substituting these formulas in system (1.1) gives: 

,.ej;,, + 2,:f,' - 4r 3' + 4.L 
- ( 2 . 2 )  

r2f2 "" + 2rf2' - 2.f2=-rf3 + 2 f  1 

After applying the operator div to the first of Eqs. (1.1), we obtain the Laplace equation Ap=0. From this, using (2.1), 
we obtain: 

ref /"  + 2r .f  3' - 2f~=O 

The general solution of this equation is 

f3=Ar + Cr -2 

Since the pressure at infinity is finite, we have p=Cr -2 cos 0. 
Having solved Eq. (2.2) using (1.3), we obtain the following formulas for the fluid velocity components outside the 

particle: 

vr=(1 + Cr  < + 2Br-3/3) cos 0, v0=(-1 - Cr-J/2 + Br-3/3) s in0 

We will now find the hydrodynamic field inside the particle. After taking the divergence of both sides of the first of 
Eqs. (1.2). we obtain: 

grad k �9 grad P + k(r) AP=0 

In the spherical coordinates, this equation takes the form: 

( r - ~ r ( ~ r )  r2sin0 ~0 

If P(r, 0)=g(r)cos 0, we have 

kr2g "" + (2kr + kfr2)g" - 2kg=0  

We will rewrite this equation in the form containing the differential self-conjugate Sturm-Liouville operator [8]: 

- (kr2g ") + 2kg=0 ,  Jg(0)l < ~,  k(r) > 0 (2.3) 

From the physical meaning of the permeability coefficient we have k(r) > 0. Hence, for r ~ [0, 1] we have kl ~ > 0 and, 
at the point r=0, the coefficient of the higher derivative in Eq. (2.3) has a zero point not less than second order. Using the 
properties of the Sturm-Liuoville operator, we choose from the fundamental system of solutions of the equation that function 
which is finite at the zero point: g(r)=C~h(r). From Eq. (1.2), we obtain the fluid pressure and velocity inside the particle 
in the form: 

P=Clh(r)cosO,  V=-Clk ( r )h ' ( r ) cosO,  Vo=-C1 k(r)h(r) sin0 
F 

The coefficients C~, C, and B in the expressions for the velocity and the pressure are obtained from the boundary 
conditions (1.4) for i"=1. The second of the conditions (1.4) gives: C1=(3C + 4B)/h(1). Using this expression, from the rest 
of the conditions (1.4) we obtain the following system of linear equations for the coefficients C and B: 

3(1 + 3klm)C + 2(1 + 6 k l m ) B = - 3 ,  3(1 + s k~--~ + 6kl)C - 2(1 + 3 ~ , ~  - 12k~)B=-6 

Here, kl=k(1) and m=h'(1)/h(1). 
The solution of this system is C=-3K 1 and B=3KJ2; accordingly, for C 1 w e  have: C~=-3K3/h(1). Here, 
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1 + Ek~ n- + 4 ( m  - 1 ) k ,  
K~(k 1, m)= 

2 + 4~,k~/2 + 3(3m - 2)k I + 15Xmk31/2 

1 - Xki l/~- + 6 ( m  - 1 ) k  1 
K~_(k v m)= 

2 + 4~,k~/2 + 3(3m - 2)k~ + 15?~mk~/2 

(2.4) 

1 + 5~.k]/2 
K3(k 1, m)=2K~ - 3KI= (2.5) 

- 2 + 4Xk~/2 + 3(3m - 2)k I + 15~mk~ n- 

Thus, the general solution for the external and internal hydrodynamic fields is as follows: 

p = - 3 K j r - 2 c o s  0, P = - 3 K  h(r) c o s 0  
~h(1) 

v = ( 1  - K f  -I + K,r -3) cos 0,  V = 3 k ( r ) K  3 h'(r) cos 0 (2.6) 
- h ( 1 )  

v0=-  1 - ~ 1 - g~r -3 s in0 ,  0 3 rh(1) 

Here, the coefficients K l, K2, and K 3 are given by the formulas (2.4) and (2.5). 
Both in the neighborhood of  the particle center (r --+ 0) and near the surface (r --+ 1) the behavior of  P, ~ ,  and V 0 

depends on the particular form of  the dependence k(r). Since the function h(r) is bounded, if the particle center is 
impermeable (k(0)=0) the velocity components V,. and V 0 tend to zero as r --9 0. 

Thanks to the axial symmetry, we can introduce the stream function. As can be easily shown, inside and outside the 
particle the nondimensional stream function has the form: 

~(r,  0)=-0.5(1 *2 - 3K~r + K2 r-l) sin2 0,  

W(r, 0) = - (3 /2 )  K 3 k(r) r 2 [h'(r)/h( 1 )] sin-" 0 

We can now find the tangential stress x,~ on the sphere surface and the drag force F exerted on the porous sphere 
by the free stream: 

"c r0 =/--~-j~ + - Jr= 1 =-3K2 sin 0 

F=J(-'CrO sin 0 - p cos 0)2re sin 0 d0=4rc(2K 2 + Kl)=6rcK 4 
0 

K4=2(2K2 + KI)= 2 
3 - ~,k~/2 + 16(m - 1)k 1 

3 2 + 4Xk~ n- + 3(3m - 2)k I + 15~,mk 3n 

When kl=0 and the coefficient K4=1, this gives the well-known Stokes formula for the drag on an impermeable sphere. 
We will now calculate the mass flux of  fluid entering the particle through its surface per unit time: 

Q = - ~ v ,  n) d S = - f v r J r = l d S = - 2 r c ( 1 -  3 K 1 +  K,_) f c o s O s i n O d O = x k ~ m K  3 
S S ~/2 

Here, the integration is carried out over that part of  the particle surface (S) on which the normal velocity component 
is negative. The mass flux is proportional to the boundary value of  the permeability kl and the radial derivative of  the 
pressure on the surface m=h'(1)/h(1) which, according to (2.3), also depends on the function k(r). 
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Fig. 1. Radial dependence of  the pressure inside the porous particle for (k o, k0=(0.00125, 0.001): (0.125, 0.1); (0, 
0.1); (0.1, 0.001); (1))=k1=const) - curves 1--6: (b=4: curves 1--4: b=0.25: curve 5). 

Fig. 2. Streamline patterns for a power-law particle porosity distribution (a: impermeable sphere, b-e:  cases 1~5 
in Fig. 1). 

3. P O W E R  LAW F O R  T H E  P O R O S I T Y  

A typical law for the porosity which, on the one hand, is often encountered in practice and, on the other hand, admits 
an analytical solution of  our problem is the power law: 

k( r )=(k  I - k0)r b + k 0 (k o >_ 0, k 1 > 0,  b > 0) (3.1) 

Here, k 0 and k) are the permeability coefficient values in the particle center (r=O) and on the particle surface (1"=1). If  
ko=k 1, the particle permeability is constant k(r)=kt. I f  k o > k~, the porosity decreases from the center to the periphery and, 
if k o < k~, the porosity increases with distance from the center. When k0=0, k(r)=kl r/) and the particle center is impermeable. 

Given the power law (3.1) for k(r), Eq. (2.3) takes the form: 

rZ((kl _ ko)r b + ko)g,, + ((b + 2)(k~ - ko)r b+~ + 2kor)g' - 2((k~ - ko)r b +/,\)) g = 0 (3.2) 

When k0~0, we introduce the new variables: g(r)=req(~), ~=dr b. Here, d=(ko - k~)/k)) and c is one of  the roots of  the 
equation c z + c - 2=0, i.e. c~.a={-2, 1} (see [9]). Then, the latter equation reduces to the well-known hypergeometric 
equation for the function q(~): 

~(~, - 1)q" + (({z + [3 + 1)~ - y ) q '  + ~ 3 q  =0  

c ~ - c l  3 c,  + B 1 1 + B  1 c,  + B ,  1 + B ,  
T = l  + - =1 + _ ,  o~= - - _ _ ,  ~3- - = _ _  

b b b b b b 

Bi.2=0.5(b + 1 w ~/(b + 1) ~- + 8 )  

The solution of  Eq. (3.2) bounded at 1"=0 can be expressed in terms of  the hypergeometric function F(cq [3, ~/; ~) [10] 
as follows: 
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g(r)=Clh(r)=ClrFt  l + b BI 

Using this expression for h(r), we obtain: 

h'(r)=F ~ 

m = l +  b+3db F [ I + B ~ b  

1 + B .  3 dr~,] 1 + J 

1 + 3 ;  dr ~' + r/'F +1, r e + l ,  2 dr 
b b b + 3  b b b 

+1,  r e + l ,  2 + _ ;  d F - 1 + _ :  d 
b b b b b 

(3.3) 

These formulas for h(r), h'(r), and m together with (2.6) give a closed solution for the velocity and pressure fields in 
the problem of steady-state flow past a porous particle with a power law for the permeability coefficient (3.1). 

When k=0, we have k ( r )=kf '  and Eq. (2.3) takes the form: 

r2g ' '  + (2 + b)rg" - 2g=0 

Its solution can be represented in the form of ordinary power functions: 

g(r)=C1 r~ + C.I "z. {~, )~}=B~,2=O.5(-(b + 1) + ~(b + 1) -~ + 8 ) 

Taking the boundedness of the function g(r) at 1"=0 into account, we obtain: 

h(r) = r ~ , h'(r) = ~ r ~ - t ,  m=h'(1)/h(1)=~ 

Using the formulas obtained, we calculated several variants for porous particles with a power law for the porosity. The 
graphs of the function h(r) are presented in Fig. 1, and the corresponding streamline patterns are shown in Fig. 2. Since the 
solution is axisymmetric, in Fig. 2 we show only the top pm't of the flow region (z > 0). 

Figure 2a shows the streamlines of  the flow past an impermeable rigid particle (kl=0). When the values of k 0 and kl 
are similar ([dl < 0.2), no matter what the value of b the flow pattern differs only slightly from that for the flow past a 
particle with constant porosity. If k < 0.001, the flow pattern is similar to that for the flow past a rigid particle (Fig. 2b), 
but a slight filtration of fluid through the particle still takes place. For k t > 0.1, the flow more closely resembles the 
undisturbed stream (Fig. 2c). Figure 2d corresponds to a power-law porosity distribution with k=0, k~=0.1, and b=4. Since 
the porosity decreases with decrease in the distance from the center, a certain displacement of the streamlines occurs and 
the qualitative flow pattern is similar to that for the flow past a particle with a radius smaller than a. Figure 2e shows almost 
the limiting case (d ~ I): k0=0.1, k~=0.001 (d=0.99), and b=4. In this case, the particle has a low-permeability "crust" and 
much greater internal porosity. The fluid filtering through the dense surface enters the more permeable middle zone of the 
sphere, which explains the streamline deformation inside the sphere. In the neighborhood of 1"=-1, the pressure varies very 
sharply (curve 4 in Fig. 1, m---39.3). 

When the quantities k 0 and k t are substantially different, the parameter b also has a noticeable effect on the internal 
flow pattern. The exponent b affects the mean permeability of the medium: 

l 

(k)= jk(r)dr=ko(b + 1 - d)/(b + 1) 
0 

For b >> 1, the value of (k) is closer to k 0 and, for b << 1, the mean permeability is closer to k~. In Fig. 2f the 
streamlines are plotted for the same values of k 0 and k~ as in Fig. 2e but for b=0.25. In this case, the particle has a thicker 
low-permeability "crust", which results in a slower increase in the pressure as r ~ 1 (curve 5 in Fig. i, m=6.0), and the flow 
pattern more closely resembles that for an impermeable sphere. 

The parameter ~, has only a slight impact on the flow pattern. Thus, a decrease in L from 10 to 0.25 results in only a 
certain change in the streamline refraction on the particle surface. In all the cases considered above, L was taken equal to 
1.0. 

When b=0 or k~=k o, both cases of the power law for the porosity considered above give the well-known solution for 
the particle with constant permeability k(r)=k~ obtained in [2]. This solution is described by formulas (2.6), (2.4), and (2.5) 
after the substitutions h(r)=r, h '(r)=l,  and m=l (curve 6 in Fig. 1). 
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Summat3 ' .  In  the  S tokes  a p p r o x i m a t i o n ,  the  ex t e rna l  and  in t e rna l  h y d r o d y n a m i c  f ie lds  for  an  a rb i t r a ry  a x i s y m m e t r i c  f low 

(a c o m b i n a t i o n  o f  u n i f o r m  and  shea r  s t r eams)  pas t  a sphe r i ca l  pa r t i c le  w i t h  r ad ia l ly  n o n u n i f o r m  p o r o s i t y  are  s u p e r p o s i t i o n s  

o f  the  so lu t ions  o b t a i n e d  in the  p r e s e n t  s t udy  and  in [5] for  u n i f o r m  a n d  p u r e - d e f o r m a t i o n  f lows,  r espec t ive ly .  
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