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Abstract 

We consider one parameter  families or arcs of diffeomorphisms. For families 
starting with Morse-Smale diffeomorphisms we characterize various types of (structural) 
stability at or near the first bifurcation point. We also give a complete description of 
the stable arcs of diffeomorphisms whose limit sets consist of  finitely many orbits. Uni- 
versal models for the local unfoldings of the bifurcating periodic orbits (especially saddle- 
nodes) are established, as well as several results on the global dynamical structure of the 
bifurcating diffeomorphisms. Moduli of  stability related to saddle-connections are 
introduced. 
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I. -- I N T R O D U C T I O N  

The study of the geometric structure of the orbits of  dynamical systems (differential 
equations, flows, vector fields, or diffeomorpkisms) defined on a manifold has been 
considered in many works since Poincar~ and Liapunov. Two d i f f e o m o r p h i s m s f a n d f '  
are said to have the same geometric structure if they axe topologically conjugate, i.e. if 
there is a homeomorphism h from the domain o f f  to that o f f '  such that hf = f '  h. Two 
flows or vector fields, are called topologically equivalent if  there is a homeomorpkism 
sending orbits of  one system to orbits of  the other; if, in addition, the homeomorphism 
preserves the flow parameter,  we again say the systems are conjugate. In general terms, 
we aim at the classification of dynamical systems under conjugacy or topological equi- 
valence. Since, however, much pathological behavior can occur, we must restrict 
ourselves to interesting special classes of systems. We shall be concerned here with 
systems having only mild recurrence; in particular, we shall frequently assume that their 
limit sets consist of  only finitely many orbits. 

The space of differentiable systems of  class C r, r > I, has a natural  topology 
given by uniform convergence of the first r derivatives. This is called the C' topology. 

Given any equivalence relation E on the set of  dynamical systems, one can define systems 
to be E-stable if they lie in the interior of their E-equivalence classes. When topological 
equivalence is used for E, an E-stable system is called structurally stable (or just stable). 
The stable diffeomorphisms and vector fields whose limit sets have finitely many orbits 
coincide with the Morse-Smale ones [24]. In  fact, in this case the Birkhoff center [I5] 
is finite because non-trivial recurrence implies uncountably many orbits in the limit 
set. Since one understands the structure of Morse-Smale systems pretty well, it is natulal  
to consider one-parameter families of systems starting at a Morse-Smale one and to at tempt 
to describe the structure of the elements of such families. In  the present work we shall 
define three natural  equivalence relations on these families, and we shall characterize 
their stable families in terms of geometric properties. In  particular, we will characterize 
the stable one parameter  families of diffeomorphisms whose elements have only finitely 
many orbits in their limit sets. This corresponds to the characterization of the Morse- 
Smale diffeomorphisms as the ones which are stable and have finitely many orbits in 
their limit sets. The results can, of course, be translated to certain classes of vector fields 
(those with global cross-sections). In  [26a] related results are obtained for families of 

gradient vector fields. 
We first present a preliminary description of our main results. Later, we shall 

give their precise statements. 
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In [I9] , [20], one studied how a one-parameter family of diffeomorphisms starting 
at a Morse-Smale one ceases to be stable (i.e. goes through a bifurcation) when the 
parameter  evolves. For a generic family, the description given there is complete assuming 
that the diffeomorphism at the f rs t  bifurcation point has its limit set made of  a finite number  

of  orbits. It turns out that these orbits are all periodic except at most one. I f  the periodic 
orbits are all hyperbolic, then their stable and unstable manifolds meet transversally 

except along one orbit. In case one of  the periodic orbits is not hyperbolic, this orbit 
must be an elementary bifurcation (a saddle-node, flip, or H o p f  orbit), the other periodic 
orbits must be hyperbolic, and all stable and unstable manifolds meet transversally. The 
orbit structure of the diffeomorphism at the first bifurcation point will be basic for our 

results on the stability of  these arcs. 
Throughout  this paper, M denotes a compact C ~~ manifold without boundary,  and 

Diff(M) denotes the set of C | diffeomorphisms of M. We let 9 ~ ---- 9~(M) be the space 
of  C ~~ arcs ofdiffeomorphisms on M. That  is, if I is the unit interval, then ~ ( M )  consists 
o fG ~176 mappings �9 : M • I ~ M • I, such that ~(m, ~) = (q~(m), ~) where m ~ ~,(m) 
is a G ~~ diffeomorphism for each Ez ~ I. Elements of ~ will also be called one-parameter 
families or arcs of diffeomorphisms and will frequently be denoted by { %,} or q~. We 
give Diff(M) and ~ the usual &o topologies. 

Let us consider three equivalence relations on the set ~ of one-parameter families 
of diffeomorphisms. We say two families are topologically conjugate if, modulo an orien- 
tation preserving homeomorphism of the interval I, each element of the first family is 

topologically conjugate to an element of the second family, and the conjugacy varies 
continuously with the parameter. I f  conjugacies exist but  do not necessarily vary conti- 
nuously, we say the families are mildly conjugate. Finally, if the elements of  the families 
are topologically conjugate up to and including their first bifurcation points, we say they 
are left conjugate. The interiors of the equivalence classes of the preceding equivalence 
relations define, respectively, stable, mildly stable, and left stable arcs of diffeomorphisms. 

For arcs ( ~ }  such that the limit set of r consists of  finitely many orbits for each ~z, 
we will give necessary and sufficient conditions for stability, and we will geometrically 
characterize left stability. For mild stability, our characterization is complete except 
for one case which we present as an interesting open question. In aU cases, we exhibit 
necessary and sufficient conditions in terms of the orbit structures at the bifurcation points 

of the arcs. For arcs beginning at Morse-Smale diffeomorphisms we will first study the 
different types of stability for an interval in I containing the first bifurcation point in its 

interior. 
Let us describe the results. To begin with, if, at the first bifurcation point, some 

stable and unstable manifolds meet non-transversally, then the arc is not even left stable. 
In fact, in this case we have at least a one-parameter family of different equivalence 

classes of arcs near the initial one. This corresponds to the existence of  the modulus 
of  stability as discussed in [27], [28]. In  the other possible cases, when there is a saddle- 
node, a flip or a Hopf  periodic orbit, the arc is left stable. When the arc goes through 
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a Hopf  orbit it is never mildly stable; this is due to the appearance of invariant circles 

with irrational rotations. On the other hand, we always get stability for arcs going 
through flip orbits. The case of a saddle-node orbit deserves a special discussion. First 
of  all, it is much harder than in the flip case to prove the existence up to conjugacy of  a 
universal model for its local unfolding. This is done in Chapter II.  On the other hand, 
the restriction of  such a conjugacy to the center manifold is surprisingly rigid. We discuss 
several applications of this fact in section 5 of Chapter I I I .  Moreover, the strong stable 
and strong unstable foliations of the stable and unstable manifolds must be preserved 
by a conjugacy between two arcs going through saddle-nodes. Thus, criticaUity or 
tangency of the invariant (stable, unstable) manifolds of other periodic orbits with respect 

to one of these foliations implies that the arc is not stable. CriticaUity with respect to 
both foliations impfies that the arc is not even mildly stable. Another crucial factor 
is the existence of  cycles for the periodic orbits. When the arc goes through a saddle-node 
which is critical but  not bicritical and has no cycles, then this arc is mildly stable but  not 
stable. I f  there is a cycle, the arc is not stable and, we believe, it is not even mildly stable. 
We are able to prove this last statement for cycles of  length bigger than one and for one- 
cycles when the saddle-node is normally attracting or repelling. This follows from the 
appearance of  a non-transversal homoclmic orbit, which implies a non zero modulus 

of  stability. To prove the existence of  such a homoclinic orbit, we reduce the question 
to one-parameter families of endomorphisms of the circle and introduce a generalized 
notion of rotation number.  Necessary conditions for the types of  stability mentioned 
above are also established in Chapter I I I .  The w o o f  that, under these conditions, the 
arcs are stable, mildly or left stable is performed in the last chapter. There we use a 
suitable version of tubular families or foliations, some of them with singularities. Our  
constructions also provide a more elegant w o o f  of  the stability of Morse-Smale diffeo- 
morphisms originally established in [24], [25]. Stability for arcs containing saddle-nodes 
was generalized by Robinson [31 ] to certain families starting at Axiom A diffeomorphisms. 

Many  of these results were announced in [2I];  however, we mistakenly claimed 
to have characterized mild stability. As we mentioned above, it remains to prove that 
certain /-cycle cases are not mildly stable. 

Let us now review some definitions and be more precise. 

For g e Diff(M), the orbits(x), of a point x ~ M, is defined as ,(x) = {g"(x) [ n ~ Z}. 
A point y E M is called a limit point of g if for some sequence n~ ~ Z with [ nil -~ 0% 
limg'~(x) = y .  We denote by L(g) the closure o f t h e  set of  these limit points. A point 

x ~ M is a periodic point o fg  with period k if  gk(x) = x and gt(x) 4= x for all o < t < k; 
x is hyperbolic if  dgk(x) has no eigenvalues on the unit circle. The stable, unstable sets 
or manifolds W'(x, g), W~(x, g), of a periodic point x are defined as 

{y  ~ M [ p(g"(y), g"(x)) -+ o for n ~ + o0} 

and {y  c M l o(g"(Y), g"(x)) -+ o for n ~ -- oo}, 
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respectively, where p is a metric on M. I fx  is a hyperbolic periodic point of  g, W'(x,  g) 
and W"(x, g) are injectively immersed sub-manifolds of M. We say that a diffeomorphism 
g �9 Diff(M) with finitely many periodic orbits has a k-cycle if there is a sequence of  

periodic orbits ~(P0), . . . ,  r(Pk) with ~(P0) = ~(Pk) and r(Pi+t) Cclosure (WU(~(pi)) for 
o < i < k, and r(p~) 4= r(pj) for o < i < j < k, and if  this sequence is maximal. 

A diffeomorphism g is Morse,Smale if L(g) is finite and hyperbolic and if all the 
intersections of stable and unstable manifolds are transverse. We denote the set of  
Morse-Smale diffeomorphisms by MS. This set is open [24] and each g e MS is stable 

in the sense that any g' which is C t near g is conjugate to g [24], [25], i.e. there is a homeo- 

morphism h : M ~ M so that g'h = hg. 
For an arc {q~,} ~ with q~0 eNIS,  let b = b(~) = inf{~t e I  [ q~, CMS}.  We 

always assume that b(~) < I. I f  {%,},{9'~,} � 9  t henwesay  that (h,{H~}) is aconjugacy 
if h : [o, I] ---> [o, I] is a homeomorphism with h(b(~)) =b(~?'), H ~ , : M ~ M  is a 
conjugacy between q~, and 9~/~,)for all ~t in some neighborhood of  [o, b(~)], and H,, depends 
continuously on ~t. I f  H~, does not necessarily depend continuously on ~t, we say that 

(h, {Hr,}) is a mildconjugacy, and ifH~, is only a conjugacy for ~z < b(q~), not necessarily 
continuous in V, then (h, {H~,}) is called a left eonjugaey. Clonjugacy, mild conjugacy 
and left conjugacy define equivalence relations in the set of  those arcs in ~ which start 
in MS. An arc (~ ,}  e ~ is called stable, mildly stable or left stable if is an interior 

point of  its corresponding equivalence class. 
Now we come to the description of the class of arcs to which our results apply. 

Def in i t ion . -  z~r is the subset of those {q~.} e ~  such that 

I. q~o e MS; 

2. b = b(q~) = inf{~t ~[o,  t] I ~ r  I ;  

3. the limit set of  ~ has finitely many orbits. 

For the arcs of  diffeomorphisms in ~ it is often useful to impose certain generic 

conditions on the first bifurcation. In order to describe them we need some more 

conditions. 
Let x be a fixed point o f a  diffeomorphism g e Diff(M). We call x quasi-hyperbolic 

if one of the following three conditions holds: 

- -  (dg)x has one eigenvalue one, the other eigenvaiues have norm different from I and 
there is a g-invariant curve = through x such that g J - has first but  not second order 

contact with the identity at x; in this case, x is a saddle-node; 
- -  (dg)x has one eigenvalue --  x, the other elgenvalues have norm different from I and 

there is a g-invariant curve ~ through x such that g2 [ = has second but  not third order 

contact with the identity at x; in this case, x is a flip. 
- -  (dg), has a pair X 4= X of eigenvalues on the unit circle, the other eigenvalues have 

norm different from i and there is a g-invariant surface ~ through x, tangent to the 

10 
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generalized eigenspace of the pair 7,, ). at x and such that the 3-jet o fg  at x makes g [ = 
an  attractor or a repeller; in this case, x is a Hopf  point. 

For periodic orbits there is an analogous definition of quasi-hyperbolicity. 

When {%} ~ .~g, we say that (%}  is elementary at its first bifurcation value b (or 
% is elementary) if it fulfills one of the two following conditions: (I) all periodic points 
of  % are hyperbolic, there is one orbit of  non-transversal intersections of a stable and 
an unstable manifold, and all other intersections of  stable and unstable manifolds are 
transversal; or (2) there is one quasi-hyperbolic orbit, the other periodic orbits are hyper- 
bolic and all intersections of stable and unstable manifolds are transverse. 

In  case x is a flip or saddle-node of ~b we also require stable and unstable manifolds 
to be transversal to the strong stable and unstable manifold of x; the strong stable (resp. 
unstable) manifold consists of  the points y such that the distance from x to q~(y) (resp. 
~-~(y)) goes exponentially to zero (see also Chapter IV). 

I f  {%} ~ ~ ,  ~b is elementary, and % has a quasi-hyperbolic periodic orbit, then 
there are generic conditions one may impose on the dependence upon tz at these quasi- 
hyperbolic periodic points. Such conditions are described in Chapter II,  w 3 (for the 
saddle-node), w 4 (for the flip) and w 5 (for the Hopf  orbit). I f  these conditions are 
satisfied we say that the quasi-hyperbolic orbit unfolds generically. 

Definition. - -  ,~C ~t' is defined to be the set of those arcs {%} in a~ for which % 
is elementary and for which the quasi-hyperbolic periodic point of  %, if there is any, 
unfolds generically. 

It can be shown [4], [x9], [2o], [3 6] that there is a residual subset M' in ~ such 
that in t (~)  = d n g ' .  We want  to give necessary and sufficient conditions for arcs 
in g to be stable, mildly stable or left stable. For this we need to describe the notion 

of  criticallity. 
Let g e Diff(M) and let x be a saddle-node ofg. Then there is a unique foliation o~ T M  

of W'(x, g) with smooth leaves such that the boundary of W~ g) is a leaf and such that g 
maps leaves to leaves; see [I 2]. ~ " '  is called the strong stable foliation. A corresponding 
foliation of WU(x, g), the strong unstable foliation, is denoted by .~-". We call x s-critical 
if there is some hyperbolic periodic point y of g such that W"(y, g) intersects some leaf 
of  ~"~ non-transversally; u-critical is defined similarly. Now, x is called semi-critical if 
it is either s- or u-critical, x is called bi-critical if it is both s- and u-critical, and x is called 

non-critical if it is not semi-critical. 

Theorem. - -  Let { ~ }  be an arc in ~ .  

I. { ~ }  is left stable i f  and only i f  all stable and unstable manifolds of ~ intersect transversally; 
2. i f { % )  is left stable, i f  the quasi-hyperbolic orbit is not a bi-critical saddle-node or a Hopf orbit 

and i f  ~b has no cycles, then { %} is mildly stable; 

11 
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2'. / f{%} is mildly stable, then {%} is left stable, the quasi-hyperbolic orbit is not a bi-critical 
saddle-node or a Hopf  orbit, % has no cycles of length greater than i, and ~b has no non-critical 
1 -cycles; 

3. { ~ }  is stable i f  and only if{ %,} is left stable, the quasi-hyperbolic orbit of  ~b is not a semi-critical 
saddle-node or a Hopf  orbit and ?b has no cycles. 

This theorem, together with the remark at the end of section 2, Chapter I I I ,  and 
Theorem (4.4) in Chapter IV implies the following characterization of stable arcs of 
diffeomorphisms with limit sets consisting of finitely many orbits. 

Theorem. - -  Let { q~ }, Vt ~ [o, I ] be an arc of diffeomorphisms such that the limit set of  
each ~?~ consists of  finitely many orbits, ~ ~ [o, i]. Then { ~ }  is stable i f  and only i f  there are 
onlyfinitely many bifurcation values, say bx, . . . ,  b,, in (o, I) and for each i < i < s, ~bl has 
the following properties: 

- -  all stable, strong stable, unstable, and strong unstable manifolds intersect transversally; 
- -  ~bi has no cycles and has exactly one non-hyperbolic periodic orbit which is either a f l ip or a 

non-critical saddle-node; this non-hyperbolic periodic orbit unfolds generically. 

We acknowledge useful comments by several colleagues, especially W. de Melo, 
F. Przytycki, and C. Pugh. 
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II.  - -  LOCAL D E S C R I P T I O N  

OF T H E  E L E M E N T A R Y  B IFU R C A T IO N S 

I. Introduct ion  

Let M be a smooth manifold. We shall consider smooth arcs of diffeomorphisms 
? ~ : M - + M ,  ~t~R,  i.e. such that the corresponding map ~ : M • 2 1 5  
defined by ~(x, Ez) = (~(x) ,  ~) is C ~. For such an arc, there usually are points 
(x, ~t) E M • R where % does not satisfy the Kupka-Smale conditions [i3] , [33] along 
the orbit of  ~ through x. In  this chapter we shall analyze the behavior of �9 near those 
points. Such a point is called an elementary bifurcation (point) of  �9 (or ~ ) .  

There are two types of elementary bifurcation points, namely those (x, ~t) for which 
x is a non-hyperbolic periodic point of %, and those (x, Ez) where x is a non-transversal 
point of intersection of stable and unstable manifolds of ~ (see [36]). Before we go 
into details we describe some facts concerning center manifolds in relation to the periodic 
elementary bifurcation points. Then a description of the types of periodic elementary 
bifurcations occurring in generic arcs is given. In  subsequent sections all these types 
are analyzed. The saddle-node elementary bifurcation shows some exceptional and 
unexpected topological properties. In  the final section, non-transversal intersections of 
stable and unstable manifolds are treated. 

2. Center m~s, ; fo lds  and periodic  e l e m e n t a r y  b i furcat ions  

Let {% : M --~ M} be a smooth arc of diffeomorphisms having a periodic bifur- 
cation at (~, ~). We assume ~to  be a fixed point of  r if not we replace ~ by 9~ where 
k is the period of ~-. Let c be the number  of eigenvalues of (dq~); of  norm I ; since (s ~) 
is a bifurcation, c ~ i. 

From the theory of invariant  manifolds [I2], we conclude the existence o f a  "center 
manifold depending on ~ ", namely a differentiable submanifold W e of M • R such that: 

- -  z w ' ;  

O(W ~) n W ~ is open in W ~ (and contains (~, ~));  
- -  the dimension of W # is c + i and at each point (x, ~) e W ~, W ~ is transversal with 

respect to M • {~t}; 
d ( ~  I W ~ r3 (M X {~}))i has only eigenvalues of norm I. 

For any k ~ oo we may assume that W ~ is 0 ~ (but as k gets bigger, it may be necessary 
to take W ~ smaller). However if in some neighborhood of  ~ in W~ ----- W ~ n (M • {~)), 

13 
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every orbit opt(x) tends to Efor i -+ 4- 0% then W e can be chosen so that W~ is C| even 
in this last case, W'  can not be made (:1% 

We may consider r I We as a (local) arc of  diffeomorphisms; the parameter  being 

the restriction of  ~ to W e. Also from the invariant manifold theory [26], [3 o] it follows 
that r near (E, ~), up to a " local conjugacy ", is completely determined by r I We and 

the normal data. The normal data  consist of  the numbers of  eigenvalues of  (dq~r with 
norm > i, resp. < i, and of  the signs of  the determinants of  (d~)~, restricted to the 
maximal invariant expanding, resp. contracting subspaces of  T~(M). We say that an 
arc r  is at (~,~) locally conjugate to the arc r 2 1 5  
at (x, ~) if  there is a homeomorphism (the local conjugacy) h from a neighborhood of  (~, ~) 
to a neighborhood of  (x, ~) such that 

- -  h o �9 ---- ~ o h wherever defined; 

- -  there is a local homeomorphism h a : R ~ R,  defined in a neighborhood of ~ such 
that the ~-coordinate of  h(x, ~) equals ha(~) wherever h(x, ~) is defined. 

So in order to analyze �9 up to local conjugacy at (~, ~) it suffices to analyze �9 [ W e 

up to local conjugacy; this will be done in the following sections. 

It  should be pointed out that for �9 as above, one can choose invariant manifolds W e, 
and W ~', the center-stable and the center-unstable manifolds, for ~,  containing W e such 
that the tangent space at (~, ~) is the direct sum of the tangent space of  W e at (~, ~) and 
the maximal invariant subspace of  T~(M) on which (dq~)~ has only eigenvalues with 

norm smaller, resp. bigger, than i. These invariant manifolds are in general not unique. 
In W e~ and W ~ one can choose invariant continuous foliations o~ ,  and ~-" ,  the strong 
stable and the strong unstable foliations, such that the leaves are C t, the tangent planes 
of  the leaves depend continuously on the base-point in W% resp. W ~', and such that 
each leafintersects W e transversally (in W ~', resp. W ~) in one point. Also these foliations 
are not unique. For details on invariant manifolds and foliations see [i2] and also 

Chapter  IV of this paper. I f  the leaves of  o ~e', or ~-~', have co-dimension one in 
W~' = W e' r3{tt}, or W~" = W ~ n { ~ } ,  then, by [II], the foliation ~" ' ,  resp. o~ -"~', 
is C t. 

Let �9 and ~ be two arcs of  diffeomorphisms with center manifolds W e and W e, 

let k : W ~ -+ W e be a local conjugacy between @ l We and �9 [ W', and let the normal 
data  of  �9 and ~ be equal. Choose invariant manifolds and foliations W e', W '~, o~ TM 

and o~-~, for ~ ,  and Wee, W ~', ~ "  and o&" for ~ .  From [26] it follows that there is 

an extension H of h to a local conjugacy between �9 and ~ so that H ( W  e') -~ W e', 

H ( W  e~) = W% H(o~") = o~" and H ( # - " )  = ~ " .  

In the case of  generic arcs r the only periodic bifurcations are those of the following 

three types (recall we assume ~ fixed): 

I. c .= i, (dg~)i has art eigenvalue t and the 2-jet of r [ W~ at ~ is different from the 
2-jet of the identity; in this case (E, ~.) is called a saddle-node of ~ ;  

14 



BIFURCATIONS AND STABILITY OF FAMILIES OF DIFFEOMORPHISMS ]5 

2. c ---= x, (d~) i  has an eigenvalue - -x  and the 3-jet of  q~[ W~ at x is different from 
the 3-jet of  the identity; in this case we call (~, ~) a flip of  ~ ;  

3. c = 2, (dg~)i has a pair of  non-real complex conjugate eigenvalues on the unit circle 

and the 3-jet of q~ [ W~ makes ~- an attractor or a repeller, we call these points Hopf  
points. 

A periodic bifurcation will be called elementary if it is of  type i, 2, or 3 above and it 
unfolds generically with ~t. This last condition will be explained in sections 3, 4, and 5. 

Before we consider these cases in more detail, we make some more general remarks: 

- -  in all these cases W~ is C ~~ (because near ~-, each orbit q~(x) tends to 5c as i -+ + oo 

or as i --* --  oo), but  generically it is not possible to choose W c to be C ~~ (we shall 

not use or prove this fact but  see [37]). 

This results described in this section, except those concerning saddle-nodes are 
a l l  more or less well-known. Apart  form the references in the various sections, one may 

consult [I], [4], [I9], [2o], [35], [36] �9 

3 .  T h e  s a d d l e - n o d e  

First we consider arcs of diffeomorphisms { %,} of  R (with coordinate x) such that 
d d ~ d 

%(0) = o ,  aTx%(~ = I, ~ % ( x )  4= o and ~ % ( o )  4= o (to simplify notation we 

took ~ = o and ~-= o). Note that if  ~ is a generic arc of  diffeomorphisms, then ~,  
restricted to a center manifold of  a saddle-node, has the above form. Without  loss of  

d a d 
generality, we shall assume that ~-~ %(x) > o and ~ %(0) > o. We shall also assume 

that %(x), as a function o f x  and ~, is C 6 and that %(x) is a C ~~ function ofx .  Arcs of 

diffeomorphisms {%} satisfying the above conditions will be called (in this section) 
saddle-node arcs. We shall prove the following results. 

Theorem (3. x). - -  Any two saddle-node arcs are locally conjugate near (o, o). Moreover 
the conjugacy can be chosen to be continuously differentiable off the fixed point set. 

We recall that i f { % }  is a saddle-node arc, there is a unique C | vector field X, 

defined on a neighborhood of  o in R, such that the time i map  X x of  X equals % [39]. 

Theorem (3.2) .  - -  Let ( % }  and {~,} be two saddle.node arcs with corresponding vector 
fields X and X, i.e. such that X t = % and X x = ~o. Let h be a local conjugacy between { %}  
and {~,}. Then h _ = h l { x < o , ~ t = o }  and h + = h [ { x > o , ~ t = o }  are G ~ and 

( L ) . x  = x I { •  x > o}. 

Remark (3.3) .  - -  The above theorem implies that the choice of the conjugacy along 
{~ = o} is extremely restricted. Instead of the usual freedom to fix the conjugacy 

15 
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arbitrarily on a fundamental  domain, we are here only free to fix h in two points: one 
in { x < o )  and one in { x > o } .  

Let { ~,} be an arc of diffeomorphisms of an n-dimensional manifold M having 
a saddle-node fixed point at (s ~). Let r  t~) = (q~,(x), t~). We say that (Y, ~) 
unfolds generically if  for some (or any) center manifold W ~ at (~-, ~), �9 [ W ~ is a saddle-node 
arc. Similarly, one can define generic unfolding of periodic saddle-nodes. 

Theorem (3.4).  - -  Let ~ be a smooth arc of diffeomorphisms of M,  and let (~, ~) be a 
saddle-node of �9 which unfolds generically. Let W ~ = { (x, -~) [ O~(x, "~) ~ (~, ~) as i -~ oo } 
(note that W~CW ~, that dim(W') ----dim(W ~) --  I and that W * has a boundary 
containing (~q ~)). Then the strong stable foliation o~ TM, restricted to W ~, is unique and is 
preserved under any conjugacy. 

The proofs of these theorems occupy the rest of  this section. As part  of the proof 
of Theorem (3. x), we need to prove the corresponding theorem for vector fields. 

Consider vector fields X =- X(x, ~.) 0-x on It2 with X(o, o) = o, X(o, o) = o, 
0 ~ 0 
Ox ~ X(o, o ) >  o, ~ X(o, o ) >  o and which are at least C ~. These vector fields are 

called saddle-node fields. A saddle-node field can of course be considered as a one- 
parameter  family of vector fields on R;  its time one map is a saddle-node arc (except 
for the differentiability); see the beginning of this section. Two saddle-node fields X 
and X are called locally conjugate if there is a homeomorphism h (compare section 2) from 
a neighborhood of (o, o) in R ~ to another such neighborhood such that 

- -  h o X t ---- X~o h, whenever defined (X t stands for the time t map of the vector 

field X) ; 
- -  there is a local homeomorphism h R : I t  --~ I t  such that the ~x-coordinate of h(x, ~) 

equals hs(~. ) whenever defined. 
First we shall prove: 

Theorem (3-5). - - A n y  two saddle-node fields are locally conjugate by a conjugacy which 
is continuously differentiable with respect to x, in the complement of the singular set. 

m 
Proof of Theorem (3.5). - -  Let X and X be two saddle-node fields. 

0 
For X = X ( x , ~ )  0S we choose a box V = { i  x,~) I l x l < a , o < ~ < _ ~ }  such 

0 X(x, ~) are positive on U\ (o ,  o). Define f :  (o, r ~ I t +  by that X(x, ~) and ~ 

XI(n) ( -  a, 8) = (-k- a, ~), or, equivalently, f(~) ----- f+a (X(x, ~))-Xdx. From this last 

formula it is clear that lirn0f(8 ) = -4- oo and that the der ivat ivef ' (~)  is less than zero 

for 8 ~ (o, r 
Let U, f ,  if, ~ be defined analogously for X. Pick o <  ~ <  r so that 
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f(0:) 3- max(f(~),f(~))  and take o <  ~ <  ~ so that f (~ )  = f ( ~ ) .  Then there is a 
homeomorphism ~q : [o, 0~] -+ [o, ~] such that f(~) = f (~ (8 ) )  for o < ~ <_ ~. A conju- 
gacy h from X to X, restricted to {o < ~ < ~} is now determined by putting 

h ( -  = ( -  a,  

h(a, = (a, 

h(o, o) = (o, o);  

and requiring that hX  t = Xth. The continuity of h is automatic except at (o, o). We 
now prove continuity at (o, o). For any sequence (x~, ~) in U, there are sequences s~, t 
such that 

X~/(a, ~q) = xl and Xtl ( -  a, t~/) ---- xi. 

(x~,&) ~ ( o , o )  if and only if Ix~--*o, s~--*---o% and t ~ - > + o o .  Hence h maps 
sequences converging to (o, o) to sequences converging to (o, o) which proves continuity. 

The construction of h [{~t < o} is easy. For example, take h(--  a, tz) = (--  if, ~), 
h(o, tz) = (o, ~) and h(a, ~) = (if, ix) and extend with hX~ = X~h. On the comple- 

Oh 
ment of the set of singularities of  X, Ox clearly exists and equals X(h(x,  Ix)). (X(x, Ix))-x 

which is continuous. This completes the proof of the theorem. 
Let ( ~ }  be a saddle-node arc, and let X be the C ~~ vector field defined near o in R 

such that X 1 ---- ~o. It would be useful if there were a (2 ~ field X extending X to a 
0 

neighborhood of(o, o) in R '  of the form X(x, ~t) = 2K(x, ix) Ox such that X( . ,  Ix)t = %,(.). 

Although we cannot find such art X, lemma (3.6) provides us with a suitable substitute. 
We say that a (3 ~ saddle-node field X is adapted to a saddle-node arc {q~a} if the 

function g(x, ix), defined by (%,(x) + g(x, ~t), IX) = Xx(x , iz), vanishes along the x-axis 
and has at (o, o) its 4-jet equal to zero. 

Lemma (3.6).  - -  For each saddle-node arc {%,} there is an adapted saddle-node field X .  

Proof. - -  q% is C ~~ and has, at x = o, only a finite order of contact with the identity, 
0 

so by [39], ~0 embeds in a unique C| field ~ = X(x) oX" In general [I4] , [4o] 

if ~F : ( R " ,  o) -~ (R", o) is a C ~~ diffeomorphism with all eigenvalues of (anF)0 equal 
to i, there is a unique k-jet of a vector field [Y]k, k > i, such that any representative 
Y ~ [Y]~ satisfies 

- -  the k-jets of  Yt and q-' agree at o; 
- -  the eigenvalues of dY at o are all equal to zero. 

I f  we apply this to (I) : (x, ~) ~ (%,(x), Ix) at (o, o) we see that the corresponding 
0 

4-jet [X] at (o, o) is uniquely determined and has a representative of the form X(x, IX) Ox" 

17 
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The  restriction of this 4-jet to the x-axis equals the 4-jet of the previously constructed 
because of uniqueness of that  4-jet (which follows if we apply the above general statement 

0 The  to q~0 at o). X is now obtained by taking X = (X(x, bt) + X(x) --  X(x, o)) 0x" 
proof  of (3.6) is complete.  

The  next l emma compares high iterates of a saddle-node arc with high iterates 
of the time one map  of an adapted saddle-node field. 

O 
Lemma (3.7).  - -  Let{%,}  be a saddle-node arc and X = X(x, ~) 0x an adapted saddle- 

node field which is at least G 5. Let U = { (x, ~t) I o < V. <_ -~, - -  a < x < a} be so that for  
(x, ~) ~ U\ (o ,  o), X(x, ~) > o, ~ ( x )  > x, ( ~ ( - -  a), ~) ~ U and ]g(x, ~) ] < ~ ( x )  - -  x. 
(Here g(x, Vt) is the function defined just before L e m m a  (3.6). The  fact that  the last 
condition is satisfied for a and Iz small enough follows from [g(x, ~)[ = o(] (x, ~t)[~) and 
[ 9~(x) --  x) [ > k(~ + x') on { ~t > o} for some constant k.) 

Then there are constants C1, ~ such that for  any (x, ~t) e U, i ~ N,  with (~ (x ) ,  ~t) E U,  

(i) X~(x, V0 = (9~(x), ~t) for  some o~ ~ R with I i - ~ [ <  ~. C1; 
(ii) I log((d(9~)x)X(x, ~t)) --  log(X(~(x) ,  ~t))[ < ~.C~. 

Proof. - -  The  above two estimates on (high) iterates of ~ are implied by the following 
two: there are constants K1, K2 such that  for any (x, ~t) e U with (~,(x), ~t) ~ U 

(i)' X~(x, ~t) = (?~(x), V~) for some ~ with 

I i - -  o~ I < p.. (~(x)  --  x) .Kx; 

(ii)' [ l o g ( ( d ~ ) = . X ( x ,  ~)) --  log(X(%,(x), ~t)) I < ~ B. (%,(x) - x).K2. 

Of  course in (ii)' we have to assume that  (x, ~) 4: o, but  since for ~t = o the whole 
l emma is trivial we shall assume, in what  follows, that  always ~t > o. To show that  (ii)' 
really implies (ii) it suffices to observe that  

d(r (x(x, ~)) = 'rI' d(~)~x)(X(~(x) ,  ~)) 
x(r ~) ~=0 x(~,~+'(~), ~) " 

In  the following calculation, A will indicate that  the formula in which it occurs is valid 
i fA is replaced by some positive constant, i.e. independent  of (x, ~) ~{ (x, tx) [ (x, ~t) ~ U, 
t~ > o, (q~(x), t~) ~ U}. From the various definitions we obtain 

IX(x, ~)1 _> a.  (x' + ~,) 
and ]g(x, ~)1 < A.~.(x~ + ~')~ 

(here one uses that  X is G~). Define h(x, ~t) by Xx+~(~)(x, ~t) = (%(x), ~). Since 

h(x, ix) = f~  IX(y ,  ~z)]-~dy, where ~ = Xx(x , ~) and  [~ = @~,(x), the above inequa- 

lities imply 

I h(x, ~)1 < A. ~. (x' + ~'). 
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Now (i)' follows from the obvious inequality 

I ~ (x )  - x l _> A. (x~ + ~). 

To prove (ii)', we observe that  from previous definitions it follows that  

(a) the 4-jet of ( r  --  X at (o, o) is zero (since the 4-jet of X t and  r agree at (o, o) ; 
see L e m m a  (3.6)) 

(b) r  --  X is zero along {~ = o}. 

Hence 

and I xcv~(~), ~)1 ~ ~. ((v.(~))' + ~'), 

I ( a~L .  X(x, ~) - x (~Ax) ,  ~)l <_ A. ~. ((~A~)), + ~). 
so l x ( ~ ( ~ ) ,  ~)1 

Since (x, tz) ~ (opt(x), ~) is a diffeomorphism, ((?~(x)) ~ + ~ )  < A(x ~ + B"). F rom 
these inequalities it easily follows that  

I log((do~)~. X(x, ~)) --  log(X(o~(x), ~)) [ <_ A. ~. (x s + ~ )  <__ A. ~. ($~(x) --  x); 

this proves (ii)'. 

Proof of Theorem (3. I). - -  The  proof  of Theorem (3-I) will be obtained by showing 
that  if{%,} is a saddle-node arc and  X an adapted  vector field (of class C 5) then there 
is a local conjugacy H(x, tz) = (h~,(x), ~) from {%,} to the t ime one map  X 1 of X. We 

OH 
shall also construct H so that  Ox exists and  is continuous on the complement  of the fixed- 

point  set of ~.  Indeed,  by Theorem (3-5) and L e m m a  (3.6), this implies (3.1). 
We take h 0 = H [ { ~  = o} to be the identity. Let 

u = { ( x , ~ ) l o < _  ~_<~ ,  - - a < x < a }  

be as in L e m m a  (3.7). Take: 

I. h~,(--a) = - - a  for o < _ _ ~ < ~  and hence 
2. (h~,(?~,(-- a)), tz) = Xn(-- a, tz) whenever (q~,(-- a), t~) e U ;  
3" extend the definition of h~(x) to 

{ (x, ~) I o _< ~ _< ~, - ~ < x < ~ ( -  a) } 

in such a way that  it is C x and such that  the extension, defined by 

h~(~(x), ~) = Xdh~(x), ~) 

is also differentiable in a neighborhood of { (0,,(-- a), t~) [ o <_ rL < g}. Now H [ U 
is uniquely determined;  the continuity of H along { (x, ~) [ x > o, ~ = o } follows from 

OH 
L e m m a  (3-7); also the fact that  - -  is continuous on U~(o, o) follows from that  same 
lemma. 0x 
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The  extension of  H to (tz < o} is simple: see the p roof  of  T h e o r e m  (3.5) .  

Proof of Theorem (3.2) .  - -  Let  { %,} be  a saddle-node arc and  X an a da p t e d  saddle- 
node  field, o f  class C 5, defined in a box  U as in L e m m a  (3.7) .  W e  take - -  a < x < o 
and  o < ~<7 a an d  show how {%,) gives rise to a canonical  homeomorph i sm T ~  from 
a ne ighborhood  ofx  (in R) to a ne ighborhood  of~. These  maps  T~, are called translations. 

Let  {xi}i~ ! be  any  sequence converging to x; choose a sequence { t ~ } ~ !  such that  
~ ( x i )  converges to ~- with ~ -* o as i --> oo. To  get such a sequence,  choose ~t~ -+ o 

as i -+ oo such that  (X~.) (x o ~q) -+ (~-, o) and  app ly  L e m m a  (3 .7) .  Let  x' be a point  
close to x; wi thout  loss of  general i ty  we ma y  pu t  (x', o) - -  (X~) (x, o) for some ~ e R .  
Then  for any  sequence x~ -+x ' ,  l im i ' �9 %i(x~) (the same ~q's as above)  exists and  equals 

| - +  a0 

(X~)(~-, o). This  can be  seen as foUows: for some ~ ,  ~ ,  ~ we  have  

(~( , , ) ,  ~,) = x~,(, , , ,  ~,); 
i *' t (~(~,) ,  v,) = x ~ ( x , ,  ~); 

x~,(x,, ~,) = (x~, ~). 

By L e m m a  (3 .7)  I i - -  ~,1 < ~, .Cx and Ji - -  ~il < re.C1 for s o m e  constant C1; because 
x i ~ x ,  x; ---)-x' and  X~(x, o) = (x', o), 0t i - + a .  F rom this we conclude  that  
if  ~ ~ ' x~,(~,(x~), w) = v~) ~', :~, (~/(xi)  , then = + ~ - -  ~ so lim ~ i =  a. We  define 

i--r oo 

T;.(x') l im i ' = ~ (x~) .  I t  is clear that  the definition o f  the local homeomorph i sm T ~  

is independent  of  X: X was only used to show that  l im ~ ' i-.~o ~/(xl)  exists. Observe  that  

(Tz.).(X) = X.  N o w  we extend the not ion of  translation.  I f  x, ~- are  on  the same 
side of  o and  x' on  the other  side, we ma y  define T;~ = T~=, o T~,=; this definition is 
independent  (at least near  x) o f  the choice of  x'. H e n c e  we  see that  the translations 
form the pseudo-group  of  all local diffeomorphisrns of  ( - -  a, + a ) \{o}  which  preserve 

X l { ~ = o } .  
I f  h is a local con jugacy  be tween  two saddle-node  arcs { %,} a nd  { ~,,}, it must  also 

conjugate  the translations defined b y  {%}  with those o f{~ ,} .  Let  X,  X be  the smooth  

vector  fields such that  X x=q~0  and  X t = ~ 0 .  For  x # o ,  ~-4=o a nd  z = X ~ ( x )  
near  x, let x' = h(x), ~' = h(~), z' = h(z) a nd  z' = Xv(x'  ). Since h conjugates  T~, 

and  Ti, , , ,  and  T~(z)  = Xt(s Ti,~,(z') = ff, t,(~'), we  conclude  that  there  is a (conti- 
nuous) funct ion t ' =  a(t) such that  hXt h - t =  "Xol0" F rom the group proper ty  

Xt, o X~, = Xt,+t, we deduce  that  or(t) is l inear in t. Since Xx = ~0, Xx = ~0, we  
have h o X t o h -  t = Xx an d  hence h o X~ o h -  t = X~ for all t. This  proves the theorem. 

Proof of Theorem (3-4).  - -  F r o m  T h e o r e m  (3. I) and  invar iant  manifold  theory 
(see Section 2 an d  [26]), it follows that  ~ ,  near  (s ~), is locally conjugate  with ~ near  (o, o) 

where  

( g ( x ~ , . . . , x , , ~ ) =  x , + ~ + ~ , • 2 4 7 1 7 7  . 
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The stable manifold W* of 70 is {(xt, . . . ,  x=) : x x < o}. We take the strong stable 

foliation # "  of ~ near (o, o) to consist of the manifolds 

{ (xt, . . . ,  xm, ~) : (xx, . . . ,  xh, [z) = constant}. 

In a neighborhood U ofo, we give a dynamical characterization of the leaves of ,~** c~ ~ ' :  

qx, q2 e W' belong to the same leaf of  ,~"  if  and only if there are sequences { [zl}ieN, 

{ ~)~e ~ and { q~}~eN such that 

- -  (6,  ~) -+ (qt, o) and (6 ,  ~) "-* (q,, o), 

for each i, {~'~(ql) ' and ' - -  }~-0 are contained in U;  
�9 ~ '~  i �9 ~ i  " - -  l im(~(q t ) ,  ~) = lim(~m(~), ~t~) artd this limit is not the saddle-node point. 

This follows from the special form of ~ .  
Let ~'~' be some strong stable foliation for ~.  The  local conjugacy between 

and ~ mentioned before cart be chosen to map o ~'~' to o q~''. This implies that o~"' ~ W' 
also satisfies the above dynamical characterization. Hence, ~ " '  t3 W' is unique and 
is preserved under  conjugacies. Theorem (3.4) is proved. 

Note that a local conjugacy of~0, or ~ ,  does not have to respect the above foliation. 
This has to do with the fact that the dynamical characterization was only possible by 
using �9 on a full neighborhood of (o, o) in R '~ • R. 

4 .  T h e  f l i p  

Here we consider arcs {q~) of  diffeomorphisms on R such that ~0(o) = o, 
(dq~0)0 = --  I and such that the 3-jet of  (~0) ~ at the origin differs from the 3-jet of  the 
identity. Such arcs of diffeomorphisms are obtained by restricting a generic arc of 
diffeomorphisms, at a flip, to a center manifold. The origin is either a source or a sink 
of  q~0; in the following we shall assume it to be a sink of ~0; the other case then occurs for ~o t 
and is completely analogous. With a coordinate change of  the form 

= ~'(x, ~) 

we can put r in the form 

= - + o c t ' )  + oCl l. ') 

where X is a real function and X(o) = o. We shall say that the flip unfolds genzrically 
dX 

if ~-~ (o) 4= o. This is, of  course, a generic condition. In  higher dimensions, we will 

dX 
use this teriidnology if ~-~ (o) 4= o on some center manifold. Similar considerations 

apply to periodic flips. 
dX 

Now we return to the one dimensional case. We shall assume ~-~ (o) > o; the 
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other case can be reduced to this by replacing "~ by - - ~ .  
portrait looks as follows: 

> 

..,.Icf 

\ ,1 /  

< 

>t J 

< 

It  is clear that the phase 

Fixed points 

t Points with 
period two 

17161. I 

The foUowing theorem can be easily proved using the methods of proof used in 

Theorem (3.5) in the region {~ <__ o}: 

Theorem (4-x). - -  Any arc {%} of diffeomorphisms on I t  which is o f  the form 
%(x) = --  x + x 3 + ~.(p.).x + o(x 4) + o(1 ~[ .x ~) with Y(o)  > o is locally conjugate with 

= - x + x + v .x .  

5. The Hopf point 

We consider arcs {%} of diffeomorphisms of R ~ such that %(0) = o, (d~0)0 has 
eigenvalues on the unit circle, but different from + z, and such that the 3-jet of  9o makes 
the origin an attractor or a repeller. We shall assume it to be an attractor; otherwise 
we consider 9~-1- Up  to a change of coordinates, the origin will be a fixed point of % 
if I ~[ is small. Let ),(~), X(~) be the eigenvalues of  (d%)0. For generic arcs one has 
d 

[),(~)l~-0 :l: o, and we shall say, in this case, that the Hopf  orbit unfolds generically. 

As for the saddle node and flip, we shall use the same terminology for periodic Hopf  
points if they unfold generically on center manifolds. In  the following, we return to 

d 
dimension two, and we shall assume that ~ Ix(w)[ _o > o; otherwise we replace 

by --  ~t. These arcs have been extensively studied; for references see [32]. 
From the fact that, for tt <__ o, the origin is an attractor of  % one concludes: 

Proposition (5. x ). - -  I f { % }  and { ~,}  are arcs of  diffeomorphisms of R ' ,  satisfying all 
the above requirements, then there is a continuous one parameter family of homeomorphisms h~, ~ < o, 

from a neighborhood of o E R" to a neighborhood of  o ~ R 2, such that h~, o % = ~, o h~, when- 
ever defined; i.e. (x, ~) ~ (h~(x), ~) is a local conjugacy between % and ~,  on ~ <__ o. 
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A consequence of Proposition (5- I) is that arcs {%} as above are locally stable 
for ~ < o .  For ~ > o  this is not the case. 

Theorem (5.~). - -  Let {%,} be a Coo arc of diffeomorphisms as above. Then in any Coo 

neighborhood of{%} there is an arc { ~ }  such that the arcs {%}, { ~ }  are not conjugate, even not 

mildly conjugate. 

Proof. ~ We can first approximate the arc {%} by an arc { ~ }  such that the eigen- 
values of (d%) 0 have the form e 2"~ with 0r i r ra t ional  Then we know [4o] that ~',, is 
rotationally symmetric in the formal sense. By this we mean that there is a smooth S 1 
( =  R/2~) action R on R ~ •  R, differentiably conjugate with the usual action 
R : R,(xl ,  x2, a) = (xl.cos 0r + x~.sin ~, --  x 1 sin ~ + x~ cos ~, a), such that for each ~, 
R,  o ~ and ~ o P,~ have the same oo-jet in the origin. So with a second perturbation 
one can find an arc { ~'~,} such that the corresponding map ~ '  defined by ~'(x, ~) = ~(x)  
commutes with the S x action R, at least on a small neighborhood of (x ---- o, ~ = o). 

One knows [32] that ~ ,  for a > o, has an invariant circle, say C, .  Because 
~ '  commutes with the smooth S 1 action (for a small), ~ [ C~, is differentiably conjugate 
to a rotation. Since there is a residual subset of the diffeomorphisms of  S x no element 
of which is conjugate to a rotation, there is finally an approximation ~ of ~ (in the C oo 
sense) such that ~ also has C~, as invariant circle but  such that  for some sequence { al}~e i, 
a~ -+ o as i ---> 0% ~ [ C~, is not conjugate to a rotation. 

It  follows from the construction that { ~,} and { ~ }  are not conjugate and even 
not mildly conjugate near (o, o). Hence % cannot be (mildly) conjugate to both {r 
and { ~ } .  This proves the theorem. 

Remark (5-3)- - -  If{ %} is an arc of diffeomorphisms on a manifold M of dimension 
m > 2 which has a Hopf  point at (~, ~) then the conclusion of Theorem (5.2) remains 
valid. In  the construction of the C ~~ arcs { ~-~}, {qS~}, one has to add in this case a preli- 
minary step, namely one has to modify { %} first so that it has a Coo centermanifold. Then  

the modifications, as described in the proof of (5.2) are carried out in that center manifold 
and extended to a neighborhood. 

6. Q u a s i - t r a n s v e r s a l  i n t e r s e c t i o n s  

We consider a C ~~ arc of diffeomorphisms { % :  M - + M }  and assume that for 
some ~ e R and some ~ e M, there is a non-transversal intersection at ~- of  a stable and 
an unstable manifold (of some periodic points) of  q~g. In  such a situation, if  we denote 
the stable, resp. unstable, manifold by W', W ~, there is a canonical quadratic map 
D : T~(W') c~ T~(W") -+ T~(M)/T;(W') + T~(W"), which is analogous to the intrinsic 
2 nd order derivative [3] and is defined as follows. 

Let i :  T~(W ~) t3 T~(W") - + W  ~ be a smooth map such that i(o) = ~ and (di)o 

is the canonical injection; let z~ be a projection (i.e. ~ = ~:) of  a neighborhood U of ~- 
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to a submanifo ld  whose dimension equals the dimension of  T~(M)/(T~(W')  + T~(W")), 

and  such that  7r(~) = ~-, (dTr)~(T~(W 8) + T~(W")) = o a nd  7r(W*) = k-; let N = re(U). 
T h e n  T~(N) is canonical ly  isomorphic  with T~(M)/(T~(W')  + T~(W")). 

The  map  7r o i maps o to ~-, d(~ o i)0 = o; hence the second derivat ive dg(~ o i)0 : 
T~(W') c~ T~(W") -+ Ti (N)  is a weU defined quadra t i c  m a p ;  we define D to be  the 
composi t ion o f  d~(Tr o i)0 with the canonical  isomorphism 

T~(N) ~ T~(M)/(T~(W')  + T~(W")). 

The  maps  D does not  depend  on the various choices. 
I t  is not  ha rd  to show that,  for generic arcs of  diffeomorphisms {q~}, all the non- 

transversal intersection points ~ o f s t a b l e  and  unstable  manifolds of  ~ ,  for ~ E R,  s ~ M, 

will satisfy (in the above  terminology):  

a) dim T~(M)/(T~(W 8) + Ti(W"))  = I ; 

b) D is non-degenerate .  

U n d e r  these circumstances there are coordinates  xx, . . . ,  x,, on a ne ighborhood  
of  x- (~ corresponding to o) such that  W '  and  W ~ locally have the following 

Canonical form 
W 8 

W" 

where  

( 6 . . )  

= (xx . . . . .  x ~ _ ,  = o }  

= ( x . + ~  . . . . .  x,. = o,  xl = f ( x , . _ , + . . . . ,  x . + d }  

m = d i m ( M ) ;  

s = d i m ( W ' ) ;  

u ~- dim(W") ; 

f is a homogeneous  non-degenera te  quadra t ic  funct ion;  

if  m - - s +  x > u +  I then one should read x 1 = o .  
Before proving (6. i),  we note  the following 

c) max(s,  u) < m by  condi t ion (a) above ;  

el) the vector  is not  in T~(W') + T?(W");  

0 0 
, . .  are in T~(W') c~ T~(W"). e) the vectors ~x,,_-,+l ~ "' ~x~-+l 

Proof of (6. i) .  - -  Since d im(T~(W ~ + T~(W")) = m - -  r, 
(u + 1)-manifold W" containing W" which  is at  ~- transversal to W' .  

follows that  one can choose coordinates  ~-1, . . . ,  ~,, such that  

w '  = (~1 . . . . .  ~ _ ,  = o};  

~ "  = ( ~ . + 2  . . . . .  ~. = o } ;  

W" is tangent  at  ~- to {xx = x-.+~ = x-.+ s . . . . .  ~-,. = o}. 

we can  choose a 
F rom this it clearly 
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Then, for some f u n c t i o n f  

w "  = {x-,+~ . . . . .  ~ = o, ~ = f ( ~ , , . . . ,  ~ + d } ,  

f ( o ) = o  a n d  (df)o=o. 
Now we replace ~t by the new coordinate 

Xl = "~1 - - f (x -9 . ,  �9 ..1~ g'-u+l) + f ( o ,  . . . ,  O, X - m - - , + l ,  " ' ' ,  X-u+l) ;  

then we have 

~5 

W m ~ { x  1 ~ ~9. . . . . .  X-m--s ~ O}~ 

W ~ = {xl = f ( o ,  . . . ,  o, ~-m-,+ 1, - . . ,  x~+l) ,  ~ + ~  . . . . .  ~m = o}, 

the first derivative of (x-,~-~+l, . . . ,  x,+l) ~ f ( o ,  . . . ,  o, ~,~-,+1, . . - ,  x-~+l) is zero and 
the second derivative is just D and hence has maximal rank. Now we can apply Morse's 
Lemma [3] and obtain a coordinate change of the form 

x j = ~  for 2 < j < m - - s  or u + 2 < j < m ,  

x~ -= xj(~m_,+ l ,  . . . ,  -~+ x) for m - -  s + i < j <_ u + I, 

for which we have 

W '  = {x~ . . . . .  x , , _ ,  = o } ,  

W "  = {x~ = f ( x , , _ , + l ,  . . . ,  x , + l ) ,  x , + ,  . . . . .  x~ = o ) ,  

with f homogeneous, quadratic and non-degenerate. 

Remark ( 6 . 2 ) .  - -  In  suitable coordinates the generic unfolding of the quasi- 
transversal intersection puts the manifolds W~, and W~, in the form 

W~ = {xl  = o . . . . .  x~_ ,  = o ) ,  
u 

w ~  = ( x , + ,  . . . . .  x,, = o, x~ = f ( x , , _ , + ~ ,  . . . ,  x , + d  + (~ - ~) ) .  
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I I I .  - -  NECESSARY C O N D I T I O N S  F O R  STABILITY OF ARCS 

In this chapter we shall obtain necessary conditions for the various kinds of 
stabilities of  arcs we have defined. Let I = [% x] and let t~ be the space of C | arcs 
q~ : I -+ Diff~~ with the G ~176 topology. Elements o f ~  will be denoted by ?, or by { %)  
when we wish to make the dependence on the parameter  t~ ~ I explicit. Recall that 
,~  C ~ is the subset of  those arcs ? ~ ~ such that 

(I) '~o E MS, 

(2) b = b(~) = in f{~  E I  : ~. CMS}< i, 
(3) the limit set of  ?~ consists of  finitely many orbits. 

A diffeomorphism f is called elementary if either 

(a) there is exactly one quasi-hyperbolic periodic orbit, the other periodic orbits are 
hyperbolic, and all stable, strong stable, unstable, and strong unstable manifolds 
meet transversally; or 

(b) all periodic orbits are hyperbolic, there is one quasi-transversal orbit of  intersections 
of stable and unstable manifolds, and all other stable and unstable manifold inter- 
sections are transverse. 

Let ~ C ~ be the set of arcs ~p ~ M such that % is elementary and the quasi- 
hyperbolic periodic orbit of  ~ ,  if  it exists, unfolds generically. 

We proceed to discuss necessary conditions for stability of arcs in ~ .  

x. The m o d u l u s  condit ion (quasi-transversal  intersect ion)  

In  this section we shall show that left stability of an arc { %} in ~ forces all stable 
and unstable manifolds of periodic points of  ~b to meet transversaUy. Before this, we 
consider the effect of  a quasi-transversal orbit on topological conjugacy. The next 
theorem shows that generally such an orbit yields at least a one-parameter family of 
distinct topological types. We will refer to this phenomenon by saying that moduli 
occur. It  should be noted that this occurs even in a locally isolated codimension one 
submanifold of the boundary of MS on the 2-sphere (hence, on any manifold of dimension 
larger than one). 
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For example, consider an  MS diffcomorphism % on S z as in the next figure. 

2, 

0 < 0 > < 
r 

~> /\ 

< 
];'10. 2 

/ \  

\ / P 2  

27 

The  circles represent sources and sinks and there are two saddle fixed points Px 
and ps. We choose a curve of C s diffeomorphisms {%}, o <~ tL _~ t, starting at % 
so that  px a n d p l  remain  fixed for each %,  and  W"(pt,  ?~t) has a single orbit r of quasi- 
transversal intcrsectiom with W~ 9~)  as in the next figure. 

I /2  (X) 

o~) 2 fx) ~. (~ ~ / 

/ \ 

Fro. 3 

P2 
/ 

I 
This can be done so that  % is in MS for ~ 4= - and  any per turbat ion {q~} o f{%}  

2 
I 

has a unique bifurcation b(9' ) near  - .  
2 

Let f be a diffeomorphism of M with a hyperbolic fixed point  p. Let =" be the 
largest modulus of  the eigenvalues of dr(p) which are inside the unit  circle, and  let 8" be 
the smallest modulus of the eigenvalues of dr(p) which are outside the unit  circle. I f  
there is an eigenvalue = of dr(p) such that  

(x) lml = ~', 
(2) ~ has multiplicity one, 
(3) any eigenvalue X ofdf(~) different from ~ or the complex conjugate i satisfies [ ), [ 4= ~*, 
then we say that  the weakest contracting eigenvalue = o f f  at p is defined. Similarly, 
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if there is an eigenvalue [~ of multiplicity one of dr(p) such that ] ~ [ = [~* and any eigen- 
value X 4: ~, [~ satisfies [ X 1 4: [~*, we say the weakest expanding eigenvalue [~ o f f  at p 
is defined. 

Let p and q be hyperbolic fixed points o f f  such that the weakest contracting eigen- 
value ~ at p and the weakest expanding eigenvalue ~ at q are defined. Let t-I v be a 
C 1 invariant manifold containing W"(p) and tangent at p to the sum of the eigenspace 
of ~ and TvW"(p), and let I-Iq be a C t invariant manifold containing W'(q) and tangent 
at q to the sum of the eigenspace of ~ and TqW'(q). The existence of I-I v and Hq is.proved 
in [I2]. They are not unique. However, the tangent bundle of Hp along W"(p) is 
unique, and so is that of Hq along W'(p). 

Let r be a quasi-transversal intersection of W"(p) and W'(q). We say that r is 
a regular quasi-transversal intersection if W"(p) is transverse to Hq at r and W~ is 
transverse to Hp at r. This definition is independent of the choice of the manifolds H~ 
and Q.q because it depends only on THp, THq along W"(p), W~ respectively. 

Note that part of the definition of a regular quasi-transversal intersection of W"(p) 
and WS(q) is that the weakest contracting and expanding eigenvalues ~ at p and [~ at q 
be defined. Note that for arcs q~ in a residual subset of ~ all quasi-transversal orbits 
of %, are regular. 

Theorem ( t .  i ). - -  Let f ,  f '  be C 2 diffeomorphisms. Let p and q be hyperbolic fixed points 
having an orbit {f~(r)} of regular quasi-transversal intersections of W"(p) and W'(q). Let o~ be 
the weakest contracting eigenvalue o f f  at p and ~ be the weakest expanding eigenvalue of f a t  q. Make 
analogous assumptions on f '  concerning fixed points p', q', eigenvalues ~', ~', etc. 

I f  there is a conjugacy from f to f '  defined on a neighborhood of the closure 0f{fi(r) } mapping p 
to p', q to q', and r to r', then 

log 10: I log 1~'1 
log log I '1" 

Remark x. - -  I fp  and q are periodic points of period x(p) and ~(q) instead of fixed 
points, and n is the least common multiple of v(p) and x(q), the theorem can be applied 
to f" .  Doing this one obtains that if ~ is the weakest contracting eigenvalue o f f  "Ip/at p 
and [~ is the weakest expanding eigenvalue o f f  "cq~ at q and 0(, ~' are the corresponding 
eigenvalues for f ' ,  then the existence of a conjugacy between f and f '  implies 

log I~ I log I~'l 

logl l Iogl 'l 

2. Theorem (I.  I) shows that quasi-transversal orbits lead to at least one dimen- 
sional invariants of topological cortjugacy. It is interesting to ask what additional 
invariants in the presence of such orbits are sufficient to imply the existence of a topo- 
logical conjugacy in various contexts. For some results in this direction, see [I8], [28]. 
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Proof  o f  Theorem ( x . i ). 

A) The case m = 2 ;  r e = d i m ( M )  

In this case the dimensions of  the stable and unstable manifolds are both one. 

Replacing f ,  f '  by  f~,  f ,2, if necessary, we assume ~, 6, ~', 6' > o. So we are in 
the following situation: 

W s ~q l  

\ /  

/ \  

_ _  W u (p~ 

FIG. 4 

We consider a sequence of points rl converging to r but  so that r~ r (W"(p) u WS(q)) 
for all i. By choosing a subsequence if  necessary, we can arrange that there are sequences 
of  integers n~ ~ oo, ml -+ oo with the property that f - '~ (r~) ,  f '~ (r i )  , has a limit in 
WS(p) --  p, W"(q) - -  q, respectively. Let p(ri, W"(p)), p(r~, WS(q)) denote the distance 
from r i to W"(p), respectively W"(q), with respect to some Riemannian metric. 

Because f is C 9", it is C 1 linearizable on WS(p) and W"(q) [8]. From this, we 

conclude that p(rl, W"(p)) ~ e'~ and p(ri, W"(q)) ~ 6 - ~ ,  where ~ denotes equality 
up to a positive multiplicative factor, depending on i but  uniformly bounded and bounded 
away from zero. It  is clear from the picture, or rather from the normal forms in Chapter  II ,  
that a sequence ~ can be chosen so that p(rl, W"(p)) ~ p(r~, W"(q)). In that case 

we have 

log 0~ _ lira mi 
log 6 i-~| n~" 

Now we assume that there is a local conjugacy h, defined on a neighborhood of 
the closure of  the orbit of  r, as in the theorem. Let  h(r~) ----- r'~. From the topology 
of  the intersection of  W ~ and W * and the position of  the r~'s (see figure) it follows that 

p(r~, W"(p')) < p(r;, W'(q ')) ;  i.e. 

p(r , w " ( F ) )  < i .  
p(r , w ' ( r  - 
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Since (f')-'~(r~) and (f')"~(r~) must have a limit in W'(p') --{p'} resp. W"(r --{r 
wc conclude that p(r~, W*(p')) ,-~ (Qt')~ and p(r~, W~ ,~ (f~')-=,. This, together 
with 

p(r , < i 

pCr , w ' ( ( ) )  - 

implies tha t  log oc' m, log ~ log oc' > log <~ --  l im - -  = - - .  Reversing the a rgument ,  one finds log ~' - -  log 
log ~' - -  ~-,~o n~ log 

a n d  hence log ~' log 0~ 
log ~' = log ~" 

Observe tha t  i f  W"(p) is transverse to W~162 a n d  W"(p') is transverse to W'(q ') ,  

then we cannot  conclude for any  sequence r~ -+ r tha t  I~(r~, W~(P')) is bounded.  So 
p(r , w' (q ' ) )  

we needed some of  the properties of  the " topology of  the intersection " .  In  the next 

higher  dimensional  case we have to analyze this in detail  (1). 

B) The case dim(W"(p))  = dim(W"(r = m --  x 

As in case A we assume a, ~, 0~', ~' > o and  we consider sequences ri --* r such 

t h a t f - ~ ( r l )  converges to a point  in  W'(p)  - - {p} ,  and  f~( r i )  converges to a point  in 
W"(q) - -  {q} for some sequences nl, m~ -~ co. We also assume that  one o f  the following 

three possibilities takes place (this can be obta ined  by taking a subsequence): 

p(r .  W"(p)) is bo u n d e d  and  bounded  away from zero (or ,~ x); 
p(r,, w ' ( q ) )  --, co. 

In  these cases we find tha t  

< l im i n f ( ~ )  
i . - *  oo - -  ; 

log fi ~-'| - -  ; 

> lira sup - -  . 
- -  i--*. eo 

We assume tha t  there is a local conjugacy h and  denote h(r~) by r~. We assume also 

tha t  p(r~, W"(p')) either goes to zero, is ~-, I, or goes to co; in each of  these cases we get 
w'(q')) 

log ' t i m "  a relat ion between ~ a n d  " --  as above. 

(~) After the arguments for sections B, C, and D were written, a cleaner treatment was discovered by S. VAs 
STRreN. This treatment uses arguments pre~ented in the proof of Theorem (2.1) in lisa]. 
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log ~ < log ~' 
From this we claim that, if  ~ log ~" then, for each sequence r~ -+ r as above, 

pCr,. w"(l,)) p(r., w"(l,')) 
~- o and/or ~. oo. 

0(r,, w'(q)) p(~;, w'(q')) 

log ~ log ~' 
Indeed suppose that ~ < log ~' and r~ -~ r as above. I f  p(r~,P(r~' W'(q'))W*(P')) does not 

go to 0% then for some constant 0 > o, we have 

(~')'~(~')'~ <_ c. 

This gives n~ log ~' + m~ log ~' <__ log C or 

log ~' log G m~ 

log ~' --  n~ log ~' hi" 

I f  8 >  z is so that l o g 0 c + l o g 8  log~'  = - -  then 
log ~ log ~" 

log a_____~ < log C rn~ 

log ~ -- n~ log ~ n~' 

or n i log ~8 + m~ log [~ < log C log 
- -  " log [$'" 

This means that ( a ~ ) ~ ,  is bounded, so ~'~ ~"~-+ o 

p(r,, w"(p)) 
�9 ---~ O ,  p(r,, w'(q)) 

logoc log:C 
This proves the claim. Similarly, for ~ > log ~' 

as i --~ oo 

�9 ,~e have 

which implies that 

p(~,, w-(p)) p(,;, w-(p')) 
oo and/or  --> o. 

p(r,, w'(q)) p(~, w'(q')) 

We want to prove that this cannot happen for every sequence in case of a quasi-transversal 
intersection of W"(p) and W'(q) (and W"(p') and W'(q')). 

For this we take subsets M, A ~, A ~ of a neighborhood of r such that: 

- -  A' u A " u A ~ is a neighborhood of r; 

~(,,, w"(p)) 
-+o,  then r ~ A  ~ for i big; 

~.o% then r ~ A  ~ f o r i b i g ;  

r~ r WU(p) t3 W'(q)) then 

- -  if rl- ' ,-r is a sequence such that p(r,, W'(q)) 

if r i ~ r is a sequence such that p(r~, W"(p)) 
p(r,, W'(q)) 

- - i f  r i - ) - r  i s a  sequence such that r ~ e A  ~ (and 

p(n, w-(p)) 
e'~a I ~ 

p(r,, w'(q)) 
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A TM, A" and A '~ are similar sets in a neighborhood of  r'. From the above arguments 
_ log ~' 

it follows that if log 0t < then there is a neighborhood U of r such that 
log ~ log [3" 

h(U n (h  ~ u A')) C A" 

log ,t log a' 
(and if ~ > l o g ~ , ,  

h(U n (A ~ w A")) C A'"). 

In order to derive a contradiction from this (namely from the assumption that 

log a <  log 0d I in the case of  quasi-transversal intersection, we proceed to an explicit 
log ~ log ~'] 
construction of  A ~, A' and A ~ From Chapter I I  we know that there are coordinates 

xl, . . . ,  x,~ in a neighborhood of  r such that locally 

W'(q)  = { x .  = o} 

and W"(p) = {x m = ~(xl, . . . ,  xm_x)} 

where ~ is a homogeneous quadratic function. In these coordinates we take 

{ , } A ' :  Ixml <_ g I ~(xx, �9 �9 ~m_x)l 

/ ' I A" = Ixm - -  ~(Xl, . . . ,  x,~_l)l < g I ~(xl,  . . . ,  xm_l)l  

A ~ == closure of the complement of  A' u A ~. 

Near r', W~(p ') and W"(q') have the same form, so there is a diffeomorphism ~" from 
a neighborhood of r to a neighborhood of r', mapping W"(p) to W"(p') and W'(q) to 

W'(q').  We define A"  = LF(A'), A '~ = ~ ( A  ~) and A '~ = ~(A~ 
It now follows that ~ = ~ -  1 o h is a local homeomorphism from a neighborhood 

of r  toitself, inducing homeomorphisms in W"(p) and W*(q) and mapping (A ~ u A*) n U 
into A'. Let U * C U  be a subset of  the form U* = { ( x t ,  . . . , x = )  [ o <  Y.~<  a*} 
and U**D~(U*) a set of the form U** = { ( x z ,  . . . , x , , )  l o <  Y~x~< a**}. From the 
fact that the subsets W~(p), W*(q), A ~, A' and A ~ restricted to U* or U** are all cone- 
formed, and the fact that ~ is a local homeomorphism inducing local homeomorphisms 

in W~(p) and W*(q) we conclude that the maps 

o "  n W'(q)  -~ u ' "  n w ' ( q ) ,  

o ' -  ( w " ( p )  n u ' )  -+ o " -  (w" (p )  n u " ) ,  

induced by ~, induce isomorphisms ill the homology. From the definitions it is clear 

that the inclusions 

U '  n W'(q) -+ U* n A', U "  n W'(q) ~ U** n A', 

U" n (A' w A ~ ~ U* --  (W"(q) n U*), 

U** n (A' w A ~ ~ U** --  (W"(q) n U**), 
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are all homology equivalences. Now consider the morphism of long exact sequences: 

H,(U* n M) ~ Hi(U* c~ (A* u A~ ---> Hi(U* n (A' o A~ U" n A') 

-~ H,(U*" c~ A') -+ H,(U*" n (M o A~ -+ H,(U" n (A' w A~ U*" n A) 

hi , /h  and ha axe all induced by ~, so hx,/h are isomorphisms. By the Five Lemlna, ha is 
then also an isomorphism. But since ~(U* c~ (AS u A~ C U** c~ A", ha is the zero 
morphism. Hence HI(U* c~ (A* u A~ U* c~ A *) = o for all i. This is in contra- 
diction with the following result, which follows from standard arguments: 

if ~(xa, . . . ,  x,,_~) = ~ -t- . . .  + ~ - -  4 + ~ - - . . .  -- xs,,-t 

then 
Z if i = k  or i = m - - k - - I  provided k 4 : m - - k - - i ;  

H~(U*n(A 'uA~  Z S Z  if i = k = m - - k - - I ;  
o otherwise. 

C) The general case: ~, ~, od, ~' real 

We assume that f has fixed points p, q and invaxiant manifolds Hp and Hq 
as in the theorem and ~, [~, 0:', ~ ' >  o. Then, d imHp dimW"(p) + i, and 
dim Hq = dim W"(q) + i. Let Hp,, Hq, denote the analogous manifolds for f ' .  Of 
course, if there is a conjugacy h be tweenf  a n d f ' ,  it does not follow that h(Hp) = Hp, 
or h(Hq) = He.  If  we knew that h(Hp) ---- Hv, and h(Hq) = Hq,, we could apply 
the argument of case B for sequences r i - > r  in Hpr~Hq. For in H p n H q ,  the 
manifolds WU(p) n Hp (~ Hq and W"(q) n Hp n Hq have codimension one, and 
intersect " nearly " quasi-transversely. We say nearly because, since Hp and Hq 
are only C t manifolds, a quasi-transvelse intersection of WU(p) n Hp ~ Hq and 
W'(q) n Hp n Hq is not defined. However, we Call choose C 2 submanifolds Hp and Hq 
(not necessarily invaxiant) which are G I close to Hp and Hq, respectively, such that 

Hp n ~p D WU(p), Hq c~ Hq D W*(q), 

W"(p) n H, n Hq = W"(p) n H, n Hq, 
W"(q) n Hp n Hq = W"(q) r~ Hp n Hq, 

and W*(q) c~ Hp n ~q intersects W"(p) n Hp n Hq quasi-transversely. Hence, the 
metric properties of the intersection of WU(p) c~ Hp r~ Hq and W*(q) c~ Hp r~ Hq 
in Hp c~ Hq are those of a quasi-transversal intersection. 

Since h does not map Hp to Hp, or Hq to He,  we must modify our arguments. We 
shall show that there is a map • from h(Hp n Hq) to H ,  n He such that for any 
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x �9 h(Hp n Hq) - -  (W"(p') u W'(q')), we have p(x, W"(p')) ,-~ p(~(x), W"(p')) and 
p(x, w'(r w'(r 

Let N be a small disk neighborhood ofp  where we can define a C 2 coordinate chart  
such that the components of WS(p) n N and W"(p) n N containing p are coordinate 
planes. In  the sequel, we will xestrict ourselves to such a neighborhood N and to the 
components of W"(p) and W~ containing p. Let % : N -+ W'(/~) be the natural 
projection and assume that the negative orbit of r lies in N. 

Since W'(q) is transverse to Hp at r, we can characterize W~ as the subset 
of  W~ where the critical points of  ~, ] W'(q) accumulate. This characterization is 
based in the following fact: 

I f  v �9 W~ then v r W"(p) if  and only if there are a neighborhood V of v and 
a neighborhood U of r such that for each v' �9 V n W~ there is an arbitrarily small 
neighborhood V' of  v' in V such that, for n �9 N suficiently big, 

{f-"(W~ n U) n V'} C{f-"(W~ n U) n V} 

is a homotopy equivalence. In  this formula we should omit from f - " (W' (q )  n U) 
those points whose orbits from W~ n U to f - " ( W ~  leave N. From 
this dynamical characterization it follows that h ( W " ( p ) ) =  W~ ') and similarly 

h(w""(q))  = w . - (q ' ) .  
Thus h(Hp) n W'(p') is an invariant C o curve o f f '  which meets W"(p') only 

at p'. S i n c e f '  is C t linearizable on W~ ') [8], we see that h(Hp) n W~ ') has to lie 
in a small sector about Hp, n W'(p ') which has width zero at Hp, n W"(p') as in the 
following figure. 

>> 

J 

Y 

L 
<< 

W `s (p') 
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Hp, n W s (p') 
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From this it follows that  for any smooth projection o fa  neighbourhood of H f  to Hv, , 
the distance of points in h(Hp,) to W"(p ') is not changed essentially, i.e. the quotient  of 
the new and old distances is uniformly bounded  away flora zero and  infinity. I t  is not 
hard  to choose such a projection al on H f  which does not essentially change (at least 
near r') the distances to W'(q'). 

Using the same type of arguments one can define a smooth local projection a, on H e, 
in such a way that  

- -  ~ maps Hp, into itself 
- -  ~, does not essentially change distances from W~(p'). 

As before, it follows that  ~2 does not essentially change the distances from points 
in h(Hq) to W~(q'). So ~2o~1[  h ( H p n H e )  : h ( H p n H e )  -+Hp,  c~H e, has the 
required properties. 

To see that  the whole reasoning of case B applies, we first choose metrics on Hp, 
H ,  H ,, H e, induced by nearby C 2 manifolds Hp, Hq, H f ,  He', respectively. Deft- 
r u n g  A', A ~ A" C Hp c~ He as before and projecting them into Hp and H e to obtain A 8, A ~ 
A", we then have that  the maps W"(p) n Hp n H e -+ A ~, W'(q) c~ Hp c~ Hq -+ A', etc., 
are homotopy equivalences. Now the argument  can be completed by observing that  

(I) (~ roughly preserves distances; 
(2) a induces, locally at r', homotopy equivalences from W'(q') n h(Hp n I-Iq) to 

W'(q') c~ (Hp, n He, ) and from h(Hp n Hq) --  W"(p') to ( H f  n He, ) --  W"(p') ;  
(3) if r~-+ r', r~ e h(Hp n He) are such that  f - '~ '(r ' ) ,  respectively aOm(r~), has a limit 

in WS(p ') - - p ' ,  respectively WU(q ') - - q ' ,  then o(r[,W~(p')) ,~, (0d)m and 
v(r;, W'(q')) 

These facts follow easily from the constructions. 

D) The general case: ~, od are not real or ~, ~' are not real 

Let Q be the df(p)- invariant  subspace of TpW'(p) complementary  to the eigenspace 
of 0c, and let Q be the df(q)-invariant subspace of TqW~(q) complementary  to the eigenspace 
of ~. Let W'8(p) be the invariant manifold in Ws(p) tangent at p to Q., and let W*"(q) 
be the invariant manifold in W"(q) tangent at q to Q .  I f  Hp and Hq are the invariant 
manifolds in the statement of Theorem (I.  I), then W**(p) is transverse to Hp at p and 
W~"(q) is transverse to Hq at q. The  fact that  W"(p) is transverse to H e at r enables us 
to get a dynamical  characterization of W""(q). Similarly, we will obtain a dynamical  
characterization of W"(p) .  Once these are obtained, it will follow that  a conjugacy h 
from f to f '  as in the statement of Theorem ( i . i )  will have the proper ty  that  
h (W'(p) )  = Ws'(p ') and h(W""(q)) = W""(q'). F rom this, it will follow as in case C 
that  h(H e n W'(p)) is in a small sector about Hp, t~ W"(p') which meets W"(p ' )  
only at p'.  Similarly, h(H e c~ W"(q)) is in a small sector about H e, n W"(q ') which 
meets W'"(q ') only at q'. The  arguments then proceed as in case C. In  the present 
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situation either or both of W~(p) and W'(q) will have codimension 2 in Hp and Hq, 

respectively. This changes the arguments slightly, but, since these changes are straight- 
forward, they will be left to the reader. Thus to complete the proof  of  Theorem (x. I), 
we must show how W~"(q) is characterized dynamically. 

Let U be a small disk neighborhood of q containing the forward orbit of  r. We 

can take U as a coordinate chart with a Cl ~ coordinate system having the components 
of  W~(q) and W*(q) containing q as coordinate planes. Let ~ : U -+ W~(q) be the 
natural projection. For an integer n >  o let ft~ denote f n ]  N f - J ( U ) .  Define 

0<j<n  
W~(q) to be the set of  points y ~ W"(q) n U such that 

( . )  for each sequence o < nx< na< . . . ,  the critical points of  ~, ] f~(W"(p))  accumulate 
on y as i ~ oo; in case dim(W"(p)) + dim(WS(q)) = dim(M) --  I), f~(W"(p) )  

accumulates on y. 

= U  w "  We assert that W~"(q) ~>0f'( to~(q)). This implies a dynamical characte- 
rization of W"(q) .  

To prove this assertion, first suppose that f l U  is linear and, near r, the set of 
critical points (or fold points) L of  ~, ] W"(p) is an affine subspace. Here  we think 
of  U as an open subset of Euclidean space via linearizing coordinates. Note that 
dim(L) = dim(W"(q)) --  i. I f  the eigenvalue ~3 is real, the assertion follows as in the 
previous case when the eigenvalues 0~, [~ were taken to be real. So assume ~ is not real. 
Assume also that Hq, W"(q) and W"(q)  are linear subspaces of U near q. Choose an 
affine subspace L 1 C L which is complementary to Hq at r. Then f"(L1) converges to 
as n -+ or. This implies that ( . )  holds for any y e W~(q) near q. Now let y be in 
W"(q) --  W~'(q) and near q. Since f ]  Hq n W"(q) near q is a rotation, there is a 
sequence of integers n 1 < n~ < . . .  such that f~i(L n Hq) does not accumulate on ~y 
as z -+ oo where 7~ : W"(q) ~ W~(q) n Hq is the natural projection. This implies 

tha t J~(L)  does not accumulate o n y  as v -+ or. Tiffs proves the assertion if f ]  U is linear 
and L is affine. The extension to the case w h e r e f i s  not linear or L is not affine near r 

is straightforward. We leave the details to the reader. Theorem ( i .  I) is proved. 

Lemma ( 1 . 2 ) .  - -  Suppose f is an elementary diffeomorphisra and x is a quasi-tra~ersal 
intersection of W~(p,f) and W'(q , f )  with p and q periodicpoints off. Then f is not topologically 
conjugate to any Kupka-~Tmale diffeomorphism. Moreover, i f  f '  is also elementary and h is a topological 
conjugacy between f and f ' ,  then h (x) is a quasi-transversal intersection of hW~(p, f )  and hW'(q, f ) .  

Proof. ~ This follows from the fact that a transversal intersection of  two submani- 

folds W'  and W" of a manifold M is topologically different from any quasi-transversal 
intersection of  W'  and W ". In a point of  quasi-transversal intersection, either 

dim W'  -4- dim W ~ 4= dim M 
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in which case the intersection is not a manifold of the right dimension or, 

dim W ~ + dim W ~ = dim M 

in which case the intersection number  is zero. See Chapter II ,  section 6. 
Note that not all non-transversal intersections are topologically different from 

transversal ones. 

Theorem (*.3)- - -  Suppose f ,  p, q, ~, f~, and r are as in the hypotheses of  Theorem (1. x). 
Then there is a residual set ~ t  C ~ such that i f  ~ e ~ x ,  then no % ,  o <__ ~ <__ i, is topologically 
conjugate to dr. 

Proof. ~ There is a residual set 9~0 C 9 ~ such that if  $ e 9~0, then 

(i) each %, is elementary or Kupka-Smale;  
(2) if some %, has a quasi-transversal orbit, then the hypotheses of Theorem ( , .  i) with 

%, = f '  are satisfied; 
(3) there are at most countably many lz's for which %, has a quasi-transversal orbit. 

Now, since each % has at most one quasi-transversal orbit, it follows that the 
quotients of  the logarithms of  the moduli of  quasi-transversal orbits occurring in {%} 
form a set which is at most countable. With standard arguments, one can show that 
there is a residual subset ~1 of 9~0 such that if 9 z t~x, then all the quotients occurring 

for ~ are different from log [0c] Now Theorem ( , .  3) follows from Theorem ( , .  x) and 
Lemma (I .  2). log [ ~ [" 

Corollary (*.4).  - -  I f  ~ e ~ is left stable, then all stable andunstable manifolds o f  periodic 
points o f  9b intersect transversally. 

Proof. - -  Since q~ e ~ ,  we have that % is elementary. Thus, if  % = f  has a 
quasi-transversal orbit, then we may assume the hypotheses of  Theorem ( i .  i) and hence 
Theorem (i .3) are satisfied. By Theorem (I .3), q~ is not left stable. 

2. Necessary  condi t ions  for  m i l d  stabi l i ty  and  stabi l i ty  

Suppose q~ e ~ and ~(p) is a saddle-node for %. We say ~(p) is s-critical for % 
if there is a periodic orbit r such that W~'(~(q)) has a non-transversal intersection with 
the strong stable foliation o ~-s' of  W~(~(p)). Similarly, we say ~(p) is u-critical if it is 
s-critical for q~-l. I f  ~(p) is either s-critical or u-critical but not both, we say that ~(p) 
is semi-critical. I f  ~(p) is both s-critical and u-critical, we say it is bicritical. 

Proposition (2. , ) .  - -  I f  ~ is mildly stable, then it is left stable and the quasi-hyperbolic 
periodic orbit is not a Hopf  orbit or bi.critical saddle-node. 
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Proof. - -  The first statement is obvious and the second statement was proved in 
Section 5 of  Chapter  II.  Now suppose r is a bicritical saddle-node for ~b" We 
assume p is a fixed point of  ~b" I f  qx and q, are periodic points of % such that W"(qx) 
has a non-transverse intersection with the strong stable foliation of  W'(p) and W'(q,) 

has a non-transverse intersection with the strong unstable foliation of W"(p), then, 
perturbing if necessary, we may assume that these intersections are quasi-transverse. 

For some ~ near b, it then follows that W"(qa~, q~) has a quasi-transverse intersection 
with W'(q~,, q~). Here, of  course, qx~ and q~ denote the unique hyperbolic periodic 
points of  ~ near ql and qz, respectively. Using Theorem (1.3) we can perturb to ~' 
in ~ so that no q~', is conjugate to %,. This shows that ~ is not mildly stable. 

Proposition (2.2) .  - -  I f  9 is mildly stable, then ~b has no cycle of length bigger than one. 

Proof. - -  Suppose q~b has a cycle of length bigger than one. We show ~ is not 
mildly stable. Since q~ ~ ~ ,  q~b has a saddle-node orbit *(Po) which is contained in every 
cycle. Indeed, the transversality of  the stable and unstable manifolds implies that if 

9b had any cycle not containing a saddle nodes, then ~b would have transversal homo- 

clinic points. This would give 90 infinitely many periodic points [34]. Let r �9 �9 -, r 
be the distinct orbits in the cycles of  q~b- Replacing { q~ } by some power { ~, }, we assume 

that all the p+'s are fixed points. Let W"(P0), resp. W"(p0) , denote the strong stable, 
resp. unstable, manifold of  Po. Since L(~b) has finitely many orbits it follows that 
W"(p~) n W'8(po) = o and W'(p+) n W"(p0) = o for 0 < i < r. Otherwise, q~b would 
again have transversal homoclinic points. 

By transversality, we have 

dim W"(p+) = dim W"(po) or dim W"(p+) = dim W"(po) --  i 

for each o < i < r. Replacing { ~ }  by {~-1}, if  necessary, it is enough to consider 

the case in which there is a I < j  < r such that dimW"(p~) = dimW"(Po). This 
implies dim W*(pj) n W"(Po) = o and hence Po is u-critical. 

Observe that, having dim W"(pj) = dim W"(P0) for some i < j < r, we may 
indeed assume that for all o < i < r 

(a) dim W~(p+) = dim W"(Po) , 
(b) W~'(p+) is transverse to the strong stable foliation ~-"  of W'(Po), 

(c) e w"(p+) w"(po) = {Po}. 

For suppose (a) or (b) failed for some I < i < r. Then Po is s-critical. Since 

dim W"(pj) = dim W"(Po) , we already know that Po is u-critical. Thus Po is bicritical 
and Proposition (2. I) has already ruled this out. Let us now suppose that (b) fails for 
i = o; that is, W"(P0) has a nontrartsverse intersection with .~'". We already know 
that W"(p~) is transverse to ~ "  for I < i < r. Perturbing % if necessary, we may assume 

that W"(p0) has a quasi-transversal intersection with some leaf F in ~ " .  Choose disks 

Dx C W"(P0) and D 2 C F so that D x and D2 have a quasi-transversal intersection. Let 
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be an invariant center manifold in W'(P0). Since W"(pt, b) meets W'(po) transversally. 
and is transverse to o~' ,  it follows that each component of  W~(px, b) n W'(P0) is an 
embedded curve whose closure near P0 can be given as the graph of a smooth function 
from ~ to W"(po) as in the next figure. 

WU(pl) n WS (Po) ~ ~ ~  

Fro. 6 

As ~t increases, pieces of W"(Pl, ~t) will sweep across the local part  of W'~o  ) near Po, 
so for each Ez > b near b, W"(px, ~t) contains a disk Dx,~G ~ near D1. 

On  the other hand, W'~x , b) accumulates backward on W"(p0). For certain tz's 
near b and greater than b, W'(pt,  bt) will contain a disk D2,~C r near D,.  Considering 
the continuous movements of Dx,~ and D2.~, as ~ varies, one sees that for certain ~t's near b 
and greater than b, Dx,~ has a quasi-transverse intersection with D~,~. Thus, if (b) fails 
for i = o, there are ~t's near b for which W"(pl,~) has a quasi-transverse intersection 
with W'(Pt,L,)- In view of Theorem (x-3), we conclude that ? is not mildly stable. 
Finally if  (c) failed for some i, then d W"(p~) would meet a fundamental  domain for 
W'(p0). Since all intersections of  W"(A) and W'(pk) are transverse, this implies 
W"(p~) n W"(p0) . ~ as in the Morse-Smale case ([24]; Lemma ( i .5) ) .  As we have 
already mentioned, this gives transverse homoclinic points--an impossiblity. 

Thus, we assume (a), (b), and (c) hold for all o < i < r. We proceed to derive 
a contradiction from this, and, then, Proposition (2.2) will be proved. 

From (a), (b), and (c) it follows that each component of W"(pi) n W'(P0), 
o < i < r, is an embedded curve whose closure near P0 is the graph of a smooth function 

from the center manifold ~ to W"(p0). 
Let Pi, be a fixed point such that W~(p~.) n W'(P0) • ~, W"(Po) n W'(A.) 4= o, 

and for each x < i < r  with i + i o ,  W"(p~.) n W ' ( A  ) = o .  Then, W"(pl.) nW'(P0)  
consists of  finitely many curves which are permuted by ~Pb. Also, the boundary of each 
suchcurveis{po,p~,}. By the boundary of a curve-(, we meand~ ,  - -  y, ofcourse. Since 
W"(p~.) is transverse to W'(po) , we conclude that the closure of W'(po) near Pi. is a finite 
union of closed half-spaces bounded by W'(p~.). Also, since W"(po) has a transverse 
intersection with W'(pi, ) and dim W"(po) = dim W"(p~,), W"(po) accumulates on 
W"(pl,) in the G I sense. Thus, we see that W"(P0) n W'(po) has a component T which 
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is an  embedded  curve whose bounda ry  is {P0, x} where x e Ws(p~.) --  {pl.} n W"(Po). 

This is depicted in the next figure. 

I 

Fxo. 7 

We will show tha t  the existence of  T leads to a contradict ion.  Let  D be a small half- 

disk neighborhood about  Po in W"(Po) so that  %(OD --  W"(po) ) n (0D --  W~(po)) ---- o. 
Let  D" = cg(~bD --  D) be a fundamenta l  domain  for W"(p0). Choose N > o so 

that  n ~ N implies tha t  ~;-"x ~ D. I t  follows that ,  for n > N, %-"?  is an  arc whose 

intersection with  D" --  W"(p0) has at  least one component  joining the two components  

of  O(D" --  W~'(p0)). We m a y  suppose tha t  0D" is transversal to each curve ~gy, r E Z. 

Hence,  the set E of  points y ~ D" --  W~(p0), for which there is a sequence Yl ~ ?;-,i(y), 

ni ~ oo, such tha t  yi -+y,  is uncountable .  But E Cct Ws(p0) n D". 

We assert that  E n W'(P0) ----- o. For  the moment ,  assume this assertion holds. 
Then  E C [.J W'(p~). Since d im W'(pl) + d im W"(P0) = d im M, this would put  E 

a<i_<r 
in the countable  set D ~ n [3 WS(pi) ) which is a contradict ion.  

l < i < r  

Thus,  we must  prove that  V, n W'(po) ---- o. Suppose E n W'(po) ~ o and  let 

y ~ E n W'(P0). Choose y~ E q~b-"i(T), ni -+ 0% so tha t  yi --~.y as i -+ oo. We claim 

tha t  yi goes to infinity in WS(po) ; i.e. given any  closed disc F C W'(P0) transverse to D" 

there is an  i o ~ ' o  so tha t  .y~r  for i > i  0. This follows from the facts that  

9~'~, n 9;V---- ~ for m~e r and  F n D" has only finitely m a n y  components .  Now 

let D '  and  Ds' be fundamenta l  domains  for W'(p0) and  W"(po), respectively, and  let 

D "~ be a fundamenta l  domain  for W~'(po). There  is an N ~> o so tha t  ~?~(y) e D ". 
Since 9~(y~) converges to the point  ~ ( y )  in D s and  %s(y~) goes to infinity in WS(po), 

there is an  m~ • o such that  ?~+mi(yi) accumulates  on D ~". Thus,  d W'(po) n D ~" ~e o. 

But this implies that  % has transversal homoclinic points which is impossible. Thus  

E n W'(P0) ---- o and  Proposition (2.2) is proved. 

Proposition (~. 3) .  ~ I f  ~ is mildly stable, then ~b cannot have a non-critical i-cycle. 

Proof. ~ As  before, i f  % has such a cycle, it must  have a saddle-node ~(p) which 

is in the cycle. Since the cycle is non-critical,  W*(r is transverse to the strong stable 
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foliation of W'(r(p)) and W*(o(p)) is transverse to the strong unstable foliation of 

W"(,(p)).  Let nx be the period o f p .  Using invariant manifold theory one sees that 
W"(~(p)) n W'(~(p)) is a finite union of C ~ circles Slb, . . . ,  Skb which are permuted 

by 9~ '. Taking n i larger, we may assume ~b (Sib) S~ for I < i < k. Replacing 9 
by a suitable C ~176 approximation, we may assume for ~ near b that there is a C ~~ circle S~g 

near Slb which is invariant by q~', and the rotation number  of  9~ ' [ S~ is not constant 
as a function of ~ near b. From the recent work of  M. Herman  [9] we may find a 
near b such that 9~,'[ Sl~ is C oo conjugate to a geometric rotation through an angle 

with 0~12~ irrational. By a small modification of r to q~', we may make ~p~"' [ Sl~C ~~ 
t conjugate to a rotation through an angle a' with 0c'/2~ rational. This means that %, has 

uncountably many periodic points of the same period. But, since each r is elementary, 
it has only finitely many periodic points of a given period. Thus ~ is not mildly stable. 

Remark. - -  T h e  previous propositions leave open the possibility that a mildly stable 

arc might have a critical saddle-node in a t-cycle at %. We will w o v e  in section 4 that 
this cannot occur if the stable or unstable manifold of the saddle-node is one dimensional. 

In particular, it cannot occur if dim M = ~. In general, for dim M > 2, we feel that 

this cannot occur, but  we have no complete w o o f  at this time. The next proposition 
shows that the situation regarding stability is better. 

Proposition ( 2 . 4 ) .  - -  I f  q~ is stable, then 9b has no cycles and no semi-critical saddle-nodes. 

Proof. - -  We have already taken care of  cycles of length bigger than one and 
non-critical i-cycles in Propositions (2.2) and (2.3). Suppose ~b has a semi-critical 
z-cycle containing the saddle-node orbit ~(p). We assume p is fixed by % and W"(p) 
has a non-transverse intersection with the strong stable foliation .~*  of  W'(p).  The 
other cases are handled similarly. Perturbing, if necessary, we may assume that o ~'~' 
is a C 2 foliation, that all intersections of W"(p) with leaves of o ~-"* are transverse or quasi- 
transverse, and that all the eigenvalues of  d% on T~W'(p) have multiplicity one with 
distinct norms. Let 0c be the weakest contracting eigenvalue of d% on TvW*'(p), and 
let Cp be a C t invariant manifold in W"(p) tangent at p to the eigenspace of a. Let Hp 

be a C t invariant manifold containing W"(p) and Cp as in the w o o f  of Theorem ( t .  i). 

Let x e W"(p) n W'(p) be a quasi-transversal intersection of  W"(p) and ~-~' at x. If  
y is a curve in Hp n W*(p) transverse to W"(p) at x, then Y is transverse to o~-~' in WS(p) 
at x and, hence, projects diffeomorphicaUy near x along the leaves of  o~-" into an invariant 
center manifold ~ for %. Let D be a fundamental domain for W"(p).  Thus D is a 

compact set in W"(p) such that 9~D n D  = o and W"(p) - - {p}C [.J ~](D). Let 
n ~ Z  

U be a small compact  neighborhood of  D. I f  y e 7 is near x, then O(Y, x) ,~  [ ~ I "Iv) 

where n(y )  is the least positive integer n such that q~-"(y) ~ U. Here, as in the proof 

o f T h e o r e m  (z. t), we use p(y, x) -~ [a[" to mean that ~ is bounded and bounded 
away from zero independent of  n. 
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Now let 9' be a perturbation of 9 such that b(q~') ---- b(~), [a'[ < [0~l, and ~'~ 
is still a C 2 foliation. Using Chapter II,  we may assume that on the center manifold 
through p, 9b is the time-one map of a C | vector field X b which vanishes only at p. Also, 
there is a corresponding vector field X; for ~ .  Suppose there is a continuous conjugacy { h~ } 
between q~ and ~'. By Theorems (3.2) and (3.4) of Chapter II,  we know that 

(I) h b is C ~~ along ~ - -{p} ;  

(~) h b maps X b to X;;  and 

(3) hb maps the strong stable foliation ~'*' to the corresponding strong stable folia- 
tion o ~ 'u .  

Since ~ ' " '  is C 2 near ~ " ,  all intersections of W"(p') and leaves of ~'"8 will be 
transversal or quasi-transversal. As in the proof of Lemma (i .  2), this implies that hbX 
is a quasi-transversal intersection of W"(p ') and '"  o~-;,b,. Applying the reasoning in 
section D of the proof of Theorem ( i .  i) to W~"(p), we see that, since H r is transverse to ~'~', 
the invariant manifold in W88(p) tangent to the sum of the eigenspaces complementary 
to the eigenspace of 0r has a dynamical characterization. I t  is the set of  points where 
the backward orbit o f~ '~  ' accumulates. Thus, hb(H p n W"(p)) is in a sector about 
H~ c~ W"*(p ') in W'8(p'). This implies that i f y  is near x in y and p(x,y)--~[a[ "lu), 
then p(h~, hbX ) ~ 10r Hence, 

(4) lim p(hby' hnx) --  o. 
v-~  p(y, x) 

I f  r~ : W*(p) ~ ~ is the projection along the leaves of ~'b", then (4) implies that 
hb has derivative zero at ~(x). But this contradicts the fact that hb(Xb(~x)) ---- X'b(hb~(X)). 

The proof of the fact that stability of ~ implies that % has no saddle-node orbit r 
which is semi-critical via some other periodic orbit r is similar. I f  say W*(r has 
a non-transverse intersection with o~'~', we repeat the preceding argument replacing 
WS*(r by WS(r The remaining case of W*(~(q)) having a non-transverse inter- 

section with ~'~" follows replacing { %} by { ~-  1}. 

Remark. - -  We observe that stable arcs in d must lie in ~ .  This follows from a 
somewhat more general observation, namely that any stable arc {q~}, not necessarily 
starting in MS, with a bifurcation for bt = b such that the limit set of  ~b has finitely many 
orbits has the following properties: 

- -  all stable, strong stable, unstable, and strong unstable manifolds of ~b intersect 
transversally; 

- -  % has exactly one non-hyperbolic periodic orbit, which is either a flip or a non-critical 
saddle-node without a cycle; this non-hyperbolic periodic orbit unfolds generically; 
such a ~b can have no cycles because it has finitely many orbits in its limit set; 

- -  there is an r  such that if  ~ c (b - -  r b q- r --  {b}, then %, is MS. 
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This statement follows from the previous arguments in the following way. I f  all 
the periodic orbits of  % are hyperbofic then, since the limit set has only finitely many 

orbits and % is not structurally stable, there must be a non-transversal intersection of 
a stable and an unstable manifold. By the results of  section one of  this chapter the 

arc { %,} would then be unstable. Also, the non-hyperbolic periodic points have to unfold 
generically otherwise we would not even have local stability. It is also clear that no 
more than one orbit of % can be non-hyperbolic. I f  % has a H o p f  point or a non-critical 
I-cycle, then there are nearby arcs with a smooth invariant circle with irrational rotation; 
as observed in the present section that also contradicts stability of  the arc. Also in this 

section we saw that a saddle-node with criticaUity and or a cycle of length bigger than 
one is impossible if  the arc { %,} is stable. I f  ~b has a non-transverse intersection of  the 
stable, strong stable, unstable, or strong unstable manifold of the non-hyperbolic periodic 
point with any of the other stable or unstable manifolds, then there is arbitrarily near { ~ }  

t an arc { %,} and a ~ ~ R near b such that ~ has a non-transversal intersection of  a stable 
and an unstable manifold of  hyperbolic periodic orbits. Again by the results of  section I 
this implies {r and hence, { ~ }  is unstable. Finally, we indicate why q~ r MS for 
near b and tz # b. Since % has no cycles and the limit set of  % has only finitely many 

orbits, the Birkhoff center of  Sb must be finite. Then the arguments in [i5] show that 
the limit set of  q~b equals the Birkhoff center, and, hence, must also be finite. Because 
Sa is elementary, it then follows that q~, ~ MS for ~ near b and V # b. 

With arguments similar to those in the preceding paragraph, one can show that 
a mildly stable arc in d must lie in ~ .  There are, however, left stable arcs in .~r which 
are not in ~g: % might, for example, have two H o p f  points or flips. All such arcs are 
left conjugate to left stable arcs in ~ .  

3" E n d o m o r p h l s m s  o f  t h e  d r c l e  

In this section we first extend the notion of  rotation number,  defined by H. Poincar6 
for diffeomorphisms of the circle, to endomorphisms of  degree one. Instead of  a number 
we get in general a closed interval of  the real line, which we call rotation set. These 
rotation sets are then used to analyze a class of I-parameter families of  endomorphisms 

with non-degenerate folds (see (b) below). We show that each such family must go 

through homoclinic trajectories with folds (see Theorem (3.7)).  This result has a direct 
application to the bifurcation of diffeomorphisms exhibiting a saddle-node with one 
cycle described in the previous section. I f  the saddle-node has a one dimensional stable 
or unstable manifold, they must go through a non-transversal homoclinic orbit. An 

interesting question is if  such families of  endomorphisms, for which the rotation sets vary, 
have bifurcation sets of positive measure. For the diffeomorphism case, see [IO]. 

A) Rotation sets for endomorphisms of the circle 

We identify the circle S 1 with R/Z.  By End(S) we denote the set of continuous 
maps �9 : S 1 ~ S 1 of  degree i. On End(S 1) we use the usual C o topology. For each 
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e E n d ( S  t ) there is a ~ : i t - + i t  such that  r ~ = ~  where 7=:it--->S t--->R/z 
is the canonical projection. ~ is called a lift of �9 and it is unique up to the addit ion of 
an integer. Each such ~li satisfies ~(x + i) = ~(x) + I. 

For �9 t End(S t) with lift ~ and x ~ R we define the rotation number  p(~, x) 

to be lim sup-X (~"(x) - - x )  and the rotation set p(~) to be closure {p(~, x ) [ x  e i t } .  
n ~ o  n 

Note that  if we take a different lift, say ~,  of �9 then p(~, x) and p(~, x), and hence also 

p(~) and p(~), are equal up to translation by some integer. I f  x' ~ I t  with ~(x') = ~(x) 
then p(~, x') = p(~, x). Hence, up  to translation by integers, p(~, x) and p(~) are 
invariants of ~,  ~(x); if no confusion seems possible we may denote them by p(r ~(x)), 
O(~). We note that  p(~, p) and p(~), p ~ S t, are topological invariants: if h : S t ~ S t 
is a homeomorphism,  then 

O((1),p) ---- p(h*h - t ,  h(p)) and p((l)) = p(h(I)h-X). 

Finally, if q) is an orientation preserving homeomorphism,  then p((I)) is the usual rotation 

number  [29]. 

Lemma (3. �9 ). - -  I f  dp t End(S t) and ~) is a lift of r and i f  there is no periodic point of r 

with rotation number P-, p e Z, q t N, i.e. i f  there is no x t I t  with r = ~(x) and 
q 

p(~,x)  P, then p(~) is contained in { x t i t  , x < P } or in { x t R [ x > P }  

Proof. ~ If, for some x e I t ,  ~ ( x )  -- x = p then ~(x) is a periodic point  with 

rotation number  -P- ; so this does not happen.  Hence either ~q(x) --  x < p for all x t I t  
q 

or ~ q ( x ) -  x > p for all x e It .  Since ~ q ( x ) -  x is periodic in x (with period I )  

there is some ~ > o such that  ~ ( x )  --  x < p --  r for all x e R or ~ ( x )  --  x > p -k- r for 

- -  q q 

Corollary (3.2).  - -  I f  �9 t E n d ( S t ) ,  a, ~ t p ( ~ )  and ~ < P - <  ~ for some rational 
q 

number p, then �9 has a periodic point with rotation number p-q and hence P-q ~ p(~). Since p(~) is 

closed (by definition), p (~) must be either a single point in I t  or a closed interval. 

Now we want  to show that  p(*) depends continuously on (1). For this we introduce 
the following notation: if �9 t End(St),  ~ a lifting o f ~  then pl(~), p~(~) t I t  are such 

that  p(~) = [p~(~), p~(~)]. 

Proposition (3.3).  - -  Let U C E n d ( S  1) be some open set such that there is a continuous 
mapping �9 -+ ~ which assigns to each �9 a lifting r (in order that  ~ depends continuously 
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on ~,  U should not be too big). Then the functions gP ~ px(~li) and ~ w, p~(~) o n  U are 
cont/nuous 

Proof. - -  We observe that for any rational number  P, we have that P- q < pt(~) is 

equivalent with ~q(x) --  x :> p for all x e [o, x] which is an " open condition ", i.e. the 

set of  �9 E U with p t (~ )~P-  is open. Analogously, the set of those �9 e U with 
q 

pa(~) ( P- is open. 
q 

Finally, p e (pl(~), pa(~)) if and only if for some big N e N, there are x , y  E [o, i] 

with ~sq(x) - -x~> N . p  + i and ~ 'q ( ) , )  - - y (  N . p - -  i. Also this condition is 
open, hence pl(~) and ~(~J) depend continuously on ~.  

Proposition (3-4). ~ Let r e End(S t) with lifting ~ and let P- e (01(~), [~1(~)). Then 
q 

there is a periodic point s ~ S t of  �9 with rotation number P-- such that W~(s) = S x, where 
q 

Wg(s) --= 9 [ U  r the intersection being taken over neighborhoods U of  s. 
"EN 

Proof. ~ We may assume that P- = o (if not we replace �9 by r and choose an 
q 

appropriate lifting). Let X denote the projection of the fixed point set of ~ in St; since 
X is closed and non-empty, S ~ -  X consists of  open intervals. Let U be such an 
interval and U = (~-t, ~) a lifting of U. Then  ~(x) --  x, for x ~ U, is always positive 
or always negative. In  the first case, U C W~(n(s-t)), in the second case, U C W~(=(~)). 
I f  9 ~"(U) = S  ~ we may take s=r~(s-1) or s = ~ ( s ~ )  and are done. I f  on the other 

n 0 

hand for each component U of S 1 --  X, ,>~0~"(U) + S t, then r  x]) C [--  ~, 2] 

for all n > o ,  so we would clearly have p(r = { o } .  This would be against the 

assumptions. 

Remark (3.5). ~ Let ~ C End(S t) denote the subset of those �9 e End(S 1) which 
are G t, whose first derivative is of bounded variation and whose critical set consists of 
a finite and non-zero number of generic folds, i.e. points where �9 is locally C ~ conjugate 
with the map y = x ~. By a theorem of Block and Franke [2], every �9 in ~ has a periodic 
point. This is equivalent with saying that if �9 E ~ ,  p(cP) cannot consist of only one 
irrational real number.  This together with the continuity of Px and p~ implies that if  
R ~ ~ ~-~ r is a continuous arc in End(S t) with image in aj then p(~o) is constant (as 
function of or) or, for some ~, p(O~) has a non-empty interior. This observation will 

be useful in the next section. 
Finally, we pose the following conjecture which extends Herman's  result for arcs 

of diffeomorphisms [i o]. Let { q~} be a C t arc of C ~ endomorphisms of S 1 with rotation 

sets { [Pt(D), P2(g-)] }- 
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Conjecture (3. fi ). - -  I f  the rotation set of  r varies with tz, then the set of  t~'s for  which either 

Pt(~) or P~(t~) is irrational has positive (Lebesgue) measure. 

B) Some one-parameter families of  endomorphisms of  S 1 

In this sub-section we consider continuous (or smooth) families ~o, a z IR, of 
endomorphisms of  S t such that 

for each ~ ~ R,  r E ~ ,  see Remark (3.5);  
the rotation set p(~o) is non-constant, as a function of a; 

- -  for each rational number  P, there is a locally finite set Zp C R such that for a r Zp, 

all periodic points of  ~o with rotation number  p- are hyperbolic. 
q 

We shall prove for these families: 

Theorem (3.7) .  - -  For % as above there are an interval (6t, %) C R ,  a hyperbolic periodic 

point s o , a t < a <  % of  ~o such that W~o(so) is S t for  all a ~ (at, %) and a point to, 
a t < ~ < ~ in the critical image of  r (for some n) such that: 

both s o and t o depend continuously on 6; 

the curves ~ ~ (so, a) and a ~ (to, a) in S t • (at, a,) cross one another; 

i f  ~o is a lifting of  ~o,  depending continuously on a, and i f  so is a lifting of  so, then t o is the 

projection of  an end point of  the interval ~(~o,-so + i ). 

Remark (3.8) .  - -  For �9 e End(S1), with lifting ~ one can construct a I-parameter 
family of  endomorphisrns q)o by putting q)o(=(x)) = ~(~(x + a)). We note that in 
the set of  (3' endomorphisms ~ of  S t, r > 2, which are not diffeomorphisms, there is 
a residual subset for which the corresponding one parameter  families of endomorphisms 

satisfy the assumptions in Theorem (3.7). 

Proof. ~ Since p(~o) is non-constant, there is some a3 such that p(~o,) has interior 
points, see (3.5), and such that p(~o) is not locally constant on a neighborhood of  %. 

Choose a rational number  P- in the interior of  the rotation set. Since in any neighborhood 
q 

of  % there are infinitely many points where the function p(~o) is not locally constant, 

we can choose at such that ~o, has a hyperbolic periodic point s with rotation number  P- 
q 

such that W~o,(S) = S t (see (3.4)),  and such that p(~o) is not locally constant at at.  
Now if follows that there is some neighborhood U of a4 in R and a continuous function 
U ~ a ~ so e S t such that, for a E U, so is a hyperbolic periodic point and such that 

W~o(So) = S t. Next, since p(~o) is not locally constant at r there is a ~ in U for which 

p(q~o,) # p(q~). Then one can find two rational numbers Pt P2 with Pt < a0~ such that 
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Pl P2] the closed interval ~ ,  ~ is in (O(r --  p(~))  v (p(~)  - -  p(~o,)). We suppose 

~ , ~  is in 0(~o,) --  P(q~) since the other case is similar. Then, with glio, ~-o liftings 

of q)o, So, 

= + 3Pl, + 3P ] + + 

and _~ ~ ,  ~-~ + x) C complement of [s-~ + I + 3Px, s-~ + 3Pa] ; 

see also Lemma (3.1). This means that one of the endpoints of  the interval 
O~(s-o, ~-o + i), cr between ~ and ~, has to cross over the interval [~-o + I + 3Pl, To + 3P~]. 
Since this last interval has length at least 2, one of the endpoints of O~'(~-o, ~-o + i) 
crosses, after projection on S ~, over So when ~r goes from ~ to 7. 

Finally we have to show that if, for ~ between cr~ and 7, one endpoint of  O~'(~-o, ~-o + x) 
lies in [~-o + I + 3Pl, To + 3P~] then this endpoint is in the critical image of =o~S~'. To 
show this, it is enough to show that neither ~'(~-o) nor O~'(~-o + I) can be in 
~-o + i + 3Pa, So + 3Ps]- But this follows from the fact that the rotation number  of So 

is P- and that P- does not lie between P x and p~ (because otherwise P- r p(Oo), see (3-~)). 
q q qx ql q 

Now it is clear that we can choose ( ~ ,  ~,) to be an interval between e~ and ~ such 
that if  ~ goes from ~x to ~ ,  one endpoint of  ~'(~-o, S-o+X) crosses over the interval 
[~-o + x + 3Pt, To + 3Pa]. We choose then n = 3ql and we choose to to be the pro- 
jection of that endpoint. 

C) Application to bifurcation theory 

The analysis of families of endomorphisms in the last section leads to results also 
when analyzing certain families of  diffeomorphisms. An explicit formulation of what 

we need in this direction is: 

Remark (3-9). - -  Let ~o : S 1 ~ S l be a one-parameter family (r e R) of endo- 
morphisms as in Theorem (3-7)- Let ~o,~ : S 1 • [o, i] ~ S 1 • [o, i] be a 2-parameter 
family of C ~ maps depending continuously on (a, ~) such that: 

- -  q)o,0(x, t) ---- (q~o(X), To(x)) for some function To; 
- -  for ~z positive, 0o. ~ is a diffeomorphism into. 

Then, for ~ sufficiently small, there is a a~ E (el, ~,) such that *~g.~ has a non.  
transversal homoclinic point. 

Even more holds: for ~ sufficiently small, and any curve (a , f ( , ) )  with o < f ( a )  < ~, 
e (*l, as), there is a ~/such that r ) has a non-transversal homoclinic point. 

The proof of this statement follows from the following continuity considerations. 

The map q)o.~ has a hyperbolic periodic point so,~ = (Xo.~, to,~) such that Xo, 0 = so 
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as in Theorem (3.7). We observe that W'(so,~,) depends continuously on (~, [z) and 

W*(s,.0) = {Xo,0} • [o, I] (note that % : S 1 -~S  1 was expanding at So). One can 
choose a local unstable manifold W~o0(So.~) as an embedding (or its image) which depends 
continuously on (~, ~). For some k, k ?o,0(Wl0~(Xo,0) ) has a point To in its critical image 
which moves over So, 0 by Theorem (3.7). From this and the above continuity we see 
that, for each small enough tz > o, there is a value of  ~ such that k is 
not transversal with respect to W"(so,~). 

4. T h e  s a d d l e - n o d e  w i t h  x-cycle  in  d i m e n s i o n  2 

Let {?~}: M -+ M be an arc of  diffeomorphisms of a compact 2-manifold M so 
that for ~ < b, % is Morse-Smale and such that for [z = b, % has a saddle-node at p 

(we assume p to be a fixed point of % ; the case where p is periodic can be handled analo- 
gously). Further we assume that % has a x-cycle containing p; i.e. there are non-trivial 

intersections of  W"(p) with W'(p)  and there is no periodic point q such that both 
W~(p) ~ W'(q) and W~(q) n W'(p) are non-empty. 

Theorem (4. �9 - -  Under the above hypotheses { % } is not mildly stable. 

Remark (4.2) .  - -  It  will be evident from the proof  of Theorem (4. i) that the same 
result holds if dim 1V[ > 2 and % has a saddle-node in a l-cycle whose stable or unstable 
manifold is one dimensional; i.e. a normally repelling or attracting saddle-node. An 
open dense set of these arcs will create homoclinic tangencies. Thus, in dimension two 
they will contain diffeomorphisms with infinitely many sinks or sources [2~]. 

Proof of Theorem (4. l ). - -  An arc { %} is already not mildly-stable if in any neighbor- 
hood of % there is a non mildly-stable arc. Hence we may, without loss of  generality, 
impose generic conditions on { % }. In particular, we assume that p unfolds generically. 
Also, we may assume that the eigenvalues of  (d%)v are i and ~r with o < ~ < i ; in case 

0t> I we take?~-l ,  incase  --  i <  0 t < o  we take ?~ and in case 0 t < - -  I we t ake rS2  

instead of 9. 
From the fact that, for ~ < b, ?~, is Morse-Smale and the fact that {%,} unfolds 

generically at p, we may assume that, near p, ?~ has two fixed points for tz < b, one fixed 
point for ~z ----- b and no fixed points for ~z > b; we also assume that 

W~(P, ~b) n 0(W'(p, ~b)) = {p}. 

We first observe that W"(p, %) C W'(p,  %); this follows from the following two facts: 

- -  W"(p, %) --  {p} t~ W'(p,  %) is open in W~(p, %) --  {p} and non-empty;  

- -  for any filtration {M~} of M for ~b (see [20]), with p e Mi. --  M~._I, the set of 

points in W"(p, ? b ) -  {P}, which go eventually into M i _  1 is open and equals 

( w - ( p ,  - -  {P }) - -  W ' ( p ,  
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In the case that  W~(p, %) closes to a smooth circle, p has a non-critical I-cycle. 
Then  the instability here was proved in Proposition (2.3). Thus,  we may suppose 
W~(p, %) does not close to a smooth circle. This means that  the projection of W~'(p, %) 
on a center manifold in W'(p, %) along the strong stable foliation does not have maximal 
rank everywhere. 

We shall approximate { %, } by a family {~,} such that non-transversal intersections 
of stable and unstable manifolds occur for certain ~'s arbitrarily near the first bifurcation 
of{~'~}. From this, we infer that  {~"~}, and, hence also {%,}, is not mildly stable. This 
will prove Theorem (4. I). For convenience of notation, let us assume that  { %, } is defined 
for Ez near o and that  Ez = o is the bifurcation point instead of ~ = b. For each diffeo- 
morphism ~'~ we require that  there is a smooth vector field X~, defined for ~z close to o 
on a neighborhood of p, such that  the time x map  X~. x of X~, wherever defined, equals ~ .  
Also we require that  there are smooth coordinates y, z (which may depend on ~) such 
that  X~, locally has the form 

0 0 
X~ = Y~(y) ~y + Z , ( y ) . z .  Oz 

where Y and Z are smooth functions of (y, Ez), Zo(o) < o, O~Y~176 > o, OY ~ and { Y~,(y) ~y } 

is a saddle-node arc. The  fact that  such ~"~ exists arbitrarily close to (p~ follows 

from [38], [39]. 
Choose, for ~ > o a fundamental  domain D2.~ for ~ in the positive y-axis, 

smoothly depending on F~. For some big m, ~'~(D2,0) will again be in our coordinate 

~o ~ ) 
) 

O~(D~. o) , ~ ,  ', 
I D ,o 
I 
I 
I 
I 
I 
l 

z< 

\ 

/ 

D2,0 
> 
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neighborhood the same holds for ~"(D2,N) if ~x is near o. Define D1, N to be the funda- 
mental domain in the negativey-axis whose boundary is the projection, along the z-direction, 
of the boundary ~ "  of %, (D2,N). We take a " rectangle " ~N SO that its boundary consists 
of two pieces of XN-integral curves and two pieces of straight lines parallel to the z-axis, 
such that its projection on they-axis is D1,N, and such that for each q e ~'~(D2,N) , there 
is a positive m' such that ~ ' ( q )  is in the forward orbit of 9,,. See figure 8. 

Let A N : 9N "--> M, ~ > o be defined as follows: 

Ao(~o) = D2,o and Ao(y , z) = (ao(y), o) 

where a 0:Dx, o ~ D 2 ' 0  satisfies (ao).X o = X  o on { z = o } .  For ~ > o  there is a 
positive T N such that the time T N map of XN, (XN)~N, satisfies (XN)~ND1, ~ = D~,~; 

we define A N to be (XN)r. For e e [o, I] we define Ao,~ ----= (XN) o oA~,. 

Next we define Bo, N ----~' o Ao,~. For ~ close enough to o, the image of Bo,~ 
will be in our coordinate neighborhood in the part  {y < o }, and also there is some posi- 

~.,, 
tive m' such that the image of ~ o Bo,~ is in the forward orbit of  ~N" 

Consider now the quotient map 

{(y, z) [ y <  o} -+ {(y, z ) [ y <  o}/(y, z) '~ ~N(Y, z). 

Under  this quotient, ~ ,  becomes an annulus ~ ,  Bo, N becomes a z-parameter family 

of mappings Bo, N of ~N into itself and the projection ~(y,  z) = (y, o) goes over into ~, 
the annulus projection. We want to show that Remark (3.9) is applicable to BO, N" 

In order to prove this we need new coordinate functions s ~ : ~  N -+ R/Z and 
0 

w~, : ~N ~ IR such that ~(sN, w~,) = (s~,, o) and such that X~, has the form - - .  We 
Os N 

shall write s, w instead of s0, w 0. For some circle endomorphism ~ : R/Z -+ R/Z and 
some map W : R /Z  ~ R  we have B~ w) = (~(s -k ~), W(s)). The circle endo- 
morphism ~ is determined by ~'0; ~'0 was obtained from % by a small, but otherwise 
arbitrary, perturbation. Hence we may, and do, assume that the family { ~o } defined 
by ~o(s) = ~(s + ~) satisfies the assumptions of Theorem (3.7); see also Remark (3.8). 
Now it is clear that Bo, N satisfies the assumptions in Remark (3.9). 

Now we observe that if T~, q- ~ e N ,  BO.N is an iterate o f ~ ,  (up to the identifi- 
cations). Hence if such a Bo,~ has a non-generic tangency of a stable and an unstable 
manifold then the same holds for ~'N" Also, Bo,~ satisfies the conditions of ~o,~, in 
Remark (3-9). Let (~i, ~2) and ~ be as in that remark. Now as ~t -+o,  we have 
T~, -+ oo. For each a ~ (~ri, ~)  choose an f (~ )  such that TI(o) + cre N, and f (a )  < "~. 
We may arrange for a ~ f ( ~ )  to be continuous on (cl, ~2). Then as in Remark (3.9), 
there is a at ~ (at, ~,) so that Bot.t(otl , and hence ~~ has a non-transversal homo- 

clinic point. 
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5" On the r igidity  o f  the  nnfolrl;ng o f  the saddle -node  

In Chapter II  we have seen that a conjugacy between two Coo saddle-node bifur- 

cations must satisfy very restrictive conditions. In particular, at the bifurcation parameter  
it must be C Oo along central curves away from the fixed point, and it must preserve 
adapted saddle-node vector fields along these curves. In the present section, we shall 
present two more applications of the restrictive nature of such conjugacies. The first 
concerns certain arcs of diffeomorphisms of the circle, and the second concerns arcs 
between Anosov diffeomorphisms and so-called DA diffeomorphisms. These furnish 
more examples where mild conjugacies cannot be strengthened to conjugacies. 

A) One-parameter families of diffeomorphisms of S 1 

We consider one-parameter families q~:S1---> S 1 of Coo-diffeomorphisms of S 1 
with rotation number  p(~t) increasing such that whenever 0(5) is rational, q~g has two 
hyperbolic periodic points or one periodic point of saddle-node type which unfolds 
generically and such that whenever p(~) is irrational, p is not locally constant in ~. Let 
~'~, : S I --> S 1 be another such family of diffeomorphisms with rotation number  p'(~). 
I f  we assume that Image(p) = Image(9'), then there is a homeomorphism h : R -+ I t  
such that p'(h(~)) = p(~t), see [5], [IO]. For each ~, r and q~,) are now conjugate: 
for p(~t) irrational this is Denjoy's theorem [6], for p(~t) rational it follows from the above 
description. So it is clear that the above two arcs are " mildly conjugate " 

A question, which was raised independently by R. Thorn and S. Smale, is: are 
two arcs as above in general conjugate? We show here that the answer is in general 
negative. 

Let {%,}, {~0~} be a pair of  arcs of diffeomorphisms of S 1 as above. Let ~. be a 

boundary point of p- 1 (~)  for some rational P- e Image(p). q I f  there is a conjugacy (h, H~) 

? between % and %, i.e. h : I t  ~ I t  a homeomorphism and H~, a conjugacy between % 

i   ouo   y o ntof,,  . o w  
/ L ' t  

and ~ ) d e p e n d i n g  continuously on ~t, then h(~) 

q~ has a unique fixed point which is of saddle-node type. By Chapter II,  Theorem (3. ~), 
there is a unique smooth vector field X near the saddle-node orbit such that its time one 
map X x equals (~g)q (and such that (~g).~X = X). Also for q~h(~,l there is such a vector 
field X'. Again by Chapter II, Theorem (3.2), Hg has to map X to X'. If  we now 
extend X, and X', to all of S t so that ~g.X = X, q~(~l.X' = X', we obtain in general 
bivalued vector fields. This means that, on the complement of the periodic orbit, Hg has 
to respect two different vector fields. This is in general impossible. 

B) Arcs between Anosov and DA diffeomorphisms 

In  [34], S. Smale showed that certain Anosov diffeomorphisms may be modified 
to give Axiom A diffeomorphisms with attractors having intricate topological properties. 
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Since the latter diffeomorphisms were obtained by modifying Anosov diffeomorphisms, 
he called them DA (for derived from Anosov) diffeomorphisms. Although Smale's 
construction was given for Anosov diffeomorphisms of  the two torus, it works just as well 
with codimension one Anosov diffeomorphisms of  the n-torus. A brief description of  
the construction is as follows. 

Let L be an Anosov diffeomorphism of T n and suppose that dim W=(x) = I for 
each x e T ~. Since L is conjugate to a linear toral automorphism [I6], it has a fixed 

point, say p. Assume that the contracting eigenvalue o f p  is positive. Locally, near p, 
one has the usual picture of a hyperbolic saddle fixed point as in Figure 9 a. 

P 

\ 

P~ 
\ /  

/ 

S 

\ 
\ 

p 

\ 

P2 
/ 

FIo. 9 a FIO. 9 b 

FIO. 9 

Smale proposed to modify the diffeomorphism L in a disk neighborhood N of p 
to obtain a diffeomorphism g with two new saddle fixed points Pl and p, on W=(p, L) and 
such that p is a fixed source o fg  (see Fig. 93). This can be done so that g agrees with L 
off N, g satisfies Axiom A, and the non-wandering set of  g consists of p and an (n - -  I)- 
dimensional hyperbolic attractor containing PI and P2. In fact, as Williams pointed 
out in [42], one can choose g so that the foliation #'= = { W=(x, L) I x ~ T n) is g-invariant. 
Of  course, the unstable L-foliation is no longer g-invariant. Somewhat later in a private 
communication with us, Williams observed that a I)A diffeomorphism g could be cons- 
tructed from an arc in which a saddle-node occurs. The local picture is in Figure 9 c. 

// 

Fio .  9 r 

// 
/ /  .... 

t// 

If  one chooses such an arc carefully, then one can actually make the arc mildly 
stable with an isolated bifurcation point. This will be proved elsewhere. These mildly 
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stable arcs are such that at the bifurcation point one has a saddle-node p whose stable 

manifold W'(p) is one dimensional and such that there is a hyperbolic periodic point q 
such that W~(q) c~ W~ + o. The next proposition shows that such an arc is never 

stable. 

Proposition. - -  Suppose { %,}, o < ~t < I, is an arc of diffeomorphisms of T" so that ~o 
is Anosov with dim W~ = I for all x. Let b = b({%,}) be thefirst bifurcation point 0f{9~} 
and assume o < b < i. Suppose that % has a saddle-node periodic point with dim W'(p) = x 

and ~b has a hyperbolic periodic point q not in the orbit of  p such that W"(q) n W*(p) + o. Then 
{ ~ }  is not stable. 

Proof. ~ We may assume, by perturbing {%,} if  necessary, that W"(q) is 
transverse to W'(p).  Since q can be continued to a hyperbolic periodic point q~, 

for ~ t<b ,  and %, is Anosov for ~ t < b ,  it follows that dimW"(q~) = d i m M - -  t. 
As W*(q) n W~ 4= o, this intersection is zero dimensional, and, therefore p is s-critical. 
Now the method of proof of Proposition (2.4) may be applied to show that {%,} is not 

stable. 

C) One-parameter families of vector fields 

As was pointed out in [4I], the rigidity in the conjugacy of  a saddle-node arc has 
consequences for the stability of one-parameter families of vector fields. Consider such 
a C | one-parameter family{ X~,}on a 2-manifold M such that for ~ = b, X b has a saddle- 
node closed orbit y, i.e. a closed orbit which is attracting at one side and repelling at the 
other side and whose PoincarE map has first but  not second order contact with the identity. 
We assume furthermore that "f unfolds generically; by this we mean that if S is a local 

cross section o f X  v intersecting y, then the Poincar~ map P~ : S -~ S, ~t near b, is a saddle- 
node arc, see section 3 of Chapter I I I .  Let {X~,} be another one parameter family of 
vector fields on M (near {X~,}) so that for ~t = b', X;, has a saddle-node closed orbit y' 
which unfolds generically. Let S' to be a local section of X;, intersecting y'. We assume 

t for simplicity that neither {X~,} nor {X~} has any other saddle-node closed orbit. We 

say that these two families are topologically equivalent if there exist a homeomorphism 
h : R --~ R and a homeomorphism H~, : M -+ M, depending continuously on ~t, such 

that H~ maps integral curves of X~ to integral curves of X;~,). 
I f  such an equivalence (h, tt~,) exists, then h(b) = b'. Modifying H~, along the 

orbits of X, we may assume that H~(S) = S' for bt near b. So H~ ] S has to conjugate 

the saddle-node arc {P~} with {P~J. By Chapter I I I ,  section 3 this implies that Hb] S 
has to map X to X',  whele X, X'  is the unique smooth vector field on S, S' such that its 

time I map X1, X '  l equals Pb, P;'. This means that Hbl S is determined as soon as 

it is determined in two orbits of Pb in S, one on each side of  y c3 S. 
Since H b has to map separatrices, i.e stable or unstable manifolds of saddle points, 

to separatrices, the map Hb[ S is essentially fixed for each intersection of S with a sepa- 
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ratrix; such an intersection is an orbit of Pt. So in general {X~,} and {X~} will not be 

topologically equivalent if  at least two separatrices approach ~" from the same side. This 
means that an arc { X~,} which has a saddle-node closed orbit which is approached from 
the same side by at least two separatrices is not stable; it has a modulus of  stability in the 
same way as arcs of diffeomorphisms with a tangency of stable and unstable manifolds. 

In [7] Guckenheimer incorrectly states that some of these arcs are stable. 

54 



IV - -  GLOBAL STABILITY 

�9 . I n t r o d u c t i o n  

In  this chapter we complete the proofs of our main results concerning stability 
of one-parameter families (arcs) of diffeomorphisms, stated in the introduction to the 
paper. Necessary conditions for stability, mild and left stability at the first bifurcation 
point were provided in the previous chapter. We now show that these conditions are 
also sufficient. As a consequence we obtain a characterization for the stability of arcs 
containing several bifurcation values, under the basic assumption that the limit sets have 
finitely many orbits. 

The main idea here consists of a suitable construction of tubular families or folia- 
tions, which will be used to define topological conjugacies. We begin by describing 
local tubular families for hyperbolic periodic orbits. This concept will then be extended 
to Hopf  orbits, saddle-nodes and flips. The foliations are constructed for a family { %} 
in ~ ,  as defined in the introduction, especially near its first bifurcation value b. In  the 
case of left and mild stability, this interval is of the form [~1, b], for some ~x ~ b. Other- 
wise, it is of  the form [tzl, g~] with b E (Ezl, g~). For each Ez in such intervals, we build 
up tubular families or foliations requiring them to be %-invariant. We shall usually 
assume that the periodic orbits of % are fixed points. In fact, if a periodic orbit of % 
has period k, we can consider ?~ to define the foliation near one of its dements,  and use 
%-iterates of the leaves to obtain the foliation near the others. 

2 .  L o c a l  T u b u l a r  F ~ m ; l ; e s  

We first recall, in a parametrized version, the notion of  tubular family for a hyper- 

boric orbit [24], [~5]. 
Let ~- ~ M be a hyperbolic fixed point for r ~ ~ I. Let [~1, g~] be a neighbor- 

hood of ~ in I and U be a cell neighborhood of s in 1VI. I f  these neighborhoods are small 
enough, there exists a continuous mapping [[zx, ga] ~ ~ ~ x~ e U, where x~ is the unique 
(hyperbolic) fixed point for % in U and s x~. We denote by W"(x~,) and W'(x~,) 
the unstable and stable manifolds of % at x~. Given the family ( % }, V e I, we define 
(I) : M x I --* M by (I)(x, ~) = (%(x), tz). 

Definition (~,. �9  - -  An unstable tubular family for  { % } or �9 at (~, ~) is a continuous 

foliation ~ "  o f  U • [[zx, g,], such that for  [z ~ [~1, ~] 
a) the leaves are C ~ discs raring continuously in the C k topology, I < _ k <  0% and 

= x { } n u x { }, 
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b) each leaf o~'~(y, ~) is contained in U • { ~. } for y ~ U, 
c) the foliation is O-invariant in the following sense 

O(o~"(y, p.)) D .~"(%,(y), p.) 

for y,  ~ ( y )  ~ U. 

Remark. - -  For our purposes it is enough to take the leaves of the foliation to be C 2. 
In fact, in their global setting, we can and will construct the foliation to be C * (k > 2) 
when restricted to any unstable manifold of a hyperbolic periodic orbit that intersects 
W'(x~) x { Ix }. See Definition (3. x) of  the next section, where even more differentiability 
is involved. The same remark applies to Definition (2.2) below. 

Let us see how a similar foliation can be defined at a Hopf  fixed point p of %. We 
assume, for tx < b and tx near b, that q~, has a hyperbolic fixed point p~ near p and 

dim W'(p~,) = dim W'(p).  As ix -+ b, ix < b, 
in U converge to those o f p  in the C k topology. 
case, with the difference that we consider tx in 

Let nowp be a saddle-node or afl ip for %. 

the stable and unstable manifolds of p~, 
So, we can use Definition (2. i) in this 

some interval [~x, b]. 

As a natural extension of Definition (2. i ), 

we present below the concept of strong unstable foliation for { %, } or �9 at (p, b). 
First we need some basic facts about  center manifolds as stated in Chapter  II.  Let U 

be a small cell neighborhood ofp  in M and [~q, ~ C I a small interval with b e (~q, ~) .  
Let W ~ b e a  C ~center  manifold for �9 at (p,b),  I < k <  oo. For each ~tr tJv.], 
W~, = W c n U x { ~ } has dimension one and W~ is C ~176 We also consider the center 
stable manifold W cs for �9 at (p, b), which is C k and has dimension s + 2. Here s and u 
are the number  of eigenvalues (with multiplicity) of d%(p) with norm less and bigger 
than one, respectively. Both W ~ and W ~ are invariant by 0,  and W~, and 
W~,' = W ~' t3 U • { ~t } are invariant by r Frequently, here and in the sequel, we 

will identify a subset V • of  M •  with its projection V into M. We recall 
that W ~ is foliated by the strong stable foliation ~'"s, with leaves s-dimensional C k discs 
transverse to W ~. Particular leaves are the strong stable manifolds through the fixed 
or periodic orbits of  % near p. For each ~ e [t~l, ~] ,  W~,' is a union of leaves of ~~' .  

The foliation ~ - "  is invariant by �9 in the following sense: if z, 0(z) z U X [~1, t~] and 
S is the leaf through z, then 0(S) is contained in the leaf through 0(z) .  Similarly, we 
can define the center unstable manifold W ~" for �9 at (p, b) and W ~" is foliated by the 
strong unstable foliation # - " .  Particular leaves are the strong unstable manifolds of 
the fixed or periodic orbits of %, near p. Our  strong unstable tubular family (or foliation) 
is an extension of ~ " "  to a full neighborhood of  (p, b) in M x I. For later purposes 

we need this extended version of ~ ' " ,  but  no such version of  # ' " .  

Suppose (p, b) is a saddle-node. As it can be seen from Chapter II,  there are two 

possibilities for its unfolding. In  the first one, for each ~ < b and near b, there are two 

hyperbolic fixed points Pl,~, and P2.~, of  ~, near p, which collapse into p as tt -+ b and 
then disappear for ~ >  b. We also may assume that dimW'(p,.~) = s + x and 
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dim W~ = s. The other possibility is similar, only the orbits Px,~ and P2,~, appear 
for ~ > b. Throughout  this chapter we assume the first case. 

I f  (p, b) is a flip, we also assume the following of four similar possibilities for its 
unfolding. For each IX < b and near b, there is a hyperbolic fixed point p~, near p. 
For ~x ~> b, there is a hyperbolic fixed point Pl,~, and a hyperbolic period two point P2,~, 
near p. We assume that dim W'(pl,~) = s and dim WS(p2,~,) -= s + I. 

Definition (~,. ~). - -  A strong unstable tubular family o~ ~' for  { % } at the saddle-node or 
f l ip  (p, b) is a continuous foliation of  U • [~x, ~]  such that 

a) the leaves are C k discs varying continuously in the C k topology and 

b) = W " ( p ,  b) n U x { b }, 

b) for  each ~, U • { Ix } is a union of  leaves transverse to W~,', 
c) the foliation is ~-invariant: i f  o ~ ( y ,  ~) is the leaf through (y,  ~) e U  x {~}, then 

r  ~)) is the leaf through (?~(y), ~) ~ U  •  

These local unstable and strong unstable foliations have already been used in a 
similar context by several authors; see [26] for references. We provide a construction 
of them in Proposition (2.3) below, to give a clearer view of some of the main techniques 
of this chapter. 

Proposition (2.3). - -  There exists a strong unstable foliation for  {%} at (p, b), where p 
is a saddle-node or a f l ip.  Similarly, there exists an unstable foliation at a hyperbolic or a Hopf  

fixed point. 

Proof. - -  Let us first consider (p, b) to be a saddle-node or a flip. In  U • [[xa, ~ua] 
let W ~' be the center-stable manifold of q) at (p, b). As before, �9 is defined by 
�9 (x, Ix) = (%(x), ~) and U ~p, [~xl, ~ ]  ~b are small neighborhoods. In W ~ we 
take a closed fundamental  domain A. This is a set with the following property. 
~](A) n A = o  and there is a neighborhood U'  of  (p,b) in W ~* such that if x e W  ~~ 
and its negative q)-orbit leaves U', then the ~-orbit of  x has an element in A, which is 
unique except if it belongs to 0A. Let us indicate the construction of such a fundamental 
domain when (p, b) is a saddle-node. Taking a C z coordinate system in the center- 
stable manifold of ~b at p, we can write 

where c e R 2 

manifold and 
manifold W'(p) 

of small radius 
easy to check 
H~ = H X{~} 

%(x,y) = (x + x 2 -t- x ( c , y )  -t- r 3, [I xay 1[, [ly [t2),Ay + ~(11 xy I[, [[y][2)), 

and []A[] < i. Here y -= o represents the one-dimensional center- 
x = o the s-dimensional strong stable manifold W*'(p). The stable 
of % at p is the half-plane x ~ o. We take in W"(p) a hemisphere H 
centered at p and slightly extended transversaUy across W"(p). It is 

from the above expression that %(H) n i l - - - -  e. For Ix1 <_ ~_< b, 
also crosses W"(px, [z) and W'"(p2, Ix) transversally in U • {ix} and 
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? ~ ( H . ) c ~ H ~ = o .  Also, for b < l z < ~ ,  ?~(H.) c~H~-----e, where H ~ = H x { I z } .  
We let A~ be a closed region bounded by H . ,  ?~(H.), and an annulus whose boundary 

lies in H~ c~ ?~(H~). Then take A = U A~. 
~,<~<~., 

" 
~ Ap 

~l (HjL) 

~~X~-J Hy 

j  Ao 
/ 
/ 

~ H  
~b (H) 

Fio .  Io  

In the case of  a flip, A is diffeomorphic to A b • [[zl, ~,], where A b is an 
s + l-dimensional annulus. Similarly, if  (p, b) is a H o p f  point, A is diffeomorphic to 
A b • [~Zx, b], where A b is an (s -t- 2)-dlmensional annulus. I f  (~-, ~) is a hyperbolic 
fixed point, A is diffeomorphic to A~ • [~zl, g~], where A;  is an s-dimensional annulus 
and ~ ~ (~1, ~) .  Let us proceed with the construction of  the strong unstable foliation 
for a saddle-node or a flip. Over a neighborhood U1 of the exterior boundary of A we 
raise a fibration of class G k, the fibers being u-dimensional discs transverse to W c' and 

each of  them contained in some U • { ~ }. Over the neighborhood O(U1) of the interior 
boundary of  A, we have a similar fibration, the fibers being the O-images of those in U1. 
Restricting to smaller neighborhoods of ~A, we can extend this fibration to a full neighbor- 
hood of A. This is done as follows. Over a neighborhood of A, we raise another C k fibra- 
tion transverse to W ~' and the fibers contained in the sections U • { ~ }, but not necessarily 
%,-invariant. We now define a new fibration, which agrees with the first one in a 
neighborhood of  ~A and with the second one off a slightly bigger neighborhood of ~A. 
Let ~1 and ~2 be the projections, into a neighborhood V of A, defined by the two fibrations. 
We define a C k real function p : V ~ [o, I], such that p is I near ~A and o off a small 
neighborhood of ~A. The required fibration is then given by the projection 

= Pnx + ( I -  P)n2. Its fibers form the leaves of our foliation. We now simply 

define it over W ~ --  W ~ through iterates O" or V~, all n ~  o: if (y, F) -- O"(x, tz) 
for (x, ~) E A and the fiber through (x, ~z) is ~""(x, ~z), then the fiber through (y, ~) 

is O"(.~~"(x, F)) c~ U • [[zx, ~ ] .  By the generalized k-lemma [24], [3o], ~ - "  extends 

over W ~ satisfying all the conditions of Definition (2.2). Notice that, on the center 
unstable manifold of �9 at (p, b), we get the usual strong unstable foliation. The cons- 
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truction at a hyperbolic fixed point is easier and can be done in a similar way. The 
same applies to a Hopf  point (p, b), in which case we take the parameter  ~ in some 
interval [~l, b]. This finishes the proof of the proposition. 

We point out that these unstable and strong unstable foliations are not unique. 
There is a degree of freedom in their construction, as shown in Proposition (2.3). This 
is what enables us to globalize them in a compatible way with the tubular families of 
other periodic orbits. Such globalizations will be performed in the next section. 

3- Global  Tubular  FamIHes 

In  this section we construct compatible systems of tubular families or foliations 
for a family {%,}, ~z near its first bifurcation point. 

As before, we denote by b e I the first bifurcation point, so that % is Morse-Smale 
for tz ~ b. From the previous chapter, {q~,} can be stable in one of our three senses 
only if one of the periodic orbits of  ~b is an elementary bifurcation (saddle-node, flip or 
Hopf). Moreover, the (strong) stable and unstable manifolds of all the periodic orbits 
of  % must have transversal intersections. 

We recall that, since q~ is Morse-Smale for [z ~ b, its periodic orbits can 
be partially ordered through the relation p i , ~ > p j , ~ ,  if  W~(p~,~,) nW*(pj.~)oe o. 
See [24], [25]. We fix a total ordering for the periodic orbits compatible with this 
relation. I f  ~b has a Hopf  orbit or a flip, the same ordering applies as well to its periodic 
orbits: there can not be any cycle, since otherwise b would not be the first bifurcation 
point [x8]. I f  9b has a saddle-node, we may have a cycle containing this orbit. If  there 
is only a I-cycle, the saddle-node will be counted as pj,~ and Pj+t,~, for some positive 
integer j .  However, if  there is a cycle of larger length, then the saddle-node will be 
counted as p~,~, Pj +j,, ~ where j and j '  are positive integers and j '  > I. In  all cases, 
this ordering of the periodic orbits will be used to build up global systems of foliations 
for { % }, ~ in a small interval in I. This interval is of the form [~t, b] when % has a 
Hopf  point or a saddle-node which is critical or has a cycle, and otherwise [Eli, ~ ]  with 

b e (~1, ~ ) .  
Let Px,~ > P,,~, > �9 �9 �9 ?~ Pt,~, be the periodic orbits of  % for some ~ ~ [~q, g~], 

all of them hyperbolic except at most one which is an elementary bifurcation. For 
convenience, we write p~ instead of pi,~. Let Ui ,  U2, . . . ,  Ut be neighborhoods of 
P i , P 2 , . . . , P t .  We will consider local unstable or strong unstable foliations in 
U1 • [~li, ~] ,  U2 • [~i, ~u/], . . . ,  U t • [[ii, g~] as in Definitions (2. I) and (2.2). I f  
the periodic point p~ is a saddle-node with no cycles or a flip, let .,~-~(pi) denote its strong 
unstable foliation in U~ • [Eza, ~] .  Otherwise, let o~-~(p~) denote the unstable foliation 
in U~ • [#~, g~]. Since ~-~(p~) is a ~ ; invar ian t  foliation in U~ • [ ~ ,  g~], it naturally 
induces one in [.] ~,(U~) • {#} for [z e [#x, g~] and n e N by simply taking iterates ~, 
of the leaves. In  the sequel, we will be using this extended (or globalized) foliation, 

which will be still denoted by ~z-~(pi). 
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Definition (3. ~ ). - -  The system of foliations o~'.(pi), o~',(p,), . . . ,  o~',(pt) is compatible 
when 

a) ira leafF of ~"(p~) intersects a leafs  of ~ (p~) ,  i ~ j ,  then F D S ,  

b) for all i ~ j ,  the restriction of ~"(p~) to each leaf of ~ ( p ~ )  is a foliation of class C ~, ~ ~ k. 

Remark. - -  Note that the restriction of these foliations to unstable manifolds of 
hyperbolic periodic orbits are of  class C *. However,  the unstable manifold of  a non- 

critical saddle-node with no cycles or a flip is not a leaf of the strong unstable foliation. 
Thus, we do not demand differentiability of the foliations when restricted to these unstable 
manifolds. 

Let us show the existence of such systems. First we consider the case where ~ 
has a Hopfper iodic  orbit. This is the same as the parametrized version of the hyperbolic 
ease. Although somewhat simpler than the saddle-node and the flip, it gives a pretty 

good idea of how to proceed in those cases as well. 

Proposition (3.2).  - -  I f  9~ has a Hopf periodic orbit, then there exists a compatible system 
of unstable foliations for ~, ,  ~ ~ [~l, b] for some ~i near b. 

Proof. - -  Let Pl,~ )" P,,~ > . . -  > Pt,~ be an ordering of the periodic orbits of ~ 
for ~1 ~ ~ ~ b. We simply write p~ instead of P~.b. By induction, we may assume 
that a compatible system of foliations ~-"(Px), . . . ,  ~-~(P.) has been constructed in 
neighborhoods U l •  . . . , U . •  [~1, b], p ~ U i  for I < i < n .  Let us build 

~" (P ,+  1)- We will adapt  the proof  of Proposition (2.3) to guarantee the compatibility 
condition. Near P.+, ,  we consider a closed annulus A b as a fundamental domain 
for W'(p,+,)  and denote by Oe.A b its exterior boundary.  Then, the annulus A~, with 
boundaries 0exAb • {~} and ~,(O,.A b • {~}) is also a fundamental domain for 
W~(p.+a, ~), p~ e [~l, b] (we take ~1 closer to b if necessary. I f  W~(p,) intersects 
W'(p,+l)  it must do so transversally. Thus, we can take a C u fibration of W"(p,) near 
the exterior boundary of Ab, whose fibers are discs transverse to W~ with the same 
dimension as W~(p,+,). The image by ~b of  this fibration induces a similar one near 
the interior boundary of A b. On  the other hand, it is easy to get a second C ~ fibration 

of W"(p,) in a neighborhood of all of its intersection with Ab, if we do not require it to 
be %-invariant. However,  as in Proposition (2.3), this second fibration can be deformed 
to agree with the first one near the boundaries of A n and, thus, it becomes ~b-invariant. 
We now want to fiber in a similar way the leaves of o~"(p.) near A~,, ~1 ~ ~ ~ b with ~x 
close to b. First, we observe that, in U ,  • [~l, b], the leaves of ,~"(p,) are C k imbed- 

dings of the disc W~(p.) n U, ,  continuously parametrized by (W'(p,) n U,) • [~1, b]. 
Thus, by restricting this parameter  space, we have that the leaves of ~'"(p,) near A~ 
are (I k close to W"(p,). Using this parametrization and the fact that the foliation o~'~(p,) 

is ~-invariant ,  we can fiber as above the leaves near W*(p,) n A b. We get a ~- invar iant  

fibration with C k fibers transverse to We(p,+l,  ~), ~i ~ ~ ~ b, and varying conti- 
nuously in the fil k topology. By construction, each fiber is contained in some leaf of 

60 



BIFURCATIONS AND STABILITY OF FAMILIES OF DIFFEOMORPHISMS 6i 

o*'"(p,). Also, the fibration is C k when restricted to each leaf of o*'"(p,). Now we take 

#-"(~,-1).  There are two cases to consider. I f  W"(p,_l)  intersects W~ but 
not W'(p,),  then W"(p,_ 1) n A b is compact and disjoint from W"(p,) n A b. So, we 
can proceed as before, fibering the leaves of ~-"(P,-a) near W~(p,_l) n A. Let us 
now suppose that W"(p,,_ 1) intersects W*(p,). Since o*-"(p,_ 1) and o*'*(p,) are compatible 
by the induction hypothesis, the fibration of o*"(p,) in a neighborhood V of W"(p,) n A b 
is also a fibration of  o~-"(p,_ 1) in V. On the other hand, B = W"(p,_ 1) n (A b -- V) 
is compact. So, o*"(p,_a) can be fibered as above in a neighborhood of  B. As in 
Proposition (2.3), we can average these two fibrations near 0B to get a desired one in 

some neighborhood of W " ( p , ) u  W"(p,_l)  intersected with A b. Its fibers form the 
leaves of our foliation. We repeat the argument to all o*'~(p~), t < i < n - -  2. Once 

we have the q~-invariant and compatible foliation o*-"(p,+a) near A b • [~1, b], some txx 
close to b, we just consider its positive iterates by % (or r  By the generalized 

X-lemma [24], [3o], it extends to the foliation W"(p,+ 1.~,), ix �9 [ix1, b], of  the center 
unstable manifold of q> at (P,+I, b). This finishes the construction of  the folia- 
tion #'~(p,+ 1). The proof  of the theorem is complete. 

Let us now consider the case where % has a saddle-node. Let 

Pt,~, > P2,~ > . . .  > Pt,~ 

be an ordering for the periodic points of  q~, bit <__ ~ < b. We first consider the case 
where the saddle node is non-critical and % has no cycles. We assume that pj,~, and 

Pj+a,~ coalesce at ~ = b, giving rise to the saddle-node pj = Pj+t. 
We shall construct a compatible system of foliations for {%,}, with ~ in some 

interval [~t, V,.] and b �9 (~t, t~). The foliation at the saddle-node pj = P j + t  will be 
a strong unstable foliation ~ ( p j ) .  Actually, the construction we just performed in 

Proposition (3.2) can be adapted to the present case as well as to the flip bifurcation. 
However,  to prove the stability of  the family, we also construct a one-dimensional center 
foliation in a neighborhood of the saddle-node pj = pj+ t in the center stable manifold 
of O at (p~,b). As usual, O : M x I - - ~ M  is defined by r ix) = (q~(x),lx). This 
center foliation o~" should be q~-invariant and compatible with the unstable folia- 
tions o~(p~), i < j ,  in the sense of Definition (3. I). 

Proposition (3- 3). - -  I f  % has a non critical saddle-node p~ = pj + 1 and no cycles, then 

(a) there is a compatible center foliation ~'~ defined in a neighborhood of  the center stable manifold W ~" 

of * at (Pj.b), 
(b) there is a compatible system of unstable foliations ~"(p i )  for �9 or ~ ,  ix �9 It• ~ ]  for  some 

ix1 < b and ~ > b. The foliation we consider at pj = pj + t is a strong unstable one, o~"", 

(c) the union of  leaves of  ~ " "  through a leaf o f  o*" forms a C t submanifold. 

Proof. - -  Since Pl > P2 > �9 -- > P j -  1 are all hyperbolic, Proposition (3.2) provides 
a compatible system of unstable foliations o*'~(px), ~-"(p~), . . . ,  o~"(pj_l).  The leaves 

of  these foliations are taken to be C1 k, k > 2. Let us construct a center foliation ~'* 
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at the saddle-node; its leaves will be C ~'-~. In the center stable manifold of r at (pp b), 

we consider a fundamental domain as in Proposition (2.3). We define the center 
foliation ~'~ as the integral curves of  a vector field X satisfying the following properties. 
X is tangent to the leaves of  ~'*(pi) and it is C k- 1 along these leaves for all i < j such 
that W*(pi) intersects W'(pj). The vector field X is also transverse to the strong stable 
foliation o f ~  at p~ and d~-invariant. To get such a vector field, we proceed by induction 
taking i = j  - -  I, j --  2, . . . ,  I. I f  W~(p~_l) intersects W e', we take a C k-a vector 
field X tangent to W"(pj_l) near its intersection with the exterior boundary of  the 
fundamental domain A. Near the interior boundary,  we just consider d~(X) .  It is 
easy to extend this vector field X to a full neighborhood of  W~(p~_l) t3 A in W~(p~_l). 

We now want to define X along the nearby leaves of ~-"(P~-I). As we noticed in the 
proof of  Proposition (3. ~), these leaves are C k imbeddings of a disc in W"(pi_l),  conti- 
nuously parametrized by their intersection with W'(pj_x). So we can project X into 

the leaves of  ~" (P j -1 )  near the exterior boundary  of  A, consider its image by d~ and 
extend it across A as above. Due  to the fact that the saddle-node is noncritical, X is 
transverse to the strong stable foliation of  �9 in the center stable manifold. By induction, 
let us suppose X defined along the leaves of~'~(pi + 1), �9 . . ,  ~-~(Pj- 1) near the fundamental 
domain A. I f  W"(p~)r3 A-----r we proceed to the next foliation ~"(P~-I ) .  If  
W~(pl) r 3 A .  o, but  W"(pi) nW' (pk)  = o for i < k < j ,  we can proceed as 
before since WU(p~) r3 A is compact  and disjoint from W~(pk) t3 A. Finally, let 
W~'(p~) n W'(p,) . o for some i < n < j .  The vector field X is already defined in a 

neighborhood V of W"(pk) in A for i < k < j .  Since .~'~'(p~) is compatible with ~'~(Pk), 
X is tangent to the leaves of  o~-~(pi) in V. But W~(p~) n (A --  V) is compact, so we 
are again reduced to the previous case. Thus we can construct X as desired in a neighbor- 
hood of  A in the center stable manifold. Now we take the integral curves of X and their 

positive iterates by r  By the ),-lemma [24], [3o], this partial foliation extends to center 
manifolds and together they form a center foliation as asserted in (a). Parts (b) and (c) 

follow as in Proposition (3. ~) for the hyperbolic periodic points and also as in Proposi- 

tion (~. 3) for the saddle-node. In this last case, we raise the strong unstable foliation from 
the center foliation we have just constructed. The proof  of  Proposition (3.3) is complete. 

Remark.  - -  The center foliation ~~  is not a " classical " foliation in two ways 

(1) as usual in the present work, we only required that the leaves of ,~-~, which are G ~ -  1 
with k > 2, should vary continuously in the C ~- 1 topology. We did not demand 
the projection along the leaves into a transverse section (like a leaf of  the strong 

stable foliation) to be differentiable, 
(2) ,~'~ has singularities, as shown in the picture 

FIo, xl 
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Now let us consider the situation of a saddle-node p~ = p~ +j, for Vb which is 
critical or lies in a cycle and j '  > I. In  the case the saddle-node is bicritical or it is part  
of  a cycle, we wish to prove the stability of the family { q~ } for V~ _< b (left stability). 
When the saddle-node is critical but not bicritical and there is no cycle, we wish to prove 
that { q~} is midly stable for [z < ~1, some ~1 > b and near b. Again, since %, is Morse- 
Smalefor  b <  t z<  Vtl, some [z l>b , { r } is stable in this range of  the parameter.  This 
follows from [25] or the next section. Thus, it is certainly enough to show that {?~} 
is left stable at b. In  conclusion, we can treat these three cases in the same way. As 
before, we need to construct a compatible system of unstable foliations for { q~}, F <__ b. 

Proposition (3.4).  ~ I f  % has a saddle-node pj =pj+ j , ,  j '  > z, which is critical or, 
has a cycle, then there exists a compatible system of unstable foliations for V. <_ b. The leaves 
of ~"(Pi+J',~,) are one dimension lower than those of pj,~. 

Proof. ~ Similar to that of  Proposition (3.2), using the unfolding of the saddle-node 
as in Proposition (2.3). In  this case the leaves of ~"(p~, t~) cover a neighborhood of  
W~'(p~, ~) --{pj,~,} near pj,~ where W*'(pj,~) is the strong stable manifold of pj,~. 

The leaves of ~-"(p~,~) intersected with the center stable manifold W~,' are repre- 
sented by horizontal lines in the pictures below. The intersections of the leaves of  
~"(pj+j,,~) with W~ ~ are represented by points. 
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Notice that the foliations ~z-,,(pj,~) and ~"(pj+j,,~) can be constructed to be 
compatible in a neighborhood V of WS~(p~) --p~ in M • [~1, b] for some [zl< b. 

Proposition (3- 5). - -  I f  @b has a flip point pj,, then 

(a) there is a compatible center foliation ~ defined in a neighborhood of the center stable manifold 

of rb at (p~, b); 
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(b) there is a compatible system of unstable foliations ~"(pi) for ~ ,  ~ ~ [~l, ~]  for some 
~l < b and g~ 2> b; the foliation we consider at the f l ip  pj is a strong unstable one, ~ ;  

(c) the leaves of ~ " '  through a leaf of ~ "  form a C 1 submanifold. 

Proof. - -  The  proof  is entirely similar to that  of Proposition (3.3)- 
We finish this section by summing up in the next theorem the results we have obtained 

on compatible systems of unstable (strong unstable) foliations. 

Theorem (3.6) .  - -  Let b be the bifurcation point of the family {%} in ~ .  Let 
@ : M • I -,'. M be defined by r ~) = (%,(x), ~). Then, 

(I) i f %  has either a noncritical saddle-node and no cycles or a flip, there exists a compatible system 
of unstable foliations for r or {%}, ~ < [z i for some ~l near b and ~l 2> b. The unstable 

foliation at the saddle-node or the f l ip is a strong unstable one, 
(2) i f  % has a saddle-node or a Hopf periodic orbit, there exists a compatible system of unstable 

foliationsfor @ or {9~}, ~ <__ b. 

4- Stability 

We culminate this chapter  by showing the stability of the families of diffeomor- 
phisms {%,} in ~ .  Such families were int roduced in Chapter  I I I ,  studied there and 
in the previous sections of the present chapter.  A family { %} in M is stable, mildly or 
left stable according to the structure of the diffeomorphism %, where b is the first bifhr- 
cation point of { ~ } .  More specifically, the stability depends on the structure of the 
non-hyperbolic orbit of %. We stress again that  the transversality of the stable and 
unstable manifolds of the periodic orbits is necessary even for left stability, as was proved 
in Chapter  I I I .  

Our  results on stability will follow rather naturally and in a unified way from the 
existence of compatible systems of (strong) unstable tubular  fatuities or foliations. Fitting 
together these foliations provides a kind of global coordinate system from which the 
topological conjugacies can be constructed. We define the conjugacies inductively on 
the stable manifolds of the periodic orbits, these orbits being totally ordered as in section 3. 

We will make use of the following two known results. The  first one states that  
is open in the set ~ of C ~~ one-parameter  families of C ~ diffeomorphisms of M with 

the C ~ topology. It  corresponds to Theorem (2.5) of [i9] and Theorem (3. i) of [20]. 
The  second result is an easy extension (a parametr ized version) of the Isotopy Extension 
Theorem [~3]. 

Theorem (4. x). ~ Let {%} e ~ have the first bifurcation point b. There exists a 
neighborhood U of {~?~} such that i f  { ~ }  ~ U has first bifurcation point ~, then {~,} e ~ and 
% and "~ have the same elementary bifurcation. Moreover, there is an order preserving one to one 
correspondence between the periodic orbits of % and "~.  
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Let N be a C'  compact  manifold, r ~ x, and A an open subset of R ~. Let M 
be a C | manifold with d i m M ~ d i m N .  We indicate by C ] ( N x A ,  M •  the 

set of  C * mappings f :  N • A -+ M • A such that n ---- ~'f ,  endowed with the C * topo- 
logy, ~ < k < r .  Here, n and 7:' denote the natural projections n : N x A - + A ,  
~ ' : M •  Let D i f f ~ ( M x A )  be the set of C *diffeomorphisms @ of M x A  
such that ~' -~ n'@, again with the C ~ topology. 

Theorem (4.~,). - - L e t  i e C](N • A, M • A) be an imbedding and A'  a compact subset 

of A.  Givenneighborhoods U of  i(N • A) in M • A a n d V  of  theidentity in Diff~(M • A), 
there exists a neighborhood W of i in C](N x A, M • A) such that for  each j ~ W there exists 

, e V satisfying ~i = j  restricted to N • A '  and ?(x) -= x for  all x r U.  

Now we prove the main theorem of the present chapter. 

Theorem ('t. 3) .  - -  Let { ?~} ~ ~ with first bifurcation point b. Then 

I) i f  % has a f l ip  or a noncritical saddle-node with no cycles, { ~ }  is stable, 

2) i f  ?b has a saddle-node which is not bicritical and has no cycles, {q~} is mildly stable, 

3) if  ?~ has a Hop f  periodic orbit or a saddle-node which is bicritical or has a cycle then {@~} is 

left stable. 

Proof. - -  First, we observe that the statement in part  (2) can be proved as in part  (3). 
In fact, in case (2) we have that {q~} is Morse-Smale for b < ~ ~ ~tt, some [z t > b, 
and so it is stable in this range of  the parameter. This last fact is an easy consequence 
of  the proof  that 1Vforse-Smale diffeomorphisms are stable. By the same reason, in all 
cases it is enough to consider the stability of{ ~%} in ~ for [z near the first bifurcation point. 

Let Pl,~, ~ Pz,~ ~ . . .  ~ Pt,~ be a total ordering of the periodic orbits of  ?~ for 
< b. As in section 3, this ordering can be naturally extended for [z = b and even 

for [z > b when 9b is as in parts (t) and (2) of the statement. By Theorem (3.6), we 
can take a compatible system of (strong) unstable foliations ~'u(pl) , ~u(pz ) ,  . . . ,  ~ ( P t )  
defined in 1V[ • [~t, ~z~] or 1V[ • [~zl, b], for some ~1 < b and g~ ~ b according to 

case (I) or (3). In  case (I), the foliation is a strong unstable one at the flip or the saddle- 
node. Recall that this strong unstable foliation is constructed from a center foliation .,~-~ 
in the center stable manifold of@ at theflip or the saddle-node, where �9 : IV[ • I -+ M • I 
is defined by r ~) = (?~(x), ~z). By Theorem (4. I), for a nearby family {~'~} with 
first bifurcation point b, we can consider a corresponding compatible system of (strong) 
unstable foliations and a compatible center foliation in case (i).  Also, given a repara- 
metrization (a homeomorphism) p : I ~ I near the identity and p(b) = ~, there is 
an order preserving continuous correspondence between the periodic orbits p~,~ and 

~.p(~,) of q~, and ~p(~,), for ~ ~ [V~, ~ ]  or V~ ~ [~z~, b]. This defines the conjugacy on 
the periodic orbits. In the construction of  a global conjugacy we can take this repara- 
metrization quite arbitrarily, except in the case of a noncritical saddle-node with no 
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cycles. In  this situation we must choose p as in Chapter II,  so that we have a (continuous) 
conjugacy between (I) and @ restricted to center manifolds at the saddle-nodes. 

Our  global conjugacy H will be constructed on M x [~l, ~ ]  or iV[ • [~ti, b] 
inductively on the stable manifolds of the periodic orbits and, in case (i), at the center 
stable manifold of (I) at the saddle-node or the flip. Since these stable manifolds cover 
all of  iV[x{~t} for each ~z~[~i,g~] or Ez~[~l,b] ,  H will be defined on all of 
M X  [~zx,~] or M x  [~t i ,b]  and maps onto 1Vfx [P(~i) ,P(~)]  or M X  [p(Ezx),b']. 
We fix fundamental  domains A~ for W"(p~) or WCS(pk) with exterior boundaries transverse 
to all WU(pi), i < k ~ t. The conjugacy H will be constructed with the following 
properties: 

a) H (Mx{A)  =Mx{p (~ ) } ,  ~in M X  [ ~ 1 , ~ ]  or in M X  [~,b], 
b) it sends leaves of ~-"(pi) into leaves of ~r , (~) ,  I < i < t, 
c) it is differentiable along each leaf of o~-"(pl) off the stable manifold of (I) atpl, I < i < g, 
d) if  W"(pl) n W*(pk) ~e o, i < k, then for each leaf F of ~-"(pl), in a neighborhood 

of F n Ak, H is C a near the inclusion map. 

As the first step H takes the sources of{q~} onto the sources of {~'~(~1}. Suppose 

H has been constructed on the stable manifolds of @ at Pi > P~ > - . -  > P,. Notice 
that the space of  leaves of ~"(pi)  is parametrized by the intersection of the leaves with 
W'(pi) or W~(p~). Thus, in particular, H defines a map from the space of leaves of ~'~(pl) 
onto the space of leaves of ~ " ( ~ )  for I < i < n: F ~ ~"(p,)  is associated to F ~ o*-"(~) 

if H(F  n W*(p~)) F c~ WS(~) Let us now consider W~(P.+i), W (P.+z) i f P . + i  is 
either hyperbolic, a Hopf  orbit or  a saddle-node which is critical or has a cycle. Let 
A b - ~ A . + i n ( M x { b } )  and A g = A . + 1 n ( M x { ~ ) ) .  I f  W"(p.) nAb4=O, we 
choose H as a diffeomorphism near the inclusion of a neighborhood of Wt'(pn) n 0e.Ab 
in W~(p.) onto a neighborhood of W~(~.) n 0o.Ag in WU(ff.). Such a ditTeomorphism 
exists because W"(p.) n A b is close to W"(~) n A~ for {9~} near {~,}. Near the 
interior boundary of Ab, H is defined by H% = ~g H. From Theorem (4. ~) this partial 
diffeomorphism can be extended to all of  WU(p.) n A b. To extend H to the leaves 
of ~'u(p.) near A~+ l, ~ <_ ~ ~ b, we proceed in an entirely similar way using Theo- 
rem (4. ~), since we already know which l e a f o f ~ ( ~ )  is associated to a given leaf of #-'*(p,,). 
This completes the construction of the conjugacy on the intersection of the leaves of ~'u(p.) 
with the fundamental  domain A.+ 1. Next, we take ~ ( P n - 1 )  and suppose that 
W'*(p~_l) n A b 4: o. There are two cases to consider. I f  WU(p,,_ i) c~ W'(pn) = o, 
then W~(p._ i) n A b is compact and disjoint from WU(p~) ~ A b. Thus, the cons- 
truction of the conjugacy on the leaves of .~-u(P.-1) restricted to A.+a is the same as on 
the leaves of ~"(p . ) .  So, assume that W~(p._ i) n W'(p.) 4: o. Since ~-"(p,~_ i) and 
�9 ~'u(Pn) are compatible, H is already defined on the leaves of~'~(i0n_ x) in a neighborhood V 
of W"(p.) c~A n i n A . + i .  But B = W " ( p . _ l )  n ( A  b - V )  is compact. So, we can 
extend H to B using Theorem (4.2) and also to the leaves of ~*"(p._ i) in a neighborhood 
of  B i n A . + l .  We repeat the argument  to all ~ (p~) ,  I < i < n - - 2 .  I f P . + i i s  a 
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Hopf  orbit or a critical saddle-node with no cycle, then H is defined on A.+ i satisfying 

H?~, = ~p(~,)H or H 9 = ~H,  ~1 ~ ~ ~ b or ~1 ~ ~ ~ ~ with ~1 < b and b < ~,. 
The same equation allows us to define H on all of the stable manifold of @ at p . + i .  I f  
the saddle-node occurs in a cycle so that P.+x = P.+ l+j' for some j ' ~  I, then we 
have only defined H on a neighborhood V of W"(p.+l ,b)--{P.+a,b} in W~(p,,+l). 
We continue as before forp.+l+~with j < j ' .  W h e n w e c o m e  top.+l+~, , the conjugacy H 
as already been defined on the part  V of W'(p. + 1+4'). We continue the process as above 

obtaining a conjugacy Ha defined on (k<.~l+j '  W"(Pk))n W'(p.+l+~, ) such that 

H i ~ - H  off a neighborhood of W'(p.+l+i,  ) - - V  in W'(P.+l+j,) .  Thus, H can be 
defined on all of WS(p.+l). 

Now we consider the case where P .+ l  is a flip or a non-critical saddle-node with 
no cycles. Here, H will be defined in the center stable manifold of @ at p .+ 1 as the 
" p r o d u c t  " of  two partial conjugacies. One of them, which we call H e, is defined at 
the center manifold of @ at p. + x, as constructed in section 3 of Chapter II.  It corresponds 
to a conjugacy on the space of leaves of the strong stable foliations ~ " ( p . +  1), ~r.+ aJ. 
The other, which we call H', is to be defined on the space of leaves of the center folia- 

tions ~" (P .+ i ) ,  ~ '~(~+ 1). However, since the center foliations may have several leaves 
going through the periodic orbits P .+I ,  ~ + i ,  we cannot express the stable manifolds 
of such orbits exactly as the product of  these two foliations. That  is the reason we will 
make a slight modification of the center foliation ~- '(P.+I) already constructed. The 
second partial conjugacy H '  will then send leaves of ~-"(p.+ i) onto leaves of the modified 
center foliation for ~. + 1. To do this, we first consider a continuous family of leaves { F~, }, 

_ _ ~r.+ l, ~), such that F~, meets all the leaves of the center 
foliation ~'~(P.+i,  ~). We also choose a family of disks {D~}, D~,CF~,, such that the 
exterior boundary 0~. D~, of D~ is transverse to the unstable manifolds W"(p~, ~) for all 
I < i < n  and each ~ e [ ~ l , ~ ] .  We now form a fundamental  domain A =  U A ~  
for the center stable manifold of/,. + 1 as follows. For each ~, the exterior boundary 0~. A~ 
is made of the disk D~, and a " cylinder " formed with the leaves of o~-"(p.+ i, ~) through 
the points of 0e. D~. Notice that H" determines a corresponding family { F~(~)} of leaves 
of ~z-~t~'~r.+ lJ~. We then take a family of disks {Dp(~,)}, D~(~,)C F~(~,) for each ~, and 

construct a similar fundamental  domain A = U .~(~) for the center stable manifold 
o f ~ + a .  We now define H" : U D~ -+ U Do(~,) as follows. Of  course, we want it to 
be compatible with the unstable foliations ~-"(pl) and the conjugacies already defined 
on the stable manifolds W'(pi), I < i < n. Near the exterior boundaries of D~, D~(~) 
we proceed by induction on the indices i = n, n --  z, . . . ,  ~. We start with a diffeo- 
morphism H " : V  ~ V  near the inclusion map, where V is a neighborhood of 
W'*(p~) ~ 0exD ~ in W"(pn) c~ F~ and V is a neighborhood of W"(~)  ~ 0exD0(~) in 

W"(~.) c~ F0(~)" Similarly for the intersections of the leaves of ~"(p . )  with 0o.D~ which 

are mapped onto the intersections of the corresponding leaves of o~-"(~.) with 0,. D0(~)" 

Notice that the correspondence between the leaves of ~"(p . )  and those of ~'~(~.) is 
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determined by H:WS(p, )  -+ Ws(p,) already defined. The extension to the leaves 
of ~" (P , -1 ) ,  �9 �9 -, ~"(Pl )  is done in the same way as in the previous case. In  order to 

define H ~: U D~ --> U D~(~), we consider the annuli A~CD~ and ~(~)CDp(~), 
each ~z E [Or1, W], obtained as follows. The exterior boundary of A~, is 0e.D ~ and its 
interior boundary is the projection of ?~,(Oe, D~,) into D~ via the leaves of ~-c(p,+l, V~). 

Similarly for "~C~)" Notice that H~:Oe~A~,-~ 00.Ao/~) constructed above induces a 
map H* : 0i.A ~ -+ Oi, A~(~). In fact, for x ~ 0i.A ~ let g, be the leaf of ~'*(P,+I,  ~) 

through x and let y be the intersection of ~-t(t ,)  with 0e.A~. I f  7 is the leaf of 

~-"(~+ a, p(~z)) through H*(y), we set H"(x) = z, where z is the intersection of ~p(~)(7) 
with Oi, A~c~). We now extend H '  first to all of A; using the Isotopy Extension Theorem 
as before. Finally, we can extend H 8 to all of D~ sending leaves of #z-,,(p~, ~z) to leaves 
of ~-"(~,  p(tz)), i < i < n. Again, this can be done as before since W"(p~, t~) and 
W (p~, O(~)) are transverse to D~ and D0(~) , respectively. At this point, we would like 
to define the conjugacy H : W**(p,+l) ~ W"*(p,+I) as the " p r o d u c t "  of H* and H '  
using the strong stable and the center foliations. To do this we have to modify the 
center foliation ~'*(P,+I) in (P,+x). For each V~ ~ [tzl, Vt,], it is enough to do so 

in the region bounded by Dp(~)- ~l~), ~(~)(Dp(~,)) and the cylinder formed with 

the leaves of ~* (~+~)  through points of  0i,A~(~, ). Let ~q :Do(~)-  A~(~,)-*~"~(~,)(D~(~,)) 
be the homeomorphism defined by ~q(x) = y ,  where (H*)-~(x) and q~(H')-t~]-~](y) 

belong to the same leaf of ~*(p,+x,  ~). Let ?,: D0(~)- A~(~)~(~,)(D0(~)) be defined 

by ~,(x) = z, where x and z belong to the same leafofo~-*(~+x, p(~z)). I f  2, = ~ then 
no modification of ~-*(~+~, O(~)) is needed. So let us change o~'0(~,+~, p(iz)) to get 
the second map to be equal to the first. Notice that ~q(x) and ;~(x) belong to the same 
leaf of ~-"(~,  p(~)) for some ~ < i < n. Moreover, ~,~-~ along such a leaf is C t near 
the identity map. Let X be the vector field whose integral curves are the leaves of 

t ~ a  o*-*(~+~, p(tz)). We modify X near but off q~o(~)(D~(~)) so that the corresponding map ), 

satisfies 7,~- ~ --~ I on @"~(~)(Do(~)). Observe that the modification required for X along 
W (p,, p(~z)) is well known and it can be performed in a parametrized way along the 
leaves of ~" (~ , ,  p(~)). Using the fact that the foliations ~ " ( ~ ,  9(~)) are compatible, 
we proceed by downward induction on the indices I < i < n. It  is clear that the new 

center foliation coincides with the previous one on the  boundary OA = O OAo(~, I of 
the fundamental  domain A. Once it is defined on A, it can be defined on all o , ,  ~/,, + x) 
simply through iterations by ~ ,  where ~(x, tz) = (~"~(x), ~) as before. Now we can 

W e*t~" '~ using the center foliation, the strong stable define H from W=(p,~+~) onto ~v,+~ 
foliation and the conjugacies H" and H ~ on their spaces of leaves. H is clearly one to 
one, onto and also continuous since these foliations and the maps H 8, H ~ are continuous. 
Moreover, H is differentiable along the leaves of #-"(pl), I < i < n, in W**(p,+l). 
In fact, ~ c  was constructed in section 3 to be differentiable along these leaves; the same 
is true with the modified #z-* and the map H ~ constructed above. Being codimension 
one, the foliation 9~'** is C t (see section ~, Chapter II) .  Finally, the differentiability 
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of H a off the periodic points is in section 3 and 4 of Chapter II.  Together these facts 
imply our statement. Thus, the proof of the induction step is finished. Our  map H 
is defined on M • [~1, ~ ]  or M • [~1, b] onto M • [P(~I), P(~,)] or M • [P(~I), ~], 
it is clearly one to one and satisfies the conjugacy equation H ~  = ~'o(~)H. Let us prove 
that H is continuous. We have to show that H is continuous at the stable (center stable) 
manifolds of the periodic orbits of  {q~}. Here we indicate by W 8 both the stable and 
center stable manifolds; also, let 11 indicate either [~1, ~ ]  or [~1, b]. By construction, 
H is continuous along these manifolds and, in particular, along the stable manifolds of 
the sinks. By induction we may assume that H �9 W ~ W is a homeomorphism, where 
W and W are the union of Wa(pk,~,) and Wa(pk,~(~,)) for i <  k <_/ and ~ EI  1. 
Let us now show that H is also continuous at Wa(p~,~,). Consider a sequence 
(x,, ~,) ~ (x, ~) ~ Wa(p~,~), x, ~ M and ~, E 11. Since H restricted to Wa(p~,~,) is 
continuous, we may assume, via a subsequence, that (x,, ~,) ~ W for all n. Let F,, 
F be the leaves of~"(p~) containing (x,, ~,), (x, ~) and F,, F the leaves of ~ " ( ~ )  contai- 
ning H(x, ,  ~,) and H(x, ~), respectively. We have that F, -+ F and since H is conti- 
nuous restricted to the stable manifolds, we have F, -+ F. Thus, it is enough to show 

a that the sequence H(x. ,  ~,) accumulates on W (p~,~(~)). In  fact, H(x, ,  p~,,) cannot 
accumulate on W because H : W -+ W is a homeomorphism. Also, H(x, ,  ~,) cannot 
accumulate on the union Z of W (p~,~(~)), I <__j < i, because F, and Z are far apart. 
This proves our assertion and so H is continuous on all of M • I~. This finishes the 
proof of the theorem. 

We now complete the proof of our second main theorem stated in the introduction, 
the first part  of  which was done in section ~ of Chapter I I I .  

Let us denote by ~ C ~ the set of  arcs { ~, } such that the limit set of  each ~, has 
finitely many orbits, ~ ~ I = [0, 1]. We also denote by 5~CCg the set of  arcs {~?~,} 
such that there are only finitely many bifurcation values for { @~,} say bx, . . . ,  b, in (o, I) 
and for each ~ < i < s, %; has the following properties: 

- -  all stable, strong stable, unstable and strong unstable manifolds intersect transversally 

- -  %i has no cycles and has exactly one non-hyperbolic periodic orbit, which is either 
a flip or a non-critical saddle-node; this non-hyperbolic orbit unfolds generically. 

As we mentioned before, it turns out that for arcs { ~ } ~ 5r ~ is a Morse-Smale 
diffeomorphism if ~ is not a bifurcation value. 

Theorem (4.4). - -  The arcs in 5P are stable. 

Proof. - -  As in Theorem (4- i), it follows from [i9] , [2o] that 5P is an open subset 
o f ~ .  Thus, if { ~ }  ~ 5r and has bifurcation values bl, . . . ,  b a in (o, I), then a nearby 

t t t arc { @~,} also belongs to 5r and has nearby bifurcation values bl, . . . ,  b, in (o, i). More- 
over, the non-hyperbolic periodic orbits of %1 and ~'b} are both saddle-nodes or flips. 

! 
To produce a conjugacy between {q~,} ~ 5r and a nearby arc {~%}, we first assume that 
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t 9~ = r for  ~ ~ I - -  U ,  w h e r e  U is a sma l l  o p e n  s u b i n t e r v a l  o f  I c o n t a i n i n g  a t  m o s t  

o n e  b i f u r c a t i o n  va lue .  I n  this  case ,  b y  T h e o r e m  (3-6)  w e  c a n  c o n s t r u c t  u n s t a b l e  t u b u l a r  
t fami l ies  o r  fo l ia t ions  for  { r } a n d  { q~ } a n d  ~ ~ V ,  w h e r e  V is art o p e n  s u b i n t e r v a l  o f  I 

c o n t a i n i n g  the  c losure  U o f  U .  M o r e o v e r ,  us ing  the  I s o t o p y  E x t e n s i o n  T h e o r e m  (4 -2 ) ,  

w e  m a y  c o n s t r u c t  these  u n s t a b l e  fo l ia t ions  to be  the  s a m e  for  { r } a n d  { q~'~, } i f  ~ e V - -  W,  

w h e r e  W is a n  o p e n  s u b i n t e r v a l  o f  I such  t h a t  U C W a n d  W C V.  A g a i n  us ing  the  

I s o t o p y  E x t e n s i o n  T h e o r e m ,  the  c o n s t r u c t i o n  o f  the  c o n j u g a c y  { h~, } b e t w e e n  { q~ } a n d  { q~'~, } 

for  ~ ~ V ,  as p e r f o r m e d  in  T h e o r e m  ( 4 . 3 ) ,  c a n  b e  d o n e  so t h a t  h~, is the  i d e n t i t y  m a p  

o n  IV[ for  ~ ~ V - -  W .  S ince  r = r for  ~ e I - -  U ,  w e  c a n  e x t e n d  this c o n j u g a c y  

to all  o f  I b y  de f in ing  it  to be  the  i d e n t i t y  for  ~ ~ I - -  V .  F ina l ly ,  let  {Ui} ,  I ~ i < n, 

b e  a c o v e r i n g  o f  I b y  sma l l  sub in t e rva l s ,  e a c h  c o n t a i n i n g  a t  m o s t  o n e  b i f u r c a t i o n  va lue .  

I t  is i m m e d i a t e  t h a t  w e  c a n  d e c o m p o s e  a n y  sma l l  p e r t u r b a t i o n  of{  q~,} in to  p e r t u r b a t i o n s ,  

e a c h  w i t h  s u p p o r t  in  one  o f  the  s u b i n t e r v a l s  U~. So the  c o n s t r u c t i o n  o f  t he  c o n j u g a c y  

b e t w e e n  { r a n d  a n e a r b y  a rc  is r e d u c e d  to the  p r e v i o u s  case.  T h e  p r o o f  o f  t h e o r e m  

is c o m p l e t e .  
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