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LAW OF FLOW OF A VISCOPLASTIC FLUID THROUGH 
A POROUS MEDIUM WITH ALLOWANCE 
FOR INERTIAL LOSSES 

V. V. Kadet and D. G. Polonskii UDC 532.546 

A macroscopic law of  flow of  a viscoplastic Sehwedoff-Bingham fluid through a porous medium is obtained on the basis o f  percolation 
theory with allowance for viscous and inertial losses. The asymptotics of the flow law are estimated and expressions for determining 
the limiting pressure gradient as a function of  the microinhomogeneity parameters are given. Satisfactory qualitative agreement  between 
the theoretical and known experimental data is observed. 

A nonlinear law of flow of a Newtonian fluid which takes into account inertial hydraulic losses in sudden capillary 
contractions and expansions was obtained in [1] on the basis of percolation theory. In [2] the value of the hydraulic 
conductivity of a porous medium was determined with allowance for the viscoplastic properties of the saturating fluid 
but without allowance for the inertial losses during motion. In the present paper we derive a general nonlinear law of 
flow of a viscoplastic Schwedoff-Bingham fluid through a porous medium with allowance for viscous and inertial losses. 
The asymptotics of the flow law and the dependence of the limiting pressure gradient on the microinhomogeneity 
parameters are obtained. It is shown that for low pressure differences the asymptotics of the flow law are a linear form 
of the well-known law of flow through a porous medium with a limiting gradient [3, 4]. The theoretical results are 
compared with experimental data, and satisfactory qualitative agreement between them is observed. 

As our model of the pore space, within the framework of the percolation approach [5, 6], we will use a regular 
spatial network whose nodes and links are, respectively, the pores and the capillary channels between them. The 
characteristics of this network are the branch length d, the radial pore distribution function (porometric curve) f(r), and 
the number of branches originating at a single node (lattice coordination number) z. 

In order to derive the dependence of the flow parameters on the microcharacteristics of the medium it is usual first 
to obtain the relation between the external pressure drop in the medium and the fluid flow rate along each conducting 
path in the system. The fluid is viscoplastic with the limiting shear stress %. In this case the flow along a single capillary 
can be described by the Buckingham formula [7] 

q=~r4Ap(8dlx)-lh((r)), h((r))=l - 4/3(r) + l/3(r) 4 (1) 

where q is the volume flow rate; Ap is the pressure drop at the capillary ends; i~ is the structural dynamic viscosity; 
R = Xo(2d/Ap) is the radius of the flow core; and (r)=R/r is the relative radius of the core. 

Using the exact relation for h((r)) or one of its known approximations [8] leads to quite cumbersome dependences 
of the pressure gradient on the flow rate which are inconvenient for further investigation. Therefore, we will use the 
following linear two-point approximation of the function h((r)): 

h*((r))=l - 314(r): 0 < (r) < 0.4, h*((r))=0.778(1 - (r)): 0.4 < <!") < 1 (2) 

Over the entire interval 0 < (r) < 1 the maximum absolute approximation error (2) is not greater than 8.91%. 
Any accuracy of the approximation of type (2) necessary for practical calculation purposes can be achieved by means 
of an additional partition of the interval of variation of the quantity (r). Substitution of h'((r)) in place of h((r)) in 
(1) gives the following expression for the pressure drop on each capillary: 

Apt=A ~_~d_4q + B .x~ 
nr r (3) 

A=8, B = 8 1 3 : 0  < (r) < 0.4, A=10.729, B = 2 : 0 . 4  ~ (r) < 1 

We will assume that the pressure drop Apy at a network node is determined by the density of the fluid O, its 
structural viscosity I~, the limiting shear stress x0, the flow rate q, and the radii r 1 and r 2 of the capillaries adjoining the 
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Fig. 1. Junction element for capillaries of different radii. The continuous curve corresponds to the idealiTation 
of a sudden contraction or expansion. The broken curve corresponds to the real pattern of variation of the 
radius of a conducting channel in the passage from one capillary to another. 

node in the direction of fluid flow. In this case we shall disregard the fact that the capillary junction zone is a non-ideal 
transition of the sudden expansion or contraction type. (In Fig. 1 we have reproduced a diagram of a junction element 
for capillaries of different radii in a chain.) Dimensional analysis leads to the expression 

Apy--pq2r~4~ r2, Re, He ,  Re= pq He= Px~ 
I~ rl t~ rl '  Ix 2 

Estimates show that for the flow in an individual capillary the Reynolds number Re << Rec, and the Headstr~Jm 
number He << 1. This makes it possible to assume the total self-similarity of the function ~(rl/r2, Re, He) in the 
parameters Re and He and write 

2r_ 4 r~ (4) 

The function ~ in dependence (4) can be calculated, for example, on the basis of the Borda formula for a sudden 
expansion and the Idel'chik formula for a sudden contraction of a capillary [9] 

( :: / 
~(rl, h ) = ~ - ~  2 t r l }  ) ' ~ t r l )  ) '  

The pressure drop on a conducting path composed of alternating capillaries and nodes (Fig. 2) is 

N N 
ae- - •  at' , + E at,,, (5) 

i=1 i=1 

where i is the number of the capillary and the next node, and N is the total number of capillaries composing the 
conducting chain in question. The corresponding pressure drops are determined by relations (3) and (4). This pressure 
drop occurs on the characteristic macroscopic distance L ,Nd; therefore, we can obtain the external pressure gradient 
VP: AP/L by dividing (5) by L 

N 
V p = ! ~ . .  ~ Apki + Apy, (6) 

If the minimum radius of a capillary belonging to the given conducting path is equal to r and the capillary radii are 
distributed independently with a distribution densityf(r), then, passing in (6) from summation to integration and taking 
into account the fact that 

N=ff(to) d~ 
o 

we obtain 
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Fig. 2. Formation of fluid-conducting channels 

from capillaries of different radii. 

or, using (3) and (4) 

VP: lo(r  ) + ll(r)q + I2(r)q 2 

lo(r ) = 2BxoN-lf f(<~ d o ,  11(r ) = A ,  N _ , ? f ( + )  d+ 

I2(r) ~ lN-2 fgfr ~((~1~ ~2)f ({ol) f ((02) dtdo| d~l) 2 

(7) 

Expressing q from (7) in terms of xTp, we obtain the fmal dependence q(VP) 

2(VP - lo(r)) 
q -- ( s )  

1,<r> + J1,:<r> + 4 2<r><1o<r) - r e )  

Relation (8) is a generalization of the formula for viscous Newtonian fluids obtained previously in [1], where on 
the righthand side of (3) there was no second term, since for a Newtonian fluid the limiting shear stress %=0. 
Correspondingly, in (7) and (8) there was no term Io(r) due to the presence of the limiting shear %. 

Following [10, 11], we will calculate the number of paths with the minimum radius rl per unit cross-sectional area 
of the flow through the porous medium. The probability of a capillary having a radius r > rl is equal to 

m 

= ff(r)  dr Ps(rl) 
r 1 

Within the framework of the generalized model [11], the critical radius rc is related with the threshold of flow 
through the network by the expression Pn(rc)=D/[(D - 1)], where D is the space dimension and z is the lattice 
coordination number. For any r~ < r c all the capillaries with radii greater than r~ form an infinite cluster - a connected 
pore system through which flow can occur. 

Let us set r~ < re. The infinite cluster corresponding to this radius has an irregular cellular structure with the 
characteristic cell dimension [11] 
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(es(rl) - es(rc) ) 

Here, v, the index of the correlation radius, is equal to 0.85 and L3 for three- and two-dimensional problems, 
respectively. The number density n(rx) of the conducting paths collinear with the external effective pressure gradient and 
composed of pores with radii greater than r 1 (Fig. 2) is 

1_ 1 f" d r l  v n(r 1) 
a z 1 - Pn(rc) f ( r )  

J r 1 

The distribution of the total number of conducting paths (per unit cross-sectional area) over the minimum radius 
rl is 

F(r l )  = -dn(rl) l dr 1 (9) 

Summing the flow rates over all the conducting paths and using (8) and (9), we obtain the nonlinear flow law of 
the viscoplastic fluid 

r, 2F(r)(IVP [ - lo(r)) 
w - - f  d r  (10) 

o I~(r) + ~/I~(r) + 412(r ) ( IVP I - Io(r)) 

Here, w is the seepage velocity of the fluid and [VP[ is the absolute value of the external pressure in the medium. 
Using the coUinearity of the vector w and VP, we can readily write relation (10) in vector form. If the total contribution 
made by the plastic shear factors and the inertial losses to dependence (10) is significantly less than the contribution 
of the viscous losses so that the inequality 

IF(r) >> 412(r)(Io(r) - IVPI) (11) 

is full'tiled, then from (10) there follows the asymptotic dependence 

r e r e 

w--  _ f F(r)Io(r) (12) IVelf F(r! dr dr 
~I1 (r) Jo l l (r)  

The structure of relation (12) corresponds to the well-known form of representation of the law of motion of a 
viscoplastic fluid through a porous medium [3, 4], the last terms in the expression obtained determining the value of the 
limiting pressure gradient. If the inequality opposite to (11) is valid, then asymptotics (10) have the form: 

gc 

w .  f F(r)~/IvPI - t~ dr (13) 
J 
o 

In the absence of plastic properties ( xo=lo(r )=0) ,  the asymptotic relations (12) and (13) go over, respectively, into 
the linear and quadratic laws of flow of a viscous Newtonian fluid [1] which take the inertial losses into account. 

In Fig. 3 we have plotted graphs of the dependence w(IVPI) for media corresponding to two different porometrie 
curves (curves 1--4). The calculations were carried out on the basis of formulas (10) (curves 1 and 3) and (12) (curves 
2 and 4) for a model power distribution function of the form: 

n . + l n ~ 1 .  ( 1 4 )  f ( r )=0 :  r < r~a ~, r > rm~; f ( r ) - - ( n  + 1)r / ( r m n  - r,,~, ): rmi . < r < r,~.~ 

Curves 1 and 2 correspond to the exponent n =-1.15 and curves 3 and 4 to the exponent n =-1.25. The capillary 
radii were varied from 1.5"10 -7 to 10 s m, the limiting shear stress %=0.007 Pa and the structural viscosity 1~=7.75 
mPa-s, and the other parameters corresponded to the characteristics of the Arian oil field [12]. The nature of the 
dependences obtained coincides qualitatively with the experimental results obtained in [12]. The values of the calculated 
seepage velocity and pressure gradients vary within the same limits as in [12]; however, direct comparison with the 
experimental data is difficult since in the experiments the limiting shear stress x 0 and the porometric curve f ( r )  were 
not measured. Obviously, a decrease in the proportion of thin capillaries (increase in the exponent n) leads to a sharper 
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Fig. 3. Dependence of the seepage velocity on the pressure gradient in media with different exponential 
porometric curves: curves 1 and 2 correspond to n=-1.25 and curves 1 and 4 to n=-1.15; x0=0.007 Pa 
(curves 2 and 4 correspond to the linear asymptotics of (12)). 

Fig. 4. Dependence of the seepage velocity on the pressure gradient for various values of the limiting shear 
stress (n =-1.2) x0=0.005, 0.007, and 0.009 (curves 1-3, respectively). 

increase in the seepage velocity with the external pressure gradient. In Fig. 4 the w( IV/' [) dependences calculated from 
formula (10) for f(r) in the form (14) with n =-1.2 at x 0 equal to 0.005, 0.007, and 0.009 Pa are shown by curves 1-3, 
respectively. 

These calculations show that an increase in the limiting shear stress leads to a decrease in the seepage velocity. This 
is physically reasonable. 

An adequate comparison between the theoretical results obtained and the experimental data is possible only when 
the latter include both the limiting shear x 0 for the percolating fluid and the porometric curvef(r) of the porous medium 
considered. 

Summary. A percolation model of the transport of a viscoplastic fluid through a porous medium is constructed with 
allowance for the inertial losses in the process of interaction between the fluid and inhomogeneities of the surface of 
pore space. An analytic expression for the law of flow of a Bingham plastic through a porous medium is obtained. This 
general expression includes the linear and quadratic asymptotics, respectively, for low and high pressure gradients, the 
flow law for a Newtonian fluid when x0=0 , and the explicit form of the relation for calculating the macroscopic limiting 
pressure gradient as a function of the microinhomogeneity parameters. 

In principle, the outlined method of analytic derivation of the macroscopic flow laws can be extended to the case 
of motion of a fluid with any other rheological properties. In this case the basic principle is the possibility of describing 
the viscous and inertial losses of pressure in the flow along a single capillary using flow rate approximations of not higher 
than second order. In this ease it is not necessary for the dependence determining the inertial losses to satisfy the 
hypothesis of total self-similarity with respect to all the similarity parameters other than the capillary radius ratio rl/r 2. 
In this case the possibility of describing this dependence within the framework of the above-mentioned approximation 
remains a necessary condition. 
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