
ABSOLUTELY CONTINUOUS MEASURES 
FOR CERTAIN MAPS OF AN INTERVAL 

by MICHAL M I S I U R E W I C Z *  

o. I n t r o d u c t i o n  

Dynamical properties of mappings of an interval into itself are intensely studied 

from both " theoretical " and " experimental " (numerical experiments) points of view. 

One of the most important theoretical problems (but also closely related to the problem 

of reliability of numerical results) is to establish for which mappings there exist invariant 

probabilistic measures, absolutely continuous with respect to the Lebesgue measure, how 

many of them, and what are their ergodic properties. The aim of this paper is to answer 
these questions for a certain class of mappings. They are essentially the piecewise 

monotone mappings with non-positive Schwarzian derivative, no sinks and trajectories 

of critical points staying far from critical points (the exact conditions can be found in 

section 3: conditions (i)-(vi)). For a slightly sinfilar class of mappings M. Jakobson [3] 
proved the existence of an absolutely continuous invariant measure. Our technique 

is quite different and it enables us to obtain much information about our measules. 

After the preliminary results of Sections 1-5, we prove the main theorems (theo- 

rems (6.2) and (6.3)) in Section 6. For a mapping from our class, there exist a finite 

number (but a t  least one) of ergodic invariant probabilistic measures, absolutely conti- 
nuous with respect to the Lebesgue measure. Their densities are continuous on an 

open dense set. Images of every finite measure, absolutely continuous with respect to 

the Lebesgue measure, under nk-th iterations of the mapping (for a certain k), converge 

strongly (as n--~oo) to a linear combination of those measures. The mapping with 

every one of those measures is a skew product of a permutation of a finite set (in the 

base) and an exact transformation. 

In  Section 7 we show that for most widely considered one-parameter families 

of mappings (like xF-*4o~x(i--x)) , our conditions ((i)-(vi)) are satisfied for a set of 

parameters of power the continuum. The question, whether the measure of this set 

of parameters is zero or positive, remains open. However, there is some evidence that 

* This paper was written during the visit to the Institut des Hautes t~tudes Scientifiques. The author gratefully 
acknowledges the hospitality of I.H.E.S. and the financial support of the Stiftung Volkswagenwerk for the visit. 
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x8 M I C H A L  M I S I U R E W I C Z  

it is zero for generic families. Namely, it can be decomposed into a countable union 
of  subsets, each of them arising from a point " running through " a Cantor set, which 
also depends on a parameter (one of these subsets is considered in Section 7). This 
Cantor set has always measure zero and there are reasons to believe that our point " runs 
too fast " to stay in this Cantor set for a time of positive measure (in a generic case) (1). 

In  sections 8 and 9 we study the problem; when is the measure-theoretical entropy 
(computable in numerical experiments as a characteristic exponent) equal to the topo- 
logical entropy, which measures complexity of dynamics from the topological point of 
view ? The answer for the maps of our class is: almost never (we obtain infinitely many 
independent necessary conditions). 

The proof  of the main results bases on the properties of the Schwarzian derivative. 

f, , ,  "'"'lJ-} ~ and the idea of  applying it to mappings of  an interval It  is defined as Sf - -  f ,  3_ 2 \ f ' ]  

belongs to D. Singer [io]. Two main properties are: 

(I) S( fog)=(g ' )2 . (S fog)+Sg,  and consequently if S f < o  and S g < o  then 
S ( f o g ) < o .  In particular, if S f < o  then S ( f ~ ) < o  for all n > o .  

I 
(2) I f  S f < o  then - -  is convex on the components of  the complement of 

V]f'l 
the set of  critical points (see (3- I)) and consequently, [ f ' t  has no positive strict local 
minima. 

One can find examples of mappings with negative Schwarzian derivative for 

example in [io] and [5], and more properties of  these mappings in [2]. 
With some additional work, it is possible to generalize the result of the paper, 

t 
replacing the hypotheses C 3 and S f <  o by C 1 with f '  Lipschitz and ~ convex on 

the components of  the complement of  the set of  critical points o f f  (i.e. on the components 
of I \A) .  

Throughout  the whole paper we denote by k the Lebesgue measure, by f "  the 

n-th iterate o f f ,  and by E the closure of E. 
I would like to acknowledge very helpful discussions with J.  Guckenheimer and 

Z. Nitecki. 

x. Stretching far  f r o m  critical  points  

In this section, I will be a closed interval, U and V two open subsets of I consisting 
of a finite number  of intervals each, and such that U contains the endpoints of I and 

U t 3 V = I ,  and f :  V - + I  will be a continuous mapping. 

(t) Recently Jakobson proved that the absolutely continuous invariant measures exist for a set of parameters 
of positive measure (" Absolutely continuous invariant measures for one-parameter families of one-dimensional 
maps ", to appear in Gommun. Math. Phys.). His set of parameters is much larger and his arguments seem to confirm 
our conjecture. 
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ABSOLUTELY CONTINUOUS MEASURES FOR CERTAIN MAPS OF AN INTERVAL 19 

We shall call an open interval J C V a homterval if  for all positive integers n, f "  maps 
homeomorphically J onto its image. We shall say that  f has no sinks if there does not 
exist an interval J c V and a positive integer n such that  f "  maps J homeomorphical ly 

into J. 

Lemma ( t . �9 ). - -  I f  f has no sinks and J is a homterval, then the intervals f " J ,  n = o ,  I ,  2,  . . . ,  

are pairwise disjoint. 

Proof. - -  Suppose that for some n > o  and k > o ,  f " ( J )  andf"+k(J )  are not disjoint. 
Then  for every p > o ,  f ,+pk ( j )  and f ,+(p+l)k(j)  are also not disjoint. Therefore, the 

set K=p[J=0f"+pk(J) is an interval. For every p the map  

:, ,.,,, =(:.+<,+,,,[,)o(:.+,, , ) ,  

is a homeomorphism,  and thus f k  K is a homeomorphism.  But fk(K)  C K and hence 
f has sinks. �9 

Notice that  any image of a homterval  is also a homterval.  

The  following theorem may be considered as a generalization of the Denjoy theorem 
for a circle. I t  was proved by Z. Nitecki. 

Theorem (1.2) .  - -  Let f have no sinks, be of class (31, f ' ( x )~eo  for all x ~ V  and log I f ' [  
be a Lipschitz function on components of  V .  Then for every homterval J there exists m>_o such 

that f " ( J )  c U. 

Proof. ~ Denote the Lipschitz constant of log ] f ' [  by y. We shall show first: 

(x. x) I f  K is an interval such that  f "  is defined on K then: 

sup [(if) '[  , - 1  
log K < y  Z X(fk(K)). 

i n f l ( f ~ ) ' [ -  k=0 

Indeed, if a, b a K  then we have: 
n - - 1  

�9 I(f")'(a)l Z [ l o g ] f ' ( f k ( a ) ) l - - l o g [ f ' ( f k ( b ) ) [ ] .  
l~ ] ( ~ 7 ( b ) [  --k=o 

Since the setfk(K) is an interval and is contained in V, it is contained in some component  
of V. Hence: 

log [ f ' ( f k ( a ) ) [ - - l o g  ] f ' ( f k ( b ) ) [ < y ] a -  b ] < yX(fk(K)), 

and we obtain (I .  I ) ,  

Set ~ = d i s t ( I \ U ,  I \ V ) .  
we have ~>o .  

Since the sets I ' \ U  and I \ V  are compact  and disjoint, 
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Suppose that there exists a homterval J such that f ' ( J ) \ U 4 = O  for every n>o .  
We claim that: 

0 . 2 )  there exists n o such that for each n>n o every homterval conta in ingf ' ( J )  
is disjoint from U. 

Suppose that (1.2) is false. Then there exist n>o ,  k > o  and homtervals K and L 
such that f~(J)  c K, f , + k ( j )  < L and both K and L contain the same endpoint of some 
component of U and a piece of U adjacent to this endpoint. Then the interval K to L 
is a homterval and f k ( K  toL) intersects K to L. This contradicts Lemma (I.  I ) .  Hence 
(1.2) is true. 

Let M be a maximal homterval containingf"~ By (1.2) we have: 

( I  " a )  For each n > o  every homterval conta iningfn(M) is disjoint from U. 

Now take 

X(L) ~ -- y(13 + X(I)) AU I 

an open interval L containing M, not equal to M and such that: 

We shall prove by induction that for every k: 

X(fk(L)) < ~ + I  and fk  
X(fk(M)) X(I) ~ is a homeomorphism. 

For k = o  it is obvious. Suppose that ( I  "5) holds for k = o ,  I, . . . ,  n - - I .  We then 

have X ( f k ( L ) \ f k ( M ) ) < X ~ X ( f k ( M ) ) ~ .  From this, (1.3) and the definition of 

it follows that fk(L) C V for k = o, . . . ,  n - -  i. Hence (since L is an interval), f "  L is 
a homeomorphism. By (I. I) and Lemma (I.  I) we obtain: 

~'t--1 

X(f"(L)) i -- X(f"(L\M))  < X(L\M) e v k=o1: X(I.{L)} 

X(f"(M)) X(f~(M)) X(M) 

< } e-,{~ + x(I}} e'~glo (x@I~ +*) x{/"{M)' < ~ eY [(x@I) + 1) t(1) - 13 - t(I)] 

- -  X ( I )  - -  X ( I )  X ( I ) "  

This ends the proof of (I .5) .  

S incef"I  is a homeomorphism for each n>o ,  L is a homterval. 
I L 

the maximality of M. �9 

This contradicts 

Theorem (x.3). - -  Let f have no sinks, f be of class C 3, f ' (x)eeo for all x s V  and 
Sf<o. Then there exists m>I  such that, i f  f J (x ) r  for j - - o ,  . . . ,  m- - I ,  one has 

[(fm)'(x)l > i. 
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Proof. - -  Suppose that for every n > I  there exists x n such that: 

( i .  6)  l ( fn)  ' (x . ) I<I  

and 

( I . 7 )  f~(xn) r  for j = o , . . . , n - - I .  

Take the maximal open interval Jn containing x n and such that f~  is defined on Jn. The 
point x~ divides Jn into two subintervals. Since S ( f n ) < o ,  on one of these subintervals 
we have [ ( f n ) ' l ~ I .  Denote this subinterval by L n. By the maximality of J~, there 

exists k(n)<n such that 

( I . 8 )  fk(~)(Ln) has a common endpoint with some component of V. 

We claim that: 

( I . 9 )  X(L . ) -+o  as n-~  oe. 

n oo I f  not, there exists a sequence (~)~=1, x0eI and , > o  such that n;-+oo and 
Xni-+X o as i-+o% X(L,i)~r for every i, and all intervals L~ are on the same side of xni. 
For every j we have f~(x,i)6U if n~2>j and hence f J (Xo)6U.  But one of  the inter- 
vals (x 0 -  r x0) and (Xo, x0+ ~) is a homterval, which contradicts Theolem (1.2). This 

proves ( I .9) .  
By (I .6)  we have X(fn(L,))<X(L~), and therefore: 

( I .  IO) X(fn-  k(~)(fk(~l(L,))) -~o as n~oo .  

In view of (I .8) and the fact that fk(~)(x~)$U, fk(n)(L~) contains some component 
of  the set U c~V. Hence, there exists a component K of I5 c~V and a sequence (ni)i~ 1 
such that nl--->oo as i-+c~ and f~(ni)(L~i)DK for every i. From (I. lO) we get 
X(f~i-kC~i)(K))-+o as i -+m and therefore: 

( I . I I )  ni - -  k (?zi) ----> oo a s  i----> o0. 

Let a be some point of condensation of the sequence (fk(~/)(x,~.))~= 1 . Since 

fJ(fk(~i)(x~i))~U for n l - - k (n i )> j ,  we obtain in view of (1.11): 

( I . I 2 )  fJ(a)q!U for every j .  

Let M be the minimal open interval such that K w { a } C M .  Then, by ( i . i i ) ,  M is 

a homterval. This contradicts (I.  I2) and Theorem ( i .2) .  �9 

~. E s t i m a t e s  I 

We want to obtain estimates, which enable us to prove the convergence of the 

images of the Lebesgue measure to an absolutely continuous measure. In particular, 

we want to estimate measures of inverse images of  neighbourhoods of the set of  critical 

values o f f " .  First we shall deal with the part  of estimates which can be done in the 

context similar to that of  Section i. 
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In  this section U is an open subset of I consisting of a finite number of intervals 
and such that the endpoints of I belong to U. We denote by f :  I \ U - + I  a map of 
class C 1 such that: 

(2.x) I f ' l > ~ > i  

and the function log If ' l  is Lipschitz on the components of I \ U ,  and by B a subset 
of  I \ U  such that f ( B ) C B  and: 

(2. =) ~ = dist(B, U)>o .  

Define E n = { x e I  : fk (x)$U for k = o ,  . . . ,  n - - I }  (notice that E ,  is a domain o f f " ) .  
Now fix an element a of B and a number ~e[o, I) and define: 

o r  

9(x)={~x--a]-r for for x>a,x<__a, 

m(x)={~x-al-r for x<a,  
for x ~  a. 

Proposition (2. x ). --- There exist constants (independent on a and on whether supp ? is 
to the right or to the left of  a) ~e(o, I), ~e(o, I), 0 > o  such that for every n_~o: 

(2.3) x(E.) < ~"~(I), 

(2.4) f,. ~dx<(n+~)OK". 

Proof. ~ We can, instead of U, take a slightly smaller set and extend f onto the 
complement of this set in such a way that all hypotheses still hold (perhaps ~ will be 
slightly smaller and the Lipschitz constant of  log [ f ' i  slightly larger) and also the image 
of every component of the domain o f f  is the whole intelval. The new sets E n will be 
perhaps slightly larger, but at least not smaller. Therefore we may simply assume 
that the image of every component of I \ U  under f is the whole interval I. 

We shall filSt prove (2.3). Let K be a component of En, let Y be a Lipschitz 
constant for log I f ' l .  By the same asguments as in the proof of Theorem ( i .  2), (I.  I) 
holds. By (2.1) we have k( I )~X(f f (K))>0~"-kX(fk(K)) ,  and thus: 

n--I n--i oo 

Y, X(fk(K))<X(I) Y, ~-"<X(I) Y, ~-~= X(I). 
k = O  k = O  j = l  0 ~ - - I  

1"),(1) 

Set 8 = e  =-1. 

(o,.3) 

In  such a way we obtain: 

sup I(f")'I 
K <8.  
inf l(f-), I -- 
K 
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We have f " ( K ) = I  and f , ( K \ E . + , ) = U .  Therefore X(I)>X(K)iKnf[(f")' [ 
x ( U ) < _ x ( K \ E . + J s u p I ( f " ) '  f. By ( a . 5 ) w e  get: 

K 

X(K\E.+~) X(U) inf[,(ff) '  [ x(U) 
x(K) > I + > 

X(K r~ E~+,)-- X(K) -- I + ~ ] ( f ~  2 I -~- ~ - ~  " 
K 

Set ~ q - - - -  

and 

x(u)" 
I - ~ - - -  ~x(~) 

Clearly o < ~ < I. We have X(KmE,+I )<~X(K)  for every compo- 

nent K of E, .  Summing over components of En, we get x(En+l)<~q.X(E,). Hence, 
by induction we obtain (2.3)- 

Now we shall prove (2.4). Since f (B)CB,  we have B CE,  for all n. For 
k = o ,  i, 2, . . . ,  denote by Jk the component of Ekc~supp q~ containing a. One of 
the endpoints of Jk is a; denote the other one by a k. We have: 

n--1 

(2.6)  E, nsupp  q~ =k__UoH k u J ,  

where H k = E , n ( J k \ J k + l  ). 
The endpoints offk(Jk+l)  are fk(a)~B and fk(ak+l)~d. From this, using (2.2) 

(which is clearly true also for subintervals of K instead of K) and (2.5), we obtain: 

I a -  ak+, I > sup [(fk),[ > sup I(fk)'  [ -> 8 inf [(fu)' I " 
ak+l ak ak 

Consequently, since fk (Hk)Cfk (E , )CE ,_k ,  we have: 

(2 .7)  ~ q0 dx < X(Hk) sup qo 
X(ff(Hk)) 

k -- ~k --  < i n f l ( f k )  '1 ta-a~§ ltk 

< X(E. k) ~-;8~<inf[ ( i f ) '  I) ~-* < ~"-~x(I) ~-~a~(~-*)  k. 

• we have: Since 

Set ~=max(~q, ~ - 1 )  

(2.8) fa ~dX fla-~tx ~ I dx= la--a.ll-~< (x(I))x-~ 
=J0 - i - ~  i - ~  (~ -1 ) . .  

[ 
~Lnd O=max~X(I)~ - ; ~ ,  i _ ~  ] "  

and 02>0. Now (2.4) follows from (2.6), (2.7) and (2.8). �9 Clearly, o < ~ < x 

3" E s t i m a t e s  H 

In  this section (and the next ones) I will be a closed interval, A a finite subset 
of I, containing its endpoints, and f l  I \ A - + I  a continuous map, strictly monotone 
on components of I \A .  
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Sometimes (especially in later sections) we shall pretend that f is defined on the 
whole of I. When speaking aboutf"(x)  for an x such that f "  is in fact not defined at x, 
we shall mean a one-sided limit (it is usually clear which one). 

However, in order to be more rigorous, we introduce (and sometimes use) the 
following notations: 

= I •  --}\{(left endpoint of I, --) ,  (right endpoint of I, +)}, 

+)=x+, 
ag: I - - . I  given by f (x ,  e)=(x ' ,  g) 

/ r ight  if ~ : + }  and e ' = ~  if and where x' is a limit o f f (y)  a sy  tends to x from the {left if 

/right if ~ : ~ }  neighbourhood ofx.  If  xe I  only i f f  preserves the orientation in a (left if 

then Y is its first coordinate (i.e. ( y + ) V = ( y _ ) V = y ) .  We set A = I c ~ ( A x { + , - - } ) .  
I f  the reader becomes confused about the use of the above notations, he can'always 

think about the case o f f  continuous and omit all --'s and v's. 

Now we make further assumptions on f.  

(i) f i s  of class C 3, 

(ii) f '  + o, 
(iii) S f < o .  

Consider f on a component of I \A .  Set g We have: 

Hence: 

I J'tv 
g' = - -  ~g ~--v, 

,, i [  I [f,,'~2 

I 

v'lf'l" 

: ] " '  Sf 
2 /l ,j 

f ' " f ' - - ( f " ) q  I +g j=-:gSf.  

This means that (iii) is equivalent to the following condition: 

I 
(iii') - -  is convex on components of I \A.  

~/If'l 
From this it follows that one-sided limits o f f '  at the elements of A exist. We 

shall denote them asf' at the corresponding points. C l ea r ly f '  exists also outside of A. 

(iv) If  fP(x)=x then ( . f ' ) ' (x )>I .  

2d 
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From (iv) it easily follows that f has no sinks. Indeed, if J is a subinterval of I 
and f "  maps homeomorphically J into itself, then there exists a point x e J •  
with f2"(x)=x and (f2n)'(X)<I. 

(V) There exists a neighbourhood U of A such that for every ae.~ and n > o ,  
( f " ( a ) )  v s a  u ( I \U) .  

(vi) For every a e A  there exist constants ~ ,~ ,o~>o and u > o  such that: 

~[x--~]"< lf'(x)l < ~ l x - ~ [ "  

((a', Y+  a) if a = g + ,  
for every x e / ( ~ - -  a , ~) if a = ~ _ .  

Taking smaller e and larger ~ we can obtain the above inequalities on the whole 
corresponding component of I \A.  Clearly (vi) is satisfied i f f  has non-zero one-sided 
derivatives (first, second or higher) at all elements of A. 

We make also two additional assumptions: 

(vii) ] f ' l > i  on I \ U ,  

(viii) if ae.~ is a periodic point forg~ then it is a fixed point forJ~ 

Lemma (3-x ). - -  I f  f satisfies conditions (i)-(vi) then some iterate satisfies conditions (i)-(viii) 

(perhaps with a different set A). 
m--1  

Pro@ - -  Let m > I ,  3~=f  ", A = [.J f-k(A). I t  is easy to see that (i)-(vi) are 
k=O m--1 

also satisfied by J~ A instead o f f ,  A. In  (v) we take U =  [.J f - k ( U )  instead of U. 
k = 0  

In  (vi) we use a simple computation showing ;:hat if o~x~i<g$(x)<%x ~i for i -~I ,  2, 

this is also true for i = 3  with some 0~a, c%, u 3 where ga=glog2 (we can take: 

u3 = (U1-1- I) (u2-}- I ) - -  I ) . 

It is also clear that i f f  satisfies also (vii) (resp. (viii)) then so does 3~ 

Now it remains to show that i f f  satisfies (i)-(vi) then some iterate satisfies (vii) 
and some (perhaps an other) one satisfies (viii). But the first fact follows from 
Theorem .(I-3) and the second one is trivial (notice that an image of a periodic point 

is periodic). �9 ,, o~ 

Set: A i = { a e A : f ( a ) = a } ,  A ~ = A \ A 1 ,  c , = U l f ~ ( X ) ,  C =  _lLJfi(A), B = ~ .  

For a measurable function q0 on I we denote by q~X the measure which is absolutely 
continuous with respect to X and with the density (i.e. Radon-Nikodym derivative) % 

For a measure ~x and a map g, g*(~t) denotes the image of ~ under g, i.e. a measure 

such that for every measurable set E: 

( 3 . 2 )  (E) = 

25 
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For an absolutely continuous map g, g, denotes its Perron-Frobenius operator, i.e. for 
a measurable function V: 

(g,(~)) .X=g*(~.X). 

Notice that by (3.2), fo_l(~.)gdX=f~g,(9)dX. 

It is easy to check that we have (if g is differentiable): 

Proposition (3.2). - -  I f  f satisfies (i)-(iii) then for every x~ I \ ~ , :  

X(I) . < ( 3 . 3 )  f ,  (I)  ( x ) _  
dist (x, I~,)" 

n--1 

Proof. - -  Let J be a component of the set on which f "  is defined (i.e. I\kU0f-k(A)).= 

The se t f"(J)  is an interval; denote it by (a, b). Set g = f "  a" The map g is a homeo- 

morphism and Sg>  o. By the formula for the Schwarzian derivative of a composition 
wehave o=S(id)=S(gog-1)=S(g-1)+((g-1) ' )~(Sgog-J) .  Hence S(g-~)>o. We have 

I I 
g, (~)_  Ig ' l~ - t  _ [(g-i),[. By (3. i )  applied for g- l ,  the function W / ~  is concave. 

Therefore the function A/](g-l) ' ] is convex, and consequently g,(i) is also convex (a 
reader not convinced by this argument may look at Lemma (4.3))- Thus: 

I f c  X(g-t(a, x)) 
�9 /, g,(I)dX-- x - - a  

x(J) g,(I)(X) ~ or < 
- -  dist (x, ~,) 

I (T X(g--l(X, b)) 
,~g*(I )dk--  b - - x  

(because a, b ~ , ) .  . -1  

Summing over all components of I\kO0f-k(A),= we obtain (3-3). �9 

Lemma (3.3). - -  Let g :,(b, c) -~R be a map of class 121, g '>o .  Let ~, co>o and 
u>o be such that o~(x--b)"<_g'(x)<co(x--b)" for every x~(b, c). Let o < ~ < I  and let 
a function q~ : (b, c) ~ R  be given by a formula eO(x ) -= (x--  b) -~. Then for some constants 
&'>o, o < 4 < 1  we have g , (9) (y )<3(y- -g(b) ) -~  for every ye(g(b),g(c)).  

q~(x) ~ o~(x--b)"(x-- b) -~ =--~I (x--  b) -~-~ But: Proof. - -  We have g , (9 ) (g (x ) )=g-~<.  

f/ r'-' ,o g(x)--g(b)= g'(t)dt co(t--b)"dt=r P d t = - - ( x - - b )  ~+i, 
dO u n t- I 

26 
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1 

< I iu (g(x)--g(y))) i~-g. g*(qg)(Y)--~ t 2r-Icai \--~+u 

Thus we put ~ ~-r 1 ( ~ ) ~  = -  . Clearly o < ~ < I ,  ~>o.  �9 

Now we assume that f satisfies (i)-(viii). By (v), BkA is disjoint from U. Since 
S f < o  and by the continuity o f f ' ,  there exist open intervals Ua, aeA,  such that [ JU~  

aeA 
/left if a = a ' + ]  endpoint is disjoint from B\A, ]f'l>c,>~ on I\,eAU^U, and d is  the tr ight if a = Y j  

of U~. It is easy to see that we can also have l f ' [ ~ > I  on  U a if aEA 1. 

Lemma ( 3 . 4 ) .  - -  For every aeA~ there exist constants y, ~ > o  and ~, ~e[o, I) such that: 

(3."t) f . " ( i ) (x)<yIx- -~l  -~ for every n>o and xeU~, 

(3.5) ( f  u , ) . ( f . " ( i ) ) ( / )<~ ly - - ( f (~ ) ) t l  -~ for every n>o, yef(Ua) .  

Proof. - -  By (viii) and the definition of A S we can assume that A~={a l ,  . . . ,  at} 
and no iterate o f f  takes al to aj for j<_i. Then we use induction, proving first (3-4) 
for al, then (3.5) for al, then (3.4) for as, then (3.5) for as, etc. 

To prove (3.4) for a i we writef .n(I)  in the form: 

=(: o). + (: 
where G =  U Ua s, T = { j : f ( @ = a , } .  Then we obtain an estimation of the first 

j e t  
summand from (3.5) for j e T ,  and the second one from Proposition (3.2) and the 
fact that by the definition ofUa, dist(B\A, U^U~)>o. We get a finite sum of expressions 

aEA 
of the form vlx- ,l (notice that a constant is also of this form for ~ = o ) ,  and the 
sum is not greater than some function of the same form. Thus we obtain (3.4), but 
in general only for x from some semi-neighbourhood of ~ smaller than Uoi. Using 
once more Proposition (3-2) we obtain an estimation by a constant on the rest of U a . 
Again, the sum of a function of the form y i x - - ~  I - ;  and a constant is not greater than 

some function of the form v lx-a' l 
(3.5) for a i follows from (3.4) for a i and Lemma (3.3). �9 

Lemma ( 3 - 5 ) - -  Let H C I  and Hk={x : f i ( x )EH for i = o ,  . . . , k - - I } .  

for every s, m we have: 
Then 
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Pro@ - -  Let G k = f - ~ ( H k ) \ H .  We have f - i ( H k ) = G k w H 1 , + ,  , and by induction 
we get: 

s + m - - 1  

f - m ( H , ) =  U .f-'-'~+l+'~(Gk)uH,,+,~,. k=s 
Hence: 

fH s+m--1 
f y ( i ) d X = X ( f - m ( H , ) ) <  Y~ X(f- ' - '~+~+k(Gk))+X(U,+m) 

$ k ~ 8  

(s o). ( j :  + 
k = s dl (C , -k )  

< ~ f s u p ( f  i\tt) (ft,'(l))d),.--~-),,(Hs+m). II 
- - k =  s d H  k n>_O 

Lemma ( 3 . 6 ) .  - -  For every aEA 1 and z>o  there exists a neighbourhood W of ~ such that: 

J,~["~u f ,n(I)dX<~ for every n 2 o .  

Proof. - -  Let a eA  1. There exists a constant ~ > i  such that: 

(3 .6)  I f ( x ) - - ~ l > ~ l x - - ~ ]  for all x e U  a. 

The set V k = { x  : f i (x )~U,  for i = o ,  . . . ,  k - - i }  is a neighbourhood of h" in U, ,  and 
by (3.6) we have: 

x(I) 
(3 .7)  x (v~)<  ~k �9 

Therefore it is enough to prove that: 

(3.8)  s u p f  f , '*(I)dX~ o as s~oo .  
m > O d V  s 

First we write, as in the proof  of Lemma  (3.4): 

( f  i\Ua),(f*n(I))=( f G),(fin(I))+( f i\(OUUa)), (f*n(I))' 
where G =  U Ub, R = { b ~ X \ { a } : f ( b ) = a ) .  The  same arguments as in the proof  of 

b~R 
Lemma  (3.4) show that: 

sup(f[ ~ ( f : ( ~ ) ) ( y )<_~ ly -a l  -~ 
n>Ok [ I\Ua]* 

for some constants 8>0 ,  o ~ < i  (notice that  R C A 2 ,  so we can use (3.5)). In 
view of L e m m a  (3.5) (for H = U , ;  then Hk=Vk) and (3.7) we get: 

oo f;,(II X(I) 
s u p f  f', '(I)dx<kY~ ~ - ~ t - ~ d t +  ~,+----~ 
,,,>_oJv, -- = .~o 

5 " , - -  | ' /X(I)~l-~-kX(I) ~ ~ (~_l)~t_.  X(I) '--&O 

as s ~ o e .  This proves (13.8). �9 
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Lemma (3 .7) .  - -  For every ~>o  there exists a neighbourhood W of B\A such that: 

fwf.*(i)dX<~ for every n ~ o .  

Proof. - -  I f  we put  Aw O^U~ instead of U and B\A instead of B, then the hypo- 
a C A  

theses of Section 2 are satisfied. Let :E~ be defined as in Section 2. Clearly, En is a 
neighbourhood of B\A. Hence, it is enough to prove that: 

(3-9) s u p ~  f.m(I) d X---> o as s--> o. 
m ~ O d E  s 

By Proposition (2.1) and Lemma  (3-4) there exist constants ~, ~e(o, I) and 
0>o  such that  X(E,)<~X(I)  for all s > o  and: 

f s u p ( f  U U,)(f,n(I))d~.~(S-~-I)0~s for all s > o .  
JE 

Hence, by L e m m a  (3.5) (for H = I \  U^U~, H k = Ek) we obtain: 
a f f A  

a s  S ~ +  o0 .  

s u p f  f , m ( I ) d k ~  ~ (s-]-I)0~8+k(I)~qs-->o 
re>odE s k = s  

This proves (3-9). �9 

Proposition ( 3 . 8 ) . -  I f  f satisfies (i)- (vi) then for every , > o  there exists 8 > o  such 

that i f  G C I  and X(G)<8 then fGf,~(I)dX<, for all n. 

Proof. - -  Suppose first that  f satisfies (i)-(viii). Since a function of the form 
q0 (x )=y lx -h ' [ -~  (o<_~<I) is integrable at h', f rom L e m m a  (3.4) it follows that  the 
statement of L e m m a  (3-6) holds also for all aeA2. This and Lemmata  (3.6) and (3-7) 
imply that  for every ~>o  there exists a neighbourhood W of B such that: 

f f2( )dx<  for all n. 

Now suppose that  f satisfies (i)-(vi). By Lemma  (3 . i ) ,  there exists r n > i  such 
t h a t f  m satisfies (i)-(viii). In  order to distinguish the sets A and B defined for different 
iterates o f f  we shall use the symbols A ( f  k) and B ( f  k) for those sets defined f o r f  k. There 
exists q > i  such that  the set on w h i c h f  k is defined (i.e. I \ A ( f k ) )  consists of at most 
q components for k---- o, I, . . . ,  m- -  1. 

Fix , > o .  Since fm satisfies (i)-(viii), there exists an open neighbourhood W 
of B ( f  ~) such that: 

f f ~ n ( i ) d X < ~  for all n 2 o .  (3.I0) 
Jw 3 

Take: 

dist(B(fm), I\W) 
( 3  i i )  = 3x(I) 
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Clearly ~q>o. 
(3. ~2) 

Take: 

(a.,a) 

By OiL also a>o. 

There exist neighbourhoods U k of A(fk), k = o, I, . . . ,  m-- i such that: 
x(uD< ~. 

~-----~ min infl(fk)'[. qO<k<m--1 I \ U  k 

We want to estimate 
By the definition of q, 

Suppose now that G C I  and X(G)<& Fix ke[o, m--l] .  

faf.~"+k(I)dX. Let J1, . - . , Jp  be the components of I \A(fk) .  
we have p<q .  We have: 

(3.x4) f.~"(I)dX 
dl-kia) 

~fwf*mn( ' )  d~" "~-fUk\Wf, mn(I) d~, AC ~ ~ fmn(I)d~.. 
i ffi 1 J l-k( o) ~ Ji\ (Uk k) W) 

By (3.II) ,  (3.I~) and Proposition (3.2): 

( 3 "  I S )  fU f*~"(I)dX< k(Uk)" 
?,(I) g 

kxw -- dist (I\W, B(f=)) < - - - 3 "  

By (3.II) ,  (3.I2), (3.I3) and Proposition (3.2): 

(3. I6) x(I) i_~1 s j,\(vku w)f.~"(I)dx<p.x(f-k(G)~J,\Uk), dist (I\W, B(f'~)) 

X(G) X(I) 
--<q" inf I(f~)'l " dist(I\W, B(f~)) < Jikgk 

Now from (3-I4), (3- IO), (3. I5) and (3. I6) we obtain 

Lemma ( 3 . 9 ) . -  I f  f satisfies (i)-(vi) then X(B)=o. 

q.3 X(I) 
inf (fk)' I dist(I\W, B(fm)) --3 
i \ U k  - ~ .  

fGf,~"+~(,)ux<~. �9 

Proof. - -  By Lemma (3.i),  there exists m ~ i  such that f "  satisfies (i)- (viii) . 
m--1  

We may assume that A(fm)= U f - i ( A ( f ) ) .  Then: 
i = 0  

m m--1  

C(f)  c U f ' ( J , ( f ) ) =  u Uof'(c(fm))..= 
m ra--'l 

The set iUtfi(A(f))  is finite, and hence it is enough to prove that X( U (f~(C(f")))V)=o. 
i = 0  

But: 
m - - t  m - - 1  

U (f~(C(f")))vc U f~(B(f"))w{(f~(a))V:aeX(f), o<i<m}. 
i = 0  i = 0  

In--J. 

We have X( U f i (B( fm)) )=o  because by Lemma (3.7) (for n=o ) ,  X(B(f"))=o.  

The set {(f~(a))V: a e A ( f ) , o < i < m }  is finite. �9 
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4" Functional  spaces  

I f  f satisfies (i)-(vi) then the existence of an invariant probabilistic measure, 
absolutely continuous with respect to X, follows already from Proposition (3.8). It is 

[ i . - I  \o~ 
onou h to ta e w e * "  o f a  sub  que  e o f  "  owowr, w e  w a n t  

n = 1  

to know something about ergodic properties of such measures, their densities and how 
many of them there exist. Thus we are going to establish several auxilliary facts. 

Let J be an open interval. We denote by 9,(J)  the set consisting of all C" positive 
I 

functions z on J such that ~ is concave, and the function o. 

Lemma (4. x ). - -  An integrable non-zero function "~ belongs to ~ 2 ( J ) / f  and only if  "~ =g,(I) 
for some C 3 diffeomorphism g : J * ~ J  with non-positive Schwarzian derivative. 

Proof. - -  Let J* be an open interval, g :J*-+J a C a diffeomorphism, v = g . ( I ) .  
I 

As in the proof of Proposition (3.2) we deduce that is concave if and only if Sg < o. 
This proves that if S g < o  then x e ~ ( J ) .  ~ 

Now assume that xe~2(J)  , v + o  and z is integrable. Let "~(x)=f:v(t)dt, where 

a is a left-hand endpoint of J. Set J * = ~ ( J ) ,  g = ~ - l .  Clearly, we have z = g . ( I ) ,  
g is a C 3 diffeomorphism and S g ~ o .  �9 

Lemma ( 4 . 2 ) . -  I f  v, + ~ r ( J )  then -~++e~ , ( J ) .  

Proof. - -  Take [a ,b ]CJ ,  t~(o, i), c = t a + ( i - - t ) b .  
., +,o): 

i t i - - t  > -~ 
(4"x) %/v(c)++(c)--~c/;(al++(a) %/-~,(b) + +(b) 

Take affine functions p, o such that: 

I 
(4.2) p(a)= %/x~ '  

Since % ~e~r(J) ,  we have: 

I 

~(C)<V-(6, 
Hence v(c)+~(c)<(~(c)).-~+(~(c)) -~, 

I 

(4.3) ~(c)<_/,(~1 + +(~), 

I 

P(b)= ~ ~/~(b ) ' 

I 

"(c) <-V+(c)" 

i.e.: 

We want to show that (if 

I I 

or(a) = %/qb(a) ' e(b) = ~v/+(b ) . 

I 

where q(x)-- ~/(~(x))_2 + (~(x)) -2 
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Since p and a are affine functions, their derivatives are constants. Denote these 
derivatives by e and ~ respectively. We have: 

#(x) = - -~ (~(x))~. (-  2)(~,(p (x))-~+ 13(,,(x))-~) 
= (~(x)) ~ (~(~ (x))-~ + [X,,(x))- ~), 

r = 3 (~(x)) ~. (~o(x)) ~. (o~(p(x))-~+ t3(~(x))-~) ~ 
+ (~ (x))~ ( -  3) (~,~ (P (x))- ~+ t3%,(x)) - ~) 

= 3(~(x))~[ ( < p ( x ) ) - %  ~(~,(x))-~) ~ 

= -  3(~(x)? (~,(x))-~ (,Xx))-~(p;) 

i.e. the function q~ is concave on [a, b]. 
I I ~(a)-v',(~) + +(~)' ~(b)= 

~,(p ( x ) ) - ,  + ~,( , , (x) , ) - ,  1 
(~(x))  ~ J 

~x))~< o, 

Hence, ?(x)>t~(a)+(i--t)~(b). 

%/v(b)++(b) 

By (4.2), 

Together with (4.3), this gives (4. i). �9 

Lemma (4-3). - -  Every element of No(J) is a convex function. 

P r o @ -  Take [a ,b]CJ ,  t~(o , i ) ,  c- - ta+(I - - t )b ,  

I t i - - t  I 
- 

[(i ,) where q~(x) = ~(a) x/z~b): x + ~ " 

We have: 

~0'(x) =--2(q~(x))3/2.( i ~ )  
\Vz(a) %/ ' 

(V'~(a) v~10):)~ 
- 2 I I r = (,(dx)) _ _ =  >o 

zeN0(J)\{o}. We have: 

and therefore the function q0 is convex. Thus: 

x(c)~(t)~t~(I)@(I-- t)q~(o):tv(a)@(I-- t)~(b) .  �9 

Now we consider again a mapping f which satisfies (i)-(vi). Denote by ~r the 
set of all functions z on I \B  such that  v e ~ r ( J )  for all componen t s J  of I \B.  We shall 

consider on N 0 the topology of uniform convergence on compact  subsets of I \B  (shortly 
u.c.s, topology). Clearly, ~ s  N 0 for all r. 
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Lemma (4.4).  - -  The set ~o is closed in the space of  all continuous functions on I \ B  with 

the u.c.s, topology. 

Proof. - -  Let J be a component of I\B, %~N0(J) for n = I ,  2 , . . .  and ~,-+~ 
uniformly on compact subsets of J.  Suppose that x, y e J ,  v (x )=o ,  "~(y)>o. Then 

I I 
I ~-+ 0% ~- - <  + 0% and from the concavity of I %/%(y) ,V/~(y ) ~ it follows that 

- -  ~ --  oo for all z belonging to the component of J \ { y }  which does not contain x. 
I 

I 
Since _ _  >o ,  this is impossible. Therefore either v = o - 

I I 
is positive and uniformly on compact subsets of J. 

i . e . - : e ~ o ( J ) .  ~ - ~ - ~  

on the whole of  J or z 

i 
But then ~vv is concave, 

I f  we have a sequence of elements of ~0 convergent in the u.c.s, topology, then 
we apply the above argument to every component J of I \ B  and conclude that the limit 
function is also an element of ~0- �9 

Proposition (4-5). - -  Let p be a C ~ real function on I. 

hull of the set {f,"(p)}~~ 0 in the u.c.s, topology. Then: 

(a) / f  HC o; 
(b) every element of H is continuous on I \ B ;  

(c) H is compact; 

(d) H C LI(X) ; 
(e) the L 1 topology and the u.c.s, topology coincide on H.  

Let H be the closure of the convex 

Proof. - -  Suppose first that p e ~  2. By Lemmata  (4. I) and (4.2), all functionsf,~(p) 
belong to ~2, and therefore to ~0. Hence, their convex combinations belong to ~0. 
Now (a) follows from Lemma (4.4). 

By Lemma (4.3), all functions f,"(p), and therefore also their convex combinations, 
are convex on the components of I \B.  By Proposition (3.2), they are all bounded 

x(I) 
by the function , (x )=sup i  P'dist(x, B)" Hence they are equicontinuous on compact 

subsets of  I \ B  (cf. [I]). By Arzel~t-Ascoli's theorem, from every sequence of these 
functions we can choose a u.c.s, convergent subsequence. This proves (c) in the case 

Let now p be an arbitrary C 2 real function on I. I f  for a C 2 positive function -: 

on I we have -~" 3(v')2>o then = - -  v -3/2 <o,  and consequently 

z e N  s. Therefore ~2 contains an open cone in the space of C 2 functions on I. This 
i 

cone is non-empty, for instance because z(x) = - - - ,  where a is a point to the left of I, 
x - - a  
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belongs to it. Hence, there exist two C 2 functions on I, % +, which also belong to ~2 
and such that ~ - - + - - p .  

Thus, by (a), every convex combination of functions of the formf.n(p) is a difference 
of two elements of ~0, and therefore is continuous on I \B.  Now (b) follows from the 
fact that the u.c.s, limit of continuous functions is continuous. 

I f  we have a sequence of convex combinations of functions of the form f.n(p), then 
we can write every function as a difference of convex combinations of functions of the 
form f."(q0) and f.n(~b), respectively. Since we know already that (c) holds for elements 
of ~2, we can find a convergent subsequence of our sequence. This proves (c). 

The function 9 is bounded on I and hence p~Ll(X). We have: 

(4.4) f [f,"(o)lgx=f uet~-"C x) [(f") '(Y)l p(y) dX(x) 

- -dyer-  (x)[(f")' (Y)[ 

and hence all functions f~"(P) (and consequently also their convex combinations) belong 
to LI(?,). 

Let now (%)n~~ be a sequence of convex combinations of functions of the formf.k(p), 
and let %-+a  0 in the u.c.s, topology. We shall show that %-+a0 also in the L 1 topo- 
logy. By Proposition (3.8) and Lemma (3.9), for every r  there exists an open 
neighbourhood W of B such that: 

(4-5) f w f : ( I )  e x <  3 sup [ P l for all n > o. 
I 

Since I \ W  is a compact subset of I \B,  there exists n o such that: 

[ e . - - % l d X <  -~ for all n>n o. ( 4 . 6 )  
,Ji \w 3 

From (4.5), in view of Fatou's lemma, it follows that: 

(4"7) fw[~o[dX<lim~inffw[%] dx< ~-. 
- -  3 

I f  n~no, then from (4-5), (4 .6) and (4.7) we obtain fl(~,~--%[d3.<~. Hence (~n---> (~0 
in L x. 

Now (d) follows from (4-4) whereas (e) follows from the fact that the identity 
mapping from H with the u.c.s, topology onto H with the L ~ topology is continuous, 
and from (c). �9 

Theorem (4.6).  - -  I f  f satisfies (i)-(vi), then there are no homtervats for f .  

Proof. - -  Suppose that J c I is a homterval. Take a C 2 non-negative function p 

on I such that supppCJ ,  fpdk>o.  By Proposition (4.5), there exists a sub- 
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fl i o~ t o  function in U(X). Then  sequence ( 2  (P)),=l convergent some ~ f ~ d X = f ~ d X > o .  

But f has no sinks and hence by Lemma (i .  i) all intervals f"~(J) are pairwise disjoint. 
Hence f ,  ni(p) converges to o pointwise--a contradiction. �9 

Lemma (4.7).  - -  Let U E I  be an open non-empty set. 

that f " ( U )  contains some component of I \B.  

Then there exists n > o such 

Pro@ - -  By Theorem (4.6), there exists an interval (x,y)  C U and k, m >  o such 
that f k (x ) ,  fro(y) EA. Let n = max(k, m) + I. Take the maximal interval (x, z) disjoint 

n - - 1  

from A ( f  " ) =  U f - l ( A ) .  Clearly z ~ y  and hence (x,z) CU.  B u t f " ( x , z )  is an 
i = 0  

interval and its endpoints belong to B. �9 

5. Spec tra l  D e c o m p o s i t i o n  

In  this section we still assume that f satisfies (i)-(vi). We shall decompose the 
possible support of absolutely continuous invariant measures in a way in some sense 
similar to the spectral decomposition for Axiom A diffeomorphisms. However, the 
reader should remember  that we are interested in absolutely continuous measures. 
Therefore a part  of the non-wandering set (a Cantor set of measure o) can remain 
outside our set (i.e. the set U ~ ' ) .  

Denote the set of all components o f I \ B  byof .  Since f"(B)  ff B, if for some J, L s J  
the set f n ( j )  intersects L, then it contains L. Hence the reader can think about our 
system as a topological Markov chain with a countable number of states or as a walking 
on an oriented graph with a countable number of vertices. 

We define two relations on of: 
J ~ , L  if and only if there exists n > o  such that f n ( j )  DL, 
J g L if and only if there exists n >  o such that f " ( J )  DJ u L. 
Let ~r be the set of all elements J s o f  such that, for every Lsof,  if J ~ L  then L ~ J .  

Lemma (5. i ) .  - -  The relations ,~ and ~ are equivalence relations on ~ .  

Proof. ~ io. f 0 ( j ) D J = J u J .  
2 ~ . I f  J ~ L  then L ~ J  by the definition ofd/g. Let J ~ L .  Then there exist 

k,n>_o such that fk ( J )  D J u L ,  f " (L)  DJ. Hence f"+k(L)  D L w J ,  i.e. E ~ J .  
3 ~ . I f  J ~ L  and L ~ M  then clearly J ~ M .  Let J ~ L  and J ~ M .  Then 

there exist k , m , n ~ o  such that f~(J )  D J u L ,  f " ( J )  D J u M ,  f " (L)  DJ. Hence 
f~+"+"(L)  D L u M ,  i.e. L ~ M .  �9 

Lemma (5 .2) .  - -  The number of equivalence classes of the relation ,-~ is not greater than 

Card A -  2. 

86 



36 M I C H A L  M I S I U R E W I C Z  

Proof. - -  Let NCJ4 ~ be an equivalence class of the relation ~-~. We shall show 

that the set K---- [J ~ contains in its interior an element of A which is not an endpoint 
of I. 

Suppose that K does not contain such a point. Let J be an open interval contained 
in K\A.  Since f is a homeomorphism on intervals disjoint from A and maps them onto 
intervals, and since f ( K \ A )  C A, we obtain by induction that f " ( J )  is contained in K \ A  
and f "  a is a homeomorphism for every n>o .  This contradicts Theorem (4.6). �9 

Set 0 f = {  [J N : N is an equivalence class of ~ in ~,o}. We shall use the nota- 
tion fk (K)  instead of the more precise ( f k ( ~ ) )  ~. 

Lemma ( 5 . 3 ) .  - -  The set 2/~ is finite, and f maps elements of o,~ onto elements of ~ .  
Moreover, for every KeJC  there exists n > i  such that f n ( K ) = K .  

Proof. - -  Let J, L, M, Reef ' ,  J ~ L, f ( J )  3 M, f (L)  ~ R. Then there exist k, m > o  
such that f k ( j )  D j u L  and fro(M) DJ. Hence, f k + " + l ( M )  D M u R ,  i.e. M ~ R .  
This shows that f maps elements of ~ into elements of ~ .  

Let K e ~ .  In  view of the definition of W there exists n >  I such that f ' ( K )  C K. 

Then [J fk(K)  must be a closure of a union of all elements of some equivalence class 

of ~ .  Hence, f " ( K ) = K  and a l so fk (K) ,  k = i ,  . . . ,  n - - i ,  are all elements of ~('. 
By Lemma (5.2), -~ff is finite. �9 

Lemma (5.4)- - -  Let KeJi" and let J e J ,  J C K .  

f " ( J )  ~ K. 

Then there exists n > o  such that 

Proof. - -  By Theorem (I '3), there exists m_>I such that if L % I  and the sets L, 

f ( L ) , . . . , f " - l ( L )  are disjoint from A, then X(fm(L))>X(L). Using this argument 
repeatedly, we see that for n = o ,  i, 2, . . . ,  the setf"m(J) is a union of a finite number 
of intervals, each not shorter than a = m i n / x ( J ) ,  min X(fk(M))~>o. 

] 
M t ~ A ~ O  
0 < k < r a  

Since J e J  and J C K ,  also J e W .  Hence there exists k > I  such that 9 ( J )  3J .  
I f  r > l  then f k , , ( , - t ) ( j ) 3 j  and thus 9 m ' ( J ) ~ f k ~ t ( j ) .  Hence (fk""(J))~__ 0 is an 
ascending sequence of sets. I f  L%~', L CK,  then there exists n > o  such that 

f " ( J )  D J w L  and therefi)re also f ,m~( j )D L. Consequently, we obtain the following 
situation: K is the closure of the union of an ascending sequence of sets (f~m'(J))~'=0, 
and every term of this sequence is the union of a finite number of intervals, each not 
shorter than ~. 

Since inside I there is enough room only for a finite number of such intervals, 
after some n o their number must stabilize (although a priori it can be smaller for 

fkm~(j)). As n(>n0) tends to infinity, these intervals can only become longer and 
n ~ 0  
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longer. Denote the limit intervals by K1, . . . ,  K, .  I f  xn~K\fkm-(J)  and x,-+~, 
then ~ must be an endpoint  of a certain I~.. 

Let a e I  be an endpoint  of some K~ (a--h'+ if it is a left endpoint  and a = ~ _  

if it is a right one). We shall show that there exists a point  b~I  such that  b is an interior 
point  of a certain Kj, and fkm"(b)=a for a certain n > o .  Suppose that  this is not 
true. Then  a is an element of a periodic fkm-orbit consisting of endpoints of Kj's and 
every element of this orbit has only one preimage (under f~m). Together with the 
fact that  a is repelling, this implies that  there exists a (one-sided) neighbourhood U 
of h" and an open non-empty set V C K such that  fkm"(V) is disjoint from U for every 
n 2 o .  But by L e m m a  (4.7), s~ contains an element of J .  Since fk" (K)  C K, 
this element is contained in K. Hence there exists r > o  such that  fk"~(V)D J, and 
consequently fkmn(V) intersects U for a certain n - -a  contradiction. 

Consequently, there exists ~(a)>o such that  h'eKirafk"t(~)(J). Now if we take 
~ = m a x { t ( a ) ' a  is an endpoint  of Ki; i = i , . . . , s } ,  we have K = f k " t ( J ) .  �9 

Corollary (5.5).  - -  Each K e g (  is a union of afinite number of intervals. 

Remark (5.6) .  - -  I f f  is also continuous then each Ke~C is an interval. 
Notice that  in the case o f f  continuous, the proof  of L e m m a  (5.4) becomes much 

easier (each fkmn(j) is an interval). 

From Lemmata  (4-7) and (5.4) it follows that: 

Proposition (5.7) .  - -  I f  KE~{" and f k ( K ) = K ,  then for every open non-empty 

set U C  i=0 ~ f-r  there exists n 2 o  such that  f"~(U) DK. In  particular, f k  Ii is 

topologically exact. 

6. Absolutely Continuous Invariant Measures 

Now we shall apply the results of Sections 4 and 5 to obtain the main results of 
the paper. As usual, f is a mapping satisfying (i)-(vi). By I[" [I we shall denote the 
norm in the space LI(X), and by Xe the characteristic function of a set M. Notice 
that  by (4.4), the L 1 norm of the operator f ,  is not greater than i. 

Lemma (6. i ) .  - -  Let K e g ( ,  f k ( K ) =  K, M = 0 f - " k ( K ) .  Let ~ be a non-negative 
n = O  

continuous function on I \B  such that o < f ~ 0 d X < +  oo, supp q~CK, J ,~(~)=% Then for 

fM p dX 
every C3 function p on I, lirn zMf,"k(9)= q~dX?j in La(X) and u.c.s. 
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Proof. - -  Let p be a C 2 function on I. 
Suppose that z~ f , " ik (p )~  as i~oo ,  in the L 1 topology�9 

+, z.s:, (o)_f.oex f.oex = - - ~  and + : ~  - - %  

f~dx f~dx 
Since f - " i k ( M ) = M ,  we have: 

f+i dX = f  f.~'k(p)dX 

Set: 

f q~ dx Jq) 

Clearly +i-++ in the L 1 topology. If  n j - - n i = l > o  , then f ,  tk+i=+j. 
Suppose that + is not equal a.e. to o. By Proposition (4.5) we can assume that 

+ is continuous on I\B. Then there are open non-empty sets U, V C M such that 
+ u>O, + v<O. By Proposition (5.7), there exists to0>o such that f e ' k ( U ) D K  and 

ff.k(V) 3 K .  Hence, for every x a K \ B  and to>Q we have If, ek(+)(x)l<f.e~(l+l)(x ). 
Denote ~=ll+ll-IIf/~ . Since X(K)>o, we have: 

= f l+ldx--  f If, t~ = f (f,t~ (I + l) --I f,t~ (+)1) dx >o.  

then I If~(+)[I = I l fY-t ' )~(f / '~(+)) l l  <_ I I f '~(+) l l ,  and thus: 
II+II-IIAtk(+)ll_>~ for all t~ . 

Henc e: 

If t>to o 

( 6 . i )  

But there exist i, j such that t=nj - -n i>go,  I [ + , - + t [ < -  ~ and [I +5--+ll <-~o 
2 2 

l[ + l [ -  I I f ,  tk(+)II < l[ + - f ,  tk(+)I ] <_ ]l + - +~]l + I] + j - f ,  tk(+) ] I 

<11+- +~l[ + I I A ' % -  +)tl <~. 

This contradicts (6 i). Hence, + = %  and consequently, zMf,~k(p) JMPdt 

0 

�9 -+ q~ in the 

f ? dX 

L 1 topology. Now the u.c.s, convergence follows from Proposition (4-5). �9 

Theorem (6.2). - -  Let f satisJ) (i)-(vi), and let KeJ~U. Then there exists k Z I  and 
a probability measure ~ZK, absolutely continuous with respect to the Lebesgue measure andfk-invariant 
such that: 

(a) fk(K) = K and the interiors of K and f~(K) are disjoint for i = I ,  . � 9  k - -  I ,  

(b) supp ~K----- K, 

(4 ~-~ ~ ~o, 

(d) inf  d~K>O, 
K\B d ) ,  
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(e) / f  M =  6 f - "k (K)  and Z~.peLX(X) then l im 7~.f,"~(O)= pdX . -d~  in L*(X); 
n = O  ~ --->- oO 

i f  additionally p is continuous on M then the convergence is also u.c.s., 

(f) the system . ( K , f  k K' ~'K) is exact, 
t 

(g) ~K is the unique probability measure on K,  absolutely continuous with respect to X and fk-invariant. 

Proof. - -  Let k be the smallest positive integer such that  f k ( K ) = K .  By 
Lemma  (5.3), such an integer exists. Now (a) follows from L e m m a  (5.3). 

By Proposition (4.5), the closed convex hull of {f,  kn(I)}~=0 is compact  in LI(X) 
and hence, by Markov-Kakutani  theorem, it contains a fixed point  ? o f f ,  k (if the reader 
does not want  to use strong theorems, he can take instead a point of condensation of 

/ ) the sequence ~0f*k'(I) . We set p t s = ~ - - - - - . X .  Clearly ~ ( I ) =  I. Since 
*= n=l J K  q~ dX 

i f ( K )  = K, we have 

. x -  f? (v) .x= 
fK dx 

i.e. ~K is fk- invariant .  

Since 

there exists n > o  such that  f"k(J)  DK. But [ f ' ]  

in f  d~K>o. 
t"k(s) dX 
This proves (d), and also ends the proof  of (b). 

We shall prove (e). Let M = 6 f -"~(K) ,  
n = 0  

7~. o~LX(X) �9 Let ~?>o. There exists a C 2 function + such that  

Lemma  (6. i) there exists n o such that  for all n >  n o we have: 

~ . f , ~ k ( + ) _  +dx dX <-'3 

I f  n > n  o then: 

From the definition of ~K it follows that  supp aK C K. Proposition (4.5) implies (c). 

~K(K) = I ,  inaf~xK>o for a certain component  J of K\B. By Proposition (5.7), 

is bounded  and consequently 

% [I z~.f,"~(v-- +))l] + [[ 

This proves the convergence in LI(X). 

and let p be a function on I such that 

L [ p - - ~ ] d X <  ~ By - - ~  

3 
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Let now p be also continuous. 

db~K 
Set ~ = sup Clearly 

E --~-" 
sup [ p --  ~b [ < ~ where 8 -- 
M 

n > n o then: 

I f  n > n  o then: 

Let ~>o  and let E be a compact  subset of M~B. 

~ < - k  oo. Hence there exists a C 2 function + such that  

By L e m m a  (6. I) there exists n o such that if 
2(X(M) q- I)~" 

f?n(i ) d~K ( f . ~ )  d~K --X(M) dZ ~ i  on E and f,  kn(+)__ +d)~ d~k ~ on n. 

[f,~(~__+) [ ~ f, km([ ~__+ l)--~ ~f?n( I ) ~(t(M)~--~K-~ I)~__~ (x(M)~ +~)a on E, 

and consequently: 

dx + f ~  
d X - - f p  dX d~K 

JM dX 

< (X(M) ~ -k I ) ~ -}- a --~ 8X(M) ~ = ~. 

This proves the u.c.s, convergence. 

We shall prove (f). Suppose that  the system , ( K , f  k K' btK) is not exact. Then  
/ 

there exis tsase t  E C K  such that  E = K n f - " k ( f " k ( g ) )  for all n > o  and o<~tK(E)<~. 
Then  for every n > o  we have f,"k(7~)--=o outs idef"k(E)  and hence: 

A"k(ZE) - x (L )  

= X(E) b~x(K\f "k (E)) = X(E) ~-K(K\E)> o. 

This contradicts (e). Hence, the system , ( K , f  k K' ~ t  is exact. 
/ 

At last, (g) follows from (e). �9 

From Theorem (6.2), L e m m a  (5.3) and L e m m a  (5.2) we obtain easily 

Theorem (6.3) .  --- Let f satisfy (i)-(vi). Then there exist probability f-invariant 
measures ~1, . . . ,  ~8, absolutely continuous with respect to the Lebesgue measure, and a positive 
integer k such that: 

(a) supp Exi=[.J~ for certain equivalence classes ~ of the relation ~ ,  i = i ,  . . . ,  s, 
(b) supp ~t i n supp ~j is a finite set i f  i W-j, 
(c) I < s < C a r d A - - 2 ,  
(d) ~t~ /s ergodic, i = I ,  . . . ,  s, 

(e) ~dNe~o, i = I ,  . . . , s ,  

#0 
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(f) mf over the set supp ~i\B is positive, i = I, . . . ,  s, 

(g) /f peLl(X)then ,lim~co E f*~+:(P)=~__ ~ = l  1~162 in Ll(X), where ~i= r-"(~.pp~) p dX; 
n = 0  

i f  moreover p is continuous, then the convergence is also u.c.s., 

(h) for  every finite Borel measure v, absolutely continuous with respect to X and f-invariant, one 

has ~ = ~ ~i~ti, where ,r 6 f -"(supp ix,)). 
i = 1  n = 0  

7" Examples 

We are going to show that for a large class of one-parameter families of mappings 
(looking like 4ex(I--X)) conditions (i)-(vi) are satisfied for a set of parameters of power 
the continuum. 

Let F:  [o, i ] •  be a continuous mapping. 
f~ : I ->I  the mapping given by f~(x)=F(cq x). Let 

(a) f ~ ( a o ) = f ~ ( a l ) = a  o for  a l l  c~e[o, i ] ,  

(b) f o ( x ) = a o  for all xeI, 
(c) for every 0~e(o, i] there exists c~eI 

and strictly decreasing on [c~, al], 

(d) f i ( q )  = ai. 

For ee[o, I] we denote by 
I =[a0, ai]. We assume that: 

such that f~ is strictly increasing on [a0, c~] 

Lemma ( 7 . I ) . -  The mapping c ~ c ~  is continuous. 

Proof. - -  Fix ee(o, I] and ~>o. By (c) there exists 

(7.x) if f~ (x )>f~(c~) - -~  then Ix - -c~l<~.  

The mapping F is continuous and [o, I ] •  is compact. 
continuous. Hence, there exists 8>0 such that: 

(7.2) if Icr ~[<~ then Is < -  
2 

Let By (7.2) we have: 

-~ >o such that 

Therefore F is uniformly 

for all xeI. 

and by (7.i), [ c ~ - - c ~ ] < , .  �9 

Now define %=sup{o~:f~(c~,)<_c~,}. 

Lemma ( 7 .  m ). - -  % < I . 

Proof. J By (a) and (d), we have q < a  1. The mapping a ~ f , ( c ~ ) - - c ~  is conti- 
nuous in view of Lemma (7. I). Hence the set {~ :f~(c~)>c~} is open and contains I. I 

41 
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Lemma (7.3)- - -  For every .E( .o ,  I] there exists exactly one b~(c,,  at) and exactly 
one b" ~(ao, c~) such that f~(b')~f,(b~)=b~. 

Proof. - -  Let "~(~o, I]. Then  f~(c~)--c~>o, f~(al)--al<o and therefore there 
exists b~(c~, al)  such that  f~(b~)=b~. I t  is unique becausef~ is decreasing on (Q, al). 
Now f~(ao)<b~, f~(c~)>f~(b~)~b~ and therefore there exists b'(ao, c~) such that  

f,(b'~)=b~. It  is unique because f~ is strictly monotone on (a0, c~). �9 
Now we must  make a new assumption on f :  

(e) there exists a neighbourhood U of the set {(e, c~) : eE(o, i]} in (o, i] • I such that  
for every ee(o, I], U ,  = { x :  (~, x)EU} is an interval and f~ satisfies the Lipschitz 

condition with the constant "V/2 on U~. 

Lemma (7-4:). - -  There exists ~>~o such that f~(c~)> b'. 

Pro@ - -  By (e), there exists ~>o  such that  if ] e - - % l < z  t h e n f ~  satisfies the 

Lipschitz condition with the constant -V/2 on the interval [c~--z, Q-t-z]. By Lem- 
mata  (7 . i )  and (7.2), there exists e > %  such that  [ e - - % ] < z  and 

Then f~  satisfies the Lipschitz condition with the constant ~r on the interval [c~,f~(Q)] 
and  b~, belongs to this interval. Hence: 

(7 .3 )  ~ [f~(c~)--b~l _~-<'V~ lf~(c~)--b,l _< b~--c~,. 

I f  b~-- c~ > c~ --  b~, then o < c~ --  b" < f ~  (c~)-- c~ < z and f~ satisfies the Lipschitz 

condit ion with the constant ~ also on the interval [b'~, c~], and hence also: 

I 
(7-4) -lf~(c,)--b~t<_c~, - b ' .  

2 

But if b~--c~<c~--b'~ then (7.4) follows from (7.3). 

Summing (7 �9 3) and (7.4) we get If~(c~)--b~[<b~--b'~, and therefore f~2(c~)L> b~.' �9 
Now we define e l = s u p { e "  2 .f~(Q)>b~}. By L e m m a  (7.4), we have ~t>~o. 

n oo Let ~= (~ (  )),=0 be a o-i sequence. Let D o [b'~,c~], D~=[c~ ,b , ]  (for 

~>~o)" 

Lemma (7.5) .  - -  There exists a descending sequence (Pk)k~o of closed intervals contained 
in [el, I], such that: 

(7 .5 )  f~+2"(c,)ED~(") for n = o ,  i, . . . , k  and for every eePk, 

( 7 . 6 )  there exist ~(k), v(k)EPk such that 3+2k f~(k) (c~(k)) = c~(k) 

3+2k { ' f~ck~ (%kl)= bv(k) / f  ~ (k )=o  
b,(k) /3" ~(k)=i .  
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Proof. - -  We shall use induction. 
The functions e~b'~, 0~c~,  e~b~  and ~ / ~ ( c ~ )  are continuous on [el, i] 

and we have b'~<c~<b~, ~ f~(c~) = b~, f~a(q)< b 1. Hence it is obvious that there exists 
an interval P0 satisfying (7-5) and such that its endpoints (as ~(o) and y(o)) satisfy (7.6). 

Suppose now that we have found already Pm-t such that (7.5) and (7.6) hold 
for k = m - - ~ .  The function o~f~+~m(c~) is continuous. We have by (7.6): 

f~+~_'~l(c.:(,,_ll)=b(,,_~l and f~+ z'~)(c~(m_ll )=f~m_l)(c~(m_ll)< b;(m_~l. 

Hence, as before, there exists an interval PmCPm_I satisfying (7.5) for k = m  and 
such that its endpoints (as ~(m) and y(m)) satisfy (7.6) for k = m .  [] 

From Lemma (7.5) it follows immediately that: 

Proposition (7.6) .  There exists ~(~)e[0~, I] such that c3+2~r~ ~r~(,~l for 
n ~ o ,  I~ 2,  . . .  

Proposition (7-7).  - -  There is no homterval joining c~(~) with a periodic point of f~(~). 

Pro@ - -  Denote f=f~(~l,  c = c~(~), b = b~(~l , b' -- b'~(;l. Suppose that J is a 
homterval joining c and p and f" (p)  =p. Then f2,(p) = p  and f2,, preserves an orienta- 
tion at p (and hence on J). We may assume that 2n> 4 (otherwise take 4 instead of 2n). 
Then, by the definition of ~(~), f2"(c)ef[b ' ,  b], and hence f2"(c)>b. Clearly p+c.  
I f  p>c then p =f2"(p)>f2"(c)2b, and consequently beJ. Then b =f2"(b)>f2"(c)2b- 
a contradiction. 

If  p<c  then c<b~f2"(c) ,  i.e. cef2"(J).  This contradicts the assumption that 

J is a homterval. [] 

Proposition (7.8).  - -  The point c~(~) does not belong to the closure of the set {f~)(%r ~ 

Proof. ~ We use the same notation as in the preceeding proof. I f  ~(~)----el then 
"n C oo f 3 ( c ) = b  and {J ( ) } , = l = { f ( c ) ,  b', b}~c. 

Consider the case e(~)>~l.  We have f2(c)<b', and hence there exists an open 
interval V~c such that if xeV then f2(x)<b'.  Thus f" (c ) r  for n odd. For n even 
and greater than 2 we have f~'(c)ef([b', b])C [b, al]. For n----2, f"(c)<b' .  Conse- 
quently, since VC(b ' ,b ) ,  fn (c ) r  for all n > i .  [] 

Theorem (7-9). - -  Let the family {f~,}r e [o, 11 of mappings of I = [ao, al] into itself satisfy. 
the following conditions: 

(I) (~, x ) , f ~ ( x )  is continuous, 
(2) f~ is of class C3 for every c~e[o, i], 

(3) (~ ,x )~ f2 (x )  is continuous, 
(4) f2 ' (x )<o  for every ~ ( o ,  I], xeI ,  
(5) S f~<o  for every 0~e[o, i], 
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(6) f~(ao)=fe(a l )= a o for every 

(7) supfo = ao, 
(8) sup f l  = a  1. 

Then there exists a set 0 C [o, I] 
for every ~ 0 .  

q, 

of power the continuum such that f~ satisfies conditions (i)-(vi) 

Proof. - -  Clearly, our family satisfies conditions (a)-(d). Fix ~e(o, I]. By (3), 

there exists ~>o  such that  if ] e - -  ~ { < ~ and [x--  c~ [ < ~ then [f~'(x){ < %/~. But 

there exists 8 > o  such that  if [ 0~-- } [ < 8 then [c=-- c~ [ < ~. Hence, if ] e - -  }[ < min(8, ~) 
2 

and Ix-c l< then This proves (e). 
2 

Now we take a sequence ~ and e(~) obtained in Proposition (7.6). We shall 
prove that  f~(~) satisfies (i)-(vi). As before, we denote f=f~(~),  c =c=(~). 

Conditions (i)-(iii) are satisfied by (2), (4) and (5) (notice that  (ii) means that  
f ' ( x ) # o  at xEI\{a0, al, c}). Suppose that  (iv) is not satisfied. Then  there exists a 
periodic point  p of period n such that  ] (fn) ,  (p) l<  x" I f  p = a  0 then by (4), f ( x ) < x  

for all x>a  o. By (5), [(f~")'] has no positive strict local min ima and hence there exists 
an open interval J such that  p is one of the endpoints of J and o <  ](f2,),[ < I .  We 

can take as J a maximal such interval. Then the other endpoint  of J is either an 
endpoint  of I or a point  at which ( f2 , ) ,  is o. In  the first case we obtain a contradiction, 
because f 2 , ( j ) c j  and consequently I(f2k")'(x)[<_I for every k at the endpoint  x 
of J.  But since f ' ( a 0 ) > I  , no image of x is %. In the second case, some image of J 
is a homterval  joining c with a periodic point. This contradicts Pioposition (7.7). 
Hence (iv) holds. 

Condit ion (v) follows from Proposition (7.8). Condition (vi) follows from the 
fact that  f ' (ao)#O , f ' ( a l ) # o  , and f " ( c ) # o  (we take u = o  foI a 0 and al and u = I  
for c). m 

8. Entropy 

We still assume that f satisfies (i)-(vi). I f f  is also continuous then the topological 
entropy o f f  is equal to the topological entropy of the corresponding symbolic system 
(see e.g. [6]). Here we use for coding the partit ion into components of I \A.  There- 
fore, in the case o f f  not necessarily continuous we can define h ( f )  simply as the topo- 
logical entropy of the corresponding symbolic system (cf. [8]). I t  is easy to see that  
both systems are conjugate to each other after removing a countable number  of points 
from both spaces. Hence there is a one-to-one correspondence between probabilistic 
invariant non-atomic measures, and thus the topological entropy so defined is equal 
to the supremum of metric entropies. 
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The  goat of this section is to give necessary conditions for an absolutely continuous 
measure to be a measure with maximal entropy. 

The  first reason why an absolutely continuous measure may be not a measure 
with maximal entropy, is that  it often happens that  h(f ,u , ,]<h(f) ' ,us  This reason 
was pointed out by J. Guckenheimer.  

I k--1 
Notice that  if Kegg', f k ( K ) = K  and ~,_~0f*(~K).= is a measure with maximal  

entropy for f ,  then ~:  is a measure with maximal entropy for fk .  

Theorem (8. I).  - -  Let f satisfy (i)-(vi), KeJ{' ,  f k ( K ) = K .  I f  the absolutely continuous 
measure ~K is a measure with maximal entropy for f k K' then for every periodic point x ~ K \ B  of 

period n for f k ,  ](f,~k),(x)]=~3,, where h ( f  k K)=log  [L 

Proof. - -  In  view of Corollary (5-5), K is a union of a finite number  of intervals. 
Since K is fk-invariant ,  we can " cut out " the gaps between them and we obtain a 
piecewise continuous mapping of an interval onto itself. By Proposition (5- 7), f K is 

strongly transitive (see [8]). By Theorem ( 6 . 3 ) ( f ) ,  h ( f  k K)> h~K(f k K)>O. Hence, 

by the theorem of Parry [8], f k  I is conjugate to a piecewise linear mapping g such that  
/ K 

Ig'h--~ (in the case o f f  continuous, this follows also from [4]). Denote this conjugacy 
by e. Clearly, g satisfies (i)-(vi), and it has only one set in its " spectral decompo- 
sition " - - t h e  whole interval. Therefore there exists a unique g-invariant probabilistic 

d~ 
measure v, absolutely continuous with respect to X. Clearly ~ o ~ is continuous on K\B.  

Denote by • the measure (~-~)*(,~), and by + and q~ the measure theoretical 
jacobians of ~z K and • respectively (see [7]). We have: 

( 8 .  x )  d? -= \ dX o f  . l(fk)'l 
d~XK 
dZ 

(dv ) d , Joaof  k 

(8.2) d,, o =13 
- - O ( Y  

dx dx 

For every probabilistic f~-invariant  measure ~ on K we have, in view of (8.2): 
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In view of Theorem (4.6), our systems have one-sided generators, and hence (see [7]) 
the measure-theoretic entropy is equal to the integral of the logarithm of the measure 
theoretic jacobian. Thus, by (8.3) we get: 

(8.4) h~(fk)--h~.(f~)=flog ~ d~K--f log q0d• 

=(f  iog + dv. :--log +(log log v log 

If  a function 0 belongs to LI(~zK) then for the conditional expectation of p with respect 
to the inverse image of the whole ~-field under f~, we have the formula: 

E~(~ {f-~(N))(x) = Z 0(Y) 
e t-kltk( )) + (y)" 

Hence: 

= 51 ! = o .  

Assume now that VtK is a measure with maximal entropy forfk I and that x~K\B,, 
K' / 

f'n(x)=x. By (8.4) and (8.5), we have q~-~+ ~tl~-almost everywhere. The whole 
trajectory of x (under f ~) is disjoint from B and hence, in view of (8. i) ,  (8.2) and 
Theorem (6.2) (c), q~ and + are continuous in some neighboulhood of the trajectory 
of x. Thus, they are equal on the whole trajectory of x. Therefore by (8. I) and (8.2) 
we obtain: 

n--1 n--1  n--1 

I(f"~)'(x)[ = 1-I I(f~)'(fr = [ |  +(fi~(x))=.II ~?(f'k(x))=~". �9 

9- Entropy for quadratic maps 

The best known (and easiest for computations) family of maps satisfying the 
hypotheses of Theorem (7.9) is the family of maps f~ : [o, I] --~ [o, i] given by the 
quadratic polynomials f~(x)=4ex(I--X ). Comparison of the graphs of topological 
entropy [4] and the characteristic exponents [9] of these maps suggests that the only 
case when the metric and topological entropies are equal is e = i. In this case they 
are clearly equal since f l  is smoothly conjugate to the piecewise linear map with slope i 2. 

It often happens that the topological entropy on the support of the absolutely 
continuous measure is smaller that the topological etttropy on the whole interval. As 
J. Guckenheimer pointed out, this effect takes place e.g. when there is an interval J 

c~(~I-~ invariant u n d e r f ~  and with o-th, ~-st and 2-nd images disjoint. containing 
\ 21 
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Then  the absolutely continuous measure is supported by J t 3 f ~ ( J ) u j ~ ( J )  (or even a 

smaller set). B u t w e  have then h(f~ a )<~ l ~ 1 7 6  - - 2  For our family 

this happens for ee  , o.9642oo... (of course, we consider only those e, for 
4 

which an absolutely continuous invariant measure exists). 
This effect is unavoidable for such families. However,  the question remains, 

what happens in the case when the support of an absolutely continuous measure is an 
interval. 

I { , ( i ) } o  Then  the probabi- We are interested in the maps f ,  for which ~ r f~ ~ ,=1 

listic invariant absolutely continuous measure is unique (since Card A = 3 ) .  We 
shall denote this measure by [x~. We shall use the notations of Section 7 (remember 

I ) 
that c ~ = -  for all 0~ . 

2 

Proposition (9. I ) .  - -  The support of ~(~) is an interval. 

b l  t Pro@ - -  Let f=f , (~ ) ,  b = b~l~) , = b~(~), ~ = ~-(~1" In  the proof of Propo- 
sition (7.8) we can take as V the maximal interval with the given properties. We 

have VC supp ~x and hence f 3 ( V ) C  supp Ix. But f2 (V)~b '  and hence f~(V)~b.  Since 

there are no homtervals, there exists n such that f ~ + 3 ( V ) ~ I .  Therefore: 
2 

2 I . I 

But this interval is invariant, and hence it must be equal to supp ix. �9 
We are going to show that ~(r is not a measure with maximal entropy for an 

uncountable set of  sequences ~. To simplify the computations we will work first with 
the equivalent family of maps g~, where g~(x)=x2--~, ~e[o, 2]. I t  is easy to check 

[ I -}-'V/I -}-4~ I + ~ / I - -@~]  
that g0 maps the interval , - into itself. 

2 

Lemma (9.2).  - -  Let o < y < ~ < 2 be such that gv has no periodic point of prime period 3 
but g8 does. Then u  

Proof. - -  Denote 

(9.I) 
where 

(9.2) 

W~(x )=g~(x ) - - x=x2- -x - -~ .  It is easy to check that: 

g ~ ( x )  - x =W~(x). pdx) 

P~(x) =W~(x). (W~(x) + 2x + ~)2 + 2x(W.(x) + 2x + t) + 
= x6 + x5 + ( I - -  3{~)x4 + ( I - -  2L3)x3 + ( I - -  3L3 + 3L3~)x ~ 
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From (9.2) it follows that if W~(x) = o then: 

P~(x)= 2x(2x--~ I ) + I =  4Xz @ 2x @ I = 3X2 @ (x-~- I )2>o. 

Therefore x is a periodic point of prime peiiod 3 if and only if P~(x) = o. 

then g~(x)=x and hence P~(x)>o. I f  x =  
2 

then P~(x) - g ~ ( x ) - x  
g~ (x)  - x 
- -  - -  I >0.  Hence, there exists ~e(y, 3] and: 

i -t-'V/i -t-4~ 

yG 
2 

such that P ~ ( y ) = o  and P'~(y)=o.  
We also have P~(g~(y))----P~(g~(y))---- o and the points y, &,(y), g~(y) are distinct. 

We have: 
(g~)'(y)---I = ( g ~ ( x )  - -  X ) '  x = y  = ( W ~ ,  P~)' (y) = o 

and hence also (g~)' (&,(y) )=(g~)' (g~( y) )=  :. Thus: 

(W,. P',)(&,(y)) = (g~)' (g~(y) )--  : - - ( W ' .  P,)(&,(y))= o, 

and analogically (W~.P'~)(g~(y))=o. Consequently, P'~(g,(y))----P~(g~(y))' 2 = o .  
Hence, the polynomial P, has three double zeros. Since its degree is 6, it is a 

square of a certain polynomial Q of degree 3. The coefficient of x 6 in P~ is i and 
therefore we may assume that also the coefficient of x 3 in Q is i. Let: 

Q ( x )  = x 3 -k- ~2x 2 + ~:x  § ~0. 

Comparing coefficients of x 5, x 4, x 3 and x in P~ and O~ we obtain: 

2~ 2 = i \ 

2~: 2 I 

~ .0~=I  - 2 ~ + ~  ~ ) 
I 3 3 ~2 5 : From the first three equations we obtain successively: ~2 = ~, ~l = g - -  2 e' 16 4 

Then from the fourth equation we get ~ 7 4  +49~4=o, i.e. ~=-'47 �9 

Proposition (9.3). - -  g~ has a periodic point of prime period 3 i f  and only i f  ~ > 7. 
4 

X 7 - -  I 

Proof. - -  We get from (9.e): Po(x )=xG+xS+x4+x3+x~+x+I  - Since 
X - - I  

P0 has no real zeros, go has no periodic points of prime period 3. I f  I 1= i, then 
2 Re(z2)=(2 Re z)2--2 =g2(2 Re z). Hence, if we take as z a complex root of : of 

degree 7, then 2 Re z will be a periodic point of g2 of prime period 3. 
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Now, if ~ > 7  then g~ has a periodic point of prime period 3 by Lemma (9.2) 
4 

applied to y = ~, ~ = 2; if ~ < 7 then g~ has no periodic point of prime period 3 by 
4 

Lemma (9.2) applied to y = o ,  8 = ~ .  �9 

Since g~ is (linearily) conjugate to f~, where e =  x - - ( I - } - % / ~ ) ,  we obtain 
4 

Corollary (9.4). - -  f ~ has a periodic point of prime period 3 i f  and only i f  ~> ~ ( ~ + 2 ~v/ 2 ) . 

i 

Lemma ( 9 . 5 ) - -  I f  ~(~)<4(~-}-2%/~) then h~(~)(f~(~t)<log 

Pro@ - -  Let f=f~(~), ~----~(~). By Proposition (9-~), supp ~ is an interval. 

Hence (see [8]), fl~uv,~ is conjugate to a piecewise linear map f~with Iffl  =[~, where 

h(fls~ ~v) = l o g  ~. It is easy to see that ? i s  linearily conjugate to the map g given by 

{~x if x < i  
g(x)= [~(2--x) if x > I  

on some subinterval of [o, 2], containing i. 

I -}- "~/-5 22 222 
~ >  l o g - -  The trajectory 

2 I + ~  3' I + ~  3' I + ~  3 2~ 
period 3. In order to see this, it is enough to notice that o< ---2-~ ~<I  I + ~  ~ I + ~  . . . . .  

2~ 3 
i < ~ < ~ = g(i) .  Hence f has also a periodic trajectory of prime period 3- 

contradicts Corollary (9.4). �9 

Suppose that h~(f)> log - -  Then 
2 

is a periodic trajectory of prime 

and 

This 

Theorem (9.6).  - -  For the family {f~}~e[0,1], f~(x)-=-4ex(I--x), f~ : [o, i] "--> [O, I], 
there exists a set AC 13 of power the continuum such that i f  e e A  then the absolutely continuous 
measure is not a measure with maximal entropy. 

Proof. - -  Let A be the set of all e(~) such that there exists k with the property that 
all blocks of i's appearing in ~ are shorter than k. 

Let e t A ,  f = f ~ ,  ~ = ~ ,  b=b~, 

f3+2n(b)eD~ t for all n, 

then b does not belong to f n  ~=1" 

( i) 
b '=b~  remember that - = c ~  . Since 

2 

entropy. Then, by Theorem (8.I) ,  we have i f ' ( b ) [ = ~ ,  where log ~ = h ~ ( f ) .  
I 

have 4eb( i - -b )=b,  b+o and thus 4 ~ ( I - - b ) = I ,  i.e. b = i - - - - .  Then 
4 e 

(9.3) ~ =  [f'(b)[ = 1 4 e - - a b e  1 = 1 4 ~ - 8 ~ + 2 [ = 4 ~ - 2 .  

Suppose that tz is a measure with maximal 

We 
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Suppose first that c~<I ( i  + 2 A / i ) .  
4 

hence by (9.3): 

(9.4) ~< 5-k%/5. 
8 

By Lemma (9-5) we have 
I - J -~ ;  

~ < - - ,  and 
2 

We have c~ = c~(~)2 ~ and f~l = b'~. 

I 
b'~ = I - -  b~ --  and 

4 ~  

Since: 

f =l (-0 = -  11, 

el is a zero of a polynomial 

Q ( 5  + 8 ~ - )  - 7 -  5%/5 < ~ 32 Q ( I )  

i i 
e l = - .  But = -  and hence - < s  0. 

2 2 2-- 
Lemma (7.4). 

Suppose now that c ~ 2 I ( i + 2 % / ] ) .  
4 

(9.5) ~__~ 2%/2-- I. 

Q ( x ) = i 6 x 4 - i 6 x 3 + i .  By (9-4), 5 1 < - - - -  

= o  and Q ' ( x ) = - i 6 x 2 ( 4 x - 3 ) ,  

Consequently, ~Xl~Z 0. 

Then, by (9.3): 

5+%/5  Since 
8 

we must have 

This contradicts 

[(:)] [i] 
We have log ~ = h ~ ( f ) < h ( f ) .  Take the intervals J l =  f2  , b' , J 2 =  b',-~ , 

r 1 r / \ ~  

L A L ~ / J  
4 

is contained in {o}ui__01J i. The m a p f  is monotone for 7 = I ,  2, 3, 4, and therefore 
li 

h ( f )  is equal to the topological entropy of the symbolic system obtained by coding 
with respect to {J~}~=t (see e.g. [6]). We have f ( J1)cJ=wJ~,  f ( J= )c  J4, f ( J ~ ) c  J , ,  

f(J4) c J1uJ~uJ3 .  Hence h ( f )  is not larger than the topological entropy of the topo- 

( i  I I IO;t logical Markov chain with the transition matrix o o . The characteristic poly- O O 
I I 

nomial of this matrix is x.P(x), where P ( x ) = x 3 - - 2 x - - 2 .  Hence ~ is not larger than 
the largest zero of P. We have: 

and 
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By (9"5), ~-~2"~/~--I>J~" Hence P(2,V/2--I)<O. But: 

P ( 2 % / ~ - -  I) = 18"V/~--  25 > o ,  

a contradic t ion.  �9 
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