
ORBIHEDRA OF NONPOSITIVE CURVATURE 

by WERNER BALLMANN a and MICHAEL BRIN ~ 

ABSWV.AeW. A 2-dimensional  orbihedron of nonposit ive curvature  is a pair (X, r ) ,  where X is a 2-dimensional  s im- 
plicial complex with a piecewise smooth  metr ic  such tha t  X has  nonposit ive cumTature in the sense of Alexandrov 
and  Busem ann  and  r is a group of isometries of  X which  acts properly discontinuously and  cocompact ly.  By analogy 
with R i e m a n n i a n  manifolds of  nonpositive curva ture  we introduce a na tura l  not ion of rank I for (X, r )  which turns  
out  to depend only on 1 ~ and  prove that ,  if X is boundaryless,  t hen  either (X, I ')  has  rank  1, or X is the  product  
of  two trees, or X is a thick Eucl idean building.  In  the first case the  geodesic flow on X is topologically transit ive 
and  closed geodesics are  dense.  

1. Introduct ion  

The idea of considering curvature bounds on metric spaces belongs to Alexandrov 
[Ale], Busemann [Bus] and Wald [Wal]. Busemann initiated the theory of spaces of 
nonpositive curvature. Later, Bruhat and Tits [BrTi] showed that there is a natural  
metric of nonpositive curvature on Euclidean buildings and used it to prove a generaliza- 
tion of the theorem of Cartan on maximal compact subgroups of semisimple Lie groups. 
The work of Gromov (see for example [Grl]  and [Gr2]) led to a revival of the general 
theory of metric spaces with curvature bounds and to applications in Riemannian 
geometry, combinatorial group theory and other fields. 

In  this paper we discuss the rank rigidity for singular spaces of nonpositive curvature. 
To a large extent the main concepts and ideas introduced below are a natural  develop- 
ment of the corresponding aspects of the rank rigidity theory for Riemannian manifolds 
of nonpositive curvature (see [BBE], [BBS], [Ba3], [BuSp], [EbHe]). 

An orbispace is a pair (X, I'), where X is a simply connected topological space 
and I ~ is a group of homeomorphisms of X acting properly discontinuously. An orbi- 
space (X, F) is compact if F acts cocompactly. An orbispace (X, F) is an orbikedron if X 
admits a I '-invariant triangulation. 

We are interested in orbispaces and orbihedra of nonpositive curvature, that 
is, we require in addition that X has a complete F-invariant geodesic metric d of non- 
positive curvature in the sense of Alexandrov and Busemann. As in the smooth case, 

asymptote classes of geodesic rays define the space X(oo) of points at infinity and 
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X = X u X(oo) has a natural  F-invariant topology. I f  X is locally compact,  then .X 
is compact.  Here are some examples of spaces of nonposifive curvature. 

1. Smooth Riemannian  manifolds with nonpositive sectional curvature. 
2. Trees with interior metrics. 
3. Euclidean buildings with their canonical metrics (defined up to a constant), 

see [Bro, Chapter  VI] .  
4. (m, n)-spaces for mn >1 2(m q-n)  with their canonical piecewise flat metrics. 

Such a space is a 2-dimensional CW-complex X with the following properties: 
the attaching maps are local homeomorphisms,  the boundary  of each face consists of 
at least m edges (counted with multiplicity) and every simple loop in the link (see Section 2 
for the definition of a link) of a vertex consists of at least n edges. The  natural  flat metric 
on X makes each face of X with k edges an isometrically immersed regular Euclidean 
k-gon. Such spaces arise naturally in combinatorial  group theory, see [LySc] and [BaBr]. 

Let  (X, F) be a compact  orbispace of nonposidve curvature. A geodes i c .  : R -+ X 
is called F-dosed if  there is an isometry q~ ~ F translating . that  is, ~(o(t)) = . ( t  + to) 
for some t o 4= 0 and all t ~ R. A F-closed geodesic ~ and an isometry q~ ~ F translating 
are said to have rank I if cr does not bound  a flat half  plane. The  orbispace (X, U) has 
rank I if F contains a rank 1 isometry. 

Theorem &. - -  Let (X, F) be a compact orbispace of rank 1 and suppose that X(oo) contains 
more than two points. 

Then for any two nonempty open subsets U, V C X(oo) there is e? E F such that 
~0(X(oo)\U) C V and ~-x(X(oo)\V) C U. Moreover, there is a F-closed geodesic ~ of rank 1 
with ~(--  oo) ~ U and ~(oo) e V .  

This is the key property of rank 1 orbispaces. Applications of this property are 
discussed in Theorems D and E below. 

Theorem B. - -  The property of a compact orbispace (X, F) of nonpositive curvature to have 
rank 1 depends only on r .  

This theorem generalizes a result of Eberlein [Eb2]. The  main idea of the proof  
goes back to Morse [Mor]. In  fact, we obtain an algebraic criterion for an element of r 
to have rank 1. Theorems A and B are our main motivation for considering rank 1 
orbispaces. 

Let  X be a locally finite simplicial complex. A piecewise smooth Riemannian metric g 
on X is a family of smooth Riemannian  metrics gA on the simplices A of X such that  
gal~----gB for any simplices B and A with B C A. 

Let  g be a piecewise smooth Riemannian  metric on X. Then  the lengths of curves 
in X are defined and the induced distance function d makes X an interior metric space. 
Assume that  there is a uniform bound  on the geometry of the simplices in X. Then  d is 
complete, and hence, geodesic, since X is locally compact.  
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Let (X, r )  be an orbihedron with X locally finite. We say that a r - invariant  
metric d on X is piecewise smooth if there is a r - invar iant  triangulation on X with a 
r- invariant  piecewise smooth Riemannian metric g such that d is the induced distance 
function. 

A k-simplex in X is called a boundary simplex if it is adjacent to exactly one (k + 1)- 
simplex. An n-dimensional orbihedron (X, P) is called boundaryless (or we say that it 
is without boundary) if there are no boundary simplices in X with respect so some (and 
hence any) triangulation of X. I f  (X, r )  is a 2-dimensional orbihedron of nonpositive 
curvature, then X contains a r - invariant  suborbihedron X '  without boundary and of 
dimension ~< 2 such that a) X' is a P-equivariant strong deformation retract of  X, 
b) the action of r on X'  is effective and c) the induced metric on X '  is piecewise smooth 
and of nonpositive curvature (see Section 2). I f  (X, r )  is a compact 2-dimensional 
orbihedron of nonpositive curvatuve, then every geodesic segment of X is contained in 
a complete geodesic (one defined on the whole real line) iff (X, r )  is boundaryless. 

The  following theorem is the main result of  this paper. 

Theorem C. -- Let (X, r) be a compact 2-dimensional boundaryless orbikedron with a 
piecewise smooth metric of nonpositive curvature. Then either 

(i) (X, r )  is of rank 1, or 
(ii) X is the product of two trees endowed with the product metric of two interior metrics, or 

(lii) X is a thick Euclidean building of type As,  Bs or Gs, endowed with its canonical metric. 

In  Cases (ii) and (iii) every geodesic is contained in a flat plane. In  Case (i) we 
prove that there is a r-closed geodesic a such that either a) o passes through a point 
in an open face where the Gauss curvature of X is negative, or b) ~ passes from one 
face to another through a point in an open edge e where the sum of the geodesic curva- 
tures of e with respect to the two faces is negative, or c) o passes through a vertex v and 
the distance between the incoming and outgoing directions of ~ in the link of v is ~ ~. 
We call ~ hyperbolic if one of the cases a), b), or r occurs. 

Denote by G(X) the set of unit speed geodesics ~ : R - - ~  X, endowed with the 
compact-open topology. The geodesic flow g~ acts on G(X) by g~(a) (s) = ~(s + t). 

Theorem D. - -  Let (X, r )  be a compact 2-dimensional boundaryless orbihedron with a 
piecewise smooth metric of nonpositive curvature. I f  (X, r) has rank 1, then 

(i) hyperbolic F-dosed geodesics are dense in the space of geodesics; 
(ii) the geodesic flow is topologically transitive modulo r .  

Note that in Cases (ii) and (iii) of Theorcm G the geodesic flow has continuous 

first intcgrais. In a latcr paper we will study the asymptofics of thc numbcr of r-closed 
geodesics. In the rank I case the arguments arc very similar to the arguments ofG. Knieper 
in [Kni]. 



172 WERNER BALLMANN /MND MICHAEL BRIN 

Theorem E. - -  Let (X, r )  be a compact 2-dimensional boundaryless orbihedron with a 

piecewise smooth metric of  nonpositive curvature. 
Then either P contains a free nonabelian subgroup or X is isometric to the Euclidean plane 

and P is a Bieberbach group of  rank 2. 

This result is analogous to the Tits theorem on free subgroups of linear groups, 
see [Til] .  Theorem E is a consequence of Theorem C and the following result. 

Theorem F. - -  Let X be a Euclidean building and I" a group of  automorphisms of  X acting 
properly discontinuously and cocompactly. 

Then either P contains a free nonabelian subgroup or X is a Euclidean space and P is a 

Bieberbach group whose rank is dim X. 

For thick Euclidean buildings of  dimension /> 3, this follows from Tits' theorem 
quoted above [Til]  and his classification of spherical buildings of rank >/ 3 (see [Ti2]). 

The proof of our main result, Theorem C, consists of two parts. In the first part  
we consider the case when all faces of  X are flat Euclidean triangles and all links have 
diameter ~ and show by an elementary argument that X is either a product of two trees 
or a thick Euclidean building of type A2, B 2 or G, .  This part is related to the (unpublished) 
result of B. Kleiner [Kle] that if every geodesic of an n-dimensional complete simply 
connected space X ofnonpositive curvature is contained in an n-flat, then X is a Euclidean 
building or a product of Euclidean buildings. 

In the second and main part of the argument we start by considering the following 
cases: a) the Gaussian curvature of a face is negative at an interior point, b) there is an 
edge e with adjacent faces f l  and f ,  and a point x in the interior ofe  such that the sum of 
the geodesic curvatures of e at x with respect to f l  and f ,  is negative. In both cases we 
conclude that (X, P) has rank 1, thus reducing the general discussion to the case when 
all faces of X are Euclidean triangles but  at least one of the links has diameter > ~. The 
existence of a rank 1 isometry in P in the latter case would follow easily if there were 
a P- and gt-invariant measure which is positive on open sets of geodesics. In Section 3 
we construct a natural generalization of the Liouville measure which is invariant under 
isometrics and the geodesic flow. However,  this measure is concentrated on the set of 
geodesics that do not pass through vertices. 

After discussing some preliminaries in Section 2, we construct an analogue of 
the Liouville measure in Section 3. Theorems A and D are proved in Section 4, Theorem B 
in Section 5, Theorem C in Sections 6 and 7, Theorems E and F in Section 8. Sections 4 
and 5, Sections 6 and 7, and Section 8 can be read independently. 

We express our gratitude to M. Gromov who encouraged us to study singular 

spaces and with whom we h a d  many useful discussions. We thank our families for the 

infinite patience during the t ime  we worked on this paper. 
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2. Pre l iminaires  

Let  X be a metric space with metric d. A curve c : I -+ X is called a geodesic if  
there is v/> 0, called the speed, such tha t  every t ~ I has a neighborhood U C I with 

d(C(tl), c(t2)) = v ] tl --  t2 [ for all t l ,  t s e U. I f  the above equali ty holds for all tl ,  t s e I, 
then c is called minimal or minimizing. 

We say tha t  X is a geodesic space i f  every two points in X can be connected by a 
minimal  geodesic. A locally compact  and  complete metric space X is geodesic i f  it is 

interior, tha t  is, i f  the distance between every two points in X is the in f imum of the lengths 
of  curves connecting them.  We assume from now on that  X is a complete geodesic space. 

A triangle A in X is a triple (al ,  as, a3) of  geodesic segments whose end points 

match  in the usual way. Denote  by S K the simply connected complete surface of  constant  

Gauss curvature  K.  A comparison triangle A for a tr iangle A C X is a triangle in S K with 

the same lengths of  sides as A. A comparison triangle in S K exists and  is unique  up to 
congruence i f  the lengths of  the sides of  A satisfy the triangle inequal i ty  and,  in the case 

K > 0, if  the per imeter  of  A is < 2n/W/-K. Let  A = (51, 5s, 53) be a comparison triangle 

for A = (at,  as, as) , then for every point  x ~ a,, i = 1, 2, 3, we denote by ~ the unique 
point  on 54 which lies at  the same distances to the ends as x. 

Le t  d denote the distance functions in both  X and  S K . A triangle A in X is a CA T K 

triangle i f  the sides satisfy the tr iangle inequali ty,  the perimeter  of  A is < 2n[W/K for 

K > 0, and if  

d(x,y) <. 

for every two points x ,y  e A. 
We say tha t  X has curvature  at  most K and  write K x ~< K if  every point  x s X 

has a neighborhood U such tha t  any  triangle in X with  vertices in U and  minimizing 

sides is C A T  K. Note tha t  we do not  define K x. I f  X is a R iemann ian  manifold,  then 

K x < K iff  K is an  upper  bound  for the sectional curvature  of  X. 

We call X a I-[adamard space i f  X is simply connected,  complete, geodesic wi th  
K x ~< 0. The  following result if  proved in [A1Bi], see also [Ba2]. 

9,. 1. Iladamard-Cartan Theorem. - -  I f  X a Itadamard space, then 

(i) for any two points x ,y  e X there # a unique geodesic a,v : [0, 1] -+ X from x to y and a,~ 
is continuous in x, y;  

(ii) every triangle in X is CAT 0. 

Le t  X be a H a d a m a r d  space and  let a l ,  *~. be two uni t  speed geodesic rays going 

out  of  x ~ X. We d e f i n e / ( a l ,  as) in the following way. Le t  A be a comparison triangle 
with K = 0 for the triangle A = (al([0, s]), as(J0, t]), a , ) ,  where a** is the geodesic 

from a~(s) to as(t). Since triangles in X are CAT0, the angle e(s, t) of A at  X- decreases 

as s and  t decrease. We set 

L ( , 1 ,  as) : l im ~(s, t). 
S, g ---~- 0 
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Let x,y ,  z ~ X wi thy ,  z ~ x and let y,y, y,, be the unit speed geodesics from x to y,  z 
respectively. Set 

L , ( y ,  z) = L(,(,~, ~%). 

2 .2 .  Proposition. - -  (See [Bag], Proposition 1.5.2.)  Let X be a Iladamard space and 
let A be a triangle in X with sides of  length a, b, c and angles ~, ~, y at the opposite vertices, 
respectively. Then 

(i) ~ + t 3 + V ~ < ~ ;  
(ii) (Cosine Inequality) c ~ >1 a s -k b 2 - -  2ab cos ~,. 

In each case, equality holds i f  and only i f  A is f lat ,  that is, A is the boundary of  a 2-dimensional 
convex region in X isometric to the region bounded by the comparison triangle in the flat plane. [] 

I t  follows easily that for any two geodesics al, as in X, the function d(al(t), ~s(t)) 
is convex in t. A more special property is as follows. 

2.3 .  Corollary. - -  Let X be a Itadamard space. Let xl ,  x2 ~ X be two distinct points and 
let ~ be the geodesic connecting them. Assume that ~ is a geodesic ray going out of  x~ and making 
angle ~i with ~, i ---- 1, 2. Suppose that ~1 + ~s > ~. 

Then d(~l(t), ~s(t)) is strictly increasing in t. [] 

2 .4 .  Lemma. - -  Let X be a locally compact Itadamard space and Y C X be a path connected, 
closed, locally convex subset. Then Y is convex. 

Proof. u For every compact subset K C Y there is r > 0 such that if x , y  ~ K and 

d(x,y) < r then the geodesic ~x~, connecting x to y, lies in Y. Let x, y ~ Y and let ~x~ be 

the shortest path in Y connecting them. Choose K to be the ball of radius d(x,y) centered 

at x. I f  ~,v is not a geodesic in X then there is z in the interior of c%u such that  ~,~ is 
not a geodesic at z. We can shorten ~ u  by replacing a small subarc of c%u near z by the 

corresponding geodesic segment in X. By the remark at the beginning of the proof applied 

to K = Y n B(x, d(x,y)) ,  the new curve is contained in Y. This is a contradiction. [] 

x2  x 

c1 

~ ~ - 

XO C X n 

Fxo. l 



ORBIHEDRA OF NONPOSITIVE CURVATURE 175 

2.3.  Lemma. - -  Let X be a simply connected space of  nonpositive curvature, let 
xo, Xl, �9 . . ,  x ,  be pairwise distinct points in X and let ci be the geodesic segments connecting x,_ a 
to x~, i =  1,2, . . . , n .  Let c connect x o to x ,  and set ~ =  /~o(cl, c), ~ =  / , , ( c , c . )  and 
~ = / ~ ( c ~ ,  c~ + 1). Then 

+ <<. X 

Proof. - -  Let ,~ be the geodesic from x0 to x, and let ~1 = / x 0 ( c l , * ~ ) ,  

:c~ = /~0(** ,  *~+1), ~, = /,~(c~, ,~), ~, = /,~(c~+1, at) , i = 2, . . . ,  n --  1, see Figure 1. 
Then ~, + ~/> ~, and :~ ~< 2 ~ - 1  ~ .  Since X has nonpositive curvature, the sum of 
the angles in each triangle Ax 0xi_ ix, is at most ~, and hence ~ 1 + ~ x + ~ 2 ~ <  ~, 
~i + ~, + ~,+1-< T:, ~ , - a  + ~ . -1  + ~ <  ~- Adding these inequalities yields the 

lemma. [] 
Let  r : X -+ X be an isometry of a Hadamard  space. Then the displacement function 

d,(x) : =  d(x, ~(x)) is convex, that is, for any geodesic ~ : I - - ~  X the function d~(,(t)) 
is convex in t. Isometrics are classified according to the following possibilities for the 
displacement function. I f  d~ achieves its minimum in X, then 9 is called semisimple. 
I f  the minimum is 0, then q~ has a fixed point and is called elliptic. I f  the minimum is 
positive and is achieved at x ~ X, then the concatenation of the geodesic segments ** 
from 9~(x) to ~i+a(x), i ~ Z, is a geodesic , which is invariant under ~ and is called an 
axis of q~. In  this case we call r axial. I f  d~ does not achieve a minimum, then ~ is called 
parabolic. I f  r is a group of isometrics of X acting properly discontinuously and cocom- 
pactly, then every ~ ~ F is semisimple, that is, either axial or elliptic. 

We assume from now on that X is a locally compact Hadamard  space. Our  dis- 
cussion of  rank 1 spaces uses the following three lemmas from [Ba2] (see also [Bal] 

for the case of  Hadamard  manifolds). 

9.. 6. Lemma. - -  (See [BaP], Lemma 3 . 3 . 1 . )  Let (~ : R -+ X be a unit speed geodesic 

which does not bound a f la t  strip o f  width R > O. 
Then there are neighborhoods U of  ~( - -  oo) and V of  ~(oo) in X such that for any ~ ~ U 

and ~ ~ V there is a geodesic from ~ to ~, and for any such geodesic ~' we have d( , ' ,  , (0))  < R. 

Moreover, ~' does not bound a f la t  strip of  width 2R. [] 

9..7. Lemma. - -  (See [BaP], Lemma 3 .3 .2 . )  Let , : R - +  X be a unit speed geodesic 
which does not bound a f la t  half plane. Let (~,) be a sequence of  isometries of  X such that 
~,(x) ~ ~(oo) and ~ ( x )  -+ (~(-- oo) for  one (and hence any) x ~ X .  

Then, for n sufficiently large, ~ ,  has an axis ~, such that ~,(o~)-+~(oo) and 
oo) a s  n -+ 

9.. 8. Lemma. - -  (See [Ba2], Lemma 3 .3 .3 . )  Let ~ be an isometry of  X with an axis 

: I t  ~ X ,  where (~ is a unit speed geodesic which does not bound a flat halfplane. Then 

(i) for  any neighborhood U of  ~(- -  co) and neighborhood V of  o(oo) in X there exists N ~ N 
such that q~"(,X\U) C V, q~-"(X\V) C U for all n >f N; 



176 WERNER BALLMANN AND MICHAEL BRIN 

(ii) for any ~ ~ X(oo)\{ ~(oo)} there is ageodesic o~ from ~ to ~(oo), and any such geodesic does 
not bound a flat half plane. For any compact K C X(oo)\{ ~(oo)}, the set of these geodesics 
is compact (modulo parameterization). [] 

We assume from now on that X is a locally finite simplicial complex with a piece- 
wise smooth Riemannian metric g. We are interested in conditions under which X has 
nonpositive curvature in the sense defined above, that is K x ~< 0. We start by discussing 
the links of points x ~ X. By subdividing X if necessary, we may assume that x is a 
vertex. Let  A be a k-simplex adjacent to x. We view A as an affine simplex in R k, that 
is A = n ~ = 0  H~, where H0, H1, . . . ,  H ,  are closed half spaces in general position and 
W L O G  x ~ Int(H0). The Riemannian metric gx is the restriction to A of a smooth 
Riemannian metric defined in an open neighborhood V of A in R k. The intersection 

T x A : = [ ' ]  *i=1 H, C T ,  V 

is a cone with apex 0 ~ T,  V, 
another simplex adjacent to x. 
to T,  B and we view T,  B as 

and gA(x) turns it into a Euclidean cone. Let  B C A be 
Then the face of T.  A corresponding to B is isomorphic 
a subset of  T . A .  Set 

T ~ X  = [.JA~, T,  A. 

Let S, A denote the subset of  all unit vectors in Tx A and set 

(2 .9)  S~ = S~X = U A ~  S,A.  

The set S~ is called the link ofx  in X (or the space of directions). I f  A is a k-simplex adjacent 
to x, then gA(x) defines a Riemannian metric on the (k -- 1)-simplex S~ A. The family g~ 
of  Riemannian metrics gA(x) turns S, X into a simplicial complex with a piecewise 
smooth Riemannian metric such that the simplices are spherical: a k-simplex in S, is 
(isometric to) the intersection of k + 1 closed hemispheres in S k in general position. We 
denote by d~ the associated metric. 

o 

Suppose now that the dimension of X is 2. I f  x lies in the interior f of  a face f ,  

then S x X is the unit circle of the smooth surface 3 3 with respect to the Riemannian 

metric g113 ~ I f  x lies in the interior ~ of an edge e, then S, X is the bipartite graph with 
two vertices corresponding to the directions of e at x and edges of length ~/2 which repre- 
sent the faces adjacent to e and connect the two vertices. I f  x is a vertex, then S, X is a 
graph whose vertices correspond to the edges adjacent to x. Two such vertices ~ and 
of S, X are connected by an edge of length ~I ~ (0, 7:) if the corresponding edges e~ 
and e~ of X are adjacent to a f a c e f w i t h  interior angle ~I at x (see Figure 2). 

2 .10.  Theorem. (See [BaBu].) Let g be a piecewise smooth Riemannian metric on a locally 
finite two-dimensional sim#licial complex X and let d be the associated distance function. 

Then K x ~ K /ff the following three conditions hold: 
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(i) the Gauss curvature of the open faces is bounded from above by K; 

(ii) for every edge e of X ,  every two faces f x , f~  adjacent to e and every interior point x ~ e the sum 
of the geodesic curvatures kl(x), he(x) of e with respect to f l , f ~  # nonpositive; 

(iii) for every vertex v of X every simple loop in S~ X has length at least 2~. [] 

Neighborhood of x in X 

\ i .  ,g 

JJ 
Y 

A 

The link of x 

FIo~ 2 

D 
Let X be a 2-dimensional simplicial complex without  boundary.  An edge of X 

is called inessential if it bounds exactly two faces; the other edges are called essential. A 
vertex v of X is called inessential if its link is homeomorphic  to a bipartite graph with 
two vertices and m(v) >1 0 edges connecting them;  the other vertices are called essential. 
An inessential vertex is called interior if its link is homeomorphic  to the circle (that is, 
if  m(v) = 2). 

A connected component  of the union of all open faces, inessential edges and interior 
vertices is called a maximal face of X. A connected component of the union of all open 
essential edges and inessential but  not  interior vertices v is called a maximal essential edge. 
A maximal essential edge might  be a loop. Since X is boundaryless, the maximal faces of X 
are bounded  by maximal  essential edges and essential vertices. 

23 
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2.11. Proposition. - -  Let (X, F) be a compact 2-dimensional boundaryless orbihedron 
with a metric d of  nonpositive curvature. Assume that d is induced by a F-invariant piecewise smooth 
Riemannian metric with respect to a F-invariant triangulation of  X such that: 

(i) the Gauss curvature of  all faces is 0; 
(ii) for  every edge e and any two faces f l , f 2  adjacent along e and for any x ~ e we have 

kl(x) + ks(x) = 0; 
(iii) for every interior vertex v, the complete angle of S, is 2~. 

Then the maximal essential edges of  X are geodesics and the maximal faces of X are smooth f la t  
surfaces. Moreover, X admits a F-invariant triangulation such that all edges are geodesics and all 
faces are Euclidean triangles. 

Proof. ~ I f  e is an essential edge and if e is not adjacent to any face, then e is a 
geodesic. I f  e is adjacent to at least three faces, then the geodesic curvature at e with 
respect to any face adjacent to e is 0 since, by (ii), the sum of the geodesic curvatures 
of every pair of these faces is 0. Hence all essential edges are geodesics. 

Assume now that e is an inessential edge and t h a t f x , f ,  are the two faces adjacent 
to e. Since the metrics on f l  and f ,  are flat and since the geodesic curvatures k 1 and k s 
of e with respect t o l l  and f ,  add up to 0 precisely, the metrics extend smoothly to a flat 
metric onfx  u e u f , .  (View e , f  x and f ,  locally as sitting in the Euclidean plane.) Now 
(iii) implies that the maximal faces of X are smooth flat surfaces. 

We now first replace the inessential edges of X in a F-equivariant way by piecewise 
geodesics arcs. Then  we subdivide the faces F-equivariantly so that the break points of  
these arcs become vertices. [] 

9.. 19.. Proposition. - -  Let (X, F) be a compact 2-dimensional orbihedron with a piecewise 
smooth metric of nonpositive curvature. 

Then (X, F) contains a F-invariant suborbihedron X '  without boundary such that: 

(i) X'  is a r-equivariant strong deformation retract of  X; 
(ii) the action of F on X '  is effective; 

(iii) the induced metric on X '  is piecewise smooth and of  nonpositive curvature. 

Proof. - -  Fix a F-invariant triangulation on X such that the given metric is piece- 
wise smooth with respect to it. Iteratively, we apply the following reductions: 

a) Delete boundary vertices and the unique open edges adjacent to them. 
b) I f f i s  an open face adjacent to exactly one open boundary edge e, then d e l e t e f  

and e. 
c) I f f i s  an open face adjacent to exactly two open boundary edges el and e~, then 

replace f u e 1 w e~ by the segment from the midpoint of  the third edge to the opposite 
vertex. 

d) I f f  is an open face with three open boundary edges el, e~, e3, then replace 
f u el u e~ u e s by the three segments from the barycenter o f f  to the vertices. 
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We may have to apply each of  these reductions more than once. Since X has only 
finitely many simplices mod P, and since these reductions do not increase their number,  
after a finite number  of  steps we end up with a boundaryless complex X',  as asserted. [] 

3. Liouville measure  for  the geodesic  f l o w  

From now on we assume that X is a locally finite, n-dimensional and boundaryless 
complex with a piecewise smooth Riemannian metric. We denote by X ~k~ the k-skeleton 
of X and by X '  the set of x e X such that x is contained in the interior of an (n -- 1)- 
simplex adjacent to at least two n-simplices. 

Let x ~ X'.  Then x is contained in the interior of an (n --  1)-simplex B. For any 
n-simplex C whose boundary 0C contains x let S~ C denote the open hemisphere of unit 
tangent vectors at x pointing inside C. Let  C1, . . .  , Gin, m>_. 2, be the n-simplices 
containing B. We set 

s ; =  0 s;c,, s ' =  0 s; and S'C= 0 S;C. 
i = l  z ~ X '  x~OCf~X '  

For v ~ S~ C denote by 0(v) the angle between v and the interior normal vc(x ) 
of  B with respect to C at x. Let dx be the volume element on X'  and let ),~ be the Lebesgue 
measure on S~. We define the Liouville measure on S' by  

(3.1) dtz(v) = cos 0(v) dX~(v) dx. 

Note that d~z(v) • dt is the ordinary Liouville measure invariant under the geodesic 
flow on each n-simplex C of X. Therefore, for tz-a.e, v ~ S' C the geodesic % in C deter- 
mined by ~ , ( 0 ) =  v meets 0C c~ (X~"-I~\X ~"-21) after a finite time t , >  0 so that 

I(v) aef _ "~,(t,) ~ S' C, see Figure 3. Note that y,(t,) ~ X '  since X is boundaryless. Simi- 
larly to the billiard flow, ~ is invariant under the involution I (see, for example, [CFS]). 

C 

W 

FIG. 3 
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Let I(v) --~ w + cos 0(I(v)) vc(y,(t,)), where w is tangent to X'  and set 

F(v) = U ( -  w + cos 0(I(v)) %,(y,(t,))), 
C' 

where the union is taken over all n-simplices C' containing y,(t,) except C. 
Thus there is a subset Sx C S' of full ~-measure such that F(v) is defined for any 

v e S 1. We set recursively Si+ 1 = { v e S 1 : F(v) C S~ } and define Soo = n~176 S i ,  

V = S~o n I(S| By construction, V has full ~-measure. We define now the transition 
probabilities for a Markov chain with states in V by the formula 

I 1 
(3.2) p(v, w) = t ~ if w e F(v) 

0 otherwise, 

where ] F(v) l is the cardinality of F(v). 

3.3. Proposition. - -  Let x be a locally finite boundaryless simplidal complex with a piecewise 
smooth metric g. 

Then the measure ~ given by (3.1) is stationary for the Markov chain on V with transition 
probabilities p(v, w) given by (3.2). 

Proof. - -  For w e F(v) set q(I(v), w) ---- (p(v, w)) -1 and H(I(v)) = F(v). Let  P(v, M) 
denote the transition probability from v e V to a measurable subset M C V. Then we 
have 

[ r(v, M) d (v) = [ p(v, w) 
Jv dv 

=( E q-'(I(v), w) 
d v  w E F(~) 

Since I preserves ~, the last expression is equal to 

f v  ~ q-~(u,w) y.~(w) d~(u) ----- Y~ f v  w E H(u) B (B) 
E q-l(u, w) 

w G H(.) 

where V(B) denotes the set of vectors from V with foot point in B. Note that for w ~ H(u) 
the number  q(u, w) is exactly the cardinality of H(u) or the number of terms in the inner 
sum. Hence the last expression is equal to 

~ f v , ,  Y.~(w) d~(w). [] 

Let V* be the set of sequences (v , ) ,~zC V such that v,+ 1 e F(v,) for all n ~Z.  
Proposition 3.3 implies that ~ induces a shift invarlant measure ~* on V*. 

Recall that G(X) denotes the space of complete geodesics in X and the geodesic 
flow {g ' }  in G(X) acts by the formula 

(g' e) (s) = e(s + t). 
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Let G*(X) C G(X) denote the set of geodesics which do not meet X ~"-~1 and intersect 
(n -- 1)-simplices transversally. Then G*(X) is a Borel subset of full ~z-measure in G(X) 
and we may think of V* as a cross section for the geodesic flow on G*(X). Thus the 
measure [z* on V* defines a measure on G*(X) invariant under the geodesic flow. We 
call this measure the LiouviUe measure since it is the natural generalization of the usual 
Liouville measure on the unit tangent bundle of a smooth Riemannian manifold. 

3.4.  Remarks. ~ a) The set G*(X) is not dense in G(X) if there is a vertex whose 
diameter is ~ n. 

b) The Liouville measure ~ is positive on nonempty open subsets of G*(X). 
I f  F is a group of isometric automorphisms of X that acts cocompactly and pro- 

perly discontinuously, then the Liouville measure defines a finite invariant measure for 
the geodesic flow in G*(X)/F. Recall that a geodesic a ~ G(X) is F-recurrent if there are 
isometrics 9,  ~ F and t, -+ oo for which ~(g~,(a)) ~ a as n -+ 0o. 

8 .5 .  Corollary. - -  Let (X, F) be a compact orbihedron without boundary and with a piece- 

wise smooth metric. Then: 

(i) For every subset GC G*(X) with ~z(G) > 0 and any T >  0 there are z ~ G, 9 ~ r 

and t >>. T such that ~(g~ ~) ~ G. 

(ii) With respect to the Liouville measure, almost every geodesic in G(X) is U-recurrent. 

Proof. - -  The statement follows directly from the Poincar6 recurrence theorem for 
the induced action o f g  t on G(X) /F .  [] 

4. S o m e  p r o p e r t i e s  o f  r~nk  1 s p a c e s  

Let (X, F) be a compact orbispace of nonpositive curvature. Then X is a locally 
compact Hadamard  space, that is a locally compact, simply connected, complete geodesic 
space of nonpositive curvature. Observe that if a : R -+ X is a geodesic that does not 
bound a flat half  plane then there is R > 0 such that a does not bound a flat strip of 
width R. 

We say that 4, ~ ~ X(oo) are dual (relative to F) if for any neighborhoods U of 
and V of ~ in X there is d? ~ F such that 

~b(X\U) C V and ~b-I(X\V) C U. 

The set A t of points ~ ~ X(oo) dual to ~ e X(oo) is clearly closed and F-invariant. 
Lemma 2.8 implies that the endpoints of a F-closed geodesic of rank 1 are dual. 

4.1.  Theorem. - -  Let (X, F) be a compact orbispace of rank 1 and assume that X(oo) 
contains more than two points. 

Then X(oo) is a perfect set and any point in X(oo) is dual to any other point and to itself. 

Moreover, for any two nonempty open subsets U, V C X(oo) there is a P-closed geodesic co of rank 1 

with co(-- oo) e U and o~(oo) ~ V .  
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4 .2 .  Remarks . - -a )  Note that X(oo) consists of at least two points, and if[ X(oo) I = 2, 
then X is quasi-isometric to the real line and F contains an infinite cyclic subgroup of 
finite index (given by the powers of  the rank 1 isometry). 

b) Following Chen and Eberlein [ChEb] we say that F satisfies the duality condition 

if for any geodesic ~ : t t  -+ X there is a sequence ~, e r such that ~,(x) -+ ~(oo) and 
9~-1(x) -+ ~(--  oo) as n ~ oo for any point x ~ X. Theorem 4.1 and the remark above 
imply that F satisfies the duality condition if  (X, P) is a compact orbihedron of rank 1. 

In order to prove Theorem 4.1 we begin with three lemmas. Fix an isometry 

~ P translating a geodesic ~ that does not bound a flat half plane. Set a(0) = x 0 and 
a(t0) = V(x0), where t o is the period of  ~, and let R o > 0 be such that a does not bound 

a flat strip of width R o. Set ~ = ~ w { ~(oo), ~(--  oo)}. 

4 .3 .  Lemma. - -  For any T, ~ > 0 there is R > 0 such that for  any x e X with d(x, ~) > R 
and any two points y ,  z e ~ the unit speed geodesics Y,u and y,, connecting x with y and z satisfy 

d(7~(t) ,  y,,(t)) ~< r 0 ~< t~< T. 

Proof. - -  Since ~ is invariant under ~ it suffices to consider only those x e X for 
which the closest point of  ~ lies in ~([0, to] ). These points x form a compact  subset A 

of X and e(•  oo) r A, see Figure 4. 

ot-oo) 
Fro. 4 

Choose neighborhoods U of a ( - -  oo) and V of ~(oo) in X so that any geodesic 

from U to V passes through the ball B(x0, R0), see Lemma 2.6. By Lemma 2 .8  there 
is N ~ N such that r "(A) C U and r C V for all n/> N. Choose tl > 0 such that 
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~([--  0% -- tl] ) C U and a([t~, oo]) C V. Hence for any point x e ~0-"(A) the geodesic V~ 
connecting x with y ~ . ( [ t l ,  oo]) passes through B(x0, R0). Since d(xo, q~-"(A)) ~ 0% 
for a sufficiently large n any two such geodesics - ~  and V.,, by comparison with the 
plane, satisfy 

d(y| %,(t)) ~< ~]3, 0.< t ~< T. 

Hence the statement of the lemma holds for any x e A a n d y ,  z ~ a([t 1 + nto, oo]) with 
.]3 instead of ~. Similarly, for a large enough n the same estimate holds for x e A and 

y, z z ~([--  0% --  t~ - -  nt0] ). Using comparison with the plane we obtain the necessary 
estimate for the middle segment ~ ( [ - - t x -  nto, tz + nt0]) for a large enough R. [] 

4.4 .  Lemma. ~ For any T , ,  > 0 there is R ' >  0 such that i f  d(x, Xo) > R '  then 

d(y=o(t), y~o,~,(t))~< ,, 0 ~< t.< T, 

or d(%.o(t), V..,_oo,(t))~< ~, 0 < t~< T. 

Proof. - -  Choose neighborhoods U of ~(-- oo) and V of a(oo) in X so that any 
geodesic from U to V passes through the ball B(xo, R0). By decreasing U and V if neces- 
sary we may assume that the first inequality holds for all x ~ U and the second one holds 
for all x ~ V. Now let R be from Lemma 4.3 and choose R'  so large that d(x, a) > R 
i f x C U  u V u B ( x 0 ,  R' ). [] 

4.5.  Lemma. - -  Let ~ be an axial isometry with an axis ~,, i = 1, 2. Assume that 
~1(-- oo) = as(--  oo). Then ~1(oo) = ~2(oo). 

Proof. - -  Let x~ = as(0), i = 1, 2. For every n > 0 there is m such that d (~'# ~ "  Xl, x2) 
does not exceed the sum of the period of a s and d(xl, x~). Since F acts properly dis- 
continuously, there is +0 e F such that ~b~ ~b~-" = ~o for infinitely many pairs m, n. 
Therefore, ~b~ = ~b~ for some m, n 4: 0. [] 

Proof of  Theorem 4.1. - -  Since X(oo) contains more than two points and since F 
acts cocompactly, there is ~b o e F such that d(~b0(x0) , a) > R 0. The geodesic ~bo(a ) does not 
bound a fiat half  plane and is an axis of ~b 0 ~0~bo 1 e F. Therefore the points ~0o(a(• oo)) 
are dual to each other. Since a does not belong to a flat strip of width greater than R0, 
we have, by Lemma 4.5, that +o(a(•  ~(--oo)}. By Lemma 2.8, 
q#(+0(*(• oo)) ) -+ , (oo)  as n -+o% and hence a(oo) is dual to both +0(~(oo)) and 
~bo(a ( -  oo)). By symmetry, each of the four points a(• oo), +0(or(• oo)) is dual to every 
other and to itself. 

Now let ~eX(oo) ,  ~4: a(+oo) and let ~ n e F  be such that 4, x - + ~  for any 

x e X .  By Lemma 4.4, +,(a(oo)) -+ ~ or + , (a( - -oo))  -+~ (or both) and hence ~ is 
dual to a ( - -  oo) and ~(oo). Now let B be any other point in X(oo). Choose c?, e 1 ~ so 
that ~,(a(oo)) -+ B or @~(~(-- oo)) ~ B. Since ~ is dual to both a(oo) and ~(--  oo) we 
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conclude that ~ is dual to ~. Hence any two points in X(oo) are dual. Clearly X(oo) 
is a perfect set. 

To prove the last assertion of  the theorem, let U, V C X(oo) be nonempty open 
subsets. By Lemma 2.8, there is a geodesic r from a ( - -oo)  to a point ~ e U such 
that r does not bound a fiat half plane. Since a ( - -  oo) is dual to ~, there is a sequence 
q~ e F such that q~(x) -+ ~ and q~- l(x) ~ a ( - -  oo) for any x ~ X as n -+ ao. By Lemma 2.7, 
if n is sufficiently large, then % has an axis a s such that ~ = %(oo) e U and ~, does not 
bound a flat half plane. By Lemma 9.8, there is a geodesic r from ~ to a point ~ ~ V 
such that o~ does not bound a flat half plane. Now ~ and ~ are dual and Lemma 2.7 
implies the existence of a F-closed geodesic of  rank 1 with endpoints in U and V. [] 

We derive some applications of Theorem 4.1 which are relevant in our paper. 
Applications to random walks on F can be found in [Ba2]. 

4.6.  Theorem. - -  Let (X, r )  be a compact orbispace of  rank 1 and assume that X(oo) 
contains more than two points. 

Then F contains a free nonabelian subgroup. 

Proof. - -  Choose disjoint open subsets U, V ~ X(oo) with U u V + X(oo) and 
let ~ ~ X(oo) \ (U  u V). By Theorem 4.1 there are % + e r such that 

~• C U and ~+l(X(oo)\V) C V. 

Let w be a nontrivial reduced word in ~? and +. Since U c~ V ---- 0 we conclude that 
w(~) e U if w starts with a power of q~ and that w(~) e V if w starts with a power of +. 
In  either case w(~) 4: ~, hence w ~ id. Therefore ~0 and + generate a free subgroup 
o f F .  [] 

We say that X is geod~sically complete if any geodesic segment in X is contained in 
a complete geodesic. 

4 .7 .  Theorem. - -  Let (X, F) be a compact, geodesically complete orbispace of  rank 1 and 

assume that X(oo) contains more that two points. 
Then the geodesic f l ow  of  X is topologically transitive rood F, that is, for  any two nonempty 

open subsets U, V C G(X) there are t e R and ~ ~ F with g~(U) n q~(V) ~ O. 

4.8.  Remarks. - -  a) Topological transitivity is equivalent to the existence of an 
orbit of  (gt) which is dense rood F. 

b) In general, the geodesic flow is not topologically mixing mod F. 

Proof o f  Theorem 4.7. - -  We let U(oo) (respectively V(oo)) be the set of points a(oo) 
in X(oo) with ~ ~ U (respectively ~ e V). Then U ( ~ )  and V(oo) are open and non- 
empty. By Theorem 4.1,  we can assume that U(oo)C V(oo). Let  ~ e U. Then there 

is a geodesic a' e V with #(oo) : a(oo). Since U and V are open there are ~ > 0 and 

T > 0 such that a geodesic ~ belongs to U if 

d (a (T) ,~(T)) ,  d (a ( - -  T ) , ~ ( - -  T ) ) <  
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and belongs to V if 

d(a ' (T),  ~(T)) ,  d(~ ' ( - -  T), ~ ( - -  T)) < ~. 

Now let x = a(T) and x ' =  ~ ' ( - - T )  and choose a sequence (9,) in I ~ such that 
% ( y )  -+ ~(oo) and ~ - l ( y )  ~ ~ ( _  oo) for any y E X. Let  ~, be a unit speed geodesic 

with a , ( - -  T) = x' and a,(t ,)  = 9,(x), where t,  = d(x', 9,(x)) --  T. Then a,  is in V for n 
sufficiently large since 9,(x) ~ a'(oo) = a(oo). Furthermore q~-l(gtn ~,) ~ U for n suf- 
ficiently large since ~ l (g~ ,  a,) (T) = x and ~- l (x ' )  -+ ~(--  oo). [] 

Recall that a compact 2-dimensional boundaryless orbihedron (X, F) with a 
piecewise smooth metric of nonpositive curvature is geodesically complete. Thus asser- 
tion (ii) of Theorem D in the Introduction is a special case of Theorem 4.7.  We now 

prove assertion (i) of Theorem D. 

4 .9 .  Theorem. - -  Let (X, r )  be a closed 2-dimensional rank 1 boundaryless orbihedron 

with a piecewise smooth metric of  nonpositive curvature. 
Then hyperbolic ['-closed geodesics are dense in the space of  geodesics. 

Proof. - -  Consider the set U of geodesics a such that a) ~ passes through a point 
in an open face where the Gauss curvature is negative, or b) ~ passes from one face to 
another through a point in an open edge e where the sum of the geodesic curvatures 
of  e with respect to the two faces is negative, or c) a passes through a vertex v and the 
distance between the incoming and outgoing direction of  ~ in the link of  v is > ~. Then U 
is open and invariant under the geodesic flow. Now U is not empty since (X, r )  has rank 1. 
Since the geodesic flow is topologically transitive, U is dense in the space of  geodesics. 
By  Lemmas 2 .6  and 2.7, each geodesic in U is a limit of hyperbolic r-closed geodesics. [] 

5. H o m o t o p y  invar iance  o f  rank  1 

5 .1 .  Definition. - -  Let X be a metric space and let A/> 1, B/> 0. A curve c : I -~ X 
is an (A, B)-quasigeodesic in X if for all s, t E I 

A - ~ l s - - t l - - B < < -  d (c ( s ) , c ( t ) )~  A ] s - - t [  q - B .  

Note that we do not assume that a quasigeodesic is a continuous curve. 

5 .2 .  Theorem. - -  Let X be a locally compact Itadamard space having an axial isometry 9 

with an axis ~. Then ~ does not bound a f la t  half  plane i f  and only i f  for  any A >1 1, B >>. 0 there 
/s R = R(~) such that any (A, B)-quasigeodesic c with ends on ~ stays in the R-neighborhood of  ~. 

I f  ~ bounds a flat half plane then clearly such an R does not exist. In what  follows 

we assume that ~ does not bound a flat half plane. We will need the following three 

lemmas. Let P denote the projection to a. 

24 
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5.3 .  Lemma. - -  There are constants R0, T > 0 such that i f  x, y ~ X, d(x, . ) ,  d(y,  ~) >i R 0 
and d(Px, Py) >>. T then 

d(x,y) >>. d(Px, Py) + 1. 

Proof. ~ I f  this is not so, there are points x . , y .  e X with 

d(x . ,  ~), d ( y . ,  ~), d(Px . ,  Py.)/> n and d ( x . , y . )  < d(Px . ,  Py.) + 1. 

Fix a positive integer m. By choosing n large enough and applying an appropriate  
power of 9, we may assume that  the segment of a between Px. and Py. contains 
~([-- m, m]). W L O G  assume that  the points I x . ,  a ( - -  m), e(m), Py. lie in this order 
on e. Let e .  be the geodesic connecting x. to y .  and denote by p . ,  q. e ~. the points 
for which Pp. = e( - -  m), Pq. = ~(m). By Corollary 2.3,  P does not increase distances. 
Hence, 

d ( x . , p . )  >1 d(Px . ,  ~( - -  m)) and d ( y . ,  q.) >1 d(Py. ,  ~(--  m)). 

We have 

Therefore, 

d(x. ,y.)  = d(x., p.) + d(p., q.) + a(q.,y.) .  

d(p. ,  q.) <~ d (x . , y . )  - -  d(Px. ,  ~(--  m)) - -  d(Py. ,  ~(m)). 

Hence 

(5 .4)  d(p . ,  q.) <. d (a( - -  m), ~(m)) + 1 = 2m + 1. 

Let ~. ,  ~. be the geodesics from ~(--  m) to p .  and from ~(m) to q. respectively. 
By passing to a subsequence if necessary, we may  assume that  % and ~. converge to 
geodesic rays ~ and [3. By construction, the angles between ~ and ~, [3 and a are both 
at least ~/2. Hence d(~(t), [3(t)) is not  decreasing. By (5.4), d(~(t), ~(t)) ~< 2m + 1 for 
all t >1 0. Hence, ~, ~ and ~ bound a flat half  strip S,. with fight angles at a(-4- m). For a 
subsequence mk---> ov the corresponding half  strips S,. k converge to a fiat half  plane 
along ~. Contradiction.  [] 

5.5 .  Lemma. - -  Let T be from Lemma 5.3.  Then for any K >1 1 there is R 1 :> 0 such 
that d(x,y) >>. K T  provided d(x, ~), d(y ,  ~) >>. R 1 and d(Px, Py) t> T. 

Proof. ~ By L e m m a  5.3  and the convexity of the distance, we have 

d(x,y)  >1 d(Px, Py) + m/> T + m if d(x, ~), d(y ,  ~) >1 mR 0, 

w h e r e m / >  1. N o w c h o o s e m =  [ ( K - -  1) T] + 1 a n d R  1 = m R  0. [] 

5.6 .  Lemma. u Let c : [u, v] ~ X be an (A, B)-quasigeodesic. Assume that for every 
t ~ [u, v] we have d(c(t), ~) >I R1, where R 1 is chosen by Lemma 5.5 for K >  2B/T. Let 
Pc(u) = .(t .)  and Pc(v) = .(t .)  and assume that a([t.,  t.]) contains a segment o(to, t o + T) 
of  length T.  Then there is s o e (u, v) with Pc(s0) e .((t0, t o + T)).  
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Proof. - -  I f  there is no such So then (u, v) = U u V, where 

U = { s : P c ( s )  =c r ( t ) , t~< t  o}, V = { s : P c ( s )  = . ( t ) , t 1 >  t 0 + T } .  

K T  --  B B 
Note that by Lemma 5.5 and the choice of K and Rx, [ s . - - s . ] > /  A I>A'  
whenever s u e U, s. e V. Contradiction. [] 

c( s~) 

Fm. 5 

Proof of  Theorem 5.2. - -  Set K = max(3A 2 B/T, 25A 4) and choose R 1 by Lemma 5.5.  
Assume that there is T such that d(c(T), ~) >>. R 1 + B. Set 

a = sup { s ~< ~': d(c(s), ~) < R 1 -Jr- B }, 

b = i n f { s > > , T : d ( c ( s ) , , ) < R  I + B }. 

Then d(c(s), cr) >>. R 1 -~- ]3 for s e (a, b), and hence 

R 1 ~< d(c(a), ~), d(c(b), ~) <<. R z + 2B 

since c is an (A,B)-quasigeodesic. Let P c ( a ) =  a(ta), Pc(b) = a(t~) and assume 

that t . ~ t  b. Let m>1 0 be such that t b - t  a = 2 m T + %  where 0 ~ < - r < 2 T .  By 
Lemma 5.6, there are a = So< S l<  s , <  . . .  < s,,+l = b such that Pc(s,) = a(t~) with 
t, e (t. + (2i --  1) T, t. + 2iT), 1 <, i<<, m, see Figure 5. By Lemma 5.5 and since c 
is a quasigeodesic, we have 

A(sr - -  s~_1) -{- B ~ d(c(s,~), c(S~_l) ) ~ K T ,  

and hence, B~< K T -  B~< A(s~ --s~_l) ,  1 ~< i~< m. Therefore, 

m+l m+l  
(5 .7)  52 d(c(s,), c(s,_l) ) <. 2~ (A(s, --  s,_l) + B) 

(--I  ~=I 

~ < A ( b - - a )  + A ( s ~ - - a )  + B . <  2 A ( b - - a )  + B .  
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On the other hand ,  

m 

i=1 "= 

B >_. - - -  - 
1 K 1  
3 A s 2 (tb --  t, - -  2T), 

which by the triangle inequal i ty  is 

1 K  
>1 ~ -~ (d(c(a), c(b)) --  2Rx -- 4B --  2T) 

1 K  
/> ~ ~-~ ((b --  a) - -  AB -- 2AR x -  4AB -- 2AT) 

and  if  b a > 2(2AR 1 + 5AB + 2AT) da - -  = ~: the latter is 

1 
t> 1 - ~ K ( b - - a ) > 2 A ( b - - a )  + B ,  

which contradicts (5.7).  Hence  b --  a ~< ~. Since c is a quasigeodesic, d(c(s), c(a)) <<. A~ + B 
for all s ~ [a, b] and  hence 

d(c(s) , , )~<R I + 3 B + A ~ R .  [] 

Le t  F be a finitely generated discrete group and  let d r be the word metric on U 

corresponding to a finite system of  generators. Note tha t  any  two word metrics on F 
are equivalent  and  the not ion of  quasigeodesics (see Definition 5.1) can be applied to F. 

5.8.  Definition. - -  A finitely generated discrete group F has rank 1 i f  there is q~ ~ F 
with the proper ty  tha t  �9 ----- { ~k [ k ~ Z } is a quasigeodesic and  for any  A i> 1, B/> 0 

there exists R > 0 such tha t  any  (A, B)-quasigeodesic c : [ a ,  b] ~ P wi th  endpoints 
on �9 is contained in the R-neighborhood of  O. We call such 9 a rank 1 element.  

Since any  two word metrics on r with respect to finite systems of  generators are 
quasi-isometric, the not ion of  rank 1 does not  depend on the choice of  the word metric. 
Note tha t  rank 1 elements in r have infinite order. 

acting 

henee~ 

5.9.  Theorem. - -  Let F be a group of isometrics of a locally compact Hadamard space X 
cocompactly and properly discontinuously. 
Then F is finitely generated and ~ e F is of  rank 1 i f  and only i f  9 is axial and one (and 
any) axis of  ~ does not bound a f la t  half plane. 

Proof. - -  Since X is locally compact ,  F is finitely generated.  Note tha t  for any  

x e X the map  X : F -+ X, Z(Y) = 7 x is a quasi-isometry between F and  X.  Hence, for 

any  A 1> 1, B f> 0 there are A'>~ 1, B'~> 0 such tha t  for any  (A,B)-quasigeodesic 

c:[a,  b] -~ r the curve c'(.) = c ( . ) x  is an  (A', B')-quasigeodesic in X.  
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Now assume that  ? ~ l" is axial and tha t  an axis a of  q~ does not  bound a flat ha l f  

plane. Choose x ---- g(0). Then  c(a) x, c(b) x ~ ~ and, by Theorem 5.2, c(. ) x is contained 

in the R(A' ,  B ')-neighborhood of  a. Since Z is a quasi-isometry, c([a, b]) is contained in 

the R-neighborhood o f{  ? * ) f o r  an  appropria te  R. This proves the " i f "  s ta tement  of 

the theorem. The  other direction is obvious. [] 

6. Euclidean buildings and products of  trees 

We assume throughout  this section tha t  (X, I ~) is a 2-dimensional orbihedron of 

non-positive curvature,  tha t  all links of  X have diameter  n and tha t  all faces of  X are 

flat Eucl idean triangles, in particular,  all edges are geodesics. 

6 .1 .  Lemma. - -  Let A be a connected graph such that the valence of  each vertex is at least 3. 

Assume that A has a length structure with injectivity radius and diameter equal to ~r. Then: 

(i) Every geodesic of  length <. ~ is contained in a closed geodesic of  length 2~. 
(ii) I f  ~ is a vertex then any ~ with d(~, ~l) = ~ is also a vertex. 

(iii) There is an integer k >1 1 such that every edge of  A has length ~/k. 
(iv) I f  ~ and ~ are not vertices and d(~, ~) = 7: then there is a unique closed geodesic of  length 2~r 

containing ~ and ~. 
(v) I f  ~ and ~ are vertices, d(~, ~) = ~ and e, f are two edges adjacent to ~ then there is a unique 

closed geodesic of  length 2~r containing e,f ,  ~, 0. 

Proof. - -  Let  a be a geodesic of  length rc with ends a and co. Whether  co is a vertex 
or not, there is a way  to continue a locally as a geodesic beyond co to a point ~ such tha t  co 

and  ~ lie on the same edge. I f  follows from our assumptions tha t  d(a, co) ----n and  
d(a, ~) = n --  d(~, co) ( n. Therefore,  the unique shortest connection from ~ to ~ together 

wi th  the cont inuat ion of  ~ form a closed geodesic of  length 2n. This proves (i). 
To prove (ii) let d(~, ~) = n. Then ,  by (i), ~ and  B lie on a closed geodesic y of  

]ength 2n. Le t  e be an edge adjacent  to ~ and  not  contained in y and  let ~ be a point  

on e different from ~. As in the proof  of  (i), d(B, ~) = n --  d(~, ~) ( n. Hence,  ~ lies on 

a geodesic arc p of  length n from ~ to 0. Since the injecfivity radius of  A is n, the arc p 

intersects y only at  ~ and  0- Hence,  B is a vertex. This proves (ii). 
Le t  e, f ,  g be three edges adjacent  to a vertex ~. Cont inue  g to a geodesic a of  

length n and  assume tha t  l(e) : =  length(e) ( l e n g t h ( f ) .  Le t  ~ be the point on a with 

d(~, ~) = 7: - -  l(e). Then  the distance from the other end of  e to ~ is n, and hence, ~ is 

a vertex by (ii). Let  B be the point  o n f w i t h  d(~, ~) = l(e). Then  d(~, ~) ~- ~, and  hence, 
~] is a vertex. This  is a contradict ion since B lies in the interior o f f .  Hence,  the lengths 

of  any  two adjacent  edges are equal. This proves (iii). 

To prove (iv) assume tha t  ~ lies in an edge e wi th  ends ~1, ~, and B lies in an e d g e f  

wi th  ends ~1, B~. Since d ( ~ ,  ~) ( n, there is a unique shortest connection co~ from ~ 

to 0, i ~- 1, 2. W L O G  assume tha t  ~q~ ~ co~. Since the injectivity radius of  A is z~, we have 
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co 1 n r ~ ~ and  co 1 �9 e �9 r 2 is the un ique  closed geodesic o f  length 2n containing 
and  ~. This proves (iv). 

To prove (v) let Be, ~ s +  ~ be the other ends of  e and  f ,  respectively. T h e n  

0 ~< d(~e, ~), d(~s, ~) < n, and  hence, there are unique  shortest connections toe, co s 
from ~,, ~s to ~, respectively. Similarly to the proof  of  (ii), e �9 co e �9 co s . f  is the unique 
closed geodesic containing e, f ~. [] 

6 .2 .  Lemma. - -  Every geodesic in X is contained in a f l a t  plane. 

Proof. - -  I t  is sufficient to show tha t  for every l every geodesic 6 of  length l is the 
middle  horizontal  line of  a flat l • l square. By subdividing the faces of  X i f  necessary, 

we m a y  assume tha t  l is greater than  the maximal  length of  an  edge and  tha t  all angles 

are ~< ~[2. Set A = { a >/ 0 : 6 is the horizontal  middle  line of  a flat l • a rectangle }. 

Le t  a 0 = sup A. By the local compactness of  X, the set A is closed and  there is a flat 

1 • a o rectangle for which 6 is the middle  horizontal  line. We will show now tha t  A is 
open in [0, ao). 

Le t  6 be the middle  horizontal  line of  a flat l • a rectangle R whose top and  bot tom 
boundaries  are geodesics 6 -~ : [0, l] -+ X.  We will extend R beyond 6 + and  6-  by  flat 

strips of  wid th  e 2> 0. We will deal  only  with 6 +, the a rgument  for 6 -  is the same. Assume 
first tha t  6 + does not  contain an open subsegment of  an essential edge. For  any  t ~ (0, l) 
the incoming ~(t) and  outgoing ~q(t) directions of  6 + at  6+(t) lie at  distance rc in Sa+~t ~ 

and  are not  vertices. Hence,  by  L e m m a  6.1 (iv), there is a unique closed geodesic 
in So+~t ~ containing ~(t) and B(t). I t  follows tha t  6 + is contained in a unique  flat strip S 
of  positive wid th  5. The  strip S extends R.  

FXG. 6 
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Assume now that ~+ contains an open subsegment of  an essential edge. Then, by 
Lemma 6.1 (ii) and Lemma 6.1 (v), it consists of essential edges and maybe two segments 
of essential edges at the ends. Let  t o/> 0 be the minimal value of the parameter for which 
~+ (to) is a vertex, see Figure 6. By assumption t o < l. Rectangle R is represented in the 
link S~+(~o~ by a geodesic arc eo of length r~[2 i f t  o = 0 and of  length ~ if t o > 0. In either 
case extend eo to a closed geodesic co o in So§ Extend R by the union Po of closed 
faces adjacent to a+(to) which are represented by the edges forming co o in So§ Note 
that P0 is convex since all angles are ~< n/2. Assume that tl, t o < t z ~< l, is the next para- 
meter value for which ~+ (tl) is a vertex. Then P0 is represented in So§ by two adjacent 
edges e l , f l  with the incoming direction ~(tl) of  a + adjacent to both. One of the edges, 
say el, lies in the arc e~ representing R in So§ I . Note that el has length = ift~ < l and 
r~/2 ift~ = l. By Lemma 6.1 (v), there is a closed geodesic o~ of length 2~ which containsf~ 
and e~ and is unique if tl < l. Let P~ be the union of closed faces adjacent to ~+ (tl) which 
are represented by  the edges forming r in So§ ~. Then P1 is convex and P0 n P~ 
consists of  the two faces represented by el and f~ in So§ Therefore, we can extend 
R w P0 by Pz to a bigger flat surface. We repeat this process until we construct a fiat 
surface containing R and a fiat strip of positive width which extends it. [] 

6.3 .  Lemma. - -  Let A be a connected graph with a length structure o f  injectivity radius and 
diameter equal to ~. Assume that the length of  each edge in A is rc[2. 

Then A is a complete bipartite graph. 

Proof. - -  Let 4, ~l be two vertices in A with d(~, B) = n. Let U and W be the sets 
of vertices that lie at distance =]2 and ~ from 4, respectively. Clearly there is a vertex 

s U such that d(~, ~) = d(~, ~l) = re/2. Let ~' ~ U. I f  d(~', ~) + n/2 then d(~', ~) = n. 
Note that d(~', ~) = =. Hence the distance from any point between ~ and ~ to ~' is 
greater than r~. Contradiction. Hence  d(~', ~) = re[2. [] 

6.4.  Lemma. - -  Let X be a simply connected, locally finite complex of  nonpositive curvature 
such that all maximal faces of  X are f la t  rectangles and all links have diameter ~. 

Then X is a product of  two trees. 

Proof. - -  Since X has nonpositive curvature, every link satisfies the assumptions of  
Lemma 6.3, and hence is a complete bipartite graph. Fix a vertex v0 e V x and declare 
it a marked vertex. Choose a vertex t0 e S~0 and mark it " horizontal ". Mark " ver- 
t i ca l "  all vertices ~l with distance rc[2 to to and mark " horizontal " all vertices ~ in S,0 
with distance rc to to. Mark " horizontal " all edges adjacent to v 0 which are represented 
by horizontal vertices in S,0 and mark " vertical " all other edges adjacent to v 0. Let  w 
be any vertex of X connected to a marked vertex v by an edge e. Assign to the vertex ~ 

representing e in S~ the marking of  e. Now mark accordingly the rest of the vertices 

in S,, that is the vertices with distance rc from ~ get the same marking as ~w and the 
vertices with distance r~/2 get the opposite marking. We claim that this process can be 
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used to mark consistently all vertices in the links of X and all edges in X. Since X is 
simply connected, it is sufficient to check that no contradictions arise for one face of X. 
Let  u be a vertex of a maximal face F, let v, w be the vertices of F connected to u by 
edges e, f ,  and let u' be the diagonally opposite vertex of the rectangle F. Assume that 
all vertices in the link S~ have horizontal or vertical markings. Note that / ( e , f )  = rr 
and hence, e and f have different markings. W L O G  assume that e is horizontal and f is 
vertical. Let g be the edge connecting v to u' and let h be the edge connecting w to u'. 
Then / ( e ,  g) = / ( f ,  h) = z~/2, and hence, g is vertical and h is horizontal. Therefore, 
the markings for S,,,, obtained by moving through e * g and through f .  h, coincide. 

Hence, every edge of X is marked either " horizontal"  or " vertical ". When two 
edges e, f a r e  adjacent, they have the same markings if /_ ( e , f )  = n and different markings 
i f / _ ( e , f )  = n/2. Now let w be any vertex. Denote by T h the connected component of the 
union of horizontal edges which contains w and denote by T~ the connected component of 
the union of vertical edges which contains w. It  is clear now that X = T h • T~. [] 

6.5.  Theorem. - -  Let (X, F) be a compact 2-dimensional orbispace without boundary and 
of  nonpositive curvature. Assume that all links Of X have diameter ~, that all faces Of X are Euclidean 
triangles and that all edges are geodesics. 

Then either all angles between essential edges of  X are ~/2 and ~ and X is the product of  
two trees, or at least one angle is z~[k, k >>. 3, and X is a thick Euclidean building of  type As,  B 2 

or G 2. 

Proof. - -  By Lemma 6.2, X is the union of embedded flat planes. Let F be such a 
plane. I t  follows from 6.1 (ii) that any line ~ in F containing an essential edge of X is 

the union of essential edges. 
Suppose first that F does not contain essential vertices of X. Then, by what  we 

said above, the union of essential edges in F is a set of parallel lines in F (an intersection 
would produce an essential vertex). I f  F does not contain an essential edge then X ~- F 
since a fundamental domain of F has finite radius. I f  X ~= F, let x r F and let y be the 
point in F closest to x. Then there is a line ~ of  essential edges in F throughy,  such that 
the geodesic y from x to y is perpendicular to ~ at y (recall that diam S~ = =). Hence, 
a ray y' in F from y and perpendicular to ~ is a geodesic continuation of y, and y �9 y' is 
contained in a flat plane F'. By our assumption on F we have F r3 F' = H, where H 
is the half plane in F determined by ~ and y'. I t  follows that all essential edges in F' 
are parallel to ~ in F'. We can see now that X is the product of an (essential) tree with 
a line (in the direction of ~). 

Suppose now that F contains an essential vertex v. I f  ~ = ~(v) is the common length 
of edges in S~, see Lemma 6.1, then ~ :-  ~/m for some m 1> 2. Hence there are m lines 

of  essential edges in F passing through v such that the angle between consecutive lines 

is rc/m. These lines cut out m triangular surfaces from F. I f  F does not contain another 
essential vertex, then a fundamental domain of F lies completely inside one of these 
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triangular surfaces, a contradiction. Hence there is another essential vertex in F. Since 
the angles at essential vertices are n/n, n >1 2, it follows that the maximal faces of  X in F 
are either rectangles or triangles. 

Suppose that a maximal face A in F is a triangle and let e be an edge of A. By 
Lemma 6.1 (iii), the maximal face A' of X in F opposite to A along e has interior angles 
at the ends of e equal to the interior angles of A. Hence A' is the reflection of A along e. 
It  follows that the maximal faces in F are all isometric and that the tesselation of F by 

them is of type A2, B 2 or G 2. 

Now let e' be any essential edge in F with ends v', w' and A' ~ e' be any maximal 
face not lying in F. Take a segment o~ in A' which is parallel to e' and close to it. Extend 
to a geodesic , .  By Lemma 6.2, there is a flat plane F' containing , ,  and hence, containing 
A'. The angles ~, [5 at v', w' in F' are the same as in F. Hence, A' is equal to the triangles 
in F. Therefore, all maximal faces of X are equal triangles. Note that any flat plane F 
in X is partitioned into triangles that are maximal faces of X and this partition is invariant 
under the reflections with respect to all essential edges in F. 

We claim now that X is a thick Euclidean building whose apartments are flat 
planes and chambers are maximal faces of X. We must verify the following properties. 

1) X is the union of flat planes. That  is so since every geodesic lies in a flat plane. 

2) I f  the intersection F 1 rn F~ of two planes contains a maximal face A, then there 
is a unique Coxeter isomorphism between F 1 and F~ fixing F1 n F~. This follows from 
the face that F~ n F 2 is convex and the position of any triangle in a flat plane F~ uniquely 
determines the positions of all other triangles. 

3) For any two maximal faces Ax, A 2 of X there is a flat plane F containing both. 
To see this connect the centers of A 1 and A~ by a geodesic ~. By Lemma 6 .2 ,  there is 
a flat plane which contains a, and hence, contains both A 1 and A 2. 

Assume now that a maximal face A C F is a rectangle. Then the argument above 
shows that all maximal faces of X are rectangles and the length of each edge in each 
essential link is n/2. Then, by Lemma 6.3, each link of X is a complete bipartite graph, 
and by Lemma 6.4,  X is the product of two trees. [] 

7. R ~ - k  1 orbihedra  

In  this section we will consider the situation complementary to that of  Section 6 
and will show that F contains a rank 1 isometry. We start with several lemmas that allow 
us to reduce step by step the class of spaces X. After Proposition 7.7 we are reduced to 
the situation when all edges of  X are geodesics, all faces are flat triangles and the angles 
between essential edges in all finks are rational. To handle this case we introduce a 

parallel dihedral structure in X and prove in Proposition 7.14 that, if there is a link in X of 

diameter ~> n, then r has rank 1. 
Let (X, r )  be a compact 2-dimensional boundaryless orbihedron with a piecewise 

25 
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smooth metric of  nonpositive curvature.  We fix a F- invar iant  t r iangulat ion on X such 

tha t  the metric d on X is induced by a piecewise smooth R iemann ian  metric on this 
t r iangulat ion.  

7.1 .  Lemma. - -  Assume that: 

(i) there is a point Xo in an open face F of X such that the curvature of F at Xo is negative, or 

(ii) there is a point x o in an open edge e of  X such that the sum of the geodesic curvatures of e in 
two adjacent faces Fx, F,  is negative at x o. 

Then there is a F-dosed geodesic ~ such that in Case (i) a passed through a point x e F 

and the curvature at x is negative, and in Case (ii) ~ passes from Fx to F,  through a point x e e 

and the sum of the geodesic curvatures of e at x with respect to F x and F,  is negative. In both cases 

is hyperbolic. 

Proof. - -  In  either case there is a geodesic to such tha t  to(0) = Xo, to does not  bound  
a fiat strip and  does not  pass through vertices. By the Poincar~ recurrence theorem (see 
Corollary 3.5) ,  there are geodesics to, ~ to, isometrics ? ,  E F and  real numbers  t .  ~ oo 

such tha t  ?~-,(gt,(to,)) _+ to. I t  follows tha t  ~,  x 0 -+ to(~) and  ~ a  x 0 -+ to(-- oo) 
as n - +  oo. By L e m m a  2.7,  i f  n is large enough then  q~, has an  axis a .  and  
~ , ( •  oo) -+ to(• oo) as n -+ o~. Since to does not  bound  a flat strip, a ,  ~ co as n -+ oo. 

Hence,  for n large enough the axis o.  passes th rough  a point  x as claimed. [] 

7.2 .  Lemma. - -  Assume that there is a vertex v o of X whose link S,o has the property that 

for any point ~ E S,0 the set { ~ ~ S,o : d(~, ~) > ~ } is not empty. This happens, in particular, 
when S,0 is not connected. 

Then there is a F-closed geodesic o passing through v o and making an angle > ~ at v o. 

Proof. - -  By the compactness of  the link S,o , there is 8 > 0 such tha t  for any  ~ E S,o 

there is a point  ~ z S,o with d(~, ~) > ~ + 8. Le t  ~o be any  point in S,o and  let ao be 

any  geodesic in X such tha t  ao(0) = Vo and  the outgoing direction of  a0 in S,0 is ~o- 
Denote by R the diameter  of  a fundamenta l  domain  for F. Then  there is an  isometry 

~o ~ F such tha t  d(~ o v0, a(4R/8 d- R)) < R.  Le t  to o be the geodesic connecting v 0 to 

v x = ~b o v o. Then  the outgoing direction Bo of  to o at  v 0 satisfies d(~o, to) < 8/4. Le t  ~o 
be the incoming direction of  too at  v 1 and  let ~1 e S,1 be such tha t  d (~1, ~o) > n d- 8. 
Le t  al be a geodesic such tha t  al(0) = v 1 and  the outgoing direction of  al at  vx is ~l- 
There  is an  isometry +1 e F such tha t  d(~b 1 vl, a(4R/8 d- R)) ( R. Le t  to1 be the geo- 

desic connecting v 1 to v 2 = ~b 1 v s. Then  the outgoing direction B1 of  0Ol at  v 1 satisfies 
d(~ql,~l) < 8/4. Set 72 = +ld/O �9 Proceed in this manne r  to construct isometrics 

+n, ~n = +~-1 " "  +0, and  geodesics ton such tha t  the distance in S,,,o between the 
incoming direction ~,_  1 of  to ,_ ,  and  the outgoing direction ~, of  to, is at  least ~ + 38/4. 

The  last inequal i ty  implies tha t  the concatenat ion of  the geodesics to, is a geodesic in X. 

By the compactness of  the link S,o , there are two integers m, n, 0 <~ m < n, such tha t  
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d(~,  -t 0 , ,  ~ 0~) < 8/4. Set + = ~,  ?=a and a = ~ ( r  �9 {.0~+ 1 * . . .  * 6 ) . _ 1 ) .  Then 
the concatenation co of the geodesic segments +~(a), k e Z, makes an angle > 7: at v 0 
and is an axis of  +. [] 

7 .3 .  Lemma. - -  Let v be a vertex in X and suppose that ~, 0 e S, are such that d,(~, 0) = 7:. 
Then for any r > 0 there are ~', 0' e S,, an isometry ~ e P and a geodesic co connecting v 

to ?v such that the outgoing direction of ~ at v is ~', the incoming direction of o~ at ?v is ?~' and 

d o ( 0 ' ,  0 )  < 

Proof. - -  We subdivide the faces of  X, if necessary, by the geodesic segments e 

and f starting at v in the directions ~ and 0, respectively, and assume W L O G  that e 
and f are edges of X. Let 0 be a shortest connection from ~ to ~ in S,. Then the union 
of the faces of X represented by the edges in S, forming 0 is a polygon P with angle 7: 
at v between e a n d f  By subdividing further, if necessary, we may assume that P is convex. 

Let v~ and v t be the other ends of e and f and let e' ~e e and f '  ~e f be the other edges 
of P adjacent to v, and vl, respectively. Fix 8 > 0 and let ~'  a n d j  7' be the subsegments 

of  e' a n d f '  of  length 8 containing v, and vf, respectively. Let  G be the set of  ge9desics 
which do not pass through vertices, contain segments connecting points from ~'  to points 
from3 7' and such that ~(0) e P. Then G has positive Liouville measure. Hence, by the 
Poincar6 recurrence theorem (see Corollary 3.5), there is a geodesic ~ e G, an isometry 
? e P and T > 0, which can be chosen arbitrarily large, such that ~-a(gT(a)) e G. For 
a large enough T and small enough ~ the geodesic o~ connecting v to ~v satisfies the requi- 

rements of the lemma. [] 

7.4 .  Lemma. - -  Assume that there is a vertex v in X whose link has the following property: 

there exist points ~ , o ,  e S , ,  i =  1, 2 , . . . , n ,  such that d(~,,O~) =7: ,  d(~ ,~ ,+1)>i  7:, 

i = 1, 2, . . . ,  n - -  1, and d(~ , ,  ~1) > 7:. 

Then there is a F-dosed geodesic ~ passing through v and making an angle > 7: at v. 

Proof. - -  Let d(o , ,  ~1) = 7: + 8 with 8 > 0. Fix any positive ~ < 8/(2n) and use 
Lemma 7.3 to construct geodesics r and isometrics ~i. Set +, = ~ , . . .  ~, ~01 and 
co = co 1 �9 +a r �9 . . .  �9 + ,_  1 (%. Then o) consists of geodesic segments with angles 
> 7: --  2a at the n --  1 break points, its starting direction is at distance < a from ~1 
and its ending direction at +,(v) is at distance < a from +,(B,). By Lemma 2.5, the inco- 
ming direction of  the geodesic a from v to +,(v) at +,(v) and the image of  its outgoing 
direction under +, lie at distance > 7: in Sr Hence, the geodesic 

. . .  �9 . . . ,  4 , ' , , , ,  . . .  �9 . . .  

is an axis of ~, and satisfies the requirements. [] 
The assumption diam S, > 7: is not sufficient for the existence of a finite sequence 

of  pairs of points ~,, 0~ as in Lemma 7.4. the 1-skeleton of  a tetrahedron with all edges 
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of length 2n/3 is a counterexample. However, as an immediate consequence of 
Lemma 7.4 we have: 

7.5 .  Corollary. - -  Let v be a vertex in X such that diam S, 

geodesic in S, whose length is an irrational multiple of  ~. 

Then there is a hyperbolic axial isometry + e P. [] 

> r~ and there is a closed 

7 .6 .  Lemma. - -  Let v be a vertex in X such that the link S, contains a simple arc co of 

length 1 > rr whose end points ~ # ~ are essential vertices and whose interior does not contain essential 

vertices. 

Then there is a P-closed geodesic ~ passing through v and making an angle > ~ at v. 

Proof. - -  I f  l > 2~, the statement follows from Lemma 7.2. We assume that l < 2~, 
the argument for the case I = 2n is similar. Let ~ be the midpoint of co. Since ~ is essential, 

there are at least two ways of extending the subarc from ~ to ~ beyond ~ to arcs c%1 , o ~  

of length ~z. Similarly, there are at least two extensions c%1, c%2 of [~, ~] C co beyond 
to arcs of length ~. Recall that l > ~, the injectivity radius is ~ and there are no essential 

vertices in the interior of co. Hence there exists indices i, j such that o~, does not intersect 

any arc of length ~ -- l/2 starting at ~ and c%j does not intersect any arc of length 
--  l]2 starting at 4. Therefore, co can be extended to a simple arc o~' in S, of length 

2(~ + a), r > 0, which contains co~, and c%j, does not intersect other arcs from ~ and 
of length ~ -- l[2, and for which ~ is the midpoint. Let ~ and ~ denote the ends of co'. 

Consider the following points on o~: t0 lies on c% at distance ~ from ~, ~o =- ~, ~ lies 

on o~,~ at distance ~ from ~, B~ = ~. By construction, d,(~0, ~a), d , (~,  ~0) > ~. Hence, 
Lemma 7.4 applies and the lemma follows. [] 

7.7 .  Proposition. - -  Let A be a finite graph with a length structure of injectivity radius 1. 

Assume that every vertex is adjacent to at least 3 edges and that the length of every closed geodesic 

in A is rational. 

Then the length of every edge is rational. 

Proof. - -  I f  an edge connects a vertex to itself then it is a closed geodesic and its 

length is rational be assumption. To treat other cases we need the following auxiliary 

statement. 

7.8 .  Lemma. - -  I f  f is an oriented edge with different ends then there is a geodesic loop c 

in A starting with f and ending with f -1. 

Proof. - -  Let e connect v to w + v. By assumption, A \ f  is a nonempty graph with 
every vertex adjacent to at least 2 edges. Therefore, A \ f c o n t a i n s  a geodesic loop c' at w. 

Now let c = f .  c' . f - 1 .  [] 
We continue now with the proof of Proposition 7.7. Let e be an edge connecting x 

t oy  # x. I f  there is an e d g e r #  e starting and ending at x then f : =  c, is a closed geodesic 
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at x. Otherwise there are 2 oriented edgesfl , f2 starting but not ending at x. By Lemma 7.8, 
there are geodesic loops ci, c2 for f i , f ,  such that c, : =  c i �9 c 2 is a closed geodesic at x. 
We construct cu in a similar way and note that c = c, �9 e �9 c, �9 e-a is a closed geodesic 
and 2 l eng th ( e )=  l e n g t h ( c ) -  l eng th (c~) -  length(c,). This finishes the proof of 
Proposition 7.7. [] 

By Proposition 2.11, Lemma 7.1 and Lemma 7.2 we can assume that all edges 
of X are geodesics, that all faces are Euclidean triangles and that all links are connected. 
By Corollary 7.5, Lemma 7.6 and Proposition 7.7 we can assume that all angles between 
adjacent essential edges are rational multiples of n and ~ To. 

7 .9 .  Definition. - -  A parallel dihedral structure D of order q in X is a family of subsets 
D, C S~, x e X, such that: 

(i) for any x e X and ~ e D, we have 

D ~ = l ~ e S ~ : d ( ~ , ~ q )  = - -k~fo r some in tege rk l ;q  

(ii) i f x ,  y e X belong to the same open face ~" then D, and D are parallel in F; 
(iii) if x e X lies in a closed face F and ~ e D, belongs to T, F then for any y in the 

interior ~" there is ~ e Du parallel to ~ in F; 
(iv) if x e X lies in an essential edge e then the point ~ e S, representing e lies in D,.  

Clearly (m, n)-complexes with their canonical piecewise flat metric (see Section 1) 
are examples of complexes with a parallel dihedral structure. 

7.10. Remark. - -  I f  X has a parallel dihedral structure of order q then: 

(i) the length of any closed geodesic in any link of X is an integer multiple of Tc/q; 
o 

(ii) if x, lies in an open Face Fi, i = 1, 2, and the faces F1, F 2 are adjacent by an edge 
then Dxl [[ Dx, in the union of the faces. 

Recall that a maximal face of X is a connected component of the union of all open 
faces, inessential edges and interior vertices (see Section 2). 

7.11. Lemma. - -  I f  all angles between adjacent essential edges of  X are <~ ~, then every 

maximal face of  X is locally convex. [] 

7 .12 .  Proposition. - -  I f  the angles between the essential edges of  X are rational multiples 

of  ~ and <<. ~, then X has a parallel dihedral structure. 

Proof. - -  The assumptions do not immediately imply the existence of a parallel 
dihedral structure because the union E'  of closed essential edges of X may be disconnected. 
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I f  E'  = O then X has a parallel dihedral structure by the well known classification 

of planar lattices. I f  E'  # O then, by  Lemmas 7.11 and 2.4,  the maximal faces of X 
are embedded polygonal subsets in the plane. Since F acts cocompactly, maximal faces 
of X do not contain arbitrarily large disks. Therefore, we have the following possibilities 
for a maximal face F: 1) a convex polygon, 2) an infinite flat strip, 3) two parallel rays 
whose ends are connected by a finite polygonal line, see Figure 7. Let  q be the common 
denominator of all angles between adjacent essential edges. I f  x r X is a point lying on 
an essential edge e then let D, C S~ consist of  the point ~ representing e and all points 

~ S~ for which d~(~q, ~) is an integer multiple of n/q. For any o t h e r y  e X lying in the 

interior F of a maximal face F choose any x z OF and define D u as the parallel translation 
of D, from x t o y  in F. In Cases 1) and 3) all essential edges forming OF belong to the 
same connected component  of E', and hence, the set Du does not depend on the choice 
of x ~ OF. In  Case 2) there are two connected components of E' but  they are parallel, 
and D~ also does not depend on where x lies in OF. I t  is easy to see that this defines a 
parallel dihedral structure on X. [] 

Case 1. Case 2. Case 3. 

FIo. 7 

7.13. Lemma. - -  Let X have a parallel dihedral structure D and let ~? be an axial isometry 

with an axis a which bounds a f la t  half plane and whose direction does not belong to D. 

Then the set P of geodesics parallel to ~ is a plane and F contains a subgroup acting cocom- 

pactly on P. 

Proof. - -  Since the direction of ~ is not in D, the set P is the product of a line (in 
the direction of  a) and an interval. Since a bounds a flat half  plane, the interval is infinite. 
Assume that P is not a plane. Then it is exactly a flat half  plane with boundary a' inva- 

riant under ~. 
Let F be a fundamental domain of  F, set ~'(0) = x 0 and let x. be the point in P 

that lies on the perpendicular to ~' through x 0 at distance 2n • diam F from x 0. Let  a.  
be the geodesic passing through x, and parallel to a'. Note that a.  is an axis of  ~. There is 
+. e F such that y .  = +, x. ~ F. The geodesic +,(a,)  passes through y , ,  and hence, 
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through F and is an axis of +, q~+~-1. Observe that the displacement o f y ,  by +, ~+~-1 is 

equal to the displacement of x0 by ~ and al ly , ' s  lie in F. Hence, by the discreteness of I ~ 
there are infinitely many pairs m 4= n such that +, ~+~-i = +~ q~+~ ]. Hence q~ commutes 
with + ---- +~ 1 +,.  Note that + 4= id by the choice of x, .  Since + commutes with ~, it 
leaves invariant the set of axes of q~. By composing + with itself, if necessary, we may 
assume that + preserves orientation in P. I f  m ~ n then + moves x, away from C in P, 
and hence, moves x0 away from o' in P. This is a contradiction. Hence, P is a plane. The 
same argument implies that the group generated by q~ and + acts cocompactly on P. [] 

7.14.  Proposition. - -  Assume that X has a parallel dihedral structure D of order q and that 

there is a vertex v in X such that S, has diameter > re. 

Then there is an axial isometry + ~ F with an axis which does not bound a f la t  half plane, 

and hence, F is of  rank 1. 

Proof. - -  By doubling D if necessary we may assume that q is even. Suppose that 
all axes of the isometrics from F bound flat half planes. I f  there is no essential edge 
adjacent to v then S, is a circle and, by Lemma 7.2, there is an axial isometry in E with 
a hyperbolic axis. Hence, we may assume that there is an essential edge e adjacent to v. 
Choose two points 4, ~ ~ S, such that: 

(i) ~ and ~ lie on a minimal geodesic ~, C S, of length > ~, 

(ii) d (4, ~) = ~, 

(iii) d(~, D~) = d(~, D~) = ~ ,  

(iv) the balls B 4, and B ~, centered at ~ and ~ are contained in ~. 

13 

(9 

U '  0 

r 

r 

Fro. 8 
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By construction, we have: 

(7.15) if ~' ~ B (~, ~q) , , eB ~], then there is no closed geodesic in S, 

of length 2~z containing ~' and ~'. 

By Lemma 7.3, for a n y ,  > 0 there are ~', ~' e S,, an isometry ~ e U and a geodesic 
connecting v to q~v such that the outgoing direction of ~ at v is ~', the incoming direction 
o f o  at ~v is q~B' and d,(~', ~), d,(B', ~) < r By passing if necessary to the geodesic connec- 
ting the ends of co �9 co, we may assume that the isometry q~ corresponding to ~ is a 
square. Let ~ be an axis of  ~ and let v be the shortest connection from v to ~. 
Set a = L, (v ,  o~), [3 = L~l,i(~0(.~), o~) and denote by ~' and [3' the angles formed by % 
and ~(,),  a, respectively. Obviously, ~', [3'/> n/2. By Corollary 2.3, ~ + ~'~< n and 
[3 + [3' ~< n since d(v, a) = d(~(v), a). Note that a + [3 t> n -- 2a by the choice of co. 
Hence 

71; t [3t 7~ 
n2 2~< ~, [3< ~ <  ~,  ~< ~ + 2~. 

We are not using is but actually ~' + [3' = n, and hence, a' -- [3' = ~/2. Let vl, v2, . . . ,  v, 
be the vertices lying in the interior of v in consecutive order and let v' be the inter- 
section point of v and a. Denote by a, the geodesic connecting v, to ~(v~) and let 

t r ~,, ~,, [3o [3,, i -  1 , . . . ,  n, be the angles indicated in Figure 8. Since v and q~(v) are 
geodesics, we have ~ , + ~ / >  ~, [3i+ [3~I> n, i =  1, . . . , n .  By Lemma 2.5, all these 
angles are between ~/2 --  2~ and rc/2 + 2~. Let ~, denote the defect of v at v,, that is 
8~ = d, --  rc/> 0, where d~ is the distance in S~i between the incoming and outgoing 
directions of -~. Note that ~,, ~ < ~, and hence, ~ ,  ~ realize the distance from these 
directions to the direction of a i at v,. Therefore, a~ + a~/> n + ~,. Similarly, 
[3~ + [3~ >/ n + 8,. Since the sum of the angles of any geodesic quadrangle is at most 2n, 
we have: 

2(~ + l) ~ ~> ~' + [3' + ~ + [3~ + ~ (~;_~ + [3;,  + ~, + ~,) 
i = 2  

+ ~'. + ~'~ + ~ + [3 

1> ~ ( x , + a ~  + [ 3 , + [ 3 ; )  + ~ ' + [ 3 ' + ~ + [ 3 > /  2nn 
i - 1  

+ 2  ~ ~ + 2r~ -- 4r 

s 

Hence, t~1 8~ < 2,. 

7C 
Let 0 + denote the outgoing direction of v at v. Then d~(O +, D~) >/ ~q - --  3a since q 

is even and n/2 -- 2a ~< a ~< ~/2. Let 0 + and 0~- denote the outgoing and incoming 
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directions of �9 at v~, respectively. Then d,l(01- , D,I ) = d,(0 +, D,)/> ~q -- 3e, and hence, 
7r 

d,l(0+ , D,1)/> ~q 3 z -  ~1. Repeating this argument, we obtain for the incoming 

direction 0-  of �9 at v' 

= d o n ( 0 . + ,  - -  - -  , -  

Let ~ be the direction of ~ at v'. Since ~/2 ~ 0~' ~< ~r/2 + 2e, we have: 

7~ 
('/.16) d,,(~, D.,) >/ ~q 7e. 

Therefore, if e is small enough then ~ r D,,. 
By our assumption, ~ bounds a flat half plane. By Lemma 7.13, the set P of geo- 

desics parallel to ~ is a plane and, since ~ a square, it acts as a translation in P in the 
direction of 6. W L O G  assume that v is the shortest connection from v to P. Recall that 
0~' ~< 7r[2 + 2r < 7r. Hence, v and ~ locally span a unique flat sector S in X with angle ~' 
at the apex v'. Since the direction of ~ is not in D, there is a subsector S' of S containing 

7~ 
a and lying in P. By (7.16), the angle of S' at v' is at least ~q 
angle between -~ and P is at most 

~ ' - -  - - 7 e  ~<~ ~ q + 9 r  

- --  7r I t  follows that the 

For a small enough r the right hand side is less than 7r/2 which contradicts the fact that v 
is the shortest connection from v to P. Hence, ~ lies in P and is parallel to 6. This 
contradicts (7.15). [] 

8. Euclidean buildings 

A general reference for the following is [Bro]. Recall that a Tits building is a sim- 
plicial complex X which is the union of subcomplexes, called apartments, such that: 

(B0) each apartment  is a Coxeter complex; 
(B1) for any two simplices A, A' in X, there is an apartment containing both of  them; 
(B2) for any two simplices A, A' in X and apartments F, F' containing both of them, 

there is an isomorphism F -+ F' fixing A and A' pointwise. 

We may take A and A' to be the empty simplex in (B2), and hence any two apartments 
are isomorphic. In  particular, all apartments have the same dimension. Simplices of  
maximal dimension are also called chambers. Axiom (B2) can be replaced by the following 

axiom, see [Bro, p. 77]: 

(B2') if F, F' are apartments with a common chamber C, then there is an isomorphism 
i : F ~ F' fixing F n F' pointwise. 

26 
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We say tha t  X is a Euclidean building i f  its apar tments  are Eucl idean Coxeter complexes. 

A Eucl idean bui lding has a canonical  piecewise smooth metric d consistent with the 
Eucl idean structure on the apar tments  and  turning it into a H a d a m a r d  space. 

Le t  X be a Eucl idean bui lding of  dimension n, equipped with  the complete system 

of  apar tments  and  the canonical  metric d. Then  a subset of  X is an apa r tmen t  i f  and only 
i f  it  is convex and  isometric to I t" .  For  this reason, we call the apar tments  of  X f la ts .  
Every geodesic of  X is contained in a flat. 

Le t  A F be the group of  automorphisms of  a flat F preserving the tr iangulat ion.  

T h e n  A F preserves the metric, and  hence, A F is a Bieberbach group of  rank n. The  sub- 

group T~ C A 1, of  translations is a normal  and  maximal  abelian subgroup. I t  is free 
abelian of  rank n and  has finite index in A t .  

8 . 1 .  Remark. - -  The  t r iangulat ion of  F is defined by a finite number  k of  pairwise 

transverse families ~ 1 , - - . ,  9ta, o f  parallel hyperplanes in F which are called walls. 

The  (n --  2)-skeleton of  F consists of  the intersections of  walls H, n H j  wi th  H, ~ ~r 

H~ ~ ~'~5 and  i + j .  The  open (n --  1)-simplices are the complements of  these inter- 
sections in the wails. 

The  Coxeter group W~ C A~ of  automorphisms of  F generated by the reflections 
in the walls H ~ W : =  U, =1 ~r has finite index in A F. 

Fix a flat F and  a translat ion -r E T F. We say tha t  a translation z' of  a flat F '  is 
conjugate to -r i f  there is an  isomorphism i : F '  -+ F such tha t  -r' = i-1 o -r o i. Thus  a 

translat ion -r' of  F is conjugate to -r if  and only if  -r' is conjugate to v in A F. I t  follows 

tha t  the number  of  translations of  a flat F '  conjugate to -c is equal to the n u mb e r  m of  
elements in the conjugacy class of  ,r in A~. 

We say tha t  a geodesic a is special (with respect to -r) i f  a does not  meet  the (n --  2)- 
skeleton of  X and  if  there is a flat F '  containing a and  a t ranslat ion v' of  F '  conjugate to v 
such tha t  

�9 '(a(t)) = a(t + to) for all t ~ R,  

where t o = [I ~'[I = I[ v[I > 0 is the displacement.  This is independent  of  the flat F '  
containing a : i f  F "  is another  such flat, then a C F '  n F" .  Since ~ does not  meet the 

(n --  2)-skeleton of  X,  this implies tha t  F'  n F "  contains an n-simplex. Hence  there 
is an  isomorphism i : F "  -+ F '  fixing a pointwise and  v"  = i-1 o ~' o i is a translation 

o f  F "  conjugate  to v and  shifting a as required.  
I f  a is special wi th  respect to v, i f  F '  is a flat containing a, and  if  i : F '  -+ F "  is 

an isomorphism to another  flat F" ,  then i o a is also special wi th  respect to v. 

8 . 2 .  Example. - -  Let  B be an open (n --  1)-simplex in X,  and  let F be a flat containing 

B. Consider the system W of walls as in Re ma r k  8.1.  Then  B C H ~ 3/g, for some i, 

1 ~< i ~< k. I f  H '  ~ 3~, is another  wall, then the composition ,r of  the reflections in H 

and  H '  is a translat ion of  F perpendicular  to B. A uni t  speed geodesic r in a flat F '  is 
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special with respect to this -r iff  it does not  meet  the (n - -  2)-skeleton of  X and  if there is 
an isomorphism i : F '  -+ F such that  i o o intersects B perpendicular ly.  

8.3 .  Lemma. - -  Let 6 be a special geodesic in a f la t  F'. Suppose that co is a geodesic with 

~r(0) = ~(0) and ~(0) = ~o(0). Then a~ is also special. More precisely, i f  co is contained in a 

f la t  F",  then there is an isomorphism i : F"  ~ F' with i (o)  = ~. 

Proof. - -  Since special geodesics do not  meet  the (n - -  2)-skeleton of  X and intersect 
the (n - -  1)-skeleton transversally, there  is an n-simplex C of  X and an r > 0 such that  

= 6(t) c ,  0 < t < 

Hence  C C F'  c3 F "  and therefore there is an isomorphism i : F "  -+ F '  fixing F'  r F"  

pointwise. Then  i(~) -----~. [] 

8.4 .  Lemma. - -  Suppose v' is a translation of a f la t  F' which is conjugate to .r. Denote by v 

the parallel field of unit vectors in F' in the direction of x'. Let B be an open (n --  1)-simplex of F' 

t r a n $ o e r $ e  t o  , t 

Then there is an open and dense subset B(v') C B of fuU measure and an tx > 0 such that 

a geodesic 6 in F' with x : =  6(0) e B and dx(+(0), v(x)) < ga is special iff x ~ B(v') and 
= v(x).  

Proof. - -  I f  m is the n u m b e r  of  elements in the conjugacy  class o f t  in A v then there 
are m directions in F'  which special geodesics can point  in. Hence  a geodesic 6 approxi-  
mate ly  point ing in the direction of  v can be special only if  ~ (0) = v(x), where  x = a(0). 
I f  h(0) = v(x), then 6 is shifted by  7' and 6 does not  meet  the (n - -  2)-skeleton of  X 
if 6([0, I[ v' [[]) does not  meet  the (n - -  2)-skeleton of  F. [] 

We re turn to our  discussion in Section 3. For a point  x in an open (n - -  1)-simplex 
adjacent  to an n-simplex C denote  by  S'z'C C S~ C the directions tangent  to special 
geodesics. Then  S'x' C contains at  most  m elements. Le t  Ca, . . . ,  C,  be  the  n-simplices 

adjacent  to an (n - -  1)-simplex B. W e  set 

S' z' = U~=I S'~' C i and V,  ---- U ,  e x' S_", 

Then  V, C V by  the defining proper ty  of  special geodesics. 
There  is a natural  measure  ~ on V, (the condit ional  measure  of  ~t, see (3.1)) :  

( s . 5 )  d (v) = cos 0(v) 

where  x is the foot point  of  v and dx the volume element  of  X '  (see the beginning of  

Section 3). 
By the definition of  V~, we have  F(v) C V~ if v e V~, and  hence the Markov  chain  

with transition probabil i t ies given b y  (3.2)  restricts to a Markov  chain with state space V , .  
One  can check easily that  the measure  '~ given by  (8.3)  is s tat ionary and hence gives 

an invariant  measure  ,~" for the shift in the space V:. of  sequences (v . ) , e  z in V~. 
Denote  by  G~ the set of  geodesics which are special with  respect to v. Then  G, 

is invar iant  under  the geodesic flow and under  au tomorphisms of  X. We  may  think of  V~ 
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as a cross section in G~, where  the re turn  map  (of the geodesic flow gt) corresponds to 
the shift on V~. Hence  v" defines an invariant  measure  ~ for gt on G, .  

Let  F be a group of  au tomorphisms of  X which  acts proper ly  discontinuously 
and cocompact ly .  Since F leaves G,  invariant,  the measure  v, gives a finite invar iant  

measure  for the induced action of  gt on G J F .  Thus  the Poincar6 recurrence theorem 
implies the following corollary. 

8 . 6 .  Corollary. - -  Every special geodesic cr is nonwander ing  mod F, that is, there are 

sequences ~,  ~ G~, ~ ,  E r and t ,  ~ I t  with r ---> or, t ,  ---> + oo and ~ , (g t , (~ ) )  _+ ~. [] 

Recal l  that  special geodesics intersect the (n - -  1)-skeleton transversally. 

8 . 7 .  Lemma. - -  Let ~ be a spedal geodesic intersecting an (n - -  1)-simplex B transversally 

at x = ~(0).  

Then there is an r > 0 with the fol lowing property: i f  to is a geodesic with to(O) = x and 

~ (0 )  = ~r(O), i f  to(t) is in an (n - -  1)-simplex B' and i f  f :  B' ~ B is an isomorphism (o f  

simplices) with d ( f ( t o ( t ) ) ,  x) < ~,, then f ( t o ( t ) )  = x. 

Proof. - -  Let  F'  be a flat containing ~ and F "  a flat containing to. By L e m m a  8.3 ,  
to is special and hence B' C F" .  Fur thermore ,  there is an isomorphism i : F "  -+ F'  with 
i(to) = ~. Hence  we may  assume to = ~ and F "  ---- F' .  

Now ~ is shifted by  a translation ~' o f F '  conjugate  to ~. Since v' is an au tomorphism 
of  F',  there are only finitely m a n y  (combinatorial)  possibilities for the intersecdon of  
with ( n -  1)-simplices. [] 

8 . 8 .  Lemma. - -  Suppose ~ is a finite segment o f  a special geodesic or. 

Then there is a F-dosed geodesic containing -~. 

Proof. - -  Let  F'  be  a flat containing ~. By reparameter iz ing ~ and enlarging the 
given segment  of  t~ ff necessary, we ma y  assume that  x ----- ~(0) is in an open  (n - -  1)- 
simplex B and that  ~ = ~([0, T])  wi th  T >  0. By L e m m a s  8 .3  and 8 .4 ,  there is an 
r 2> 0 with the following properties: 

1) fo r  any  special geodesic to intersecting the balls B , (~( - -  1)) and B.(cr(T + 1)), the 

segment to c~ F'  is parallel  to cr in F ' ;  
2) if to is a geodesic with to(0) ~ F' ,  t~(0) parallel to b(0) in F'  and d(x,  to(0)) < ~, 

then to is special. 

By Corol lary 8 .6 ,  there are sequences ~, ~ G, ,  c?, ~ F and t, ~ R  such that  ~, -+ ~, 
t ,  ~ oo and q~, gt, a ,  ---> tr. Since ~ does not  meet  the (n - -  2)-skeleton of  X, we conclude 

tha t  
g' .  (t) E F,  - 1 t Y + 1 

for all n sufficiently large. By a small change of  the parameter iza t ion of  a ,  and a small 
change of  t ,  we may  assume that  ~,(0) and (q~, gt, z,) (0) are in B. 
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No w a.  and ~0. g'. a .  are special. For n large enough they intersect B~(~(-- 1)) and 
B. (a(T + 1)), and then ~. n F'  and (q~. gt. ~.) n F'  are parallel to ~ in F'  by  (1). In  

particular,  ~.(0)  and q~..(+.(t.)) are parallel to +(0) in F'.  
Let  F .  be a ttat containing ~. .  Since special geodesics do not  meet  the (n - -  2)- 

skeleton, ~([0, T])  - ~ is in F .  and parallel  to a .  in F .  for all n sufficiently large. Let  co. 
be the geodesic in F .  with ~(0) = x and ~o.(0) = +(0). Then  co. is parallel to ~. in F .  
and ~ is contained in ~ . .  Since ~?.gt. ~. _+~ and d ( ~ . ,  ~.) ~ 0 ,  we conclude that  
d(c%(t.), x) -+ O. Hence  by  L e m m a  8 .7  ~0.(~o.(t.)) = x for all n sufficiently large. 
Since q~..(+.(t,,)) is parallel  to ~(0) in F '  and co. is parallel to g,,, we have that  

q~..(~.(t.)) = +(0) = ~ . (0 ) .  Therefore,  

t.])) 

is a geodesic invariant  under  ~ .  and containing ~. [] 
Let  F~ denote  the stabilizer of  a flat F and let 

r I ' ~ , = { ~ e I ~ x ~ : ~ ( x )  = x  for all x e F } .  

Then  A~ : =  FF/F ~ is ( isomorphic to) a subgroup of  A~. We  say that  F is P-dosed if  ~ 

acts cocompac t ly  on F, that  is, if  A~ has finite index in Ax,. I f  F is F-closed, then 
T~ n A~ has finite index in T~ and A~. 

8.9 .  Theorem. - -  Let K be a compact subset of a f la t  F in X .  

Then there is a F-dosed f la t  F' containing K.  

Proof. - -  Let  "~ r T F be a translation in a direction which is not  tangent  to any  of  
the walls of  F. Let  ~ be a unit  speed geodesic in F shifted by  z and not  passing through 
the (n - -  2)-skeleton of  F. Then  F is the unique flat containing ~. 

Consider the system of  pairwise transverse families W1,  �9 �9 -, Jt~, of  wails in F. By 
a half f la t  in F we mean the par t  of  F on one side of  a wall. For  each i, 1 <. i ~ k, there are 
hal f  flats F + and F~- in F with boundar ies  H +, H~- ~ W,  such that  K C F + n F~-. By our  
assumption on a, 

:--- n (F/ nFF)  

is a finite segment  of  a. Let  ~ be  a finite segment of  ~ containing ~ ,  1 <~ i <~ k, see 
Figure 9. 

By L e m m a  8.8,  there is a F-closed geodesic ~' containing ~. Le t  F '  be a fiat 
containing ~'. By the choice of  ~, F n F'  is a convex subset of  F with interior. Hence  the 
bounda ry  of  F n F'  is a union of  closed (n - -  1)-simplices. I t  follows that  F n F'  is the 
intersection of  hal f  flats. Note  that  a~ is contained in F n F'. Hence  the hal f  flat containing 

F n F', bounded  by  a wall H in ~,o, must  contain F~ + n F~-. Therefore  K s F n F'. 

There  is a unique isomorphism j : F' -~ F fixing F n F'. Hence,  j ( a ' )  = a, and a' 
is not parallel to any of  the walls in F'  and does not pass through the (n - -  2)-skeleton 



206 WERNER BALLMANN AND MICHAEL BRIN 

of F'. I t  follows that F' is the unique flat of X containing ~'. Let ~ ~ F shift a'. Then 

$(F') = F', by the uniqueness of  F'. By passing to a finite power of  9, we may assume 
that q~ is a translation of F'. Now the argument of  Lemma 7.13 applies and finishes the 
proof of  the theorem. [] 

"4]4 
<X 
<X <X 

XXX 

X 

H; H i H~ 

X•   :XX X 

NN. 
H 1 

r 

> 

>i,- 
"H + 

FIO. 9 

8.10.  Theorem. - -  Let X be a Euclidean building and P a group of  automorphisms of  X 

acting properly discontinuously and cocompactlv. 
Then either F contains a free nonabelian subgroup, or else X is isometric to a Euclidean 

space and F is a Bieberbach group. 

Proof. - -  I f  X is not a Euclidean space, than X contains an ( n -  1)-simplex B 1 
which bounds three n-simplices C~-, C + and C1, where n = dim X/> 1. By Theorem 8.9, 
there is a F-compact  flat Fx containing Cl[ and C +. In particular, there is qh E P trans- 
lating F 1 in a direction perpendicular to B 1 . Again by Theorem 8.9, there is a F-compact 
flat F containing C 1 and a q~ e P translating F in a direction perpendicular to B I. Choose 
a point xl e Bx and let a s 9 xl (respectively ~ 9 xJ  be the geodesic in F 1 (respectively F) 
perpendicular to B 1. Then ~1 is shifted by q~x and a by  % 

Let x, = q~(xl) and Bz = q~(BJ. Then B2 is an ( n -  1)-simplex which bounds 
at least three n-simplices C~-, C + and Ca, where C2 is the last n-simplex through which 
passes before it meets B2. By Theorem 8.9, there is a F-compact flat F ,  containing C~- 
and C +. As above we conclude that the geodesic a~. in F,  through x2 and perpendicular 
to B, is shifted by  an isometry ~72 ~ F. Let t~ > 0 be the period of a, with respect to q~, 

that is, 9,(~,(t)) = ,,(t + t~) for all t ~ R,  i = 1, 2. Let U, be the set of points x in X 
whose projection P,(x) onto a~ is not in a i ( ( - - td2 ,  td2)). Then 

(8.11)  q~(X\U,)  C U~ for n 4= 0, i ---= 1, 2. 
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Denote by ~ the segment of a between x 1 and x,. By construction, the angles between 

the outgoing direction of ~ at xl and the incoming and outgoing directions of *x are n. 
Similarly, the angles between the incoming direction of ~ at x, and the incoming and 
outgoing directions of ~ are ~. Therefore, each of the rays ~1((-- 0% 0]) and *x([0, oo)) 
joined with ~ and then extended by any of the two rays "2((-- 0% 0]) or ~( [0 ,  oo)) is 

a geodesic. We claim that 

(8.12) P~(U~) = xl and P~(Ux) = x~. 

Suppose, for example, that x is a point with pi(x) =- a~(t) and t <<. --  t~[2. Note that 
y = px(x) is the unique point on a x with /~(x, ~1) >/ ~/2. Now let co be the geodesic 
consisting of the concatenation of ~1((--0% 0]), ~ and ~2([0, oo)). Since t<<. - - q / 2 ,  

we also have / , ( x ,  t~) I> ~/2. Hence 

/ , (x,  = / , ( x ,  ,o) < 

for all z e a2((0, oo)). Therefore p,(x) r a,((0, oo)). The other cases are treated similarly 

and (8.12) follows. 
We conclude from (8.12) that Ux n U2 ---- O. Let x be a point on ~. Thenp~(x) = x a 

and p,(x) = x,, hence x e X \ ( U 1  t3 U,).  
Now consider any nontrivial reduced word w in ~1 and q~z. It  follows from (8.11) 

that w(x) ~ Ui if w starts with a power of ~ ,  i ----- 1, 2. Therefore w(x) +- x, and hence 
w + id. Therefore ~ and ~2 generate a free nonabelian subgroup of  F. [] 

We now come to Theorem E of the Introduction. 

8.13.  Theorem. - -  Let (X, F) be a compact 2-dimensional boundaryless orbihedron with a 

piecewise smooth metric of nonpositive curvature. 

Then either F contains a free nonabelian subgroup or else X is isometric to the Euc, lidean 

plane and I" is a Bieberbach group. 

Proof. - -  According to Theorem C, there are three cases to consider: if (X, F) 
has rank 1, then F contains a free nonabelian subgroup by Theorem 4.6.  I f  X is a thick 

Euclidean building of type A2, B, or G, ,  then I" contains a free nonabelian subgroup by 
Theorem 8.10. In the remaining case, X is the product of two trees T~ and T, .  I f  X is 
not isometric to the Euclidean plane, then T1 or T,  has vertices with valence >/ 3. Since 
the essential edges of X = T1 • T 2 are parallel and perpendicular to the factors, I' pre- 
serves the product structure. 

I f  both T1 and T~ have vertices of valence >/ 3, declare their maximal edges 
(maximal arcs not containing vertices with valence >/ 3) to have length 1. Then the 
barycentric subdivision of the unit squares in X is a triangulation of X which turns X 
into a Euclidean building of type B 2. Clearly, P acts by automorphisms on this building, 

and hence I" contains a free nonabelian subgroup. 

I f  one of the factors, say T : =  T~, has vertices of valence >/ 3 and the other is a 
line, T 2 -~ R,  then each ~ e F is of the form ~? ---- (~b, v), where ~b is an isometry of T 
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and ~ an isometry of R. By passing to a subgroup of I" of index 2, we may assume that 
each such z is a translation. Since I" is a cocompact and properly discontinuous group 
of automorphisms, the center of F consists of elements of the form (1, -~). Now let F' 
be the group of automorphisms + of T such that there is a translation v of R with 
(d~, ~ ) ~  P. Then F' is cocompact and finitely generated. Let J be a finite generating set. 

We show now that F' is properly discontinuous, compare [Ebl,  Lemma 5.1]. 
I f  +, is a sequence in 1"' with +, --~ id, then the commutators [hb,, +] ~ id for any d? ~ J. 
Choose translations v,,  v of R such that (+,, v,), (+,-~) ~ F. Then 

[(d?,, %), (+, v)] = ([+,, q~], 0) -+ id. 

Since I" acts properly discontinuously, we conclude that [+,, +] = id for all n sufficiently 
large and any + ~J .  Since J generates F', it follows that (+,, , , )  is in the center of I', 
and hence +, -~ id for all n sufficiently large. Hence F' is a properly discontinuous and 
cocompact group of automorphisms of T. Therefore I", and hence also F, contain a 
free nonabelian subgroup. [] 

As another application of Theorem 8.9 we state the following generalization of 
Theorem 2 in [BaBu] to higher dimensions. The proof uses the arguments of [BaBu] 
and Theorem 8.9. The possibility of extending the arguments of [BaBu] to higher 
dimensions was indicated by M. Gromov (private communication), who also had a 
(different) approach for proving Theorem 8.9. 

8.14.  T h e o r e m .  - -  Let X be a thick Euclidean building, P a properly discontinuous and 
cocompaa group of automorphisms of X and d a F-invariant metric of nonpositive curvature on X.  

Then, up to a F-equivariant homeomorphism and rescaling, d is the standard metric. 

Added in proof: Some of the results of Section 6 have been obtained later and independently by Sylvain 
Barr6 (ENS Lyon). 

[A1Bi] 

[Ate] 

[Bali 
[Ba2] 
[Ba3] 
[BaBrl 

[BBE] 

[BBS] 
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