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Summary 

Small exponentials in asymptotic representations of functions y(k; X ) ( k  ~ o o )  
can appear and disappear across sets of  codimension 1 in the space of variables X. These 
changes are not discontinuous but happen smoothly and according to a universal law. 

1. Problem 

My aim* is to present a new result in asymptotics, with a strong connection to 
some of Ren6 Thom's beautiful ideas about singularities. As will become obvious, the 
treatment is far from rigorous, and the same is true of a more technical version being 
published elsewhere [1]. But I gain comfort from the conjectured converse of one of 
Thorn's aphorisms: what is non-rigorous might not be insignificant. The work is however 
insignificant in (at least) one respect, because it deals with exponentially small quantities, 
which are frequently negligible (and more frequently neglected). 

Stokes' phenomenon concerns the behaviour of small exponentials whilst hidden 
behind large ones. A simple context in which it arises is the approximation of integrals 

y(k; X) -- /cdsg(s;  X) exp{ k~(s, X)} (1) 

as k --~ oo. Here C is an infinite contour in the complex s plane and �9 is an analytic 
function of s depending also on variables X = (X1, X z . . . ) .  Asymptotically, contri- 
butions can come from critical points (saddles) of  q), i.e. s = sj(X) where 

(2) 0. o{ s,(X), x }  = 0. 

* Lecture delivered at the CoUoque Ren~ Thom, Paris, September 26-October 1 1988. 
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To isolate these, it is customary to deform C to pass through the different accessible 
critical points on paths of steepest descent. These paths lie "along gradient lines of Re q~, 
that  is level lines of I m  q). The  (complex) heights of the critical points are 

(3) ___ �9 { x }. 

E a c h  critical po in t  gives an exponent ia l  con t r ibu t ion  to y .  T h e  d o m i n a n t  cont r ibu t ion  

has  the largest  va lue  of  Re  9i;  o ther  cont r ibu t ions  ( subdominant )  are exponent ia l ly  

smaller .  

As X varies,  the s teepest-descent  contours  can  change  discontinuously in two 

different  ways,  i l lustrated in figures 1 and  2. First, cri t ical  points s t can  coalesce;  this 

happens  on the (complexified) ca tas t rophe  set in the X-space  [2], and  corresponds  to 

large values o f y  because on  the set the cri t ical  po in t  is o f  h igher  order .  Second,  crit ical 

values I m  ~j can  coalesce; this happens  on the Stokes set in the X-space  [3] and  corres-  

ponds  to the a p p e a r a n c e  or d i sappea rance  o f  a s u b d o m i n a n t  exponent ia l  in a " non-local  

b i furcat ion " [2]. T h e  Stokes set is a subset  o f  the saddle-connect ion  set ( there m a y  
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Fro. 1. - -  Coalescence and separation of saddles in s plane as X varies across the catastrophe set. Hi and Lo 
denote asymptotic ridges and valleys of Re ~); light lines are steepest paths, i.e. contours of Im ~; heavy lines are 
steepest descent contours through the saddles + and - - ;  the dashed line in (a) is a possible defining contour for 
the integral. The catastrophe occurs at (b). At (a), both saddles contribute; at (c), one contributes. 
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FIo. 2. - -  Coincidence of heights I m @  of saddles as X varies across the Stokes set. Notation as in figure 1. 
(b) is on the Stokes set. At (a), both saddles contribute; at (e), one contributes. 

be non-contributing connected saddles, through which the deformed C does not pass), 
which is itseff a subset of the Maxwell set, consisting of those X for which any pair of  Im ~ 
are equal (if the corresponding sj are distant they need not be connected by a level 
line). Although the Stokes set has codimension I and so is a hypersurface in X, it is 
commonly called the Stokes line because in examples X is often two-dimensional (e.g. the 
plane of a complex variable Z = X 1 + iX~). 

I t  is the second case with which we are concerned here, because the fact that 
small exponentials in asymptotic representations can appear and disappear as X varies 
is the Stokes phenomenon. In  the general case we have, to leading order, 

(4) y(k; X) = M+(k; X) e x p { / ~ + ( X ) }  

+ iS(k; X) M_(k; X) e x p { / ~ _ ( X ) }  + . . .  

Here + and -- denote the dominant exponential and the principal subdominant one 
(i.e. Re ep+ > Re ~?_), the prefactors M~ and M_ are slowly-varying functions of k 
and X, and . . .  denotes any further (smaller) exponentials and asymptotic corrections 
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(in higher powers of k-1) to the leading terms. The quantity of principal interest is the 
Stokes multiplier S, whose increase from 0 to 1 describes the switching-on of the small 
exponential across the Stokes line. S can vary rapidly with k and X. (The factor i is 
included for later convenience.) 

Stokes' opinion was that S varies discontinuously, even though y is continuous. 
After half a century's reflection on the subject, he wrote [4] 

" ... the inferior term enters as it were into a mist, is hidden for a little from "view, and comes out with its 

coefficient changed. The range during which the inferior term remains in a mist decreases indefinitely as the [asymp- 

totic parameter] increases indefinitely. " 

He had come to this view by analyzing [5] the divergence of the principal asymp- 
totic series which begins with the first term in [4], namely 

o~ 

(5) y(k; X) = M+ exp { kq)+ } ]~ a, 

(a 0 = l ; a ,  o c k - ' ) .  

The coefficients a, decrease and then increase. Stokes found that away from the Stokes 
line the phases of the a, vary, causing a degree of cancellation which enabled him to 
perform a crude resummation of the divergent tail of  the series. On the Stokes line, 
however, the a, all have the same phase and he was unable to resum the series. He 
concluded that the divergence is incurable, and that after summing down to the smallest a, 
the asymptotic expansion specifiesy only up to an irremovable vagueness. This vagueness 
is just sufficient to allow the discontinuous emergence of the small exponential. 

Stokes' understanding of his phenomenon was not won easily. On 19 march 1857 
he described his discovery in a letter to his fiancde, Mary Robinson [6]: 

" When the cat's away the mice may play. You are the cat and I am the mouse. I have been doing what 

I guess you won ' t  let me do when we are married, sitting up  till 3 o'clock in the morning fighting hard against a 

mathematical difficulty. Some years ago I attacked an integral of  Airy's, and after a severe trial reduced it to a 

readily calculable form. But there was one difficulty about it which, though I tried till I almost made myself ill, 

I could not get over, and at last I had to give it up  and profess myself unable to master it. I took it up again a few 

days ago, and after a two or three days' fight, the last of which I sat up  till 3, I at last mastered it. I don' t  say you 

won' t  let me work at such things, but  you will keep me to more regular hours. A little out of the way now and then 

does not signify, but there should not be too much of it. It is not the mere sitting up but the hard thinking combined 

with it... " 

He had to fight so hard with his discontinuity because he mistakenly strove to 
relate it to a superficially similar one he had explored in detail ten years before [7], 
and which is now commonly attributed to Gibbs, who rediscovered it half a Century 
later: the ability of Fourier series to represent discontinuous functions, by converging 

more slowly near discontinuities. 
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2. Solut ion 

The  new result I will present here derives from the fact that  it is possible to resum 
the divergent series of a, beyond the least term, even on the Stokes line, and thereby 
control the asymptotics o f y  to an exponential accuracy in k, sufficient to establish the 
precise variation of S across the line. The  variation is not discontinuous but  smooth. 
Moreover the multiplier is universal in form, that  is the same for all functions in a wide 
class. I will state the result and list the elements of its derivation; details appear else- 
where [1]. 

The  natural  measure of disparity between the dominant  and subdominant  expo- 
nentials is the singulant [8] 

(6) V(k; X )  _= k{  - -  

On the Stokes line, F is positive real. In terms of the Stokes variable 

(7) a(k; X) ---- I m  F/(2 Re F) 1/z 

describing the crossing of the Stokes line, the Stokes multiplier is 

(8) = s _  + _ dt e x p ( -  t') 

where S is the value of the multiplier below the line (i.e. for I m  F ,~ 0). 
This result is surprising, because it shows that hidden in the asymptotics of a huge 

variety of functions (including the special functions of classical analysis--Bessel, hyper- 
geometric, e tc . - -and the diffraction catastrophes of optics [9]) is the humble error 
function. It  is revealed by subtracting from y the dominant  series (5), summed to its 
least term, that  is 

v* 

(9) ~-,~olim -- iM-_ 1 {y  exp(--  kg_ ) -- M+ exp(F) ,=05-2' a, } = S(a) 

where Jar, I <  l a , [  (r4: r~ 
Before outlining the derivation I should remark that  it is impossible to study 

Stokes' phenomenon within the framework of Poincard's definition of an asymptotic 
expansion. This states that  a, are asymptotic coefficients for y if 

(10) ~-,~lim k"{ M+ 1 exp(--  k~+)y -- , -0  ~ a, } = 0(1). 

I t  is inadequate because it captures the asymptotics o f y  only to power-law accuracy, 
whereas understanding Stokes' multiplier requires exponential accuracy. 

3. Der ivat ion  

The  derivation of (9) is based on an interpretation of the divergent dominant  
series (5). It  is not necessary to include the subdominant  exponential because it will 
be born out of the resummed tail of (5). Ecalle [13] has coined the term " resurgence " 
to describe this phenomenon.  Resurgence appears remarkable but  is in fact inevitable 
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because the existence of the small exponential is the cause of the divergence of the 
dominant series---convergent series in powers of k -1 would not be able to represent 
an exponential. We employ Borel summation of (5), starting with the least term r ~ This 
method has been extensively developed by Dingle [8] and applied to the approximation 
o f y  on the Stokes line itself; here it is applied across the line. 

Underlying the universality of the multiplier (8) is a universality in the form 
of the late terms a, (r >> 1), that is in the asymptotics of the asymptotics: 

M_ ( r -  ~)! 
(11) a, ,~ 

,~o  2~M+ F ' - ~  

Dingle derives (11) (and corrections to it) for integrals of the form (1) (where + and -- 
correspond to stationary points, and where ~ = 1), for integrals with finite contours 
(where -k- comes from an end point and -- from a stationary point, and where ~ = 1/2), 
and for second-order linear differential equations with variable coefficients (where + 
and -- describe waves running in opposite directions, and where [3 = 1). To show how 
the universality emerges, I give in the appendix a derivation of the late terms for the 
first of  these cases. 

From (11), the least term has 

(12) r" ~ IF  I. 

(The precise value is immaterial because changing r ~ by one contributes a correction 
of order k -u~ to S(~), which is invisible in the limit (9).) 

Borel summation gives an integral representation for the tail of the series, that 
is for the sum of terms r > r ~ A crucial simplification is that truncation near the least 
term (i.e. r" given by (12)) gives a Borel integral with a stationary point coinciding 
with a pole, whose approximation (that is, the asymptotics of the asymptotics of the 
asymptotics) is quite easy and yields our results (8) and (9). 

Numerical tests of (9) [1] show nicely how the error function (8) emerges, and 
the robustness of the results under changes in the truncation r ~ even when the asymptotic 
parameter  as measured by I FI  is not particularly large (e.g. I FI = 5). 

4. Stokes and Airy  

It  is instructive to examine the numerical calculation performed by Stokes him- 
self [5] to establish the reality of Iris phenomenon. He was studying the integral 

(13) Ai(z) -- ~ ds exp{ i(s3/3 q- zs)} 
cO 

(z = Xl + iX~) 

introduced by Airy [10] in 1838 to describe difraction near a caustic (e.g. the rainbow). 
In  optics one needs the values of Ai(z) for z real, i.e. X 2 = 0. For negative X x the function 
oscillates in characteristic interference fringes (describing, for example, supernumerary 
rainbows inside the main arc). But Airy was unable to compute these fringes numerically 
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because the only technique available to him (representing Ai by a convergent series) 

was limited to too small values of IX11. 
Stokes solved this problem [11] by inventing what we now call the WKB method, 

applied to the differential equation satisfied by Ai, to calculate asymptotic (divergent) 
series enabling Ai to be computed to high accuracy for large [ X 1 [. He also, almost 
in passing, invented what we now call the method of  stationary phase. 

The integral (13) has two stationary points, at s = + (-- z) v2. When z is real 
and X a ~ 0 only one of these contributes to the integral, which is exponentially small. 
When z is real and X x ~ 0 both stationary points contribute and Ai oscillates (figure 3). 
This was the source of the difficulty which occupied Stokes for so long. How could one 
function have two asymptotic expansions (for X 1 > 0 and X x < 0)? The resolution 
of course lay in studying Ai for complex z. Somewhere betwecn the positive and negative 
real axes, a second exponential must be born. This happens near the Stokes lines, which 

for Ai lie at arg(z) = 120 ~ and 240 ~ 

.two complex 

exponentials ~ 

X 2 

one real 

exponential X 1 

Fxo. 3. - -  Points 1 and 2, on opposite sides of a Stokes line 
at which Stokes computed Airy's function Ai(z) 

To test his theory, Stokes computed Ai at two points (labelled 1 and 2 on figure 3) 
on opposite sides of the 120 ~ line, with arg(z) = 90 ~ and 1500 and [ z [ ---- (72) u3 = 4.160... 
For these points, the singulant modulus is I F [  = (128) a/2 = 11.31... He computed Ai 
" exactly " (from the convergent series) and from the divergent series for the dominant 
exponential, taken to its least term. The results [5] are reproduced in table I. At point 1 
this series approximates Ai to one part  in 107. At point 2 it is accurate to only one part 
in 104--that is 10 n times worse. But the accuracy is restored at point 2 by including just 
the leading term of the subdominant exponential, thereby establishing the reality of 

the Stokes phenomenon. Several authors (e.g. [12]) have rediscovered the dramatically 
increased accuracy that results when exponentially small terms are correctly added to 

optimally truncated dominant series. 
28 
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TABLE I. - -  Stokes' computations of the Airy integral (13) 
(multiplied by 2@31/~  for ] z ] = (72) vs and arg(z) = 900 (point 1) and 150 ~ (point 2) 

Value of integral Point 1 Point 2 

Exact 
Dominant series 
Subdominant 

Total 

-- 14.98520-t-i  43.81047 
-- 1 4 . 9 8 5 2 0 + i  43.81046 

-- 1 4 . 9 8 5 2 0 + i  43.81046 

- - 4 5 . 4 4 8 8 2 - - i  8.92867 
- - 4 5 . 4 3 3 6 0 - - i 8 . 9 2 7 6 7  
--  0 .01524- - i0 .00100  

- - 4 5 . 4 4 8 8 4 - - i  8.92867 

Stokes' computations were consistent with his opinion that the multiplier changes 
discontinuously. He missed the fact that S varies smoothly (cf. (8)) because his points 1 
and 2 are too far from the Stokes line. At 1, the Stokes variable is o = -  2, and 
S(o) = .005, so that the birth of  the second exponential has hardly begun. At 2, o ---- + 2, 
and S(o) = .995, so that the birth is virtually complete. 

In a sense the result reported here completes a story begun by Airy and Stokes. 
Airy realized that the singularity at a caustic is an artefact of ray theory which would 
be smoothed away by properly taking diffraction into account. His function Ai(z) 
accomplishes tiffs smoothing in the generic case, which we now know as the fold diffraction 
catastrophe [2]. For integrals, the discontinuity thus smoothed is the one illustrated 
in figure 1. Stokes discovered that in the complex z plane Ai(z) itself has discontinuities 
in its asymptotic representation, of  the other kind as illustrated in figure 2. He did not 
however find the appropriate smoothing. That  is accomplished by our result (8) and (9), 
which shows " the error function in the Airy function ". (The same smoothing occurs 
across the Stokes line for the error function, which is therefore contained in its own 
asymptotic approximat ion--"  the error function in the error function ".) 

5. Discuss ion  

I envisage several applications of this work, beyond the purely numerical. In wave 
optics the Stokes set may be observable if there are at least two real variables X. This 
is not the case for the fold caustic because the Stokes lines in z = X1 + iX~ are complex 
and in diffraction we usually have z real. But for the kigher catastrophes the Stokes 
set can be real. Wright [3] has calculated it for the cusp diffraction catastrophes, and 
work is in progress on the higher singularities. Observation of the Stokes phenomenon 
would be difficult (if possible at all) because it involves exponentially weak complex 
rays masked by intense real rays. (The situation with caustics--singularities of the other 

sort--is quite different: these are sets of high intensity, dominating wave fields.) Other 

applications are to the birth of weak reflected waves in smooth refractive index gradients, 
and the generation of  weak nonadiabatic jumps in slowly-varied parametric oscillators. 
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There must be limits to the universality of our smoothing (8) and (9), reflecting 
limits in the universality of the asymptoties of the asymptotics (11). Presumably the 
breakdown of universality occurs when Stokes lines coalesce or cross as more variables X 
are altered. There ought to be a classification of the ways in which this can happen 
stably, and of the associated smoothings, analogous to the classification of catastrophes 
and their associated diffraction patterns. 
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Appendix 

This is the derivation (following [8]) of the " asymptotics of the asymptotics " 
giving the late terms (11) of the integral (1). First the prefactors M+ must be found. 
The lowest-order approximation to (1) from a dominant saddle s o is 

[ 2z~ ] v2 
(AI) y =  [ ~ j  g0exp(k~ 0 + i00) 

where dashes denote s-derivatives, the subscripts quantities evaluated at so, and 00 is 
the direction in which the deformed contour of steepest descent departs from s 0. Referring 
to figure 2b, let s o now be the dominant saddle s+ and (without loss of generality) choose 
the sense of C towards the principal subdominant saddle s_. Then we can take 

(A2) M •  = g+ exp(iOa:) 

where (for real singulant F (i.e. on the Stokes line) O_ is the direction in which the level 
curve Im F = 0 through s+ emerges from s_ (where it is a path of steepest ascent)). 

Now change variables in (1) from s to w, defined near s+ by 

= - -  w212. 

Thus w is real and increases from zero along the steepest path from s+ to s_. Expansion 
in powers of w gives the formally exact expression 

2 "+m F(r + 1/2) A~., - Z y ,  
y = exp(kq~+) (2r) I 

r = O  �9 t e = O  
(A4) 

in which 

( A 5 )  = dw , g[s(w)] 

(2r)! ~ dw ds 
-- 2rd ~v ~ - i g ~ w  

where the contour is a small loop around w = 0. 
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The  late terms r >> 1 are found by expanding the contour until it meets the nearest 
singularity. This is the w corresponding to s_, namely 

(A6) w = [2k(9 + -- 9_) ]  v2 = (2F) '/2. 

To find the form of the singularity, expand (A3) about s_ to get 

(A7) (s -- s_)" k ~ ' i  = F -- w'12. 
Inversion and differentiation now give 

ds exp(i0_) (2F) 1/4 
(A8) - -  t ~ s  

dw ,-. ~ { 2~'_'[(2F)1, 2 _ w] }u2 

(the phase is determined by the direction of the level line from s_---cf, figure 2b). 
The  leading term of the integral (A5) is given by the integral along the sides of 

the cut emerging along the positive w axis from w = (2F) v~. Noting that  the phase 
of the radical in (A8) on the upper  lip of this cut is --  =]2, we obtain 

(2r)!g_ exp(i0_) (2F) v4 f ~  dx 
(A9) A2" ~ = ( 2 ~ " )  u2 .,o [ (2F)  '/2 + x] 2"+ '  xaJ2 

where x = w -  (2F) 1/~. For large r the integrand decays exponentially away from 
x = 0, giving 

(2r)! g_ exp(i0_) 
(A10) A2' r~| =v~(2F ) '  [(2r + 1) 2 ~ ' ]  v2. 

Substitution into (A4) and use of F(r + ll2)l(r + l ] 2 ) v ~  (r - 1)! gives 

(Al l )  Y" ,'U| g_ exp(iO_) (~-~_ ~t~ exp(kq~+) (r--2=F rl)! 

( r - -  1)! 
----- M -- exp(k~+) 2=F' 

which is the same as (11) with ~3 = 1. 
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