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Abstract-Process optimization often leads to nonconvex nonlinear programming problems, which may have mnltiple 
local optima. There are two major approaches to the identification of the global optimum: detemlinistic approach and 
stochastic approach. Algofithins based on the detenNnistic approach guarantee the global optimality of the obtained 
solution, but are usually applicable to small problems only. Algorithms based on the stochastic approach, which do 
not guarantee the global optimality, are applicable to large problems, but inefficient when nonlinear equality con- 
stmints are involved. This paper reviews representative detemmtistic and stochastic global optiffdzation algofithins in 
order to evaluate theh" applicability to process design problems, which are generally large, and have many nonlmem" 
eqtmlity constraints. Finally, modified stochastic methods are investigated, which use a deterministic local algorithm and 
a stochastic global algorithm together to be suitable for such problems. 
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I N T R O D U C T I O N  

Many chemical process optimization problems can be represented 
by nonlinear progrmnmizg (NLP)problems in the following form: 

min f(x) OP) 

subject to 

g(x)_<0 
h(x) =0 

where xe R', fi R~--*R, g: R'--~R ~, h: R~--*R '', and n>m. If  the 
objective function and the feasible region are convex, e.g., when f 
and g are convex andh is lmem; the problem is called a convex prob- 
lem, which has only one local minimtrn that is the global mini- 
mum. Most of chemical process optimization problems, however, 
have a nonconvex feasible region because of nonlinear equality con- 
straints. Therefore, they are nonconvex, and in many cases, have 
multiple local opthna. Furthermore, the size of the problem is gen- 
erally large. The objective of this study is to find a global optimiza- 
tion algorithm suitable for nonconvex problems which involve a 
lmge number of higtfly nonlinear equations such as obtained fi'om 
rigorous models of chemical processes. 

Most global optimization algorithms belong to one of the two 
categories: (1) deterministic approach and (2) stochastic approach. 
Algorithms kmed on the determimstic approach such as cutting plane 
[Hoist mad Tuy, 1993], generalized Bendm~ decomposition [Geof- 
ilion, 1972; Flondas and Visweswaran, 195Z); Bagajewicz and Man- 
ousiouthakis, 1991], branch and botmd [Soland, 1971; Ryoo mad 
Satmidis, 1995; Adjiman et al., 1996], mad interval analysis [Rat, 
schek and Ro!aae, 1988; Vaidyanathan and E1-Halwagi, 1994; Han 
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et al., 1997 ] grarantee finite ~,convergence (convergence to the glo- 
bal opthmma in finite computation steps for a given finite en'or tol- 
erance) and global optimality of the obtained solution. Algorithms 
based on the stochastic approach such as simulated annealing [Kirk- 
patrick et al., 1983] mad genetic algorithin [Goldbeig, 1989] ahn at 
high probability of finding the glol:al optimtrn, not guaranteeing 
the finite e-conveigence or the global optimality of the obtained 
solution. 

M E T H O D O L O G Y  

The goal of global optmlization is achieved if a method is devel- 
oped which is guaranteed to do one of the following three tasks. 
1. Find a Tight Convex Hull 

Asstane that we have an NLP in which the objective fimction is 
linear. Note that any problem can be reformulated to this type of 
problem by replacing the objective function by a substilntion vari- 
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Fig, 2. Feasible pontt strmegy [Choi et aL, 1999]. 

able and declaring its definition equation as aconsaxitg. Now con- 
sider anew problenl in which the conm~ints fonn atight convex 
hull fot'the feasible region of the original problem as shown hi Fig. 
1. This is a convex problem which can emily be solved by a local 
optimization technique md whose sohtion is equi~lei~ to the glo- 
bal solution of the ot'iginal problem. This is the basic idea of most 
of  the deterministic algorithm s. 
2. Find a Feasible Point 

Assume that we have amethod that is guaranteed to find afea- 
sible point if any exist~ Given a feasible point, a local optinfizer 
using the genwalized reduced gradient method can find a local min- 
imum. We can then add a new consWaint that forces the objective 
function value to be lower than the current local minimmn, mid 
search for a newfeasible point. This procedure can be repeated until 
no feasible pohlt exists. Fig. 2 schematically describes this stx~egy. 
In order to implement this strategy, we need a global algorithm for 
finding feas~le points and a local algoriflml lot" finding local min- 
ima, A stochastic mahod that uses this ~ '~egy is desa'ibed hi this 
paper. 
3. Find All Kulm-Tuck~r Poiats 

I f  amethod is available which is guaranteed to fred all real roots 
of systenls of nonlinear algebraic equations, the objective funaion 
values at all Kuhn-Tucker points can be cotnpared to each other to 
fred the global optinmm. This approach is out of  the scope of this 
papa: 

DETERMINISTIC APPROACH 

The detaministic approach to global optimization of chanical 
processes has actively been studied since the 1980% mad some hi- 
story was summarized by ~ et a~ [1997]. Howeva,  since the glo- 
bal optinfizafion o fa  nonconvex NLP problem is one of  the tough- 
est NP-hm'd problems, the detaministic algot'ithms that are cur- 
rently available can usually be ~plied to small problems only. De- 
tailed discussion of the NP-harduess was presented by Choi et al. 
[1999]. 
1. Outer  Appro~dmation 

A convex hull of  a feasible region can be constructed by a set of  
linear inequality cons~'aints. Fot" example, Hot'st and Tuy [1993] 
defined a concavity cut for a region K-~G formed by a polyhedral 
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Fig. 3. (G, K)-cut [Horst and ally, 1995]. 

cone K ,vJth vertex x; and areverse convex conmxint x~ int G as 
shown in Fig. 3. The oat by a new linear inequality constrahlt ex- 
cludes sonic region around the infeas~le point x ~ but not any lea, 
sible point. Ho,vevet, abig disadvantage of this approach is that the 
number ofconmaints increases as the algorithm convages to aright 
convex hull, and thus consaxint dropping sttaegies me required as 
indicated by H o s t  mid Tuy [1993]. 

Note that any continuous function defined on afmite dosed cotl- 
vex domain can be represented by a difference of two convex (d.c.) 
functions. All we have to do is add mid subtract a su~ciently con- 
vex function. The cutting plane meahods are applicable to d.c. prob- 
lems where all functions are d.c. on agiven cotlvex set [Horst and 
Tuy, 1993]. However, in general, these methods are suitable only 
tot" low tank nonconvex problems, hi which only a few of  the var- 
iables are responsible for the nonconv~ity of  the piobkan [Kotmo 
et al., 1997]. 
2. Gen~'a l i z~  Beaders Decomposition 

Consider the following type of problem: 

n~,, ,  f(~, y) 

subject to 

g(x,y)_<o 

where fand g me cotlvex with respect to x, i.e., when y is constant, 
the problem is convex. This problem can be decomposed into two 
problems as follows. 

Primal: 

min~ f(x, y) 

subject to 

g(x,y)_<0 

~ e r e  y is fixed at agiven point. This problem can emily be solved 
because it is convex. The solution is an upper bound of the global 
minknum because the feasible region has been nmrowed 

Master: 

nfit~ Y0 

subject to 

L"~2r , u)-~nh~ [f(x, y)+ur g(x, Y)I-<Y0 
for all u>_0 
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L.(y; V) =nliIlx v r ~(x~ y)-<0 
for all ve (vlv_~0, ~ y , =  I ) 

For subsets of u and x; the sokaon to this problem is a lower bound 
for the global minknum. 

This techniqae is nsefi.~I when x and y are separable, because the 
solution x and the Lag-ange multipliers u obtained fi-om tile prhnaI 
can directly be used in tile fu~t set of constraints in tile master, in 
which the minimization with respect to x is ~mnecessary. 

If  the prhnaI is infeasible at a given point y, an infeasibility min- 
imization problem can be solved such as tile folIowing. 

mh!~ c~ 

subject to 

g(x, y)_<ca 

where 1=[1 ... 1 ]r. The solution x and the Lagrange multipliers v 
obtained from tim problem can be used to conslruct the second set 
of constraints in the master, in which the minhnization with respect 
to x is again unnecessary. 

The algoriti~n iterates between tile primal and tile master until 
the upper and lower bounds com*erge together. Like outer approxi- 
mation, this technique also needs constraint dropping strategies, and 
is suitable for low rank nonconvex problems only. 
3. Branch  and B o u n d  

This is tile most widely used tectmique for global optilnization 
of various problems. Let us consider the following type of problem. 

mm f(x) 

tion to each subproble~n ks a lower bound in its region. The lowest 
one of these is the lower bound for the global minimum of the ori- 
ginal problem. If a solution satisfies the oliginal comtrait~ as well, 
the value of tile original objective function at that point ks an upper 
bound. The lowest upper bound is stored as a candidate for the glo- 
bal minimum. Memr~vhile, every subproblem is discarded if it is 
infeasible or its solution is higher than the upper bound (bounding). 
Tile algoriti~n stops when the lower bound conve~-ges to tile upper 
bound. 

The efficiency of the branch and bound algonthln mainly de- 
pends on tile tightness of tile convex envelopes. The most com- 
monly used convex envelopes, which are also called underes~nators, 
can be classified as follows. 
3-1. Linear Underestimatoi~ 

A reverse com~ex term in a separable fi.action ~x)=~j~Sx) can 
be replaced by a linear underestimator For example, if (~Sxj)=-x~, 
aj<xj_<bj, the tightest convex envelope is the folIowmg linear func- 
tion. 

N ( ~ ) =  (g+b,) >}+g~ 

Note that this approach can be applied to separable problems only. 
However, any problem can be converted to a separable problem 
because a no,~separable teml x~ xa can be replaced by a separable 
function w~-w# where ~v I and w 2 are defined by the following linear 
equality constraints. 

w,=(x, +x~)/2 
w<(x, - x,)/2 

subject to 

g(x)_<0 
A x=c 

where A and c are constant mab-ix and vector respectively. 
The algorithm starts fi-om relaxation of the above problem into a 

convex problem over an initial box a_<x_<b. Let us replace the ob- 
jective function f(x) by a convex envelope such as shown by dashed 
cun~es in Fig. 4. A convex hull of the feasible region can be obtained 
by replacing all nonconvex fianctions gfx) by tileh- convex ei~are- 
lopes. The relaxed problem is now convex, and thus its local solu- 
tion is guaranteed to be tile global mitmnum Ft~thennore, as ti~s 
is the solution to a relaxed problem, it is a lower bound for the glo- 
bal minim~an of the original problem. 

The box is subsequently split into parts (h-anching). Tile solu- 
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a b 

Fig. 4. Convex envelopes. 

3-2. Quadratic Underestimators 
For general fianctions, quadratic unde, estmlatoi~ can be used as 

proposed by Adjiman et aI. [1996]. For a noncoi~a~ex function ~(x), 
a<x<b, a convex envelope can be defined as follows. 

%_>max (0,-0.5 mm)~ [H(<~(x))]} 

where )v k (k = 1, ..., n) are the eigenvalues of file Hessian matrix I-I. 
A problem in this approach is that determination of tight czj is again 
a noncom~ex optimization problem unless I-I is constant. 
4. Interval  Analys i s  

Convex em~elopes and hulls can also be obtained by interval ana- 
lysis based on the following arithnetic. 

[a, b]+[c, d]=[a+c, b+d] 
[a, b]-[c, d]=[a- d, b-c] 
[a, b]x[c, d]=[mm(ac, ad, bc, bd), max(ac, ad, bc, bd)] 
[a, b]/[c, d]=[min(a/c, a/d, b/c, b/d), max(a/c, a/d, b/c, b/d)] if0~ [c, d] 

Unlike the case of linear or quadratic underestimators, the branch 
and bound algorithm can dk-ectiy be applied to problem (P). Let us 
start fi-onl an intenM box X of vmiables x. For aly XkcX, iflb g(X k) 
>0 or lb h(Xk)>0 or ub h(X~)<0, then the box X ~ is infeasible. The 
box X k can also be discarded iflb f(Xk)> f(x ~ where x ~ is a feasible 
point The interval boxes are repeatedly branched and bounded, and 
the algorithm stops when a feasible point is found near the global 
lower bound. 

The convex envelopes and hv~Iis based on inten~al analysis are 
just constants and intervals respectively, and not tight at all. There- 
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fore, the branch and bound proce&ae that uses interval analysis in 
s ane  cases requires exnemely many subproblems. Howevei; each 
subproblem can be solved very efficiently because it only requires 
simple interval arithmetic. 
5. Handling Equalities 

Many deterministic algorithms are applicable to specific types 
of  problems only. For example, the generalized Benders decompo- 
sition algorithm described in this paper allows inequality consn-aints 
only, and the underestlmator branch and bound allows inequality 
consn-aints a id  linear equality consn-aints only. Generally, algoiitl~as 
can be mc~t~ed to accept Imear equality consa-amts because they 
do not cause nonconvexity. However, problems should be mcx:ll- 
fled, except for algorithms such as interval branch and bo~md, if" they 
have nonlinear equality constraints. 

The simplest method ks to convert h(x)=0 into h(x)<0 a id  h(x) 
_>0. Note that h(x)_<0 and ~(x)>__0 are also eq~avalent to h(x)=0. 
Therefore, m equality cons~Lrts can be converted to 2m or m+l  
inequality constraints. The generalized Benders decomposition can 
now be applied to equality constrained problems. The linear under- 
estimator branch a id  bound can also be applied to a~y problem be- 
cause h(x) can be converted to a separabIe d.c. fimction e(x)+r(x) 
where c(x) is convex and r(x) is reverse convex. In this case, 2m 
inequality co~s~-ait~ c(x)+~x)_<O and-c(x)  -r(x)_<O are preferred 
to m+l  inequalities, because summation of  reverse convex terms 
results in a lager gap between the original fraction and its convex 
envelope. 

The following procedure applies to general tic. fractions c(x)+ 
r(x) where c(x) is convex a id  ~x) is reverse convex. Let us define 
new variables u=e(x) and v=r(x). Then, c(x)+ffx)=0 are equiva- 
lent to linear equality constraints u + v =  0, convex inequality 
conslraints e(x)-u_<O and -r(x)+v_<0, and reverse co~a~ex inequaI- 
ity conslramts -c(x)+u<0 and r(x)-v<0. Note that the last 2m re- 
verse convex constraints can be summed to form a single reverse 
convex constraint ~ ,  [-c,(x)+r,(x)+~-v,]_<0. Therefore, using 2m 
extra variables, m nonlinear equality consa-aints can be converted 
to m linear equality cons~amts, 2m convex inequality conslxalnts, 
and one reverse convex inequality conslxamt. As a result, all we 
need, theoretically, is an algorittm~ that can solve a convex prob- 
lem with a single reverse convex conslrain~ a id  all of  the deter- 
ministic algorithms reviewed in this paper can do it. 

STOCHASTIC APPROACH 

Stochastic algori~as, when run sufficiently long, are virtually 
guaranteed to fred the global optimum according to the following 
convergence theorem [Back et al., 1991]. 

For minimization of objective function f(x), 
I) Let x'+l=x'+N(0, ~) 1. 
2) If f(x~*l)< f(~r accept x '§ 

Otherwise, x ~+' =xL 
3) Repeat for iIeXt t. 
Then, for ~>0 and f"">-  % lira, .. p{f(g)=P"~} =1. 

This means that for a random search based on a non~aal distribu- 
tion, the probability of global optimality of  the obtained solntion 
will eventually approach one. For stochastic algonttmls to be effi- 
cient, howevei; balalcing is required between exploiting the best 

solution (Iccal search) and exploring the search space (global search) 
[Booker, 1987]. The above algoritl~a is biased towards local sea-ch, 
and two representative methods that can be balanced are stmxrna- 
rized as follows. 
1. Simulated Annealing 

Let us consider a collection of  atoms in equilibrk~ at a given 
tempera~-e T. Displacement of  an atom causes a change AE in the 
energy of the system. If  AE<0, the displacement is accepted. I fAE 
>0, the probability that the displacement is accepted is exp(-AE/ 
kT) where k is the Boltzmann comtalt. Tiffs process can be simu- 
lated in optimization as follows. 

For i~tlii~ii~tlizatioi~t of objective function f(X), 
1) Take x ~'~ randomly. 
2) IfAf=f(x~'~ - f(x~ accept x~% 

Otherwise, 
a) Take a random number we [0, 1 ]. 
b) If w_<exp(- Af/T), then accept x~'t 

Othelwise, x*~w=x ~ 
3) Control T, axl repeat. 

This algorithm is mostly applied to combinatorial opnmizatlon prob- 
lems, but suitable for unconslrained ffmction optimization also. 
2. Genetic Algorithm 

The theory of  evokaion can also be employed in optLmization 
as follows. 

For optimization of fitness function f(x), 
1) Select a given size of population {~r where ~r is a ctuomosome 

Coinaly vector). 
2) At a given crossover l~obability, crossover x ~ axl x ~ to generate x p' 

and x ~'. 
3) At a given mutation rate, mutate X. 
4) Repeat. 

This algorithm is based on the assumption that the best solutions 
will be found in regions of the search space containing relatively 
tfigh proportiom of good solutiom, and that these regions can be 
identified by judicious and robust samplmg of  the space ['Booker, 
1987]. It is being widely applied case by case to special dam struc- 
tures in which problem specific knowledge is incoip,~ated Such 
mc~i]ed genetic algorithms are referred to as evolution programs 
[Michalewicz, 1996]. 

The original genetic algorithm uses binary representation of  chro- 
mosomes to be suitable for combinatorial optimization. However, 
this algodtt~a can also be applied to unconstrained fianction opti- 
mizatiorL In this case, floating point representation is more effi- 
ciert, in which the followlng operators can be used. 

For randomiy selected je {I . . . . .  n}, 
1) Simple crossover: xP'=[x~, ..., x~, X~+l, ..., x~] and 

x~,=[x,~ . . . . .  x; ,  x;+, . . . . .  x~] 

2) Arift~leticai crossover: xP'=w x p+(I-  w) x ~ and 
x~'=(I - w) xP+w x ~ 

3) Unifolm mutatio~ ~e [~, ~] 
4) Boundary mutation: ~!=a, O1" b~ 
5) Non-m~ifolm mutatien: Fine tune ~. 

3. Handling Equalities 
Stochastic algorithms do not suffer from the NP-har&less of the 
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problem, and thus they we considered to be suitable for large prob- 
lems. Howex,vr, these algorifluns still have difficulties when applied 
to chemical process design. The stochmtic algorithms my based on 
the t'andom sem'ch technique. Since the evaluation of the objective 
function is meaningful only at feasible points, they ate suitable for 
unconsWained or inherently inequality consWahled optimization prob- 
lems only. However, most chenlical process design problems have 
many equality cons!taints. Therefore, the problem or the algorililm 
should be modified. 
3-1. Problem Modification 
3-1-1. Penalty Function Method 

Constrained optinmation problems can be converted to uncon- 
strained problems as follows. 

min~ F(x, r)=f(x)+ 1/(2r) e(x) r r 

where r is apenalty parameter (>0), and c(x) is a vector of all active 
cons!taint functiona As r - s0 ,  x convelges to a local minknum x*, 
but the Hessian matrix H[F(x, r)] becomes ill-conditioned. Further- 
more, ,~vhen there are too many equality con~aints as in chemical 
process design pt~oblems, it is ditficult to keep the teformulated prob- 
lffn numerically stable. 
3-1-2. Feasible Point Strategy 

In order to avoid dealing with equality constt~nts in a stochastic 
algoriflun, a feasPole point strategy can be a6~ted, hi which feasi- 
ble points can be found by solving an infeasibility minimization prob- 
l~ l  such as the following. 

rain c(x)r e(x) 

where c(x) is avector of all violated cons~'aint functions. Another 
form of  hffeasibility minhnization problem is as follows. 

min max{ g(x), h(x), - h(x) } 

g(x)_<~a 
h(x)_ca 
- h(x)_< (zl 
f(x)_<r-++c~ 

where 1=[1 ... 1] r, and+ is an optimality tolerance (>0). Note that 
c~<e means fllatx is a feasible point at which the value of the ob- 
jective function is lower than the previously found local minimum 
1 e. Inlplementation of this sW~egy is sdlematically described in 
Fig. 5. 
3-2. Algorithm Modification 
3-2-1. Decoding Strategy 

Let us convert all ino:luality r g(x~0 in problem (P) 
into equality conm~lts  g(x)+s=0 where s is a vector ofnomlega, 
tire slack variables. Then we have the following type of  problem. 

. ~  f(~, y) (E) 

subject to 

h(x, y)=O 
a_<x_<b 
c_<y_<d 

where x r~presents n - m  design (indetx~dent) variables, y t~pt~sents 
m state (dependenO vmiables, and h: R"--+R"(n>m). Assuming 
that x can be decoded to y by an equation solver, this problem can 
be viewed as follows. 

. ~  f(~ y(x)) 

subject to 

a_<x_<b 

This type ofproblenl is suitable for stochastic algorifluns. Further- 

As shown by Choi et al. [1999], finding a feasible point for anon- 
convex problem is an NP-complete problem, mid thus can be con- 
sidei~ed easier than finding the global optimum, which is NP-hard. 

An equality consaxined simulated annealing algot~lm proposed 
by Choiet al. [1999] solves the following inequality constrained 
infeasibility minimization problem. 

min a O) 

subject to 

: ii m i n i m i z a t i o n  

problem (l) 
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Fig .  5. A s t o c h a s t i c  m e t h o d  b a s e d  o n  f e a s i b l e  p o i n t  s t r a t e g y .  F ig .  6. A s t o c h a s t i c  m e t h o d  b a s e d  o n  d e c o d i n g  s t ra tegy .  
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more, chemical process design problems generally have small degrees 
of freedom, and thus the above problem is expected to be small in 
most cases. However, stochastic algorithms are inefficient for free 
IocaI tumng, and thus a determinishc local algorithm is to be in- 
cocporated 

The decoding strategy can easily be implemented when h is linear 
with respect to y, and is being widely used in algoritt~'ns devoted 
to specific problems. For general problems, a robust equation solver 
is requared, and a Newton type algorithm can be used ik'a gocd initial 
guess generator is available. A rough solution to an infeasibility min- 
imization problem can selene as a good initial guess, and a stochas- 
tic global oplamizer can generate it with a large optimality tolerance. 
Note that decoding is valid even if there are multiple solutions for 
y at a given x, because the result is stochastic, hnplemertation of 
this strategy is schematically described in Fig. 6. 

DISCUSSION AND C O N C L U S I O N  

Outer approximation and generalized Benders decomposition 
are suitable for low raak noncoiwex problems only. Generally, how- 
ever, chemical process optunization problems are high rank non- 
com~ex problems. Therefore, branch and bound is the most effi- 
cient deterministic method cua~-ently available, especially when Imear 
underestimators and inten~al analysis are incorporated to tighten 
the subproblem boxes. However, the ~tarantee of global optamal- 
ity is still computationally too expensive. 

Stochastic algorithms inevitably take forever to obtain a sok~on 
of which the global op~-nality is gum-anteed. Therefore, we have 
to adopt and use the currently best solution at some stage of the pro- 
cedure, and if'necessary, keep the prccedure rurming for a long time 
for a possibility of existence of a better solution. As mentioned be- 
fore, the deterministic algorithms guarantee the global optimality 
of the obtained solution, but they don't give any useful informahon 
but the lower bound on the global minimurn ~r~dl the proce&tre con- 
verges and stops. Stochastic algorithms do not g~an tee  the global 
op~nality of the obtained solution, but continually improve tentative 
solutions, and thus can give us usefi.tI results in a reasonable time 
span. 

Studies on global optimization indicate that most chemical pro- 
cess design problems are still too tough targets. Deterministic al- 
go~itl-ans take too much computation thne even for moderately sized 
problems. Stochastic algorithms have difficulties in dealing with 
equality cons~-aints. Therefore, stochashc methcx:Is based on the 
feasible point strategy or the decoding strategy are considered use- 
ful. R~ther research on feasible point finding and equahon solving 
is suggested as future work. 
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