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Abstract—Process optimization often leads to nonconvex nonlinear programiming problems, which may have multiple
local optima. There are two major approaches to the identification of the global optimum: deterministic approach and
stochastic approach. Algorithins based on the deterministic approach guarantee the global optimality of the obtained
solution, but are usually applicable to small problems only. Algorithms based on the stochastic approach, which do
not guarantee the global optimality, are applicable to large problems, but inefficient when nonlinear equality con-
straints are involved. This paper reviews representative deterministic and stochastic global optimization algorithms in
order to evaluate their applicability to process design problems, which are generally large, and have many nonlinear
equality constraints. Finally, modified stochastic methods are investigated, which use a deterministic local algorithm and
astochastic global algorithm together to be suitable for such problems.
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INTRODUCTION

Many chemical process optimization problems can be represented
by nonlinear programiming (NLP) problems in the following form:

®)

min f{X)
subject to

g(x)<0
h(x)=0

where xeR, £ R*—R g R"—R. h R"—R’, and n>m. If the
objective function and the feasible region are convex, eg., when f
and g are convex and h is linear, the problem is called a convex prob-
lem, which has only one local minimum that is the global miru-
mum. Most of chemical process optimization problems, however,
have a nonconvex feasible region because of nonlinear equality con-
stramts. Therefore, they are nonconvex, and in many cases, have
multiple local optima. Furthermore, the size of the problem is gen-
erally large. The objective of this study is to fmd a global optuniza-
tion algorithm suitable for nonconvex problems which mnvolve a
large number of highly nonlinear equations such as obtamed from
rigorous models of chemical processes.

Most global optimization algorithms belong to one of the two
categories: (1) deterministic approach and (2) stochastic approach.
Algonithms based on the deterministic approach such as cutting plane
[Horst and Tuy, 1993], generalized Benders decomposition [Geof-
frion, 1972; Floudas and Visweswaran, 1990; Bagajewicz and Man-
ousiouthakis, 1991], branch and bound [Soland, 1971; Ryoo and
Satumdis, 1995; Adjiman et al, 1996], and interval analysis [Rat-
schek and Rokne, 1988; Vaidyanathan and El-Halwagi, 1994; Han
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et al, 1997] guarantee fimite e-convergence (convergerce to the glo-
bal optimum in finite computation steps for a given finite error tol-
erance) and global optimality of the obtained solution. Algornithms
based on the stochastic approach such as simulated annealing [Kirk-
patrick et al., 1983] and genetic algorithm [Goldberg, 1989] aim at
high probability of finding the global optimum, not guaranteeing
the finite e-convergence or the global optimality of the obtained
solution.

METHODOLOGY

The goal of global optimization is achieved if a method is devel-
oped which is guaranteed to do one of the following three tasks.
1. Find a Tight Convex Hull

Assume that we have an NLP in which the objective function is
linear. Note that any problem can be reformulated to this type of
problem by replacing the objective function by a substitution vari-
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Fig. 1. Convex hull strategy.
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Fig, 2. Feasible point strategy [Choi et al., 1999].

able and declaring is defmition equation as a constraint. Now con-
sider anew problem in which the constraints form atight convex
hull for the feasible region of the original problem as shown i Fig,
1. This is a convex problem which can easily be solved by a local
optimization technique and whose solution is equivalent to the glo-
bal solution of the origmal problem. This is the basic idea of most
of the deterministic algorithm.
2.Find a Feasible Point

Assume that we have amethod that is guaranteed to find a fea-
sible point if any exists. Given a feasible pomt, a local optimizer
using the generalized reduced gradient method can find a local min-
imum. We can then add a new constraint that forces the objective
function value to be lower than the current local minimum, and
search for a new feasible pomt. This procedure can be repeated until
no feasible point exists. Fig. 2 schematically describes this strategy.
In order to implement this strategy, we need a global algorithm for
finding feasible pomnts and a local algorithm for finding local min-
ima. A stochastic method that uses this strategy is described in this
paper.
3.Find Al Kuhn-Tucker Points

If amethod is available which is guaranteed to find all real roots
of systems of nonlinear algebraic equations, the objective function
values at all Kuhn-Tucker points can be compared to each other to
fmd the global optimum. This approach is out of the scope of this

paper.

DETERMINISTIC APPROACH

The deterministic approach to global optimization of chemical
processes has actively been studied smce the 1980°s, and some hi-
story was summarized by Han et al. [1997]. However; since the glo-
bal optunization of a nonconvex NLP problem is one of the tough-
est NP-hard problems, the deterministic algorithms that are cur-
rently available can usually be applied to small problems only. De-
tailed discussion of the NP-hardness was presented by Choi et al.
[1999].

1. Outer Approximation

A convex hull of a feasible region can be constructed by a set of
Imear inequality constramts. For example, Horst and Tuy [1993]
defined a concavity cut for aregion K\G formed by a polyhedral
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Fig, 3. (G, K)-cut [Horst and Tuy, 1993].

cone K with vertex x° and areverse convex consfrant x¢ int G as
shown i Fig. 3. The cut by a new linear mequality constraint ex-
cludes some region around the infeasible point x° but not any fea-
sible point. However, abig disadvantage of this approach is that the
number of constraints mncreases as the algonithm converges to atight
convex hull, and thus constraint dropping straegies are required as
indicated by Horst and Tuy [1993].

Note that any continuous function defmed on afmnite closed con-
vex domain can be represented by a difference of two convex (d.c.)
functions. All we have to do is add and subtract a sufficiently con-
vex function. The cutting plane methods are applicable to d.c. prob-
lems where al functions are d.c. on a given convex set [Horst and
Tuy, 1993]. However, in general, these methods are suitable only
for low rank nonconvex problems, in which only a few of the var-
1ables are responsible for the nonconvexity of the problem [Konno
etal, 1997].

2. Generalized Benders Decomposition

Consider the following type of problem:

min, , f(x, ¥)
subject to
g(x,y)<0

where fand g are convex with respect to X, i.e., when ¥ is constant,
the problem is convex. This problem can be decomposed into two
problems as tollows.

Primal:
min, f(x, y)
subject to
£(x,y)<0

where y is fixed at a given point. This problem can easily be solved
because it is convex. The solution is an upper bound of the global
minmum because the feasible region has been narrowed.

Master:
min, y,
subject to

L'(y; wy=min, [f{x, y)+u’ gx, y)I<y,
for all u>0
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L.(y; ¥)=min, v" g, y)<0
for all ve {vv>0, Y v=1}

For subsets of u and v, the solution to this problem 1s a lower bounid
for the global mmmum.

Thus technique 1s useful when X and y are separable, because the
solution x and the Lagrange multipliers u obtamed from the primal
can directly be used m the fist set of constraimts i the master, n
which the minimization with respect to X 1s unnecessary.

If the primal 1s infeasible at a given pomt y, an mfeasibility min-
imization problem can be solved such as the following.

Tin, o
subject to
glx y)<od

where 1=[1 ... 1} The solution x and the Lagrange multipliers v
obtamed from this problem can be used to construct the second set
of constramts m the master, m which the minimization with respect
to X Is again unnecessary.

The algonthm iterates between the primal and the master until
the upper and lower bounds converge together. Like outer approxi-
mation, this technicue also needs constramnt dropping strategies, and
1s suitable for low rank nonconvex problems only.

3. Branch and Bound

Ths 15 the most widely used technique for global optimization

of vanous problems. Let us consider the following type of problem.

min f{x)
subject to

g(x)<0
A x=c

where A and ¢ are constant matrix and vector respectively.

The algonthm starts from relaxation of the above problem mto a
convex problem over an imutial box a<x<b. Let us replace the ob-
Jjective function f(X) by a convex envelope such as shown by dashed
curves mFig. 4. A convex hull of the feasible region can be obtamned
by replacing all nonconvex functions g(x) by their convex enve-
lopes. The relaxed problem 1s now convex, and thus its local solu-
tion 1s guaranteed to be the global mimmum. Furthermore, as this
1s the solution to a relaxed problem, it is a lower bound for the glo-
bal mimmum of the original problem.

The box 1s subsequently split mto parts (branching). The solu-

Fig. 4. Convex envelopes.

tion to each subproblem 15 a lower bound m its region. The lowest
one of these 1s the lower bound for the globel mimmum of the ori-
gmmal problem. If a solution satisfies the original constramts as well,
the value of the onigmal objective function at that pomt 1 an upper
bound. The lowest upper bound is stored as a candidate for the glo-
bal muumum. Meanwhile, every subproblem is discarded if 1t 1s
mnfeasible or its solution 1s higher than the upper bound (bounding).
The algonithm stops when the lower bound converges to the upper
bound.

The efficiency of the branch and bound algorithm mamly de-
pends on the tightness of the convex envelopes. The most com-
monly used convex envelopes, which are also called underestimators,
can be classified as follows.

3-1. Linear Underestimators

A reverse convex term in a separable function ¢(X)=2j¢j(xj) can
be replaced by a linear underestimator. For example, if ¢(x,)=—x,
a=x;<b, the tightest convex envelope is the followng lmear func-
tion.

yx)=(tb) x+ab,

Note that this approach can be applied to separable problems only.
However, any problem can be converted to a separable problem
because a nonseparable term x, X, can be replaced by a separable
function w{—w; where w, and w, are defined by the following linear
equality constraints.

w,=(X,+%, /2
w,=(X,—X,)/2

3-2. Quadratic Underestimators

For general functions, quadratic underestunators can be used as
proposed by Adjiman et al. [1996]. For a nonconvex function ¢(x),
a<x<b, a convex envelope can be defined as follows.

WX)=0(3)+ X o, (%—a)x—b)
o >max {0, ~0.5 min A, [HG()])

where A, (k=1, ..., ) are the eigenvalues of the Hessian matrix H.
A problem m this approach 1s that determination of tight ¢ is again
a nonconvex optimization problem unless H 1s constant.
4. Tuterval Analysis

Convex envelopes and hulls can also be obtained by mterval ana-
lysis based on the followmg arithmetic.

1+[c, d]=[atc, b+d]
I-[c, d]=[a~d, b—c]
]1x[c, d]=[min(ac, ad, be, bd), max(ac, ad, be, bd)]

Unlike the case of linear or quadratic underestimators, the branch
and bound algorithm can directly be applied to problem (P). Let us
start from an interval box X of vanables x. For any X', if Ib g(X%)
>0 or Ib h(X*>0 or ub h(X*)<0, then the box X* is mfeasible. The
box X* can also be discarded 1f Ib f(X*)>f{x*) where X° is a feasible
point. The interval boxes are repeatedly branched and bounded, and
the algorithm stops when a feasible point 18 found near the global
lower bound.

The convex envelopes and hulls based on mterval analysis are
Just constarts and imtervals respectively, and not tight at all. There-
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fore, the branch and bound procedure that uses mterval analysis in
some cases requures extremely many subproblems. However, each
subproblem can be solved very efficiently because it only requires
simple mterval arithmetic.

5. Handling Equalities

Many determmustic algonthms are applicable to specific types
of problems only. For example, the generalized Benders decompo-
sttion algorithm described m this peper allows mequality constramts
only, and the underestimator branch and bound allows inequality
constramts and linear equality constramts only. Generally, algorithms
can be modified to accept linear equality constraints because they
do not cause nonconvexity. However, problems should be modi-
fied, except for algonthms such as mnterval branch and bound, if they
have nonlinear equality constramts.

The simplest method 15 to convert h(x)=0 mto h(x)<0 and h(x)
>0. Note that h(x)<0 and > h(x)=0 are also equivalent to h(x)=0.
Therefore, m equality constraints can be converted to 2m or m+1
mequality constramts. The generalized Benders decomposition can
niow be applied to equality constrained problems. The linear under-
estumator branch and bound can also be applied to any problem be-
cause h(x) can be converted to a separable d.c. function ¢(x)+r(x)
where ¢(X) is convex and r(x) is reverse convex. In this case, 2m
mnequality constramts ¢(X)+1(x)<0 and —c(x) —1(x)<0 are preferred
to m+1 mequalities, because summation of reverse convex terms
results i1 a larger gap between the onginal function and its convex
envelope.

The following procedure applies to general d.c. functions ¢(x)+
r(x) where ¢(X) 1s convex and 1(x) 1s reverse convex. Let us define
new variables u=c(x) and v=r(x). Then, ¢(x)+r(x)=0 are equiva-
lent to linear equality constraints u+v=0, convex inequality
constramts ¢(X)—u<0 and —r(x)+v<0, and reverse convex mequal-
ity constramts —c(x)Hu<0 and r{(x)-v<0. Note that the last 2m re-
verse convex constramts can be summed to form a single reverse
convex constraint 3, [—c,(x)+5,(x)+u—v,]<0. Therefore, using 2m
extra variables, m nonlinear equality constraints can be converted
to m hinear equality constramts, 2m convex mequality constramts,
and one reverse convex nequality constraint. As a result, all we
nieed, theoretically, is an algorithm that can solve a convex prob-
lem with a smgle reverse convex constramt, and all of the deter-
ministic algorithms reviewed in this paper can do it.

STOCHASTIC APPROACH

Stochastic algonithms, when run sufficiently long, are virtually
guaranteed to fmd the global optimum according to the following
convergence theorem [Béck et al., 1991].

For minimization of objective function f(x),
1) Let X*'=x+N(0, 0) 1.
2) If f(x*)< X, accept ™.
Otherwise, x*'=x".
3) Repeat for next t.
Then, for 60 and f*">— oo, lim, ., p{f(x)=F"}=1.

This means that for a random search based on a normal distribu-
tion, the probability of global optimality of the obtamed sohution
will eventually approach one. For stochastic algorithms to be effi-
cient, however, balancmg is required between exploitng the best
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solution (local search) and explonng the search space (global search)
[Booker, 1987]. The above algorithm 1s biased towards local search,
and two representative methods that can be balanced are summa-
rized as follows.
1. Simulated Annealing

Let us consider a collection of atoms m equilibrium at a given
temperature T. Displacement of an atom causes a change AE m the
energy of the systemn. If AE<0, the displacement is accepted. If AE
>0, the probability that the displacement is accepted i1s exp(—AE/
kT) where k 15 the Boltzmarm constant. Thus process can be smmu-
lated 1n optimization as follows.

For minimization of objective function f{x),
1) Take x*” randomly.
2) If Af=f{x**)— f{x"9<0, accept X*.
Otherwise,
a) Take a random number we [0, 1].
b) If w<exp(— AT), then accept X**.
Otherwise, ¥v=x",
3) Control T, and repeat.

This algorithm 1s mostly applied to combinatorial optimization prob-
lems, but suitable for unconstrained function optimization also.
2. Genetic Algorithm

The theory of evolution can also be employed m optunization
as follows.

For optimization of fitness function f{X),

1) Select a given size of population {X} where X is a chromosome
(binary vector).

2) At a given crossover probability, crossover ¥ and x7 to generate ¥
and x¥".

3) At a given mutation rate, mutate X.

4) Repeat.

This algorithm s based on the assumption that the best solutions
will be found m regions of the search space contanng relatively
hugh proportions of good solutions, and that these regions can be
identified by judicious and robust sampling of the space [Booker,
1987]. Tt 1s being widely applied case by case to special data struc-
tures i which problem specific knowledge 1s meorporated. Such
modified genetic algonthms are referred to as evolution programs
[Michalewicz, 1996].

The onginal genetic algonthm uses binary representation of chro-
mosomes to be suitable for combmatorial optimization. However,
this algonthm can also be applied to unconstramed function opti-
mization. In this case, floating pomt representation is more effi-
ciert, m which the following operators can be used.

For randomly selected je {1, ..., n},

1) Simple crossover: ¥'=[x, .., ¥, x4, ..
X=[XE, L XL K, s K

2) Arithmetical crossover: ¥'=w ¥+(1-w) x? and
X'=(1-w) ¥+w x?

3) Uniform mutation: X [a,, b]

4) Boundary mutation: x=a, or b,

5) Non-uniform mutation: Fine tune .

L x4 and

3. Handling Equalities
Stochastic algonithms do not suffer from the NP-hardness of the
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problem, and thus they are considered to be suitable for large prob-
lems. However; these algorithms still have difficulties when applied
to chemical process design. The stochastic algorithms are based on
the random search technique. Since the evaluation of the objective
function is meaningful only at feasible points, they are suitable for
unconstrained or nherently mequality constrained optimization prob-
lems only. However, most chemical process design problems have
many equality constraints. Therefore, the problem or the algorithm
should be modified
3-1. Problem Modification
3-1-1. Penalty Function Method

Constrained optimization problems can be converted to uncon-
strained problems as follows.

min, Fx, 1)=fx)+1/21) ¢(x)” ox)

where r is apenalty parameter (~0), and c(x} is a vector of all active
constraint functions. As r—0, X converges to a local minimum Xx*,
but the Hessian matrix H[F(X, r)] becomes ill-condtioned. Further-
more, when there are too many ecuality constraints as in chemical
process design problems, it is difficult to keep the reformulated prob-
lem numerically stable.
3-1-2. Feasible Point Strategy

In order to avoid dealing with equality constraints in a stochastic
algorithm, a feasible point strategy can be adopted, in which feast-
ble points can be found by solving an infeasibility minimization prob-
lem such as the following.

min o(X)” e(X)

where ¢(x) is a vector of all violated consiraint functions. Another
form of infeasibility m mimization problem is as follows.

min max{gx), h(x), -hx)}

As shown by Choi et al. [1999], finding a feasible pomnt for anon-
convex problem is an NP-complete problem, and thus can be con-
sidered easier than finding the global optimum, which is NP-hard.

An equality constrained simulated annealing algorithm proposed
by Choi et al. [1999] solves the following mequality constrained
infeasibility minimization problem.

min ¢, )
subject to
Infeasibility Stochastic
minimization -~~~ global
problem () optimizer
Feasible Local \\\
point x° minimum f* ~
. Deterministic
Original T — local
problem (P) optimizer

Fig. 5. A stochastic method hased on feasible point strategy.

gx)=ol
h)<al
-h)<al
fx)=f*-s+a

where 1=[1 ... 1]}, and £ is an optimality tolerance (~0). Note that
o=<€ means that X is a feasible point at which the value of the ob-
jedive function is lower than the previously found local minimum
f Implementation of this strategy is schematically described in
Fig. 5.
3-2. Algorithm Modification
3-2-1. Decoding Strategy

Let us convert all inequality constraints g(x)<0 in problem (P)
nto equality constraints g(x)+s=0 where s is a vector of nonnega-
tive slack variables. Then we have the following type of problem.

min f(x, y) ®
subject to

h(x, y)=0
as<x<h
c<ysd

where X represents n—m design (independent) variables, ¥ represents
m state (dependent) variables, and h: R*—R"(n>m). Assuming
tha X can be decoded to ¥ by an equation solver, this problem can
be viewed as follows.

min f(x, y(x))
subject to
a<x<h

This type of problem is suttable for stochastic algorithms. Further-

. : -
| Probicm (E) -4 [eterministic
{ 'y local opeimizer
oyt LR ( irwe tuner)
man AN, yin)
Slbjext fo 4 ---- Stochastic
azx=h glubal oplimeeer
LA cplimiser |
X . ¥
. |
hx, ¥)=0 - Lquaton solver
€=y=d i {decoder)
X 4 ¥ ) -
‘ Stochasix
min h' b | whobal cptimizer
subject ta g --- (inmal gucss
ccy=d | generatar)

Fig. 6. A stochastic method based on decoding strategy.
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more, chemical process design problems generally have small degrees
of freedom, and thus the above problem 1s expected to be small in
most cases. However, stochastic algonthms are inefficient for fine
local tuning, and thus a determiristic local algorithm s to be m-
corporated.

The decodmg strategy can easily be mplemented when h 1s linear
with respect to y, and s bemg widely used m algorithms devoted
to specific problems. For general problems, a robust equation solver
1s required, and a Newton type algonthm can be used if a good mutial
guess generator s available. A rough solution to an mfeasibility min-
mization problem can serve as a good mitial guess, and a stochas-
tic global optimizer can generate it with a large optmmality tolerance.
Note that decoding 1s valid even if there are multiple solutions for
y at a given X, because the result 1s stochastic. Implementation of
thus strategy 18 schematically described n Fig. 6.

DISCUSSION AND CONCLUSION

Outer approximation and generalized Benders decomposition
are suitable for Jow rank nonconvex problems only. Generally, how-
ever, chemical process optimization problems are high rank non-
convex problems. Therefore, branch and bound 1s the most effi-
cient determmustic method currently available, especially when Imear
underestimators and interval analysis are mcorporated to tighten
the subproblem boxes. However, the guarantee of globel optimal-
ity 1s still computationally too expensive.

Stochastic algonthms mevitably take forever to obtamn a solution
of which the global optimality 1s guaranteed. Therefore, we have
to adopt and use the currently best solution at some stage of the pro-
cedure, and if necessary, keep the procedure runnmg for a long time
for a possibility of existence of a better solution. As mentioned be-
fore, the determimstic algorithms guarantee the global optimality
of the obtained solutior, but they don’t give any useful mformation
but the lower bound on the global mimmum until the procedure con-
verges and stops. Stochastic algorithms do not guarantee the global
optmality of the obtaned solution, but contmually improve tentative
solutions, and thus can give us useful results m a reasonable time
spart.

Studies on global optimization mdicate that most chemical pro-
cess design problems are still too tough targets. Determmistic al-
gornthms take too much computation tune even for moderately sized
problems. Stochastic algorithms have difficulties in dealing with
equality constraints. Therefore, stochastic methods based on the
feasible pomnt strategy or the decoding strategy are considered use-
ful. Further research on feasible pomt fmding and equation solving
1s suggested as future work.
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