Effect of Geometrical Parameters of Draft Tubes and Clear Liquid Height on Gas Holdup in a Bubble Cohtmn for Gas Dispersion into Tubes

Fukuji Yamashita[†]

Dept. of Applied Chemistry, Kanagawa Institute of Technology, Atsugi 243-0292, Japan *(Received 2 April 1999 • accepted 26 July 1999)*

Abstract-The effects of the geometrical parameters of draft tubes and the clear liquid height on the average gas holdup E_c in a 0.16 m I.D. bubble column for gas dispersion into the tubes were experimentally studied in an airtap water system. The gas holdup depended on the superficial gas velocity U_c , the kinds of gas spargers, the diameter and length of the draft tubes, clearance C_b between the lower end of the draft tube and the bottom of the bubble column, and the clear liquid height H_L . E_G increased with decreasing hole diameter of the gas sparger at a small gas velocity U_G , but did not depend on the kinds of gas spargers at a large U_G . Eq decreased with increasing clear liquid height H_L. The effect of H_L on E_G was well expressed by the modified three-region model. The experimental data of E_c were correlated.

Key words: Bubble Column, Air Lift, Draft Tube, Gas Holdup, Liquid Height

INTRODUCTION

Bubble columns with a draft tube have been increasingly used in waste water treatment, fermentation and chemical processes. The gas holdup is an important parameter for the design of a bubble column with a draft tube. There have been several research studies about the gas holdup in bubble columns with a draft tube [Bello et al., 1985; Koide et al., 1983; Merchuk et al., 1994; Weiland, 1984].

Koide et al. [1983] have reported the effects of the kinds of the gas spargers, the lower clearance C_b , inner diameter of the draft tube D_i and diameter of bubble column D_r on E_c in bubble columns with a draft tube for gas dispersion into a tube. Weiland [1984] also has studied the effect of D_i on E_c for an air-water system. Bello et al. [1985] have reported the effect of the ratio of downcomer-to-riser cross sectional area on the gas holdup for concentric and external-loop bubble columns. Merchuk et al. [1994] have reported the effects of the geometrical design of draft tubes on E_G for 0.158 and 0.318 m I.D. bubble columns.

However, the effects of gas sparger type, diameter and length of the draft tube, clearance between the lower end of the draft tube and the bottom of the bubble column, and the clear liquid height on the gas holdup in the bubble column with a draft tube have not yet been fully clarified.

In this work, the effects of the kinds of gas spargers, diameter and length of the draft tube, clearance between the lower end of the draft tube and bottom of the bubble column, and height of the clear liquid on the gas holdup in the bubble column with a draft tube were experimentally studied and the results were analyzed and correlated. Also, a modified threeregion model was presented to explain the effect of the clear liquid height on the gas holdup in a bubble column with a draft

Fig. 1. Schematic diagram of experimental apparatus. (a) bubble column with a perforated plate sparger, (b) bubble column with a vertical pipe sparger. A=bubble column, B=draft tube, C=perforated plate, D=gas inlet, E=gas chamber, F=steel pipe gas sparger

tube.

EXPERIMENTAL

Fig. 1 shows a schematic diagram of the experimental apparatus. Fig. l(a) and (b) show a bubble column with a perforated plate and a vertical steel pipe as a gas sparger, respectively. The bubble column used was made of transparent acrylic resin. Its diameter and height were 0.16 m and 2.4 m, respectively. The gas spargers used consisted of perforated plates and a 0.009 m I.D. steel pipe. The pipe, which had two holes on its side at 0.015 m above the bottom of the bubble column, was inserted downwards at the center of the bubble column. The end of the steel pipe was closed with a rubber stopper. Details of the gas spargers used are listed in Table 1. The draft tubes used were made of acrylic resin and polyvinyl chloride resin pipes. Their lengths were 0.50-1.40 m. Details of the draft tubes used are

tTo whom correspondence should be addressed.

E-mail: yamasita @ chem.kanagawa-it.ac.jp

No.	d [m]	n -1	p [m]	H_{N} [m]	Remarks
	0.0007	145	0.005		pp
2	0.001	45	0.005		pp
3	0.008	ာ		0.015	sp

Table 1. Details of gas spargers used

Note : pp and sp mean a perforated plate and a steel pipe, respectively.

Table 2. Details of draft tubes **used**

No.	D,	\mathbf{D}_o	No.	D,	D,
	[m]	im)		[m]	[m]
	0.050	0.060	5	0.083	0.090
2	0.056	0.060	6	0.090	0.110
3	0.075	0.095	7	0.110	0.130
4	0.078	0.090	8	0.130	0.140

listed in Table 2.

The liquid used was tap water at room temperature. During each tun, liquid was neither fed nor discharged. Air was used as the gas. The gas was dispersed into the draft tube.

The average gas holdup E_c was obtained from the following equations:

$$
E_{\mathcal{G}} = (H_{\mathcal{I}} - H_{\mathcal{L}})/(H_{\mathcal{I}} - A) \tag{1}
$$

$$
A = V/S \tag{2}
$$

where H_{τ} and H_L are the height of the bubbling and clear liquid layers, respectively. H_T and H_L were visually measured.

MODIFIED THREE-REGION MODEL

To express the effect of the clear liquid height, H_t , on the gas holdup in a bubble column with a draft tube, the following simple model was derived by modifying the three-region model [Yamashita, 1998]. It is assumed that the bubble column with a draft tube consists of the three regions, that is, the draft tube region, the bulk region and the foam layer as shown in Fig. 2.

From the gas balance in the bubble column with a draft tube, the following equations were derived:

Fig. 2. Concept of three-region model.

A=foam layer, B=bulk region, C=draft tube region, D=bubble column, $F=dr$ aft tube, E_i, T_i=gas holdup and thickness of i-region, respectively.

$$
E_G H_{\eta} = E_d T_{d1} + E_b T_b + E_f T_f \tag{3}
$$

$$
H_{T1} = T_{d1} + T_b + T_f \tag{4}
$$

 $H_{\text{ri}}=H_{\text{Li}}/(1-E_{\text{c}})$ (5)

From Eqs. (3)-(5), the following equations are derived:

$$
E_{c} = 1 - (1 - E_{b})H_{L1}/(H_{L1} + B)
$$
\n(6)

$$
\mathbf{B} = \mathbf{E}_d \mathbf{T}_{d1} + \mathbf{E}_f \mathbf{T}_f - \mathbf{E}_b (\mathbf{T}_{d1} + \mathbf{T}_f) \tag{7}
$$

If E_b and B are independent of $H_{t,i}$ and B>0, the gas holdup E_a decreases with increasing H_{LL} and becomes equal to E_{L} at H_{L} =infinity. From Eq. (6), the following equation is derived:

$$
\frac{1}{1 - E_c} = \frac{B}{1 - E_b H_{L1}} + \frac{1}{1 - E_b}
$$
(8)

That E_b is independent of H_{L1} means that E_b does not depend on the clear liquid height H_{L1} . And that E_G decreases with increasing H_L and becomes equal to E_b at H_L=infinity means that the effect of the draft tube region and the foam layer on the gas holdup E_c decreases with increasing clear liquid height and can be neglected at a large H_{L1} .

EXPERIMENTAL RESULTS

1. **Effect of Gas Spargers on** Ea

Fig. 3 shows the effect of the gas spargers on the gas holdup in the bubble column with a draft tube of $D = 0.13$ m. The average gas holdup increased with decreasing hole diameter of the gas sparger at a small U_c , but did not depend on the gas spargers at a larger U_c .

At a small U_{α} , smaller bubbles are generated from the gas sparger with small diameter holes and rise with little change in their sizes. At a large U_c , bubble sizes depend mainly upon the

turbulence in the bubble column. Therefore, the gas holdup increases with decreasing hole diameter of the gas sparger at a small U_{α} , but did not depend on the kinds of the gas spargers at a large U_c .

Fig. 3 also shows the comparison between this work and the previous studies for the gas holdup. It is clear that the experimental data for Nos. 2 and 3 gas spargers are nearly equal **to** the correlations of the gas holdup in the bubble column without draft tubes by Akita and Yoshida [1973], and Yamashita and Inoue [1975]. The gas holdup calculated by the correlation of Koide et al. [1983] for the bubble column with a draft tube and with gas dispersion into the draft tube is slightly smaller than the experimental data in this work.

The data of Merchuk et al. [1994] for a 0.318 m I.D. bubble column with a 0.216 m I.D. draft tube is nearly equal to the data for the No. 1 gas sparger. Their data for a 0.158 m I.D. bubble column with a 0.110 m I.D. draft tube are slightly smaller than the experimental data in this work, because they used a wide separator of 0.213 m inner diameter on the top of the bubble column. The gas sparger used by Merchuk et al. [1994] was a ring sparger of $d=0.001$ m and $n=40$. The correlation of Merchuk et al. [1994] is slightly larger than the experimental data in this work.

Koide et al. [1983] have reported for a 0.14 m I.D. bubble column with a draft tube that the gas holdup does not depend on the kinds of gas spargers, but that the volumetric mass transfer coefficient depends on the kinds of gas spargers. The reason why the gas holdup by Koide et al. [1983] does not depend on the kinds of the gas spargers is not clear.

2. Effect of Inner Diameter D of the Draft Tube on \mathbf{E}_c

Figs. 4 and 5 show the effect of the inner diameter D_i of the draft tube on gas holdup E_c in the bubble column with a draft tube at L_i/H_i=0.833 and 0.333 for L_i=0.50 m, respectively. E_G at $D=0.16$ m means the gas holdup in the bubble column without a draft tube. Fig. 4 shows that the gas holdup E_c increased with decreasing D_i and was maximum at D_i =0.078 m-0.09 m at a large U_{α} . However, Fig. 5 shows that the gas holdup E_{α} was nearly constant in the range of D_i>0.078 m and decreased slightly with decreasing D_i in the range of $D_0 < 0.078$ m. It is

Fig. 4. Effect of D_i on E₆ at H_L=0.60 m, L_a=0.50 m, C_a=0.03 m and L_a/H₁=0.833.

Dotted lines mean calculated values by Eqs. (9)-(13) with experimental data of E_s .

clear from these figures that the maximum of the gas holdup increases with increasing ratio of (L_a/H_b) . This means that the effect of D_ion E_G increases with increasing ratio of (L_f/H_L) . At $U_G=0.0088$ m/s, E_G did not depend upon D_i and was nearly constant.

Fig. 6 shows the effect of D_i on E_G at $(L_d/H_L)=0.933$ and $L_d=1.40$ m. Though the ratio of $(L_d/H_L)=0.933$, E_G increased only slightly with decreasing D_i and was maximum at about D_j=0.080 m in the range of U_{\odot}>0.035 m/s. In the range of U_G $<$ 0.035 m/s, E_c was nearly constant in the range of D_{\ge} 0.056 m, but decreased slightly at $D=0.050$ m. These results are explained as follows.

When gas is spouted into a shallow liquid layer at a high speed, the liquid layer becomes a froth layer or a foam layer, and the gas holdup in the layer increases substantially with increasing U_c and decreasing H_L . However, the gas holdup becomes nearly constant in the range of $H_l>H_{l,c}$ [Kawagoe et al., 1974; Takahashi et al., 1974; Yamashita, 1985, 1997]. H_{LC} is the critical clear liquid height above which the gas holdup becomes

Fig. 6. Effect of inner diameter D_i of draft tube on E_G at $H_L=1.50$ m, $L_d=1.40$ m, $C_b=0.03$ m, $L_d/H_L=0.933$ and No. **1 gas sparger.**

Dotted lines mean calculated value of E_G by Eqs. (9)-(13) with experimental values of E_s .

constant. Takahashi et al. [1974] have reported that H_{LC} is 0.50 m. The gas velocity at the top of the draft tube and the effect of the spouting of the gas from the draft tube increase with decreasing D_i . Therefore, the gas holdup increases with decreasing D_i , and the maximum of the gas holdup increases with increasing ratio of (L_d/H_l) . However, when the length L_d of the draft tube is long, the effect of D_i becomes very small, because the top section above the draft tube becomes a small portion of the entire bubbling layer. Therefore, for $L_d=1.40$ m the gas holdup increased only very slightly with decreasing D_i even at (L_d/d) $H₁$ $=$ 0.933.

The reason why the gas holdup for the draft tube of $D=$ 0.05-0.056 m decreased slightly is because the circulation of the gas and liquid is weak and most of the annular section is almost bubble-free, though the effect of the spouting of gas and liquid is large.

Weiland [1984] has studied the effect of D_i on E_G under the condition of U_c<0.035 m/s, D₇=0.20 m, F_a=0.59-1.0, L₄=1.50 m, H_{i}=1.70 m and L_a/H_{i}=0.77 for an air-water system and reported that the gas holdup is almost equal to E_s in the range of F_a >0.74 and that the gas holdup is rather small at F_a =0.59. It is clear from Fig. 5 in the range of U_c <0.035 m/s that E_c is nearly equal to E_s in the range of $F_a > 0.35$ and that E_c is rather small at $F_{\alpha}=0.313$. The experimental results in this work resemble those of Weiland [1984].

Koide et al. [1983] have reported that E_G is proportional to $F_{ai}^{0.114}$ in the range of $F_{ai}=0.471-0.743$, $L_{a}=1.40$ m and $D_{r}=0.10-$ 0.300 m. The results of Koide et al. [1983] are nearly equal to those at large L_a in this work.

3. Effect of Clearance C_b between Lower End of Draft Tube **and Bottom of Bubble Column**

Fig. 7 shows an example of the effect of C_b on E_c . The experimental conditions are D_i=0.056 m, L_a=1.40 m, H_L=1.55 m and the No. 2 gas sparger. E_G was nearly constant at a small U_G . However, at a large U_G , E_G increased with increasing C_h and became maximum at $C_b=C_{b,m}$. E_G became nearly constant in the range of $C_b > C_{bcr}$. This result is explained as follows.

At a large U_{α} , the circulation of liquid increases with increasing C_b and bubbles begin to descend into the annulus. Therefore, E_G increases with increasing C_b in the range of $C_b < C_{bm}$. In the range of $C_b > C_{b,m}$, the circulation of liquid becomes so

Fig. 7. Effect of C_b **on** E_c **in No. 2 gas sparger at D_i=0.056 m,** L_4 =1.40 m and H₁=1.55 m.

strong that bubbles rise faster in the draft tube. Therefore, E_c begins to decrease with increasing C_{μ} . However, in the range of $C_b > C_{b,cr}$, the clearance is so large that the circulation of liquid and gas does not depend on C_b . Therefore, E_a becomes nearly constant.

In the range of $U_c < 0.018$ m/s for $C_b = 0.095$ m, gas leakage from the lower end of the draft tube into the annulus occurred due to the fluctuation of bubble flow just above the gas sparger, but did not occur in the range of U_o > 0.035 m/s because of the strong circulation of the liquid. For $C_b=0.12$ m, the gas leakage from the lower end of the draft tube into the annulus occurred at all U_{α} , because of too large a C_{α} value.

 $C_{b,m}$ and $C_{b,cr}$ depended on D_i and U_c , and most data for $C_{b,m}$ and $C_{_{bcr}}$ were less than 0.01 m and 0.03 m, respectively. Koide et al. [1983] have reported that E_G is not affected by C_b in the range of $C_b=0.010$ m-0.082 m for a 0.082 m I.D. draft tube in a 0.14 m I.D. bubble column. Their data are nearly equal to C_b for $D_{\gamma}=0.078$ m in this work.

Merchuk et al. [1994] have reported for 0.158 and 0.318 m I.D. bubble columns with a draft tube that E_G increases with $C_b^{0.1}$. The reason why their data increased with $C_b^{0.1}$ is not clear, but the difference from this work may be small.

Fig. 8 shows the effect of F_a on the gas holdup E_c at $C_b=0$. E_G at $C_b=0$ decreased remarkably with decreasing F_{ab} because the bubble-free annulus increased with decreasing $F_{\mu\nu}$.

4. Effect of Length L_d **of Draft Tube on** E_G

For a large D_i , the gas holdup increased slightly with increasing L_d at a large U_c and was nearly constant at a small U_c . However, for $D_i=0.05$ m, E_a decreased with increasing L_a and became minimum at $L = 1.03$ m as shown in Fig. 9. Fig. 9 shows the effect of L_d on E_G/E_s for $D_i=0.05$ m. E_G at $L_d=0$ means E_c. E_c means the average gas holdup in the bubble column without a draft tube. This result is explained as follows.

The upper clearance C, above the draft tube decreases and the spouting effect of the gas and liquid from the draft tube into the upper section increases with increasing L_d at a given H_d . However, for the draft tube of small D_i , the circulation of liquid is weak and most bubbles, except very fine ones, do not descend; most of the annular region is almost bubble -free. Therefore, the

Fig. 9. Effect of L_a on E_G at D_i=0.050 m, C_b=0.03 m, H_L=1.50 m and No. 1 gas sparger.

gas holdup decreases with increasing L_a . However, at $L_a=1.40$ m the gas holdup again increases due to the spouting effect of **gas** and liquid into the shallow liquid layer above the top of the draft tube. So the gas holdup became minimum at $L_d = 1.03$ m. **5. Effect of Clear Liquid Height H_L on E_G**

 E_c decreased with increasing H_{α}. Fig. 10 shows the plot of 1/ $(1-E_c)$ vs. $(1/H₁₁)$. It is clear that the experimental data are well expressed by Eq. (8) and that the effect of the clear liquid height on the gas holdup can be well expressed by the modified threeregion model. Table 3 shows the values of E_b and B obtained from Fig. 10.

Merchuk et al. [1994] have also reported that E_c is proportional to $C_r^{-0.07}$. C, is the top clearance above the draft tube and is equal to $(H_L - L_{d} - C_b)$. Therefore, this means that E_G decreases slightly with increasing H_l .

6. Correlation of Experimental Data

 E_c was correlated in the range of $C_{\nu} > 0.03$ m using the following equations:

$$
E_0/E_s = Z_1 Z_2 \tag{9}
$$

$$
Z_i = 1 - (1 - F_{ai})^M \tag{10}
$$

$$
Z_2 = 1 + 70 \left(\frac{L_d}{D_T}\right)^2 \left(\frac{L_d}{H_t}\right)^q \left[F_{ai}(1 - F_{ai})\right]^2
$$
 (11)

$$
M=18(Fr)^{0.41} \tag{12}
$$

$$
q=35.3(Fr)^{0.83} \tag{13}
$$

These equations are applicable for D_i=0.05-0.13 m, L_i=0.50-1.40 m, H_L=0.60-1.55 m and C_b=0.03-0.182 m.

Fig. 11 shows the comparison between the experimental data

Table 3. Values of E_b and B obtained from Fig. 10

$100 U_G$	E,	100B	$100 U_c$	E,	100 B
[m/s]	I-1	$\lceil m \rceil$	[m/s]	I-1	[m]
0.83	0.0182	0.0104	8.5	0.139	0.0505
1.70	0.0295	0.0269	10.3	0.128	0.0833
3.4	0.0705	0.0351	13.1	0.156	0.0872
5.0	0.0924	0.0408	15.9	0.176	0.0956
6.7	0.113	0.0487	17.9	0.178	0.111

Fig. 10. Plot of $1/(1-E_c)$ vs. $1/H_{L1}$ at $D_r=0.09$ m, $L_d=0.50$ m, $C_b=$ **0.03 m and No. 2 gas sparger.**

Fig. 11. $\mathbf{E}_{G,cd}$ vs. $\mathbf{E}_{G,exp}$ for No. 1 gas sparger.

for E_G and values calculated by Eqs. (9)-(13) with the experimental data for E_s. The average error with Eqs. (9)-(13) was 7.67% for 1,056 data for E_c . Dotted lines in Figs. 4-6 mean values for E_c calculated by Eqs. (9)-(13) with the experimental data for E_s . It is clear from these figures that Eqs. (9)-(13) show fairly good agreement with the experimental data.

CONCLUSION

The effects of the geometrical parameters of draft tubes and the clear liquid height on the average gas holdup E_c in a 0.16 m I.D. bubble column for the gas dispersion into a draft tube were experimentally studied in an air-tap water system. E_c depended on the kinds of the gas spargers, U_G , D_i , L_d , C_g , and H_u .

 E_c increased with decreasing hole diameter of the gas sparger at a small gas velocity U_G , but did not depend on the kinds of gas spargers at a large U_c . At a large L_d , E_c did not depend on D_i and was nearly equal to E_s , but at a small L_d , E_c increased with increasing ratio of (L/H_i) and was maximum at $D_i=0.078$ -0.09 m.

In the range of $U_c > 0.035$ m/s, E_c increased with increasing C_b in the range of $C_b < C_{b,m}$, and was maximum at $C_{b,m}$. But in the range of U_c <0.035 m/s, E_c was nearly constant. In the range of $C_b > C_{b,c}$, E_c did not depend on C_b and was nearly constant.

 E_G at $C_b=0$ increased with increasing F_{ai} . E_G decreased with

increasing clear liquid height H_i. The effect of H_i on E_c was well expressed by the modified three-region model. The experimental data of E_c in the range of $C_e>C_{bc}$, were correlated by Eqs. (9)-(13).

ACKNOWLEDGEMENT

The author wishes to thank Messrs M. Oishi, Y. Kumazoe, H. Sato and S. Yamada, former students at Department of Chemical Technology, Kanagawa Institute of Technology for their experimental work.

NOMENCLATURE

- A : parameter defined by Eq. (2) [m]
- **B** : parameter defined by Eq. (7) [m]
- \mathbf{C}_{κ} : clearance between lower end of draft tube and bottom of bubble column [m]
- $C_{b,m}$: C_b at which E_c becomes minimum or maximum [m]
- C_{bcr} : critical value of C_b above which E_c becomes constant [m]
- *C,* : clearance between upper end of draft tube and top of clear liquid [m]
- *d* : diameter of hole [m]
- *Di* : inner diameter of draft tube [m]
- *Do* : outer diameter of draft tube [m]
- *Dr* : inner diameter of bubble column [m]
- *Eb* : average gas holdup in bulk region [-]
- E_{d} average gas holdup in draft tube region [-]
- *E~ :* average gas holdup in foam layer [-]
- *Ea :* average gas holdup [-]
- $E_{\text{c,}et}$: calculated value of average gas holdup [-]
- E_{Gexp} : experimental value of average gas holdup [-]
- *E~ :* average gas holdup in the bubble column without a draft tube [-]
- F_{ai} : D_{i}/D_{r} [-]
- $F_{\rm r}$: Froude number= $(U_G/\sqrt{gD_T})$ [-]
- g : gravitational acceleration $[m/s^2]$
- H_L : clear liquid height [m]
- H_{L1} : H_L -A [m]
- H_N : height of gas inlet [m]
- H_r : height of bubbling layer [m]
- H_n : H_r -A [m]
- L_{a} : length of draft tube [m]
- M : parameter defined by Eq. (12) [-]
- n : number of holes [-]
- p : pitch [m]
- q : parameter defined by Eq. (13) [-]
- S : cross-sectional area of bubble column $[m²]$
- T_b : thickness of bulk region [m]
- T_a : thickness of draft tube region [m]
- T_{d} : T_{d} -A [m]
- T_f : thickness of foam layer [m]
- U_c : superficial gas velocity [m/s]
- V : volume of draft tube and steel pipe $[m³]$
- Z_1 : parameter defined by Eq. (10) [-]
- Z_2 : parameter defined by Eq. (11) [-]

REFERENCES

- Akita, K. and Yoshida, E, "Gas Holdup and Volumetric Mass Transfer Coefficient in Bubble Columns," *Ind. Eng. Chem. Des. Dev.*, 12, 76 (1973).
- Bello, R. A., Robinson, C.W. and Moo-Yong, M., "Gas Holdup and Overall Volumetric Oxygen Transfer Coefficient in Airlift Contactors," *Biotech. and Bioeng.*, 27, 369 (1985).
- Kawagoe, M., Inoue, T., Nakao, K. and Otake, T., "Regimes of Flow Patterns and Gas Holdups in Gas Sparged Contactors," *Kagaku Kogaku, 38,* 733 (1974).
- Koide, K., Kurematsu, K., Iwamoto, S., Iwata, Y. and Horibe, K., "Gas Holdup and Volumetric Liquid-Phase Mass Transfer Coefficient in Bubble Column with Draught Tube and with Gas Dispersion into Tube;' *J. Chem. Eng. Japan,* 16, 412 (1983).
- Merchuk, J. C., Ladwa, N., Cameron, A., Bulmer, M. and Pickett, A., "Concentric-Tube Airlift Reactors: Effects of Geometrical Design on Performance," *AIChE J.*, 40, 1105 (1994).
- Takahashi, T., Miyahara, T. and Shimizu, K., "Experimental Studies of Gas Void Fraction and Froth Height on a Perforated Plate-Low Clear Liquid Height under Liquid Stagnant *Flow,' J. Chem. Eng. Japan,* 7, 75 (1974).
- Yamashita, F. and Inoue, H., "Gas Holdup in Bubble Columns," J. *Chem. Eng. Japan,* 8, 334 (1975).
- Yamashita, E, "Effect of Clear Liquid Height and Gas Inlet Height on Gas Holdup in a Bubble Column," *J. Chem. Eng. Japan*, 31, 285 (1998).
- Weiland, P., "Influence of Draft Tube Diameter on Operation Behaviour of Airlift Loop Reactors," *Ger. Chem. Eng.*, 7, 374 (1984).