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Abstract—A simple and compact form of reduced-order distillation model especially suitable
for real-time applications is proposed. For this purpose, a modular collocation approach with the
cubic spline interpolation function is developed and applied to an underlying distillation model
which is constructed based on the McCabe and Thiele assumptions plus constant tray holdups.

To evaluate the performance of the model, numerical simulations are carried out for the case
of dynamics as well as steady states. As a consequence, it is found that the proposed reduced-
order model gives better approximation than those obtained by the conventional reduced-order
model with the Lagrange interpolation function.

INTRODUCTION

Although various novel separation techniques have
drawn much attention in recent years, conventional
separation processes such as distillation still retain
very important position in chemical and petrochemical
industries. Distillation, however, inevitably consumes
large extra amount of energy and also has been known
as a nontrivial process to control due to significant
interactions in it. For these reasons, distillation has
been considered as one of the major challenges for
advanced control and on-line optimization in chemical
engineering.

For successful implementation of advanced control
and on-line optimization, it need scarcely he said that
the most important step is to have a well-tuned distil-
lation model in a manageable form. In this respect,
various reduced-order modeling techniques have been
proposed for distillation process. Some »f them are
modal analysis [1], compartmental modeling [2, 3],
and others [4]. In most of the works, however, atten-
tions have been placed only on obtaining perturbed
dynamic models, aiming at the design of control svs-
tem, where the knowledge of steady-state conditions
are presumed. Unfortunately, these models are of no
help in on-line distillation optimization. Toward versa-
tile :mplementations to dynamic as well as steady-
state, Cho and Joseph [5, 67 proposed a different type
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of reduced-order model for multistage separation pro-
cesses utilizing the concept of collocation. They also
extended the idea of collocation to reduced-order mod-
eling of distillation processes in their later work [7].
The method by collocation has been further refined
by Stewart et al. [8] and thereafter used in distillation
optimization by Swartz and Stewart [9]. The original
idea of Cho and Joseph, however, when directly ap-
plied to distillation processes, may give rise to serious
modeling error near the feed stage. It is because they
tried to use a single polynomial, which is smooth in
nature, to approximate an entire profile of a distiila-
tion variable, while the profiles are usually supposed
to change largely at the feed stage as one might expe-
rience in distillation studies. Recently, Kim et al. ~10]
have conducted separate collocations for rectifving and
stripping sections, respectively, and named it as MPA
(Modular Polynomial Approximation). By utilizing the
MPA, thev could neatly solve the troubles in Cho and
Joseph’s work and could get better results without
increasing model complexity.

As an extension of the MPA, a new reduced-order
distillation model based on collocation with the cubic
splines instead of the Lagrange interpolation function
is proposed in this work. In the modeling process,
a simplified dvnamic distillation model based on the
McCabe and Thiele assumptions 117 is setup first.
The proposed model is parameterized by the relative
volatilities and the liquid-phase holdups, which govern
the mixture separability and column dynamics, re-
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spectively, for posterior tuning. Performance of the
proposed model is evaluated by comparing with that
of the original MPA through numerical siinelations.

FORMULATION OF THE UNDERLYING
DISTILLATION MODEL

Rigorous description of distillation dynamics usually
requires a large number of nonlinear differential
equations together with complicated and tedious va-
por-liquid equilibrium relationships. Even then, predic-
tion by such a rigorous model very often deviates from
real behaviors, mostly due to inevitable ambiguity of
the parameters such as tray efficiencies, amount of
internal reflux, heat loss to environment and so forth.
Adjustment of such parameters using field data, there-
fore, becomes a necessary step to make the model
a practical process simulator. As the other extreme,
the pure empirical ones such as transfer function or
ARMAX(Auto Regressive Moving Average with eX-
ogenous inputs) models are mathematically simple but
valid only for a limited region about certain operating
conditions.

Considering the both aspects of the above two ex-
tremes, one of the plausible approaches is to use a
simplified physical model with appropriately chosen
tuning parameters for posterior correction. For binary
distillation columns where nonideality is not so exces-
sive, we can assume constant liquid and vapor phase
molar flow rates for each of the rectifying and strip-
ping sections without serious deterioratior: of the mod-
el {11]. In this case, the relative volatilities instead
of detailed thermodynamic relationships can be used
as reasonable expressions for vapor-liquid equilibria.
These assumptions significantly simplify the model
description. Since the relative volatilities play a key
role in determining the degree of separation, deviation
from the rigorous model can be moderated to a large
extent if we take relative volatilities as tuning parame-
ters and adjust them properly. The dynamic part of
a distillation model can be simplified if we take only
the mixing dynamics into account while leaving the
liquid holdup as another tunable constant. This simiph
fication can be justified since the hydraulic dynamics
in a tray is usually faster than the mixing dynamics.

Based on the above reasonings, we assume the fol-
lowings in the underlying distillation model.

1. The column separates a binary mixture and has
a total condenser.

2. In each of the rectifying and stripping sections
of the column, liquid and vapor flow rates are constant.

3. Phase eauilibria are expressed by relative volatil-
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Fig. 1. Schematic diagram of a binary distillation column.

ities, 0, and a, for the rectifying and stripping sections,
respectively.

4. Liquid holdup in each trz s constant and has
H, and H, in the rectifying and s:ripping sections, re-
spectively.

5. Liquid holdups in the condenser and the reboiler
are perfectly regulated, and have constant values, H.
and H,, respectively.

Figure 1 shows the simplified distillation column
with the above assumptions. Using the notations
shown in Fig. 1, the dynamic model of the column can
be described by the following equations.

For the condenser

Hdx/dt=V,(y,—x,). (1)
For each tray
H,dx/dt=V,(y,—y, D +L.(x, 1—x)+qFx
+(1—qF.x
j=2, 3, -, NT—-1 )

where

P]’”

. IiF for j=NF
0 otherwise
(F for j=NF-1

Fg =

L0 otherwise.

For the rehoiler

Hudxy/dt=Lxyr 1 — Voysr 1= Bxar 3)
Vapor-liquid equilibria

Korean J. Ch. E.(Vol. §, No. 1)
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V=X /[ 1+ (e, —Dx], j=1, 2, -+, NT—1 (@)

r for the rectifying section

where m=
s for the stripping section
and
L. =L+qF (5)
Vi=V,—(1-q@F. (6)

REDUCED-ORDER MODELING BY
COLLOCATION METHOD

Although the distillation model expressed in Eqs.
(1) to (6) is a simplified one, it has a large dimensional-
ity equal to the total number of plates including the
condenser and reboiler. To reduce the order of the
model, the MPA concept by Kim et al. [10] is adopted,
where independent collocation is performed for each
of the rectifying and stripping sections while preserv-
ing the mass halance between the two sections. One
more refinement performed in this work is the intro-
duction of the cubic spline as a trial function which
is smoother and more flexible than the Lagrange inter-
polation function. It is motivated by the fact that the
concentration profiles in a column are usually very
smooth irrespective of the number of plates. Although
the polynomials are also smooth in nature, the degree
should be at least cubic to represent various conceiv-
able shapes of concentration profiles.

In Fig. 2, the coordinates and notations used in the
reduced-order modeling by the MPA are depicted. For
each section of the column a continuous spatial coor-
dinate, z € [0, 1] is assigned, and all the variables
are assumed to be continuous in z instead of discreti-
zed ones. Since these variables should obey the mass
balances at any spatial point z, the Egs. (1) to (4)
should be rewritten at some preassigned collocation
points. To make the order of the resulting model as
low as possible, in this work, the reboiler is treated
as one of the stripping stages. Unlike ordinary stages,
however, the reboiler has no inflow from below, result-
ing in a different mass balance equation rendering
the collocation difficult to be applied. To overcome
this difficulty, bottom product flow is considered to
be split into two streams, of which the flow rates are
V.(inflow) and L.(outflow), respectively, around the
flow splitter, as shown in Fig. 2. Consecuently, the
mass balance equation of the reboiler becomes the
same as that of the stripping stages except that H,
is used instead of H..

Now, the model equations rewritten at the colloca-
tion points are as follows:
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Fig. 2. Distillation column for reduced-order modeling.

For the condenser
H.dx,(z;)/dt=V,[y(z))— x(z1)]. )
For the collocation point z in the rectifying section
H,dx,(z.)/dt =V, y(z) — y,(z.— Az)] — L x(z)
—x{zz—Az)], k=2, 3, -, nr.  (8)

For the collocation point z, in the stripping section

H.dx(z:)/dt=V. y{z:)— yz, + Az)]— L[ xdz)

—xdz+Az)], k=1, 2, --. ns—1 (9
when k=1, H,=H,.
Equilibrium relationships
vi(z— Az)= a,x{z)/ {1+ (@ — Dxdz) ],
k=2 3, -, nr (10)
y(z) = axdze — Az)/[1+ (@, — Dx(z: — Az)],
k=2, 3, -, ns. (11)

In the above equations, Az denotes the stage height
in the z coordinate, which is equal to 1/(NF—2) for
the rectifying and 1/(NT—NF+1) for the stripping
sections, respectively.

The boundary conditions for Eqgs. (7) to (9) are as
follows:
At z; in the stripping section

y.\‘(zl):xs(zl)- (12)

At the feed stage
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(13)
(14)

Lx(z.0) = err(zm) + qFXf
Vvizn) = V. y,(2,,) — (1 — @)Fx,.

Now an interpolation function S{z) is introduced ch
that

x2)= £ S(0x(z) (15)
and x(z,—Az) and x(z.+ Az) approximated as
x(z— Az)= ‘Z‘.} Sz, — Az)x(z),
X(ze+ AzZ)= zl Sz + A2)x(z). (16)
)

Similarly, y{z:— Az) and y(z,+ Az) can be approxima-
ted using the interpolation function. To simplify the
notations, the followings are defined.

a{2)=S(z—Az)
bi(z)=S{z+ Az)
cz)=S,(z)—S:(z— Az)

di(z)=S5,(z)— Si(z+ Az). (17)
|
B V/H 0 - 0
L |a(z) o ciz)
H ez - ooz
K= % dus(Za 1) L
0 Iﬁ dm(Zz) H}
L L
H d.s(z1) H
B H/H 0 - 0
Volaz) - culz)
Ho ez - culza)
K,= v,
H dis(za 1) ‘L
0 \H; dos(z2) H,
V, V.
L ITL d,.(z1) H

Then Eqgs. (8) and (9) can be rearranged as follows:
At z, in the rectifying section,

d A ar
A § Vo)~ L)
k=2, -+, nr. (18)
At z, in the stripping section,
HASE - § 4V a)~Lx @),
t jl
k=1, -, ns—1 (19)

H,=H, when k=1.

Substituting the boundary conditions (12) through (14)
into Egs. (7), (18) and (19) and then rearranging the
resulting equations yield the following vector differen-

tial equastions.
dx/dt= ~Kix+ Kyy — f1x (20)

where

0
V.
dis 120 1) o ‘l_lj idi(zs 1)
d Ve
w102 1— — 2
s 1(z2) ! L. idy(z)
V.
dy a(z)) o 1 L—- idi(z1)
(nr+ns—1X(nr+ns—1)
—
0
ue-1(Zne 1) o0 delzas 1)
dus 1(22) - dulzy)
d-1(20) - dy(21)

(nr+ns—1)X(nr-+ns—2)

Korean J. Ch. E.(Vol. 8, Neo. 1)



48 S.Y.CHOI et al.

X=[%(20) XA20) Xs(Z0s 1) x,(2)]",
y=Ly{z)v(z0) vz y:(z)]7,

F
= dudzs 1)

Similarly, the equilibrium relationships expressed by
Egs. (10) and (11) are rearranged using the interpola-
tion functions as follows:

Ey=g+fx (22)
where
a(ze) - a,(22)
1 -2 ) 2. O —’

a(zn)  au(Z.r)

E =
0---0 V,/V,
0 1
L
(nr+ns—2)X{(nr+ns—2)
=] oxz2) Xz
1+ (@ — Dxfzz) 1+ (o,— Dxdz,)’

a.X(2zs —~ Az) axdz—Az) 4,

1+ (0, — Dx,(z:— Az)’
(nr+ns—2) X1

1+ (e~ Ux(zo— Az)

f,=[0 - 001—qF/V,0---0]"
tnr—1 - ns—1- @3)
(nr+ns—2)

where x,(z:— Az,) is substituted by the expression in
Eq. (16).

The vector y in Eq. (20) can be eliminated using
Eq. (22) and the resulting reduced-order model is re-
presented by a nonlinear vector differential equation
with respect to x only.

dx/dt= - Kx+KE [g-+1f,x]—fix (24)

Through this reduction, order of the underlying distil-
lation model is reduced from NT to nr+ns-- 1, produc-
ing a reduced-order model parameterized by a,, a,
H,, and H, which are imbedded in the vectors g and
fi and the matrices K; and K..

CONSTRUCTION OF CUBIC SPLINE
INTERPOLATION FUNCTION

The reduced-order model in Eq. (24) is valid for
any type of interpolation function. Accuracy of the mod-
el, however, may be significantly affected by a specif-
ic type of the interpolation function used. In this sec-
tion, the construction procedure of the cubic spline
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interpolation function used in the present work is
briefly described.

The cubic spline function is a piecewise cubic poly-
nomial in which not only the function itself and the
slope but also the second derivative are continuous
[12]. To show how the cubic spline interpolation func-
tion is constructed, a domain, over which a function
u(z) to be approximated is defined, with n collocation
points is considered first as in Fig. 3. The piecewise
cubic polynomial u,(z) defined over a subdomain(z,
z;.1] should satisfy the following conditions:

o (z)=ulz), 1=2,3, -
T'Mz)=1"z), i=2,3,,n-1
T (z)=1u%z), i=2,3,,

w(z)=u(z), i=1,2,-,n (25)

,n—1

n—1

where the superscript (j) denotes the j-th derivative.
If we define M; as the second derivative of u at the
collocation point z, the cubic polynomial over each
subdomain is obtained as follows [12]:

(2)=Bul@M, + B2(2M, .1 + Bu(2)u(z) + Bu(Dulz, 1)

(26)
1 (z,— 2’
where Bi(z) = g{(z—lhli—h,(z,v 1—2)]
1; (z—2z) .
Balz) = ”ﬁ‘[ﬁ-_‘hl(l‘l.)j
ey = L= = B2
and hj=z.,—z.
Here M/s are determined by solving
hM,+2(h,+h,, M, . 1+h M, .=
[
2 )= (h+h;.
h,hﬂ] [hlu(zl ._) (hl h: l)u
(z . D+h . u@)], i=1,2,,n-2. 27

Since the total number of equations in Eq. (27) isn—2
while the number of variables M, is n, two supplemen-
tary spline conditions are needed. Usually any pair
of the following end conditions are used as the sup-
plementary conditions.
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Fig. 3. Coordinate for cubic spline functions.

At z=2z;, M;=0 or ’z)=0
At z=2z,, M,=0 or G z,)=0. (28)

In Eq. (28), @"""= 0 constrains the interpolation func-

tion to have zero slope while M =0 allows any slope
except that the point concerned is an inflection point.
Now the following four cases are paired off from Eq.
(28) as the candidates for the supplementary end con-
ditions.

Condition 1:1U{™(z,)=M,=0

Condition 2:M,=M, =0

Condition 3: M, =0{"(z,)=0

Condition 4 : T{"(z)) =u,"(z,) = 0. (29)

Now, in order to formulate the interpolation func-
tion from the cubic splines, M, in Eq. (26) is first elim-
inated using Eq. (27) together with appropriate sup-
plementary conditions. Then the resulting equation
will look like.

W(z)=B(z) u (30)

where

u’==[u(z), u(z), -, u,)]

T () =[uz), W), u, (2]
The matrix B can be easily obtained by treating Egs.
(26) and (27). To have an interpolation function as

in the form of Eq. (15), the following piecewise contin-
uous function 1s introduced:

vi(z)= [v(2)] 3D
where,

1 for z€lz, z.4]
N
() otherwise

Then we have

uz)= viB{(z)u. ze[0, 1] 32)
Therefore,
[Si(2) Sulz) -+ S(z) 1= v B(z) 33)

NUMERICAL STUDY

In this section, steady-state and also dynamic perfor-

Table 1. Lists of column dimensions and simulation con-

ditions
Total no. of stages NT=15
Feed stage NF=8
Piate sieve, 3" ID, 6" height

Normal holdups H,=20 mol, H,=3 mol,

H,=4 mol, H,=80 mol

Feed flowrate 216.0 mol/hr

Feed conditions q=1, =05

Relative volatility ao,=1.68 or 2.0, ,=24 or 3.0
Top product flowrate 108.0 mol/hr

Reflux ratio 2

Collocation points nr=3, ns=3

mances of the proposed model are demonstrated
through numerical simulation. Simulation results with
the rigorous stage-by-stage model as well as the re-
duced-order model with the Lagrange interpolation
function are also povided for comparison.

Table 1 shows physical dimensions and nominal
operating conditions of the distillation model assumed
in the numerical study. These values are taken from
an experimental setup in the authors’ laboratory. To
make the order of the resulting model as low as possi-
ble, three collocation points which mean one internal
collocation point are assumed in each section of the
column.

1. Steady-state simulation

The steady-state equations of reduced-order models
can be readily obtained from Eq. (24) by setting d/dt=
0. To solve them, a sequential method [13] is used.
Results of steady-state simulations are summarized
from Figs.4 to 6 for two different relative volatility
cases.

[n Figs. 4 to 6, we can see that closer approximation
to the underlying rigorous model can be obtained as
a whole with the cubic splines unless oddly chosen
end conditions are imposed. It is thought to come from
the flexibility of the cubic splines which is piecewise
cubic, whereas the Lagrange interpolation function
with one internal collocation point is only quadratic,
which cannot suitably represent the S-shaped concen-
tration profiles especially in the stripping section.

In Figs. 4 and 5, effects of the spline end conditions
and the location of collocation point in the stripping
section are shown for the case of a,=2.0 and a,=3.0.
As can be seen in Fig. 4, end condition 1 in Eq. (29)
for both sections [spline condition (1, 1)] is found to
fit the rigorous model most accurately. It is because
the concentration profiles around column ends are rath-
er flat by higher values of relative volatilities. For the
internal collocation point, as shown in Fig. 5, the loca-

Korean J. Ch. E.(Vol. 8, No. 1)
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tion near the feed plate, say z.,=0.75, produces better
approximation than z,=0.5 or 0.25. Effects of the lo-
cation of collocation point in the rectifying section
have also been investigated. In this case, however,
any noticeable consequences could not have been ob-
served. Figure 6 shows the simulation results for a,=
1.68 and a,=2.4. With spline end condition 2 for both
sections [spline condition (2, 2)] and z,,==0.75, the re-
duced-order model approximates the underlying distil-
lation model most closely.

As is shown above, the spline end conditions and
location of the internal collocation point have crucial
effects on the model performance. Between them, the
spline end condition can be rather easily determined
once the concentration profile in the column con-
cerned is available. For example, if the profile is flat
at a column end, say z=z, but has a slope at the
feed stage, say z=2z,, then the condition 1 in Eq. (29)
should be preferably chosen for the corresponding col-
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Fig. 7. Dynamic responses of top product mole fraction
to 10% step increase of vapor flow rate (a,=1.68,
o,=2.4).

umn section. If the profile has slopes at z; as well
as z,, the condition 2 will fit the profile. We can ob-
viously see that the results in Figs. 4 to 6 comply with
this consideration.

Finding an optimum location of the internal colloca-
tion point, however, seems to be rather tricky.
Through further numerical studies, we have found
that the optimun location is strongly dependent upon
the spline end condition chosen as well as the overall
profile shape. When the spline end condition has zero
first-order and second-order derivatives at each re-
spective end such as in condition 1 or 3, the optimum
location always lies at a point biased to the end where
the second-order derivative is zero. For example,
when the condition 1 is chosen, the optimum location
lies in (0.5, 1.0), more probably near 0.75, which is
exemplified in Fig. 5. In case that the spline end con-
dition adopted has zero second-order derivatives at
both ends and the overall shape of the profile is rather
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linear, approximation result appears to be less sensi-
tive to the location of the collocation point. In the same
case but the profile is curved, the optimum point
usually lies in the half region for the low slope end
point.

One thing we should remember is that the prime
objective of the proposed reduced-order model is to
use it for real-time applications instead of off-line col-
umn design. Therefore, it can be presumed that a typi-
cal concentration profile of the column is available in
advance. Based on this a prior information and the
above mentioned guides, the spline end conditions and
location of the collocation point which fit the column
best might be determined.

2. Dynamic simulation

Dynamic simulation of the reduced-order model has
been carried out by directly solving Eq. (24) using
an ordinary differential equation package. Figures 7
and 8 show transient responses of end products when
the vapor flow rate is increased by 10% stepwise from
its steady-state value. As far as the response dynamics
is concerned, we can see that the two reduced-order
model produce almost the same reaction curves. Com-
paring with the rigorous model, however, both the
reduced-order models yield more sluggish responses,
especially in the stripping section. As was mentioned
in part III, the reboiler was treated as one of the strip-
ping stage in the course of collocation. Consequently,
when one internal collocation point is considered, the
stripping section is lumped with two differential equa-
tions, one at the internal collocation point and the
other at the reboiler, while H, instead of H, is used
for the equation at the reboiler. But since H, is about
twenty times larger than H,, effective tray holdup in
the stripping section appears larger than that of the
underlying distillation model, resulting in longer time

constant. This dynamic discrepancy, however, can be
rectified to an extent if we tune H, to a smaller value.

CONCLUSIONS AND FURTHER COMMENTS

A generic and compact form of reduced-order distil-
lation model has been developed using the collocation
method combined with the MPA concept by Kim et
al.[10]. To further improve accuracy of the reduced-
order model even with the lowest order, the cubic
spline interpolation function has been utilized.
Through steady-state and dynamic tests of the propos-
ed distillation model, the following conclusions could
be drawn.

1. The proposed model was found to be superior
to the existing one with the Lagrange interpolation
function when they have the same order.

2. The proposed model with order 5 can represent
the 13-stage distillation column with sufficient accu-
racy. Such accuracy comes from the flexibility of the
spline functions and is expected for a column with
more stages and/or higher relative volatilities. On the
other hand, the same order reduced model with the
Lagrange interpolation function cannot be expected
to adequately represent the higher degree separation
column due to the quadratic nature of the interpola-
tion function.

The proposed reduced-order distillation model has
been constructed based on a physical model with some
idealized assumptions. In spite of an improved model-
reducing technique, therefore, some kind of model tun-
ing is needed for the proposed model to play as a
practical simulator. For model tuning in real time en-
vironment, recursive parameter estimation techniques
is considered to be useful, since the proposed model
is parameterized by a,, a, H, and H, where the first
two determine the separation degree while the other
two govern the column dynamics.

Using the proposed reduced-order model, nonlinear
model predictive control and on-line optimization stud-
ies combined with recursive identification by a nonlin-
ear filtering algorithm is now under way. Experimen-
tal verification in a pilot scale distillation column will
be done in due course.
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NOMENCLATURE

a(z), b(z), c(z) and d(z) : derived functions from inter-
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polation functions, defined in Eq. (17)

: matrix defined in (23)
: vectors defined in (21) and (23}, respective-

ly

: feed flow rate [mol/s]
. vector defined in (23)
: distance between two adjacent collocation

points, defined in (26)

: liquid holdup [mol]

: matrices defined in (21)

: liquid flow rate [mol/s]

: second derivative of spline function

: number of collocation points in the rectify-

ing section

: number of collocation points in the strip-

ping section

: feed stage number from the condenser
: total number of stages including the condens-

er and the reboiler

: 1-(fraction of the feed vaporized)

: interpolation function

: time [sec]

: any continuous function defined on [0, 1]
: cubic spline interpolation function

: vectors defined in (30)

: vapor flow rate [mol/s]

: a discontinuous function defined in (31)

: vector defined in (31)

: liquid phase mole fraction

: vector of which components are liquid

phase mole fractions at collocation points

: vapor phase mole fraction
: vector of which components are vapor

phase mole fractions at collocation points

: spatial coordinate for collocation

Greek Letters

. relative volatility

January, 1991

B : defined in (26)

Subscripts

b : reboiler

c : condenser

f : feed

r . rectifying section

S . stripping section
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