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Abstract--Analytical results are presented for the nlotion of a porous sphere in the vicinity of a plam~ 
fluid-fluid interface. The fluids are assumed to undergo a iinear undisturbed flow and the viscosily ratio of the 
two fluids is assumed to be arbitrary. The analysis consists of the method of reflections, coupled with an appli- 
cation of fundamental singularity solutions for Stokes flow to calculate the hydrodynamic force and torque on 
the par~ricle. The fundamental relationships for Ihe force and torque are then applied, in combination with the 
corresponding solutions obtained in earlier publications for the translation and rotalion through a quiescent 
fluid, to determine the motion of a neutrally buoyant particle freely suspended in the flow 

INTRODUCTION 

In part 1 of the present pair of papers [t], we have 
considered the motion of a porous spherical particle in 
a mean flow through an unbounded single-fluid do- 
main. ]t is apparent, however, that the motion of a par- 
tide in the vicinity of a boundary is often fundamental- 
ly different from its motion in an unbounded fluid ow- 
ing to hydrodynamic wall effect. This type of 'wall' ef- 
fect plays an important role in a wide range of imer- 
esting problems including the Brownian motion of a 
colloidal particle near a phase boundary., locomotion 
of micro-organisms and sedimentation phenomena 
near a fluid-fluid interface. Recently, we considered 
translatiort and rotation of a porous particle near a 
fluid interface when the fluids are at rest at infinity {2]. 
Although the quiescent problem is of some intrinsic 
inlerest, and is a logical starting point for investigation 
of particle motions near a fluid interface, many prob- 
lerns of practical significance involve particle motions 
in a mean flow at infinity [:3,4]. This is true of 'wall' ef- 
fects in the rheology of dilute suspensions, studies of 
structure and breakup of flocs subjected to fluid stresses, 
and the modeling of polymer molecules to account 
for the hydrodynamic interactions between polymer 
segments {5-8]. The solutions obtained in this paper 
are partly motivated by these and other D~tential appli- 
cations, and partly as a contribution to the literature o~ 
flow through a porous body of finite size which may be 
used by comparison to experimental measurements as 
a basis for testing the applicability of existing contin- 

uum models for flow in porous media. 

Two distinct methods have been commonly employ- 
ed to study particle motions in the presence of a flat 
interface; namely, (1) a standard solution via super- 
position using the eigensolutions of Laplace's equati~,u 
in bipolar coordinates, and (2) solution via the reciprr 
cal theorem of Lorentz [9]. The majority of prevkms 
analyses of creeping motion near a flat interface were 
restricted to rigid, impermeable spherical particles, 
and utilized separation of variables in bipolar coot- 
dinates. 

The reciprocal theorem approach (i.e., singularity 
method) was pioneered by Lorentz who derived a solu- 
tion for the fluid motion generated by a poinl force 
(i.e., Stokeslel) in the presence of a plane solid wall. 
This approach, which is essential if the particles are 
permeable or nonspherical, is to construct SOluti,,JI~s 
using spatial distributions of fundamental singularities 
Recently, fundamental singularity solutions were 
developed by a generalization of Lorentz analysis, and 
used to solve the creeping motions of a slender, rod- 
like particle and a porous spherical particle through a 
quiescent fluid in the presence of a flat interface [2,10]. 

In the present study, we use the singularity method 
to investigate the hydrodynamic interactions between 
a porous sphere and a flat fluid41uid interface in linear 
flows that are compatible with the presence of a plane 
interface. The flow of the viscous fluid inside the 
porous sphere is analyzed via Brinkman's equatio~ 
which is of the same spatial order as the Stokes" equa- 
tion, and thus allows the problem of matching the in- 
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Motions of a Porous Particle in Stokes Flow 235 

terior and exterior flows to be resolved f i l l .  The 
theory, yields the components of the hydrodynamic 
force and torque on the porous sphere at rest in the 
flow field to the undisturbed flow parameters such as 
strain ram or shear rate. These solutions are then ap- 
plied, for illustrative purpose, to calculate the partic'le 
trajectories in linear shear and uniaxial axisymmetric 
straining flows as typical representations. 

FORMULATION OF THE PROBLEM 

1. G o v e r n i n g  e q u a t i o n s  a n d  b o u n d a r y  r 
l i o n s  

We consider a porous spherical particle ir~m~ersed 
in a linear undisturbed flow near a flat fluid-fluid inter- 
face of two immiscible fluids 1 and 2. The two contin- 
uous fluid phases are assumed to be undergoing the 
undisturbed linear flow in the form 

U T ( x ) = L  ~;.x (1t 

in which UI?(x) is the undisturbed velocity field in fluid 
i (= 1,2), and x denotes a position vector measured 
from the origin that is placed at the interface. Further, 
the undisturbed interface at z = 0 is assumed to re- 
main flat, and the particle supposed to be wholly im- 
mersed in fluid 2. Figure 1 shows a schematic view of 

Fig. I. Schematic diagrams for (a) description of the 
coordinate system, {b) a uniaxial extensional 
flow U~(x): E.x, and (c) a linear shear flow 
U,(x) = f ' (O.x .  

the system. The undisturbed flow field is consistent 
with the existence of a flat, nondeformable interface al 
which the normal components of velocities are identi- 
cally zero (i.e., U[ .e:  = 0). Thus, the strain rate tensor 
L ('} for a uniaxial axisymmetric extensional flow has 
(.'.artesian components 

L~;, = 5"(#,~-  3 a',~ a',.~, (2) 

while that for a sintple shear flow parallel to the inler- 
face has 

Eg,, = v_~ (F,.,L, + G ~ , ,  ) a'=,. (3) 

Here, E and Fr3(/=l ,2 ) are usually denoted ~ the 
strain rate and shear rate, respectively, and/2, is ,he 
viscosity of fluid L 

The analysis which we consider is predicated on 
the neglect of inertia effects in the fluids and in the mo- 
tion of the porous sphere, thus 

Re-- E~2P~ (or F~3a~P-~ ) <I 1, (4) 
/z2 /.*= 

where we have chosen u~ = Ea(or F~aa ) as the char- 
acteristic velocity, and the radius of the sphere ( = a, 
as the characteristic length scale. The appropriate 
governing equations thus reduce to Stokes' equations 
in both fluids and, to the Brinkman's equation inside 
the porous sphere and the equation of continuity in 
each fluid (see Figure 1), i.e., in dimensionless form: 

V - u = 0 ,  V - r = O  in fluids 1 and 2. (5} 

and inside the porous sphere 

(2 2 
V ' u = 0  V-r=~--u (6} 

with the stress r and pressure p given by 

r = - p , i - l - ~ ' -  (Vu,Tvu~,)  ( i=1  and 2) (7) 
,u2 

in which k denotes the permeability of the ]porous 
sphere. The characteristic stress in the nondimen- 

sionalization of (5) and (6) is pc= ,u2E(or,% F/3)- 
It is convenient for the analysis which follows to 

decompose the undisturbed flow field UT'(x) = l-Y'~.x in- 
to a constant vector (i.e., a uniform streaming flow}, 
U,(x) -: L(e).x.,, and a linear part with vanishing veloci- 
ty at the body center, U,(x) = L(~ The Stokes' 
problem for UT(x)= LC2).xp is precisely equivalent to 
the problem of particle translation with velocity 
U =-L(2/-xp through a fluid at rest at infinity. A com- 
plete detailed solution is available for this problem for 
a porous sphere from Yang and Leal [21, who determin- 

ed the relationship between the hydrodynamic force 
F and torque T on the particle and the translational 
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236 S.-M. YANG and W.-H. HONG 

velocity U(=-L(2).x.): 

F = K r ' L  !zl "x,, (8) 

T = K c ' L  (2) "x,, (9) 

where the second order tensors K r and K c denote the 
translation and coupling tensors, respectively, of. sec- 
tion 5. 

It thus remains only to solve the problem for the 
linear undisturbed flow UT(x)=L(~ The 
boundary conditions for this problem are 

u , = L " " x - L C ~ ' x , ,  as [ x [ ~ o o  (10) 

a n d  at the sphere surface defined by a position vector 
xsES,  

[ ] u , l ] s = O  (11) 

( I n ' r l ) ~ = O .  (12) 

The symbol [1"1 ]s in (11) and (12) represents the jump 
across the surface S and n is the outward normal. At 
the plane interface, the conditions of continuity of 
velocity and tangential stress plus zero normal velocity 
must be satisfied. 
2. So lu t ion  m e t h o d o l o g y  

Let us then consider the solution of the equations 
(5) and (6), boundary conditions (10)-(12), plus condi- 
tions for the presence of a flat interface, for the specific 
case of a rigid, porous, spherical particle of radius a 
which is immersed wholly in fluid 2. The fluids are as- 
sumed to undergo a linear undisturbed flow defined 
byU~(x)=Lt0.x-L(2).xp with stagnation point as the 
sphere center. As indicated in the introduction, we shall 
approach this problem using the singularity method of 
Lee, Chadwick and Leal [12] who generalized the 
reciprocal theorem approach of Lorentz [9), to derive a 
general lemma for obtaining solutions of Stokes' equa- 
tions that satisfy continuity of velocity, continuity of 
tangential stress and zero normal velocity on a fiat in- 
terface, given only an arbitrary solution of Stokes' 
equations for an unbounded domain with no interface. 

In the present paper, we extend the singularity 
method of Lee et al. [2], to consider the undisturbed 
linear flow past a stationary porous sphere for the 
asymptotic limit 

E= ~-<< 1. (13) 

When this condition (13) is satisfied, the interface d(~ 
formation will not only be in quasi-equilibrium, but 
the magnitude of the deformation will also be asymp- 
totically small. Further, in this case, the singularity 
method can be simplified to the superposition of fun- 
damental solutions for a point force (i.e., Stokeslet), a 

potential dipole and higher order singularities (e.g., a 
stresslet, a rotlet, a potential quadrupole, etc.) at the 
center of the sphere. Thus, solutions for the problem 
are constructed in the following manner. First, we put 
singularities at the center of the sphere which satisfy 
exactly the boundary conditions at the porous sphere 
in an unbounded single-fluid domain. The resulting 
unbounded .domain solution does not satisfy the bound- 
ary conditions at the flat interface; instead, an error 
of O(Q is generated at the interlace. To eliminate this 
'error', the simple transformation rule of Lee et al. [12] 
is used to obtain the corresponding fundamental sin- 
gularity solutions that satisfy exactly the boundary 
conditions at the interface. In general, however, these 
new solutions do not satisfy boundary conditions'any 
longer at the surface of the porous sphere, but induce 
an error of O(e). Additional higher-order singularities 
must then be included at the sphere center to cancel 
the induced error of O(t) at the sphere surface, and so 
on. The result of this procedure is an asymptotic ap- 
proximation, in the form of a series in ~, that is valid in 
the limit of t -+0 .  

The complete solution for a porous particle im- 
mersed in a linear flow U~= Lt0.x with stagnation point 
at the plane interface is obtained by superposition of the 
corresponding solution for the linear flow U~=L ~'~. x -  
L(2).Xp with stagnation point at the body center, and 
the solution [i.e., (8) and (9)] for the uniform streaming 
flow U~' = L(2).xp. 

U N I A X I A L  A X I S Y M M E T R I C  S T R A I N I N G  F L O W  

Let us begin by considering the creeping motion 
of a fluid in the vicinity of a stationary spherical porous 
particle that is located at an arbitrary point xp=(xp,yp,- 
d) in fluid 2 when the undisturbed motion is an axi- 
symmetric uniaxial straining flow defined by (2) with 
stagnation point at the particle center. In an infinite 
fluid domain with no interface, we determined an ex- 
act solution for a porous sphere immersed in the same 
type of flow [1]. The velocity field outside the porous 
sphere in this solution can be represented by super- 
position of the fundamental solutions for a potential 
quadrupole and a stresslet, both applied at the center 
of the sphere. For a porous sphere with permeability k, 
the required singularities are of the form: 

�9 5 Stresslet  ~ - A  (a)uss (x, xp; ez, ez) (14) 

�9 1 (a) Potential  Quadrupole ~ - B  

up~ (x, xp; ez, ez) .  (15) 
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Motions of a Porous Particle in Stokes Flow 237 

Here, uss (x, xp; e~, e:) and u~  (x, xv; e~, e~) denote 
the fundamental solutions for a stresslet (e z, ez) and a 
potential quadrupole (e~, e~) located at the center of 
the sphere in an unbounded single-fluid domain, cf. 
Chwang and Wu [13] for the specific formulae of Uss 
and u ~ .  The parameters A(a) and B(a )  are defined as 

1 2 ,/,o (~) - 30 @~ ( a )  - 5 ~  ~ ,/,~ (a )  
B (~) .... . (17) 

3 ,o  (o) + 10 ,~ (o) 

Here, @,~, a function of the dimensionless permeability 

defined by �89 k = ~ ,  can be expressed in terms of the 

modified Bessel function, i.e., 

r (a) = V-~ a ~ .... /, (o') (18) 

with the special properties: 

Y,'o (a) - s z n h a  ~,',, (c,) =- 1 d 
a ' ~ ~._, (c~) .  (19) 

When k - -  0 (or a~oo), these parameters reduce to the 
values for an impermeable sphere, i.e., A(o-)---~ 1 and 
B(a)~ 1. 

Since we utilize the disturbance-flow formulation 
defined by (5)-(7) and (10)-(12), and consider only the 

_ 1  limit ~=~-  ~ 1, the solution of the full problem, in- 

cluding the interface, is most conveniently obtained 
via the method of reflections, as explatined in some 
detail by Lee et aL [12]. The zeroth-order approxima- 

r (o~ tion in this procedu e, u 2 , is the single-fluid unbound- 
ed domain solution which satisfies boundary condi- 
tions exactly at the sphere surface: 

5 u~ ~ (x) = ~ - A  ( a ) u ~  (x, x~; e ~ ,  e~) 

1 + ~- B (a) ae~ (x, x f,; ez, ez). (23) 

Here, in the notation of u2(~Xx), the superscript (/) indi- 
cates the level of approximation in the context of the 
method of reflections. 

Though the zeroth-order approximation, (20), in 
the procedure exactly satisfies the boundary condi- 
tions at the sphere surface (i.e., continuity of velocity 
and surface force), it does not satisfy boundary condi- 
tions at the fiat interface. However, a first correction 
u2~ which does satisfy these conditions can be obtain- 
ed by simply utdizing the same form, (20}, as in the 
zeroth-order solution, but with the fundamental solu- 

tions uss and u ~  replaced by the corresponding fun- 
damental solutions, U2.ssand u2/~, for a stressiet and a 
potentia] quadrupole in the presence of the flat inter- 
face, obtained by the generalized reciprocal theorem of 
Lee et al. [12]. It is convenient to express this solution 
in the form, u2 (~ + u2 m, as a sum of zeroth-order solu- 
tion plus a 'correction'. Although this solution satisfies 
the interface boundary conditions, it now does not sat- 
isfy the boundary conditions at the sphere surface, 
and additional singularities are needed at the sphere 
center in order to cancel the velocity field correction 
u2 ~ at the sphere surface: namely, the interface reflec- 
tion of the potential quadrapole and the stresslet, 
which is nonzero on the sphere surface. The preceding 
two steps, leading to the approximation solution, 
u2(~ u2 ~ can be carried out for arbitrary ~. How- 
ever, the resulting expression u20) is highly compli- 
cated, and it is not possible for arbitrary r to determine 
singularities at the sphere center which precisely sat- 
isfy the contimJity of velocity and surface force at all 
points on the sphere surface. Instead, we consider the 
asymptotic limit E << 1, and then choose singularities 
to cancel only the first few terms of u2 m at the sphere 
surface, with u2 (:1 expressed in power of E. The leading 
terms of u2 (11 near the sphere surface, for sma[[ ~, are 

5 2+3X 
u ~ ' ( x ) = 8  - A ( a ) [ - ~ * "  I+X - e z  

1+2;~ E +e:" " 1 ~ -  " (x -x , , ) l -FO@' )  (21) 

,u, ) of the two in which ~ is the viscosity ratio (i.e., A = 
continuous fluid phases ] and 2. The dimer~sionless 
strain rate tensor E has Cartesian components, E,j = 
5'~-3 b',~ 5"j3 with the origin at the center of the sphere. 

In so far as (21) is concerned, the presence of the 
interface induces a steady streaming flow at O{~ 2) nor- 
real to the interface. The term of O(~ 3) in (21) in equiv- 
alent to an axisymmetric uniaxial straining flow with. 
stagnation point at the sphere center, and the z-axis as 
the axis of symmetry. The singularities required to 
cancel the additional velocity field u2t~Xx ) of (21) at the 
sphere surface (:an be readily evaluated. We have seen 
previously that an extensional flow of the type repre- 
sented by the O(c 3) term in (21) is generated by super- 
position of a stresslet and a potential quadrupole. It 
can be shown that a uniform streaming flow solution is 
generated in an unbounded single-fluid by a Stokestet 
and a potential dipole [1]. To counter the terms of 
O(e 2) in (21), we thus require the superposition of a 
Stokes[et and a potential dipole at the sphere center. 
The resulting velocity field is 
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238 S.-M. YANG and W.-H. HONG 

2 15 2+33` , e~ 
u"i~T=32" 1-+a ~(~) IC(o)u~(x,x , , ;e . )  

1 D(a uo (x ,x~ ;e . ) )  
3 

where 

C (~) - 
2 a 7", (~) 

g'o (a) 4- a 2 r (o') + 3  lk~ (a)/2 

(22', 

and 

(23) 

o-' {2 g,', (a) - ~, (,'7) } 
D ( a ) = -  g,.o(a)+ 2g,. (a)•  h(a) /2  . (24) 

Here, Us(X,Xp; %) and udx,xp;  %) denote the funda- 
mental solutions for a Stokeslet e z and a potential di- 
pole % at the sphere center in an unbounded domain 
with no interface. It is important to note that the point 
force (i.e., Stokeslet) velocity of strength O(e2), corre- 
sponding to Us(X,Xp; e J ,  will itself generate a vertical 
velocity component of O(e 3) at the sphere surface 
when it is 'reflected' from the interface, cf. Yang and 
Leal [2]. Thus, if we are to consider any correction 
terms of O(e 3) from (21) we must simultaneously in- 
clude this additional O(e 3) correction to the velocity 
field near the sphere. In order to cancel this O(e 3) term 
at the sphere surface we require an additional point 
force and potential dipole at the sphere center of the 
form: 

r 

u,~,:, _ 5 3 2 +3 a }=A(a )  C(a)e3(C(a  ) 
. . . .  - 4 - ' { g "  14-3` 

1 , , u~ (x, x~;  e . )  - - ~  D ~ a o u  ~ (x, x~; e . ) ] .  

Thus, the complete contribution to the velocity field 
that is required to cancel the first two terms of u2 I~ at 
the sphere surface is a superposition of 

5 Stokeslet : ~ A (~) u s (x, x p; e~) 

2+33` [Z {.:, C(a)-T~--a-eln.e-bO(e')] (26) 

Potential Dipole : - 5 A (,7) D(o-) , ~x C~-~) ""  ' , x,,; ez) 

3 2+33` 
(~,,=, / g C ( ~  ~ - - 4 7 - ~ i " e + O ( ~ ' ) ]  C27) 

5 (x, xp; e~, e~) Stresslet: ~ A  (a) us~ 

(28) El+ 5 ~-  A (a) ll~2A~ d + O(~') ~ 

1 Potential Quadrupole : ~-  B (a) u ,,,a (x, x j,; e, ,  e~ ) 

5 . 1~ -2~  
(1~ ~ -A/o )  7 ~ -  J+ O~d: ~ <291, 

The complete velocity field, u2 c~ 4 u2 ~ + u2 I2t + u2 i:~), 
resulting from the superposition of (26)-(29) now satis- 
fies boundary conditions exactly at the interface and 
boundary conditions to O(e 3) at the sphere surface. 
Higher-order approximations could be obtained by 
straightforward continuation of the same procedure. 
However, the solution above is sufficient for present 
purposes. 

The net force exerted on a porous sphere located al 
the stagnation point in the undisturbed flow field 
U 7 = E-(X-Xp) can be evaluated simply from the Stokes- 
let distribution: 

4 1--3` 

3 2 +-3 3̀  C(a)e ]e.., q-O(e ' ) .  (30) { 1 + g 5 +  ~ -  . 

Obviously, the torque is zero owing to the symmetry of 
the sphere. The force F is always oriented awge from 
the interface, and the magnitude is increased as It~e 
viscosity ratio 3̀  becomes larger. Thus a posiive exter- 
nal force - F  would have to be applied to the body to 
keep it from translating away from the stagnation point 
x:, of the flow regardless of the particle position, or the 
viscosity ratio of the two fluids. It should be under- 
stood that, in this flow-field U 7 - E.(x-x~,), the interface 
translates with velocity --2c~ z toward the stagnation 
point x~, at which the body center is held fixed. This 
'interface motion can be viewed as the source of F. 

Now let us turn to the original problem of calculat- 
ing the force and torque acting on a stationary sphere 
that is located at arbitrary' point xp in fluid 2 which is 

undergoing the axisymmetric uniaxial extension flow 
U,=E.x with origin at the interface (i.e., Figure 1). As 
we showed in section 2, the hydrodynamic force and 
torque exerted in this case can be determined by a 
superposition of the force and torque for a uniform 
streaming flow with velocity U,'~= E.xp and for a uniax- 
ial straining flow Ui'-- E.(x-xp) with stagnation point at 
the sphere center. The resulting force and torque can 
be expressed in ~Ihe following form: 

15~r 2+33, 
F = K r ' E ' x  o -  e~ A (a) C(a) - -  

4 l w A  

[i+~' 2§ e~+O(E') (31) 

T : K c ' E ' x p  O / E  ). (32i 

The components of the translation and coupling ten- 

July ,  1989 



Motions of a Porous Particle in Stokes Flow 2:39 

sors K T and K c were determined up to O(e 3) by Yang 
and Leal [2] for motion of a porous sphere near a 
plane fluid-fluid interface. 

Dukhin and Rulev [14] obtained an exact result for 
the drag force on a small impermeable spherical parti- 
cle located at the axis of symmetry in an axisymmetric 
uniaxial extensional flow U~ = E.x, near a gas-liquid 
interface (i.e., 3.~ 0), using the eigensohJtions of Lapla- 
ce's equation in bipolar coordinates. It is a simple mat- 
ter to calculate the drag force F on the porous perme- 
c, ble sphere from the present asymptotic solution (31) 
with xp - (0, 0, -d). The drag ratio, i.e., the drag divid- 
ed by the Stokes drag, 12zr~t2adE. is simply given as 

3 
F - C I a l [ l +  f ,  3 2~33, el" 

12~r/a,adE ' t-s C I c " I ~ A  " 

15,,~ , 2 : 5 A _ D ( a ) .  1 1 ~4fl 
~ ~  a+,~ i ~ ,  ~-~-~ - 

6E(o.i 31-b79A ~ 5 
, " ~ ~ - ~ d A ( a )  

2 ~-3A 3 2 + 3 A . . ,  

in which E(o) is defined as 

2 
E ( a ) ~  a I g ' ~ ( a ) - ' f i ~ 2 ( a ) l  {34) 

9"o (,7)- o'~ r ", (a) +37,', (0)/2 " 

I< should be noted that. when a--,.oo (or k--,, 0), the pre- 
sent solution for the drag, (33), reduces to the asymp- 
totic result of Yang and Leal [15] for the case of a rigid 
hT~permeable sphere. In order to illustrate the effects of 
hydrodynamic interaction between the particle and 
the interface the drag ratio of (33) is plotted as a func- 

tion of the separation distance d for k 0, 0.1 and 1.0 
6~ = 

(Le., ~ =  oo, 10 and 1.0, respectively). For each value 

5 ,  we include two values of the viscosity ratio ;~ = 0 of 

(i.e., free surface) and X=oo (i.e., solid wall). Also 
shown for comparison are the corresponding exact 
solution results of Dukhin and Rulev [14] for an imper- 

meable sphere near a free surface (i.e., ~ -  k --.,, 0). It 

can be seen from Figure 2 that there is very good 
agreement between the two solutions, except in the re- 
gion near d = 1. As expected, the difference between 
the two results becomes larger as the sphere approach~ 
es the interface owing to the poor convergence of 
the asymptotic solution (33) in powers of ~. Further, 
due to the presence of the interface, the magnitude of 

for any values of A and ~ considered drag is increased 

here, and this effect is a strong function of the particle 

F 
Fig. 2. Drag ratio, 127rgzad E ,  as a function of the di- 

mensionless  separation distance d for three 
values of the dimensionless  permeability k ~  

a2= 0 .0 ,0 . I  and 1 . 0 ; -  , for  ~,~cx~;----, for ~= 
0.0. Markers are the corresponding exact 
solution results of Dukhin and Rulev [14] for 
3, = k / a  z = O. 

position relative to the interface. 

LINEAR SHEAR FLOW 

We now turn to thecase of a porous spherical parti- 
cle located at an arbitrary point xp in a simple shear 
flow U ~ =  f : h x ,  parallel to the interface as shown in 
Figure 1. The case in which UI ~ -  C ,~ O at the inter- 
face can be treated by superposing a unifom~ stream- 
ing flow pasl a sphere, U, ~-  C, with the simple shear 
flow U ~ ' = F " . x  [the Cartesian components of shear 
rate tensor F is defined by (3)]. Again the problem can 
be decomposed into a simple translation of the fluid 
system including the interface with uniform velocity 

U~"= 1 "2' .xp past the stationary sphere together with a 
linear shear flow U2'=F~' .x-f '~ ' .Xp with stagnation 
point at the sphere center. In view of the linearity of 
the problem and the symmetry of the sphere-interface 

geometry, we need only solve the case of U~-- U'  /12 
fl3ze~ corresponding to L i~ = f ~ '  = ,u~ 1136, &,u. In or- 

der to analyze the velocity field for a porous sphere in 

the undisturbed flow U~'~=F,~(~ z * d)e~, which van- 

ishes at the sphere center, we follow the procedure of 
the preceding section. As in the preceding analysis, we 
use the method of reflections, with the solution in an 
unbounded fluid taken from the part 1 of the presenl 
series, in which we showed that the solution in an un- 
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bounded fluid was simply the superposition of a stress- 
let, a potential quadrupole, and a rotlet at the center of 
the sphere, i.e. 

Stresslet " -5F~3A(a) Uss(X,X~,;e~.e~) 135) 
0 

Potential Quadrupole " - ~-  F .  G (a) 

u~,Q (x, x~,; e~, e~)  (36) 

1 Rotlet " - yF~,H(a)uR (x, xo; ey) (37) 

in which un(x,xp; ey) denotes the fundamental solu- 
tion for a rotlet ey located at x o, the center of the 
sphere, and the parameters G(a) and/4(o) are difined 
a s :  

,7 ~ I 'k'. (,7) - 2 * ,  (,~) I G (a) = (38) 
*o(a) +i0,, (o) 

and 

a' * ,  (a) (39) H(o') - *o (a) 

The unbounded-domain solution represented by (35)- 
(37) satisfies exactly boundary conditions at the surface 
of the sphere, but generates an error of 0 ( 0  at the flat 
interface. 

As in the preceding example, the first correction for 
the presence of the interface in the reflections expan- 
sion can now be obtained easily from the unbounded- 
domain solution, (35)-(37), by simply replacing the 
fundamental solutions Uss, u ~  and u g (which pertain 
to an unbounded fluid) with the corresponding, funda- 
mental solutions u 2 ~  u2.eQand u 2 e that satisfy bound- 
ary conditions on the flat interface (and are generated 
using the lemma of Lee et al. [12]). The result is the 
first two terms in the reflections expansion, i.e.. u2 t~ + 
u2 (~). The first correction, U2 (01 + U2 {I), for the presence 
of the interface does not satisfy the boundary condi- 
tions (1 1) and (12) at the sphere surface, because the 
interface ref lec t ion  U2(1}(X) is nonzero at the sphere sur- 
face. Following section 3, we examine the leading 
terms of the reflected velocity field at the sphere sur- 
face as a power series in ~. 

e' 5AA(a) -2H(a) u~ ~ ' ( x ) = ~  �9 l + x  

F.ex+ ~" F*" (x - x p) (40) 

where the nonzero components of the second-order 
shear rate tensor are given by 

Y,*, = 5XA (a) - (2 -  X)H(a) 
16 ( l+X) P "  (41) 

F~* = 5 (1-~ 2A)A (a) - (1+4 A)H(a) 
16 (1+ A ) F . .  (42) 

It can be seen from (40}-{42) that the presence of the in- 
terface in this case is equivalent in its effect on the 
porous particle to a steady streaming flow at O~E 2) 
parallel to the interface, and a linear shear flow at 
O(~ 3) either normal or parallel to the interface. 

In order to satisfy the conditions of continuity of 
velocity and surface force at the sphere surface, i.e., 
boundary conditions of (11) and (12), we need addi- 
tional singularities at the sphere center that produce a 
velocity field at the sphere surface of opposite sign. For 
the term of O(e2), a point force and a potential dipole 
are required, which have the intensity and orienta- 
tion: 

u~2, _ _ 3 . 5 ~ A ( a ) - 2 H ( o ' )  F , ~ ' "  ~C(a) 
~,sr-- 64 I + A  

(x, xp; e~) - + O ( a )  u~ (x, xp; e~,) ]. Us 

(43) 

By induction, we also know that the interface 'reflec- 
tion' of the point force and potential dipole solutions 
corresponding to (43) will yield a nonzero contribution 
of O(~ 3) to the x-component of velocity at the sphere 
surface. In order to satisfy the boundary conditions on 
the sphere surface to O(~3), we thus require an addi- 
tional point force and potential dipole at the sphere 
center with magnitude and orientation: 

3 3 5 A A ( a ) - 2 H ( a )  2 - 3 Z p .  C(a) ," 
u23"sr= 16 64 1 + ~  1+~. 

1 ~C (a) Us (x, xp; e~) - ~ - D  (a) up (x, x~,; e x) 3. (44) 

l-urther, the singularities required to counter the O(e 3) 
contribution in (40) can be evaluated by determining 
the corresponding solution for the linear flow in an un- 
bounded fluid domain. It can be shown that a stresslet, 
a potential quadrupole, and a rotlet are necessary to 
produce such flow in an unbounded single-fluid do- 
main. Thus, 

- -  F *  s 5 1 U~3> z.s.--- . t  E A(a)Uss(X,X,,;ex, e~)-~ 2: 

1 H(a)uR(x, xp;ez,)§ xp;ex, ez) ] 

- F,* e3(5 A(a)Uss(X. xo;e~, e ~ ) - l  H(a)u. 

(x, x~,; e ~,) + 1 G(a) upQ (x, x~,; e ~, e ~) ] (45) 

in which the reflected shear components ~3 and F3] 
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F 
Fig. 3. Drag ratio, 6 n # ~ d  F~s' as  a funct ion of the 

d i m e n s i o n l e s s  s epara t ion  d i s tance  d for 
three va lues  of the  d i m e n s i o n l e s s  permeabiU.  
ty  k /a2=O.O,  0.I  and 1.0; - - ,  for X--~o; - - ,  
for A= 0.0. Markers  are  the corresponding  
exact  solution results  of Goren and O'Neill [3] 
for A--*~ and k / a  2 = O. 

are defined in (41) and (42). 
ConsequentLy, for the linear shear flow past a 

porous sphere, the singularities required at the cenler 
of the sphere through O(e 3) are: 

Stokeslet " - 3F,~ 5XA (a) - 2H(a) 
64 l + A  

C(z) d u s  (x. x. ;  e~) [[ - 3 C(a) 2 - ~ 3  ;, .j(46) 

Potential Dipole " F,__~ 5 )~A (a) - 2H(a) 
64 l + X  

2 - 3 A  
D (o) 2 u ~ (x, x p; e ~) [1 - 3 C (a) ~ -  ~ ~ (47) 

Stresslet " - 5F, ,  A (a)Uss (x, x~; e ~. e~) 
6 

[1 + 5 (1+3 s A (a) - 3 (1+ ~) H(a) e~ ] 
16 (I+A) 

(48) 

Rotlet " - - ~ - ~ a j u ~  (x, x~; e~) 

[1_ 5 ( I+X)  A ( a ) - ( 5 , ~ -  1)H(a) d] (49) 
16(1+~)  

Potential Quadrupole " - ~-~ G(a) 

5 X A ( a ) -  (2-  X)H(a) 3 t 
[u f,,~ (x, x,o; e~, e~) /1-~ 16 (1+ 3.) 

+ u v ~  (x, xp; ez,  ex) ~ 

5 ( I+2X)A (a) - (1+4 X)H(a) ~ (50) 
16 ( l+A)  " " 

From this solution and equations (8) and (9), we 
can easily determine the hydrodynamic force and 
torque exerted on a porous sphere located at an arbitra- 
ry point xp, in the simple shear flowU~=F:~ with 
stagnation point at the interface. The result is 

F =  K r" F I~'" x p + K  s.,': P ~I (51) 

T =  Kc" F ~'1. x p + K s r :  F 121 (52) 

in which the nonzero components of the third-order 
hydrodynamic tensors KSF and Ksr are given by 

K~-' -- Ksv2~'-- __3~r. 5AA (a) - 2H(a) " C ( a ) . ~  
8 I + A  

[1 -  3 C (a) 2 1 ~  ~ 1+  O(e') (53) 

and 

1 2 3  _ _  2 1 3  _ _  K ~  - - KsT --  - 47rH(o) 

5 ( I + A ) A  (a) - (5), - 1)H(a)d]  + O(F ) I t -  (54) 
16(1+A) 

The drag ratio (the drag divided by the Stokes drag 
-6,'r,u2/'13da ) is simply given as 

F =C(o)(1+~ { 3 C ( a )  3~ ' -2~ } "  
67rp,F,,da .=, - l ~  

{ ~28 C(a) 2-5_ ~ _ I. D(a) 1+2A 1 + 
I+A 32 I+A 128 

34 - 67 X 5 XA (a) - 2H(a) 
E (a) ~ - -  I r 16d( l+A)  d 

{ 1 - 3 C ( a )  21~-~. ~1 ] ex+O(e ' )  (55) 

where we have again considered the shear component 
Fl~ with no loss of generality. When k--,, 0(or d~oo ), 
the equation (55) reduces to the drag ratio for the case 
of an impermeable sphere, and is identical with the 
results of Yang and Leal [15] to O(t3). For a linear 
shear flow parallel to a rigid plane boundary, Goren 
and O'Neill [3] calculated the hydrodynamic force and 
torque on a sphere, using the eigenfunctions of Lapla- 
ce's equation in bipolar coordinates. In Figure 3 the 
drag ratio (55) is plotted as a function of d, the separa- 
tion distance between the sphere and the interface for 
the same set of parameters as in Figure 2. Also shown 
for comparison are the corresponding drag ratios de- 
termined by Goren and O'Neill. In many respects, the 
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results are similar to those for parallel translation of a 
porous permeable sphere obtained by Yang and Leal 
[2]. As mentioned previously, we presume e << 1 in 
the derivation of(55). Thus for e << 1 (i.e., d >> 1) the 
asymptotic solution {55) coincides almost exactly wilh 
Goren and O'Neill's result, which is the exact solution 
for the simple shear flow parallel to a sol id wall. Even 
for d ~ 1 . 5 ,  the approximation solution shows 
reasonably good agreement with the exact solution, ln- 
deed, ior an i m p e r m e a b l e  sphere the relative error is 
within 2.6% for d>l .5 .  

The hydrodynamic torque, T, on a sphere in the 
flow Ui ~= F/'kx can be evaluated from (52), and is 
equal 1o 

T - H { ' a ) [ l ~  3 11A 4 z / z , g l ~ a  ~ -8-- C",a) ~ I1 - C(,a) 

1-+--~2--3A ~} 5r (14 Z;(5i-1)H(c'; '  ~]e~. 

O' ' ~,E ; .  56) 

This is the negative of the torque that is required t{~ 
keep the sphere from rotating. 

We have now a complete set of solutions for a sta- 
tionary porous sphere located at arbitrao," point xp in 
either an axisymmetric extensional flow or in a simple 
shear flow field. These solutions provide the necessary 
relationship between the flow parameters (i.e., strain 
rate or shear rate) and the hydrodynamic force and tor- 
que for calculatior~ of particle trajectories, which we 
shall consider in section 5. 

P A R T I C L E  T R A J E C T O R I E S  

At sufficiently small Reynolds number, equatious 
of motion for a rigid body of arbitra O' shape can be ex- 
pressed in general terms, provided the interface re- 
mains flat, by defining the so-called translation tensor 
K r, the rotation tensor K m and the coupling tensor K(:. 
Two fundamental relations exist between the transla- 
tional and angular velocities and the force and torque 
in terms of these tensors, 

F = K T . U ~ K ~  ..Q (57) 

T = K,:. U - K .- ~ 58] 

where F and T are the total hydrodynamic force and 
torque, and U and ,Q are the translational and angular 
velocities, respectively. The nonzero compouents <)[ 
these tensors for a p o n t u s  permeable particle were 
evaluated through terms O(~ ~) by Yang and Leal [2]: 

1~6 3,k-- 2 A~,~'=tf;q~=6~L,',:o-; , [1+ ,,:.~ t r l : ;  3, "~l~ 

5 2 - 5 A  1 1 - '2X ! 
I128C,a)  1 - . ~  - ! i 2  ])la~ I L X  - 128 

E I  ' 3 4 - 6 7 2  E3 

3 2+3A 
n = l  

15C(0) 2+5A 1 1 ~ .IA 1 
s I16 i T i ~  - 16 D,',~; T i-2 - ii~ 

s r ~-I !79-X '~ * O,P)  
: ' s  p , , 

l ~ A  

3;r 1 A i ,  3 K : ? =  - K p  C,:r H , ~ ; .  1 : i(i C ia,~ 

' 2 - 3 x  p ~ + 0,:~': 
l•X 

K ~ ' = K R  : 8 ~ H { ~ , ' l -  i /i':~;' 1 - 5 Z  , .  

1 1 - A ~  
w 

With the preceding relationship established for lh~., 
resistance tensors, the velocity vectors and the fr 
and torque vectors, we can readily apply (57) and {5~) 
to general trajectory calculations. In the present paper, 
we consider only the simplest case of a neutrally buoy- 
ant freely suspended bc, dy. In this case, an instanlam'- 
ous solution for U and f2 is easily obtained from (571 
and (58): 

U xp= { K ~ - K ~ . K , ' . K ~ > - ' - I F - K [ . K ~ ' - T '  

f 2 = K R  '- ( T -  K{,-U!.  :6o! 

Here F and T are lhe hydrodynamic force and t{,rque 
acting on a stationa O' particle due to the existence of a 
mean flow at large distance from Ihe particle. Thus. 
given the initial position of the particle, these equa- 
{ions provide its c{,mplete trajectoD'. We consider Ila- 
jecR~ries for Ihe special cases of a porous sphere freely 
suspended in a uniaxial extensional and linear shear 
flows. The purpose of these two calculations is primari- 
ly illustrative. However, these two elemental '  prob- 
!eros are relevant to the processes of particle caplure 
at the surface of a larger bubble or drop which n ~ay be 
viewed as locally planar in the limit where the particle 
is veo' much smaller than the collector [4]. Firsl, we 
begin with the case of a neutrally buoyant porous 
sphere freely suspended in the extensional flow U,' 
(x) - g.x with stagnation point at the interface. The re- 
suits for the force and Iorque F and T m this case are 
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given in (31) and (32). Substituting for F and T in (59) 
and (60), respectively, it is a simple matter to show that 
the Iranslational and angular velocities of the particle 
are 

243A - - " ' i  " 

and 

.Q = O ', E' ). (62) 

Thus the particle does not rotate at all, at the level of 
approximation represented by (61) and (62), and it is 
only the z-component of U (i.e.,/.]J that is altered from 
the undislurbed velocity of the fluid by the presence of 
an interface, It can be noted from (61) that the particle 
velocity D': is always decreased in magnilude by the 
presence of an interface, independently of the viscosily 
ratio 3. and the particle permeability k. Further, the dif- 
ference between the undisturbed velocity of the fluid 
and L,~ (i.e., E.xp-e~-U~)is monotonically increased as 
the separation distance between the interface and the 
sphere is decreased, but is independent of I he distance 
from the axis of symmetry of the uniaxial extensional 
flow. 

The other problem considered here is the motion 
of a freely suspended porous sphere in a linear shear 
flow U,(x) = FU)-x parallel to the interface. Since the 
hydrodynamic force on the particle is oriented paralM 
to the undisturbed flow, the path followed by the 
sphere in the (x, z)-plane is exactly coincident with a 
streamline of the undisturbed flow. However, the 
translational velocity of the sphere, U = U~e~, is al- 
tered considerably from the undisturbed velocity, U~ 
(x.o) - - d e ~ ,  of the fluid by interaction with the inter- 
face: 

53. A(alE~ 
U~- ( -  d ) -  16 (1-~- 3.) 

3 H(a) C(a) 3+0(c,). {63) 
+ 64 (1+ 3.) ~ 

The magnitude of translational velocity is decreased 
relative to the unbounded case, independently of the 
viscosity ratio X, and this effect is enhanced strongly as 
the body is placed closer to the interface. This is il- 
lustrated in Figure 4, where the difference between the 
velocity of the sphere and the undisturbed velocity .of 
the fluid L/~-(-d) is given as a function of the separa- 
tion distance d between the sphere and Ihe interface 

for 3.= 0 and oo and ~ = 0.0, 0.l and 1.0. Also includ- 

ed for comparison are the corresponding results of 
Goldman, Mason and Brenner [16], who obtained an 
exact solution of the Stokes' equation, using bipolar 

Fig. 4. D imens ion le s s  d is turbed translat ional  veloci- 
ty, Ux--'(-d), as  a f~tnctlon of the d imens ionless  
separat ion  dis tance  d for three  values  of  the 
d i m e n s i o n l e s s  permeabi l i ty  k / a 2 = l l . O ,  0.I 
and 1.0; - - ,  for ~ < ~ ;  ----, for 3.= 0.0. Markers  
are  the  corresponding  exact  solut ion results  
of Goldman et al. [16] for X--*ooand k / a  2 = O. 

coordinates, for translational and angular velocities of 
an impermeable (i.e., k ~  0) sphere moving in a linear 
shear flow in proximity to a single plane wall (i.e., 
X~oo). It can be seen from Figure 4 that the present 
result for translational velocity is in reasonable agree 
ment with the exact solution in the entire region of 
d.~l .  

The angular velocity f2, (60), for motion of a freely 
suspended sphere in the linear shear flow carl be ob- 
tained by substituting the results for the force and 
torque given in (51) and (52): 

1 5 A ! a )  ~ + 0 :  ~) (64) 
~ '  2 32 

In an unbounded fluid-domain, a freely suspended 

particle will rotate with an angular velocity ~2=�89 

which is ~- of thevorticity vector in the primary flow ir- 

respective of the permeability of the particle. However, 
owing to the presence of the interface, the magnitude 
of g'y is decreased for any arbitrary Rand o and this ef- 
fect is a strong function of the particle position relative 
to the interface. In particular, the angular veloc.ity is in- 
dependent of the viscosity ratio at the level of approx- 
imation represented by (64). The disturbed angular 

velocity, ~Jy- �89 (64), for motion of a freely suspended 

Korean J. Ch. E. (Vol. 6, No. 3) 



244 S.-M. YANG and W.-H. HONG 

Fig. 5. Dimensionless  disturbed angular velocity,  
I / 2 -~ y ,  as a function of the dimensionless  
separation distance d for three values of the 
dimensionless  permeabil ity k/aZ=O.O, 0.I  
and 1.0; O, exact  solution results  of Goldman 
et al. [16]; A,  experimental  data of Darabaner 
and Mason [17]. 

sphere in the simple shearing flow is plotted in Figure 

5 as a function of d for three values of k = 0.0, 0.1 and ~2 

1.0. Darabaner & Mason [17] experimentally mea- 
sured the angular velocity of a neutrally buoyant im.. 
permeable sphere in a Couette viscometer as a func.- 
tion of the separation distance between the sphere and 
the wall of the viscometer. Their results are included 
in the figure. In addition, the exact solution of Gold- 

man et al. [16] for k _  0.0 is also compared with our a 2 -  

approximate solution in this figure.The present asymp- 
totic solution is qualitatively consistent both with the 
experimental data and the exact solution over the 
whole range of d, and is quantitatively accurate except 
in the region d - 1 .  Considering that the experimental 
data have neither been corrected for wall curvature 
nor for the presence of a second wall at a larger dis- 
tance, and in view of the difficulties of maintaining 
and measuring the separation distance from the wall, 
the agreen~ent is quite good. 
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NOMENCLATURE 

a : sphere radius 

A(o), C,(o) 
B(o) 

C~o), E(o) 
d 

E 

ex,ey,ez  

F 

I.. W) 

k 
Kc 
K n 
Ksr 

Ksr 

K T 

I c 
Lt0(E or F(~ 

p 

Pc 
S 
T 
U 

u~2 ) 

U ~  H 

U c 

U D 

URQ 

U R 

U S 

USS 

u2,po 

U2. R 
U2,SS 

coefficient function for a stresslet 
coefficient function for a potential 
quadrupole 
coefficient function for a Stokes]et 
separation distance between the 
sphere and the interface 
coefficient function for a potential dou- 
b]et 
strain rate tensor 
coefficient function for a rotlet 
base vectors in the Cartesian coordi- 
nate system (x, y, z) 
hydrodynamic force 
modified Bessel functiOn of the first 

kind of order n + ~ -  

permeability 
coupling tensor 
rotation tensor 
third order tensor for hydrodynamic 
force in shear field 
third order tensor for hydrodynamic 
torque in shear field 
translation tensor 
characteristic length scale 
2nd order tensor (strain or shear rate 
tensor) in fluid i (= 1 and 2) 
pressure field 
characteristic stress scale 
sphere surface 
hydrodynamic torque 
velocity field 
jth interface-reflected velocity field in 
fluid 2 
jth interface-reflected shear field in 
fluid 2 
jth interface-reflected streaming flow 
field in fluid 2 
characteristic velocity 
velocity for a potential dipole irk an un- 
bounded fluid 
velocity for a potential quadrupole in 
an unbounded fluid 
velocity for a rotlet in an unbounded 
fluid 
velocity for a Stokeslet in an unbound- 
ed fluid 
velocity for a stresslet in an unbounded 
fluid 
velocity for a potential quadrupole in 
fluid 2 
velocity for a rotlet in fluid 2 
velocity for a stresslet in fluid 2 
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U(or Ux) 
u; 
X 

XB 

Xp 
F '~' (or Ftm ) 
F*(or F~) 

A 

/z i 
Pi 

9 (or .~y) 
r 

translational velocity of a particle 
undisturbed velocity in fluid i 
position vector measured from the ori- 
gin at the interface 
position vector placed on the sphere 
surface 
position vector of the sphere (:enter 
shear rate tensor 
reflected shear rate tensor 
Kronecker delta 
small parameter (1/d) 
viscosity ratio of fluids 1 and 2 
viscosity of fluid i 
density of fluid i 
coefficient function defined by (18) 
angular velocity of the particle 
stress field 
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