# KINETICS OF HYDRODESULFURIZATION OF DIBENZOTHIOPHENE OVER NiO-MoO<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub> CATALYST

Kyung-Lim KIM and Ki-Sup CHOI\*

Department of Chemical Engineering, Yonsei University, Seoul 120-749, Korea \*Material Devices Research Center, Samsung Advanced Institute of Technology (Received 14 December 1987 • accepted 23 June 1988)

**Abstract**—The kinetics of the hydrodesulfurization (HDS) of dibenzothiophene (DBT) has been studied over a NiO-MoO<sub>3</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> catalyst in the temperature range of 473-673 K for partial pressures of DBT from 20 × 10<sup>5</sup>Pa to 70 × 10<sup>5</sup>Pa. A form of the Langmuir-Hinshelwood type rate equation was used to describe the kinetics of the reaction. The reaction was carried out at low conversion level to obtain initial reaction rate data. From this study the rate equation giving the best fit to the data was  $r = \frac{k_D P_D P_H}{[1 + K_D P_D + (K_H P_H)^{1/2}]^2}$ , which suggests that DBT and hydrogen adsorb on the same type of active sites and that hydrogen adsorbs dissociatively.

## **INTRODUCTION**

The HDS of hydrocarbon fuels is widely practiced in industrial processes to reduce sulfur content[1]. In petroleum thiophene compounds represent the major portion of the organosulfur compounds and among them DBT is one of the least reactive sulfur-containing constituents. Accordingly, the kinetics of DBT desulfurization has received increasing attention. The HDS of DBT has been studied by Hoog[2], Cawley[3], Obolentsev et al.[4], Landa et al.[5], Urimoto et al.[6], Bartsch et al.[7] and many other authors.

The results of these investigations, representing a variety of temperatures, hydrogen partial pressures, and catalyst compositions, fail to establish a unique reaction network. Cawley suggested that hydrogenolysis of the thiophenic ring is preceded by hydrogenation of one of the two benzenoid ring, giving cyclohexylbenzene(CHB) as a major product. Obolentsev et al., however, disagreed with Cawley's suggestion since they detected only biphenyl(BP) as the reaction product. Broderick et al.[8] reported that DBT reacted by two parallel routes: hydrogenolysis of the C-S bond to give H<sub>2</sub>S and BP and hydrogenation of one of the benzoid rings followed by rapid hydrogenolysis of C-S bond to give CHB. Broderick[9] in a subsequent HDS study of DBT reported that hydrogenation and hydrogenolysis reactions occurred on different catalytic sites. The experiments reported here were performed to investigate the reaction kinetics of HDS of DBT.

#### **EXPERIMENTAL**

Dibenzothiophene(99.5%, Tokyo Chemical Company) was dissolved in n-heptane(Junsei Chemical Company). Both were used without purification. The reactant solution contained 0.25-1.5 mol% dibenzothiophene in n-heptane. The catalyst was a commercial NiO-MoO<sub>3</sub>/7-Al<sub>2</sub>O<sub>3</sub>(Cynamid Trilobe) which was crushed and sieved to 149-178  $\mu$ m(80-100 mesh) particle size. Catalyst composition was 0.5 wt% NiO, 20.5 wt% MoO<sub>3</sub>, 74.5% 7-Al<sub>2</sub>O<sub>3</sub> and its surface area was 160 m<sup>2</sup>/g. The catalyst was presulfided in 10 vol% H<sub>2</sub>S in H<sub>2</sub> flowing at the rate of 10 *l*/hr at atmospheric pressure and 673K for 3hr. Catalyst (1-3g) was mixed with carborundum, an inert reactor packing material.

The HDS of DBT was carried out in a fixed bed reactor (LPD Catatest Unit Model C manufactured by IFP). Reactant was pumped into the reactor, which consisted of a stainless steel tube (19 mm i.d. and 500mm length), placed in an electric furnace. Hydrocarbon was instantaneously vaporized at the entrance of the reactor tube and mixed with dried hydrogen of which the flow rate was measured by a flow meter. The mixture passed through a preheater section and then over the catalyst at a fixed temperature.

Reactions were run at temperatures of 473-673K and pressures of  $20.70 \times 10^5$  Pa with catalyst loading ranged 1 to 3g and its particle size of 20 to 100 mesh. Reactant solution was saturated with hydrogen before operation. Hydrogen partial pressure was varied from

6.7 to  $60.7 \times 10^5$  Pa. The inverse of weight hourly space velocity (W/F) varied between  $14.7 \times 10^5$  and  $73.3 \times 10^5$  g of catalyst-h/g of feed.

Liquid reaction product was withdrawn from the bottom of a reactor. The sample was analyzed on a Schimadzu GC-7A gas chromatograph equipped with a flame ionization detector. The column was stainless steel tube having 3.5 m length and 3 mm i.d. It was packed with 1% OV-101 Chromosorb W, DMCS, A/W and maintained at 403K. Nitrogen carrier gas was employed with the flow rate of 30m//min. For simplicity, no effort was made to analyze the gas products or to compute mass balances. The resultant experimental error introduced was thought to be trivial in view of the relatively low partial pressure of liquid products.

#### **RESULTS AND DISCUSSION**

#### 1. Preliminary Experiments

Several preliminary experiments were carried out to check the influence on reaction rates. Firstly, blank runs with carborundum packing and no catalyst showed negligible activity. The lack of influence of an internal and an external mass transfer was confirmed by changing the particle size and the catalyst loading respectively. Rate data were obtained at steady state.

#### 2. Reaction Route

The main products detected were biphenyl(BP) and cyclohexylbenzene(CHB) although trace amounts of bicyclohexyl were also detected. To find out the reaction route, three models in Table 1 were assumed. Two tests were made to find out the reaction route. First the concentration profiles for DBT and the two principal products were plotted. The shape of curves depicted in Fig. 1 suggested the typical serial reaction route.

Biphenyl yield versus DBT conversion data were obtained in order to test the validity of the reaction route by selectivity. In series reaction, differential equation is as follows.

| Table 1. Reaction route mod |
|-----------------------------|
|-----------------------------|

| Reaction | Reaction route     |  |  |  |  |  |
|----------|--------------------|--|--|--|--|--|
| Serial   | kı k2              |  |  |  |  |  |
| reaction | DBT → BP → CHB     |  |  |  |  |  |
| Parallel | k <sub>1</sub> BP  |  |  |  |  |  |
| reaction | DBT K3 CHB         |  |  |  |  |  |
| Serial-  | kı BP              |  |  |  |  |  |
| parailei | DBT k2             |  |  |  |  |  |
| reaction | k <sub>3</sub> CHB |  |  |  |  |  |

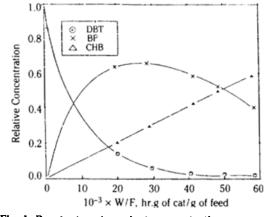



Fig. 1. Reactant and product concentration versus contact time data.

T:  $300^{\circ}C$ P:  $40 \times 10^{5}Pa$ P<sub>DBT</sub>/P<sub>H2</sub>:  $9.3 \times 10^{-3}$ 

$$-\frac{\mathrm{d}(1-\mathrm{X}_p)}{\mathrm{d}t} = \mathrm{k}_1 (1-\mathrm{X}_p)$$
$$\frac{\mathrm{d}\mathrm{Y}_p}{\mathrm{d}t} = \mathrm{k}_1 (1-\mathrm{X}_p) = \mathrm{k}_2 \mathrm{Y}_p$$

As selectivity is  $\frac{dY_B}{dX_B}$ 

 $S = \frac{-dY_{_{B_{_{_{1}}}}}}{d(1-X_{_{B}})} = -\frac{k_{_{1}}(1-X_{_{B}}) - k_{_{2}}Y_{_{B}}}{k_{_{1}}(1-X_{_{B}})} = 1 - \frac{k_{_{2}}}{k_{_{1}}} \frac{Y_{_{B}}}{1-X_{_{B}}}$ 

Experimental results, depicted in Fig. 2, fit serial reaction route.

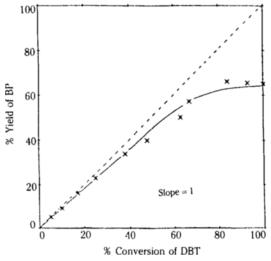



Fig. 2. Relation of DBT conversion and biphenyl yield for the test of reaction route by selectivity.

Table 2. Equation model and its linearization

|                                 | Rate equation                                                                     | Linearization                                                                                                                                                                                                                                   |
|---------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single type<br>of<br>site model | $r = \frac{K_{p}P_{p}P_{\mu}^{a}}{(1 + K_{p}P_{p} + (K_{\mu}P_{\mu})^{1/c})^{a}}$ | $Y = \left(\frac{P_{\nu}P_{\mu}^{a}}{r}\right)^{\frac{1}{a}} = \left(\frac{1}{k_{\mu}}\right)^{\frac{1}{b}} \left(1 + K_{\mu}P_{\mu} + (K_{\mu}P_{\mu})^{\frac{1}{c}}\right)$                                                                   |
| Dual type<br>of<br>site model   | $r = \frac{K_{D}P_{D}P_{H}^{a}}{(1+K_{D}P_{D})^{b}(1+(K_{H}P_{H})^{1/c})^{a}}$    | $\mathbf{Y} = \left(\frac{\mathbf{P}_{B}\mathbf{P}_{B}^{a}}{\mathbf{r}\left(1 + (\mathbf{K}_{B}\mathbf{P}_{B})^{1/c}\right)^{a}}\right)^{\frac{1}{b}} = \left(\frac{1}{\mathbf{k}_{D}}\right)^{\frac{1}{b}} (1 + \mathbf{K}_{D}\mathbf{P}_{D})$ |

#### 3. Rate Expressions

The HDS reaction rate of DBT depends on the partial pressure of products and reactants. In this study, two forms of Langmuir-Hinshelwood type rate equations were used to describe the kinetics of the reaction. Calculations of the best values of the constants were made at the reaction temperatures by multiple linear regression for a number of different combinations. Rate expressions are based on the assumption that the effect of hydrogen sulfide is negligible.

Broderick[9] found that the rate of hydrogenation was independent of the  $H_2S$  concentration. In order to apply this technique, the Langmuir-Hinshelwood equations were linearized after making the power of DBT unity as found by Broderick[9]. Equation model and its linearization form are shown in Table 2.

The sum of the squares of the differences between the experimental and the calculated reaction rates was computed for each rate equation, that is, for each combination of a, b, c, and d using the values of  $k_D$ ,  $K_D$ , and  $K_H$  calculated by regression. Especially linear regression analysis were carried out for various values of  $K_H$  by trial-and-error in dual type of site model. The rate equation with the lowest sum of squares was chosen as the best rate equation.

Multiple linear regression analysis such as those described above, when applied to Langmuir-Hinshelwood rate equation, has the drawback that deviations in the quantity Y in Table 2 are minimized, rather than the deviation in r as pointed out by Satterfield[10]. To avoid this kind of drawback Broderick[8] used a nonlinear least squares(NLLS) regression analysis. In this study, however, NLLS analysis could not be applied due to the capacity limitation of our computer system. The data for the runs are given in Table 3-6.

Linear regression analysis were carried out for various sets of a,b,c and d values. Goodness of fit was assessed by the coefficient of determination( $\mathbb{R}^2$ ). The form represented by model S-1, D-1, and D-2 showed best satisfactory correlations, whereas the others did not. Parameter values for four temperatures are collected in Table 7.

Among the three models, the best is model S-1. The obtained rate equation is

$$r = \frac{k_{p}P_{p}P_{H}}{(1 + K_{p}P_{p} + (K_{H}P_{H})^{1/2})^{2}}$$

| No. | Pressure            | Feed rate     | H <sub>2</sub> flowrate | W/F                                  | $P_D^o$         | $P_{H_2}^o$     | γ                  | x <sub>D</sub>        |
|-----|---------------------|---------------|-------------------------|--------------------------------------|-----------------|-----------------|--------------------|-----------------------|
| NO. | ×10 <sup>5</sup> Pa | <i>ml/</i> hr | //hr                    | × 10 <sup>-3</sup> h·g<br>cat/g feed | $	imes 10^3$ Pa | $	imes 10^3$ Pa | gmole/<br>hr∙g cat | converted<br>fraction |
| 1   | 30                  | 70            | 14.4                    | 20.9                                 | 3               | 1719            | 34                 | 0.02                  |
| 2   | 30                  | 70            | 14.4                    | 20.9                                 | 6               | 1719            | 36                 | 0.02                  |
| 3   | 30                  | 50            | 7.9                     | 29.3                                 | 3               | 1527            | 16                 | 0.01                  |
| 4   | 30                  | 50            | 7.9                     | 29.3                                 | 7               | 1527            | 16                 | 0.01                  |
| 5   | 30                  | 30            | 7.9                     | 48.9                                 | 3               | 1900            | 74                 | 0.10                  |
| 6   | 30                  | 30            | 7.9                     | 48.9                                 | 5               | 1900            | 87                 | 0.12                  |
| 7   | 30                  | 25            | 7.9                     | 58.6                                 | 2               | 2023            | 50                 | 0.08                  |
| 8   | 30                  | 25            | 7.9                     | 58.6                                 | 5               | 2024            | 45                 | 0.07                  |
| 9   | 30                  | 20            | 7.9                     | 73.3                                 | 2               | 2164            | 63                 | 0.13                  |
| 10  | 30                  | 20            | 7.9                     | 73.3                                 | 4               | 2164            | 76                 | 0.15                  |

Table 3. Kinetic data at 483K

|     | Pressure             | Feed rate     | H <sub>2</sub> flowrate | W/F                                      | $P_D^o$              | $P^o_{H_2}$          | γ                  | x <sub>D</sub>        |
|-----|----------------------|---------------|-------------------------|------------------------------------------|----------------------|----------------------|--------------------|-----------------------|
| No. | × 10 <sup>5</sup> Pa | <i>ml/</i> hr | <i>l</i> /hr            | $\times$ 10 <sup>-3</sup> h·g cat/g feed | × 10 <sup>3</sup> Pa | × 10 <sup>3</sup> Pa | gmole/<br>hr∙g cat | converted<br>fraction |
| 1   | 60                   | 70            | 14.4                    | 20.9                                     | 6                    | 3437                 | 77                 | 0.04                  |
| 2   | 60                   | 70            | 14.4                    | 20.9                                     | 13                   | 3438                 | 78                 | 0.05                  |
| 3   | 50                   | 70            | 7.9                     | 20.9                                     | 7                    | 2126                 | 63                 | 0.04                  |
| 4   | 50                   | 70            | 7.9                     | 20.9                                     | 14                   | 2126                 | 60                 | 0.04                  |
| 5   | 40                   | 70            | 7.9                     | 20.9                                     | 7                    | 1701                 | 40                 | 0.02                  |
| 6   | 40                   | 70            | 7.9                     | 20.9                                     | 14                   | 1701                 | 51                 | 0.03                  |
| 7   | 30                   | 70            | 14.4                    | 20.9                                     | 7                    | 1719                 | 40                 | 0.04                  |
| 8   | 30                   | 70            | 14.4                    | 20.9                                     | 14                   | 1719                 | 51                 | 0.04                  |
| 9   | 20                   | 70            | 7.9                     | 20.9                                     | 3                    | 850                  | 102                | 0.06                  |
| 10  | 20                   | 70            | 7.9                     | 20.9                                     | 6                    | 851                  | 104                | 0.06                  |

Table 4. Kinetic data at 493K

Table 5. Kinetic data at 513K

| No. | Pressure<br>× 10 <sup>5</sup> Pa | Feed rate<br><i>ml/</i> hr | H <sub>2</sub> flowrate<br>//hr | W/F<br>× 10 <sup>-3</sup> h·g<br>cat/g feed | P <sub>D</sub> <sup>o</sup><br>× 10 <sup>3</sup> Pa | P <sup>o</sup> <sub>H2</sub><br>× 10 <sup>3</sup> Pa | γ<br>gmole/<br>hr∙g cat | x <sub>D</sub><br>converted<br>fraction |
|-----|----------------------------------|----------------------------|---------------------------------|---------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-------------------------|-----------------------------------------|
| 1   | 30                               | 70                         | 14.4                            | 20.9                                        | 3                                                   | 1719                                                 | 90                      | 0.05                                    |
| 2   | 30                               | 70                         | 14.4                            | 20.9                                        | 5                                                   | 1719                                                 | 90                      | 0.05                                    |
| 3   | 30                               | 50                         | 7.9                             | 29.3                                        | 4                                                   | 1526                                                 | 82                      | 0.07                                    |
| 4   | 30                               | 50                         | 7.9                             | 29.3                                        | 6                                                   | 1526                                                 | 86                      | 0.07                                    |
| 5   | 30                               | 35                         | 7.9                             | 41.9                                        | 3                                                   | 1790                                                 | 139                     | 0.11                                    |
| 6   | 30                               | 35                         | 7.9                             | 41.9                                        | 5                                                   | 1790                                                 | 140                     | 0.11                                    |
| 7   | 30                               | 30                         | 7.9                             | 48.9                                        | 3                                                   | 1899                                                 | 116                     | 0.12                                    |
| 8   | 30                               | 30                         | 7.9                             | 48.9                                        | 5                                                   | 1899                                                 | 121                     | 0.12                                    |
| 9   | 30                               | 20                         | 7.9                             | 73.3                                        | 2                                                   | 2164                                                 | 122                     | 0.15                                    |
| 10  | 30                               | 20                         | 7.9                             | 73.3                                        | 4                                                   | 2164                                                 | 136                     | 0.15                                    |

```
Table 6. Kinetic data at 523K
```

| No. | Pressure             | Feed rate      | H <sub>2</sub> flowrate | W/F                                  | PD                   | $P^o_{H2}$           | γ                  | x <sub>D</sub>        |
|-----|----------------------|----------------|-------------------------|--------------------------------------|----------------------|----------------------|--------------------|-----------------------|
|     | × 10 <sup>5</sup> Pa | <i>ml /</i> hr | // hr                   | × 10 <sup>-3</sup> h⋅g<br>cat/g feed | × 10 <sup>3</sup> Pa | × 10 <sup>3</sup> Pa | gmole/<br>hr∙g cat | converted<br>fraction |
| 1   | 60                   | 70             | 7.9                     | 20.9                                 | 9                    | 2551                 | 211                | 0.09                  |
| 2   | 60                   | 70             | 7.9                     | 20.9                                 | 13                   | 2550                 | 211                | 0.09                  |
| 3   | 50                   | 70             | 7.9                     | 20.9                                 | 7                    | 2126                 | 195                | 0.11                  |
| 4   | 50                   | 70             | 7.9                     | 20.9                                 | 11                   | 2125                 | 192                | 0.11                  |
| 5   | 40                   | 70             | 7.9                     | 20.9                                 | 6                    | 1701                 | 143                | 0.08                  |
| 6   | 40                   | 70             | 7.9                     | 20.9                                 | 11                   | 1701                 | 146                | 0.09                  |
| 7   | 30                   | 70             | 7.9                     | 20.9                                 | 4                    | 1526                 | 203                | 0.15                  |
| 8   | 30                   | 70             | 7.9                     | 20.9                                 | 7                    | 1525                 | 208                | 0.15                  |
| 9   | 20                   | 70             | 7.9                     | 20.9                                 | 3                    | 850                  | 186                | 0.11                  |
| 10  | 20                   | 70             | 7.9                     | 20.9                                 | 6                    | 850                  | 188                | 0.11                  |

| MODEL       | a | b | с | d | Т    | k <sub>D</sub>         | K <sub>D</sub>        | K <sub>H</sub>         | R <sup>2</sup> |
|-------------|---|---|---|---|------|------------------------|-----------------------|------------------------|----------------|
| S-1         | 1 |   | 2 | 2 | 483K | $1.81 \times 10^{-7}$  | $4.25 \times 10^{-4}$ | $6.55 \times 10^{-14}$ | 0.782          |
|             |   |   |   |   | 493K | $6.64 \times 10^{-7}$  | $3.04 \times 10^{-4}$ | $4.51 \times 10^{-14}$ | 0.885          |
|             |   |   |   |   | 513K | $1.09 \times 10^{-6}$  | $2.88 \times 10^{-4}$ | $4.29 \times 10^{-14}$ | 0.885          |
|             |   |   |   |   | 523K | $5.37 \times 10^{-6}$  | $1.30 \times 10^{-4}$ | $3.05 	imes 10^{-14}$  | 0.930          |
| <b>D-</b> 1 | 1 | 2 | 2 | 1 | 483K | $3.40 \times 10^{-8}$  | $2.91 \times 10^{-4}$ | $4 \times 10^{-12}$    | 0.734          |
|             |   |   |   |   | 493K | $6.69 \times 10^{-8}$  | $3.69 \times 10^{-4}$ | $3 \times 10^{-12}$    | 0.833          |
|             |   |   |   |   | 513K | $7.56 \times 10^{-8}$  | $4.09 \times 10^{-4}$ | $2 \times 10^{-12}$    | 0.795          |
|             |   |   |   |   | 523K | $3.38 \times 10^{-7}$  | $5.05 \times 10^{-3}$ | $1 \times 10^{-12}$    | 0.897          |
| D-2         | 2 | 2 | 1 | 1 | 483K | $4.83 \times 10^{-14}$ | $2.71 \times 10^{-4}$ | $4 \times 10^{-6}$     | 0.732          |
|             |   |   |   |   | 493K | $9.06 \times 10^{-14}$ | $3.34 \times 10^{-4}$ | $3 \times 10^{-6}$     | 0.835          |
|             |   |   |   |   | 513K | $1.78 \times 10^{-13}$ | $5.51 \times 10^{-4}$ | $2 \times 10^{-6}$     | 0.760          |
|             |   |   |   |   | 523K | $7.97 \times 10^{-13}$ | $1.09 \times 10^{-3}$ | $1 \times 10^{-6}$     | 0.871          |

Table 7. Rate equations best fitting kinetic data

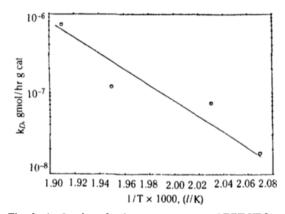



Fig. 3. Arrhenius plot for rate constant of DBT HDS.

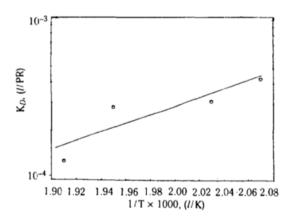



Fig. 4. van't Hoff plot for DBT adsorption equilibrium constants.

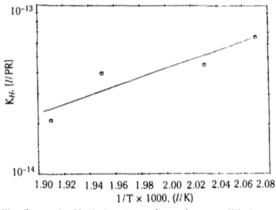



Fig. 5. van't Hoff for H<sub>2</sub> adsorption equilibrium constant.

This rate expression suggests the single site mechanisms in which  $H_2$  dissociatively adsorbs on the sites in competition with DBT. From Arrhenius and van't Hoff plots of Fig. 3-5, activation energy and heat of adsorption for each species were calculated. The kinetic parameters obtained are the following:

$$k_D = 6.72 \times 10^9 exp (-36.48/RT)$$
  
 $K_D = 1.45 \times 10^{-9} exp (12.09/RT)$   
 $K_{\nu\nu} = 1.58 \times 10^{-17} exp (7.39/RT)$ 

## 4. Reaction Mechanism

From the rate expression, a possible mechanism can be proposed as follows:

$$DBT + * \implies * DBT$$

 $H_2 + 2 \ast \Longrightarrow 2 \ast H$ \*DBT + \*H $\rightarrow$ \*H.DBT + \* \*H.DBT + \*H $\rightarrow$ BP + \* S + \* \*S + H<sub>2</sub> $\rightarrow$ H<sub>2</sub>S + \* (\*: active site)

## CONCLUSION

(1) HDS of DBT on NiO-MoO<sub>3</sub>/  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> takes serial reaction route.

 $DBT \rightarrow BP \rightarrow CHB$ 

(2) Rate equation giving the best fit was:

$$\mathbf{r} = \frac{\mathbf{K}_{p}\mathbf{P}_{p}\mathbf{P}_{H}}{(1 + \mathbf{K}_{p}\mathbf{P}_{p} + (\mathbf{K}_{H}\mathbf{P}_{H})^{1/2})^{2}}$$

(3) The rate equation suggests that DBT and hydrogen adsorb on same type of site and hydrogen adsorbs dissociatively,

(4) The kinetics parameter in rate equation are given by:

$$\begin{split} k_{\mathcal{D}} &= 6.72 \times 10^9 \text{exp} \ (-36.48/\text{RT}) \\ K_{\mathcal{D}} &= 1.45 \times 10^{-9} \text{exp} \ (12.09/\text{RT}) \\ K_{\mathcal{H}} &= 1.58 \times 10^{-17} \text{exp} \ (7.39/\text{RT}) \\ \text{where T is in K and R is in kcal/g mole-K.} \end{split}$$

# NOMENCLATURE

a, b, c, d : exponent constant of rate equation

BP : biphenyl

- CHB : cyclohexylbenzene
- DBT : dibenzothiophene
- Ea : activation energy(kcal/gmole)

exp : exponent

- F : flow rate (ml/hr)
- $k_1$ ,  $k_2$ ,  $k_3$ ,  $k_d$  : rate constant(gmole/g.hr)

 $k_{D}$ ,  $k_{H}$ : adsorption equilibrium constant(Pa<sup>-1</sup>) of DBT and H<sub>2</sub>

- Pa, PA : Pascal in pressure unit
- $P_D$ ,  $P_H(P_{H_2})$  Partial pressure of DBT and  $H_2$
- $P_{D}^{o}, P_{H_{2}}^{o}$ : initial partial pressure of DBT and  $H_{2}$
- r : reaction rate (gmole/g.hr)
- S : selectivity
- T : temperature
- W : catalyst weight(g)

 $\mathbf{x}_D$  : conversion of DBT

 $Y_B, Y_C$  : yield of BP and CHB

#### REFERENCES

- Kim, K.L.: Doctor of State Dissertation, University of Paris VI, 1984.
- Hoog, H.: Rec. Trav. Chem. Phys. Bas., 69, 1289 (1950).
- Cawley, C.M: Proc. 3rd World Petrol. Cong. Sect. IV, 294, Hague, 1951.
- Obolentsev, R.D. and Mashkina, A.V.: Dokl. Akad Nauk SSSR, 135(5), 1092 (1960).
- 5. Landa, S. and Mrnkova, A.: Collect. Czech. Chem. Commun., **31**, 2202 (1966).
- Urimoto, H. and Sakikawa, N.: Sekiyu Gakkaishi, 15, 926 (1972).
- Bartsch, R. and Tanielien, C.: J. Catal., 35, 353 (1974).
- Broderick, D.H. and Gates, B.C.: Amer. Inst. Chem. Eng. J., 27(4), 663 (1981).
- Broderick, D.H.: Ph.D. Dissertation, University of Delaware, 1980.
- Satterfield, C.N. and Roberts, G.W.: Amer. Inst. Chem. Eng. J., 14(1), 159 (1968).