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Abstract--Various dynamical characters of continuous stirred tank reaclors (CSTR) are introduced with 
respect to the effects of reaction types, extra thermal capacitance, periodic forcing, and coupling of CSTRs. 
The subject includes the classical dynamics of two-dimensional model and the variety of complex dynamics 
in three or higher dimensional systems such as periodic bifurcations to toms or chaos, aperiodic oscillations 
on invariant torus, and universal dynamics of alternating periodic-chaotic sequences with k.2~'-cycles for 
every natural number k. Particularly tl-:is review intends to bring about the problems that the engineers must 
be prepared to encounter in solving various physical systems including chemically reacting systems. 

INTRODUCTION 

One of the most mysterious and particular things in 
nature may be the catastrophic feature of states, which 
usually brings about an abrupt change in equilibria 
and dynamics as well with a very slight change of am- 
bient conditions. A chemically reacting system is in 
this respect an intricate model to exhibit a variety of 
multiple equilibria and complex dynamical behavior 
depending on the extent of reaction, temperature and 
other control variables. 

The multiplicity and stability of steady states in a 
chemically reacting system was first mentioned by Lil- 
jenroth[ll in 1918. However, this work wa:s unnoticed 
and lay dormant until lately. Similar work by Seme- 
novl2] in 1928 was also neglected until rediscovered 
recently. The regions of attraction of different steady 
states and some dynamic aspects were mentioned by 
Burton{3] in 1939 and Denbigh[4,5] in 1947 and 1948. 
Although some Russian works[6-8] were also publish- 
ed in 1940s, they obviously did not seem to have had 
any real influence to the Western world. Van 
Heerden's paper[9] of 1953 on the autothernlic che- 
mical reactors discussed the stability of steady states 
with the fundamental concept of slope conditions of 
heat generation and removal curves. 

The rigorous analysis on stability was put forward 
by Bilous and Amundson[10] in 1955, and thereafter a 
flood of papers have rushed on the stability and dyna- 
mics of chemically reacting systems. They used the 
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Liapunov first method in analyzing the local stability 
of the steady states and did show some phase plots of 
concentration and temperature trajectories using an 
analog computer. It is notable that they expectec[ up to 
five steady states for consecutive reaction A-.B---,C. 
More extensive survey of multiplicity and dyr.amics 
were reported by Aris and Amundson in 195811l]. 
They illustrated how the trajectories change in the 
phase plane as the proportional feedback controller 
gain is increased They also showed the existence of 
undamped oscillations in the form of limit cycles and 
possible bifurcation of limit cycles and possible bifur- 
cation of limit cycles at the critical value of parameter 
where the steady state loses its stability. 

These papers inspired many other workers to have 
interests in this field and a large number of studies 
have since been performed concerning the modeling 
of reaction systems, dynamic aspects of multiple 
steady states and mathematical tools for the existence 
and stability analysis of limit cycles[12-21]. They have 
involved the second Liapunov method to determine 
the region of asymptotic stability of a steady state 
[12-24], averaging technique to predict the presen- 
ce and stability of limit cycles[15,16], perturbation 
technique to predict the form of a limit cycle[17,18], 
and Fourier type analysis of limit cycles[19]. In the 
meantime, Uppal et a1.[20,21], using a two-dimen- 
sional method of a nonisothermal CSTR with a 
first order irreversible exothermic reaction, have 
displayed the various dynamical features that occur 
around some bifurcation points such as saddle-node or 
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Hopf bifurcations which give rise to a new branch of 
steady state solutions or the creation of periodic solu- 
tions. They have also shown that there are homoclinic 
bifurcations in which the unstable manifold of a saddle 
returns to itself to give a solution with infinite period. 
This paper might well deserve high-evaluation for the 
establishment of all the dynamic characters which can 
be found in two dimensional chemical reaction sys- 
tems. 

When the system is three dimensional or higher, 
much more complex dynamics and steady state beha- 
vior can be expected. Gotubitsky and Keyfitz[22] intro- 
duced the singularity theory[23,24] to the steady state 
analysis of chemically reacting systems, and other 
workers[25-28,39] successfully applied this method in 
predicting all the possible types of bifurcation dia- 
grams and the critical parameter values of changes. 
Meanwhile, there has been found a complex feature of 
dynamics which exhibits nonperiodic oscillative mo- 
tions called chaotic behavior. Kahlert et a1.{29] found 
chaos in a CSTR with two consecutive reactions, the 
first exothermic and the second endotheTmic. Similar 
beqavior has been found by Jorgen~en and Aris[30] 
for the same reacting system with both exothermic 
reactions, in this case some complex dynamic beha- 
vior and bifurcation pattern have been identified. This 
simple three dimensional modei was chemically more 
realistic than previously formulated system of Belou- 
sov-Zhabotinskii reaction[31-35] which can exhibit 
chaotic motions. Since then, many scientists and en- 
gineers have indulged in excavating this new field of 
science, and many chaotic motions have been obser- 
ved in various chemical reaction systems. 

In this review, we intend to show some significant 
dynamic characters in CSTR systems with respect to 
the contexts of processes rather than to give complete 
method of analysis which is still far from the solution. 
Furthermore, we expect this subject, even with scope 
of experimental studies, may bring the notion that one 
must be prepared to encounter chaos as well as varie- 
ties of phenomena in physical and engineering sys- 
tems. 

STEADY STATES AND STABILITY 

Chemical reaction model of CSTR is usuatly expres- 
se,d as an autonomous set of ordinary differential equa- 
tions, 

dx 
~=f,~x), x(0> =Xo. (1) 

Such systems usually appear highly nonlinear and 
can exhibit a variety of multiple steady states and 
dynamics. The diversity of multiplicity in steady state 

behavior makes the global analysis very difficult. For 
physical reasons, the steady state behavior is often 
analyzed by examining the dependence of these 
steady states on a distinguished parameter 

Let the steady state of Eq.(1), depending on a para- 
meter 3,, be the solution of algebraic equation 

/ (x, x)=0. (2) 

In a large sense of steady state to include the cyclic mo- 
tions, Eq.(2) may be replaced by with the concepts of 
fixed points in the map[36), 

x=F(x, ~)==,k~-(x, ~,) I3) 

where Fis  a map for flow r and T is the lowest value 
of time called period. It may be noticed that the solu- 
tion of Eq. (2) can explain the static behavior of steady 
states. 

For the moment the standard approach of solution 
of Eq. (2) would be the application of implicit function 
theorem. If we let x 0 be the nonsingular solution of Eq. 
(2) fora specific parameter ~.0, the implicit function the- 
orem insures the existence of unique smooth curve of 
solution x-..--'(3.) satisfying Xo=.X(X0) in the small 
neighborhood of g.0. Furthermore, with the smooth- 
ness of solution curve, it follows that dx/d,~ exists and 
satisfies 

. dx 
/~x<~), x . ~ =  - /~ ~x (x), x].  (4) 

The solution branch of Eq. (2) can provide us with the 
steady state behavior depending on a parameter chan- 
ge, saying bifurcation diagram. The continuation pro- 
cess, however, fails at the singular point, (~(x, ~)= 0. To 
solve this problem, Keller[37] introduced the method 
of branch switching at singular points, and Doedel and 
Heinemann[38] used the continuation technique for 
the computation of periodic solution branch to investi- 
gate the oscillatory behavior of a CSTR with consecu- 
tive reactions. Meanwhile, the qualitative aspects of 
bifurcation diagrams can be well established with the 
elementary catastrophe theory[39]. The singularity 
theory was first introduced by Golubitsky and Schaef- 
fer[23]. By the application of the theory to the, chemi- 
c:ally reacting systems, various features of bibJrcation 
diagrams have since been discovered[22,24-28]. The 
theory required first one to determine the highest 
order s!ngularity of the equilibrium equation, say 
organizing center, from which we can predict the max- 
imal number of feasible solutions and the bifurcational 
feature around that point. The organizing center is 
characterized by the largest number k satisfying, 

a~+~f O f _  a ' f _  O"f =0, ~ #0 (5) 
f =  Ox Ox ~ Ox" 

The solution of Eq. (5) is called the singularity of codi- 
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mension k, around which one may expect up to k + 1 
multiple steady states. This theory, however, can pro-. 
vide us with the local feature of possible bifurcation 
diagrams, and does not seem to be useful for the ana-. 
lysis Qf more complex systems. For the global analysi,; 
of the system, one must need to incorporate with phy.. 
sical and mathematical rigor. More precise explanation 
on this topic is beyond the scope of this review, fo~ 
which one may consult the references above mentio- 
ned. 

1"he dynamic character of a system is determined 
by the multiplicity feature and properties of steady 
states, and it has been straightforward matter to deter- 
mine the stability property of steady state, the stability 
is in a physical sense the property that a disturbed 
state will return to the steady state if a small perturba- 
tion is given to that system, The stability of a steady 
state point can be determined more easily for the line- 
arized systems, and it has been a general concept that 
the linearized system can accurately describe the 
dynamic character of a nonlinear system in a sufficien- 
tly ,;mall neighborhood of a steady state point[40]. 

Let the linearized system of Eq. (1) be 

dx 
,dt Ax, A = [ O f , / O x , ] .  (6) 

Then the stability can be determined directly by the ei- 
genvalues of A, and the question of the stability r,5 
duces to one of investigating the nature of the roots of 
the characteristic equation of matrix A. To make one 
more comprehensive, we introduce the Liapunov me- 
thod. 

Let us consider the quadratic function 

v= (x, Bxl  (7) 

where B is symmetric matrix and (x, B x) denotes the 
scalar product of vectors x and B x. Since x is a func- 
tion of time, v is also a function of time and the time 
derivative of function (7) is 

d v  (dx/dt, B x ) +  (x, Bdx /d t )  (8) 
dt 

From the system Eq. (6) 

d~:= (Ax, B x ) +  (x, BAxl  (91) 
dt 

Since B is symmetric, the following rule holds, 

(x, By) = (Brx, y) ,10) 

arLd then the Eq. (9) becomes 

dv  d~ = !x, ( A r B + B A  Ix].  (11) 

Now, let C = A T B + B  A. Then C is a symmetric 
matrix and the Liapunov's asymmetric stability can be 
expressed as follows: If there exists a positive dell- 

nitive matrix B for any given symmetric negative defi- 
nite matrix C, then the origin is asymmetrically stable. 
The direct Liapunov method can calculate the region 
of stability by defining a region of phase plane inside 
which all state variables tend to the steady state for a 
stable system. However, the basic difficulty with the 
direct method is that there are no straightforward sche- 
mes for producing Liapunov functions. Even though 
we can find the Liapunov function for a linearized 
system, the region of stability may be too small. This 
method has been applied to the stability problems by 
some authors[12-14] with very limited success. 

The dynamic character of a system can be more 
complicated when we come across the bifurcation phe- 
nomena of undamped oscillatory motions. The critical 
point that a spiral sink (damped oscillation) loses its 
stability with continuously changing parameters is 
called the Hopf bifurcation point, and a limit cycle 
surrounding an equilibrium point emerges from that 
point[41]. The stability of a limit cycle can be deter- 
mined from the map by the concept of the contraction 
mapping in metric spaces; i.e., if the Jacobian matrix 
of the map Fdenoted in Eq. (2) at the fixed point has a 
modulus less than 1, the point is stable. 

IF '  {x'.~ ] <. 1 (12) 

Thus if IF'(x)l >1, the point is unstable and points near 
the fixed point move far away from it. The stability 
region can also be determined in the parameter space 
satis~'ing the condition(12). 

Consider a T-periodic solution x(t) with x(t)= x 
(t + T) in flow systems (1). Let A(t)=af/Ox be the T pe- 
riodic variational matrix on the closed orbit x(t). Then 
we have the following system as 

dx 
- - = A  ',t)x 113/ 
dt 

Now let X(t) be the matrix solution of Eq.(13) satisfying 

~--( = X, (0 (14) A ~X 

The eigenvalues of the monodromy matrix X("D, deri- 
ved from the condition of Eq.(]2) as the Jacobian mat- 
rix of the Poincare mapS36] in the periodic orbit, are 
called the Floquet multipliers and can determine the 
stability of a limit cycle. 

Since the periodic solution x(t) can only be found 
numerically, the Floquet multipliers are obtained 
numerically by integrating Eq. (14) following the clos- 
ed orbit of period T. Note that one of the Floquet multi- 
pliers is always + 1 if the solution is exactly located. If 
the remaining other multipliers lie inside the unit cir- 
cle, the periodic solution is stable. If any one of the 
multipliers leaves the unit circle, the periodic orbit 
loses its stability and a bifurcation takes place, in par- 

Korean J. Ch. E. (Vol. 6, No. 2) 



72 K.S. CHANG et al. 

ticular, if one of the multipliers leaves the unit circle 
through + 1, this corresponds to a turning point in the 
periodic branch (tangent or saddle-node bifurcation), 
and if one of the multipliers leaves the unit circle 
through - l ,  the periodic branch splits into a stable 
periodic solution of twice the period. This bifurcation 
is called flip or period doubling and often occu~rs 
repeatedly culminating in a chaotic motion. Another 
case is when a complex conjugate pair leaves the unit 
circle. In this case the periodic orbit bifurcates into a 
doubly periodic oscillation on an invariant toms. Ano- 
ther bifurcation type is associated with a homoclinic 
orbit for which the unstable manifold of a hyperbolic 
saddle point returns to itself coalescing with stable 
manifold with infinite period. When a parameter cro';- 
ses a bounda~ through such a point, there exists a 
famiIy of periodic orbits{36]. The unstable manifolds 
can cause various bifurcations when they collide with 
an attractor. Sudden changes from a periodic or cha- 
otic motion are mostly from this kind of collision. 

A periodic orbit, for instance, even though it is an 
attractor, is intrinsically a part of unstable manifold of 
a steady state, and thus the dimension of the unstable 
mardfold of limit cycle is one plus the number of nmlti- 
pliers that leaves the unit circle. In the following sec- 
tions, one may be encouraged to bear in mind those 
notions as the instability, bifurcations, manifolds, limit 
cycles, period doubling, chaos, etc., and must put 
them together in connection with the analytical sche- 
mes 

SYSTEMS AND DYNAMICS 

1. S i n g l e  r e a c t i o n  
The dynamic character of a CSTR (See Fig. 1) is us- 

ually represented as the mass and energy balances of 
all reacting species 

V dC d~- = XqCf4-q (1 - .;r q C -  VR (C, T) (15) 

v d T  hS ~ : A q  ( T f - T ) -  ~ (T-T~)  

(- AH)V 
-- - -  R (C, T)  (16) 

Uppal et a1.[20,21] have shown the complete analysis 
of bifurcation and dynamical behavior for their two di.. 
mensional model o[ CSTR with two first-order irrever.- 
s ine exothermic reaction A~---,A 2, and 

P, (C, T) =k~  ( -  R ~  )C (17) 

Taking Damk6h]er number iDa = K o r exp{-E/RT/)] 
and reactor residence time ( r =  V/qX) as parameters, 
they investigated all possible types of bifurcation diaL-- 
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Fig. 1, Schematic view of CSTR with recycle.  

Tc 

~rams and typical dynamic characters in the phase 
space. The bifurcation diagram of zero solution varies 
from simple sigmoid (See Fig. 2) to mushroom and 
isola (See Fig. 3) associated with the creation or extinc- 
tion of periodic branches. They classified the typical 
dynamic feature of their CSTR model into nine types 
(See Fig. 4) depending on the specific regions divided 
by various bifurcation points. 

Several interesting bifurcational features of two di- 
mensional model have been observed from the figu- 
res. The transitions A-B and E-F, for which a stable pe- 
riodic branch emerges from the critical point around 
the unstable focus, are the supercritical cases of Hopf 
bifurcation. Meanwhile, the transitions B-D, C-H, and 
G-J are called the subcritical Hopf bifurcations, for 
which an unstable periodic branch emerges from the 
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Fig. 2. Various types of bifurcation diagrams with 
Damkohler number [20]. 
--:  StabIe Steady State, --: Unstable Steady Stale, 
-. :Stable Limit Cycle,~176176 Unstable Limit Cycle 
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xL , 
x 

~r 
Fig. 3. Various types of bifurcation diagrams with 

res idence time [21]. 
-- :  Stable Steady State, ---: Unstable ,Steady State 
�9 ..: Stable Limit Cycle, ooo : Unstable Limit Cycle 

critical point around the stable focus. This kind of Hopf 
bifurcation point can be obtained by seeing when the 
Jacobian matrix of the linearized system hasa  pair of 
complex eigenvalues crossing the imaginary axis. The 
tangent or saddle-node bifurcation like the transition 
A-D is associated with two limit cycles, one stable and 
one unstable coalescing each other. This bifurcation 
point can be obtained when one of the Floquet multi- 
pliers leaves the unit circle through + 1, and corres- 
ponds to a turning point in the periodic branch. Ano- 
ther interesting bifurcation type is associated with the 
homoclinic orbit(transition E-H, C-F), in which a limit 
cycle, stable or unstable, generates or disappears mer- 
ging with the separatrix of a saddle point. Also one 
may observe the type of bifurcation that a stable limit 
cycle disappears suddenly by colliding with an un- 
stable limit cycle (transition ,I-C). This kind of bifurca- 
tions cannot be easily ascertained in mar, y cases since 
all the unstable periodic orbits are hardly perceiw~d, 
Some authors[42] use the word crises for this type of 

Abscissa-Concentralion Ordinate-Temperalure 

r ~  

! t ~ l , '  J 

Fig. 4. Possible phase diagrams in two-dimensional 
system [21]. 

collisions even though their cases are related with the 
chaotic attractors 
2. C o n s e c u t i v e  r e a c t i o n s  

The two dimensional autonomous model, how- 
ever, can not exhibit more complicated behavior than 
a simple periodic motion associated with those bifur- 
cations above mentioned. More complex dynamics 
may be expected in three or higher dimensional sys- 
tems. Using three dimensional model of a CSTR with 
two consecutive reactions Kahlert et a1.[29] found 
chaos for the first reaction exothermic and the second 
endothernfic. The presence of a well defined attractor, 
shaped as folding and stretching intricacy of strips, is 
an indication of the chaotic behavior of the system 
(See Fig. 5). This change proceeds by succession of pe- 
riod doubling bifurcations to some limit through a typi- 
cal Feigenbaum cascade of nonlinear transforma- 
tion[36,43], beyond which the attractor changes its 
character and becomes chaotic. The period doubling 
or flip bifurcation occurs when any of the Floquet mul- 

Fig. 5. Chaotic attractor of the consecutive reaction 
system [29]. 
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Fig. 6. Bifurcation pattern with parameter ~(= ItS/ 
qpCp) [30]. 

tipliers leaves the unit circle through -1. Then the pe- 
riodic solution becomes unstable and the unstable 
manifold forms a Mbbius band such as can be obtai- 
ned from an open strip by twisting half turn and con- 
necting both ends. The trajectories on the surface of 
the band tend to the boundaries and form a stable cy- 
cle with the period almost twice the original periodic 
orbit. 

Si~lilar behavior has been found by Jorgensen and 
Aris[30], who studies the same reacting systems with 
both exothermic reactions. For this systems, some 
more complex dynamic behavior has been identified 
in the bifurcation pattern of the system. The various 
types of dynamic regimes is shown in Fig. (5 with the 
bifurcation parameter 6"(= h S/q p CR). Regime A cor- 
responds to the case where a stable limit cycle is pre- 
sent with unstable focus. Regime B corresponds to the 
case where period doubling occurs up to the emer- 
gence of a chaotic regime C. Regimes D, E, and F cor- 
respond to interlude situations separating the occur- 
rence of a chaotic behavior, where periodic solutions 
and chaos seem to coexist. As can be seen in the 
figure, the regimes are getting smaller as the bifurca- 
tion propagates, and thus at this point the numerical 
accuracy of the integration technique becomes critical. 
For better understanding of the system behavior one 
may need some significant physical and theoretical in- 
sight. Some of the periodic solutions characteristic of 
regime B and C are shown in Fig. 7. 
3. Thermal capacitance effect 

Now we may consider the effect of the thermal ca- 
pacitance of the reactor with exothermic irreversible 

8 (a) 

~ U2 

UI 

8 (c) 

0 
(b) 

U2 

U:[ 

8 
(d) 

x 

Fig. 7. Sequence of period doubling {a,b,c) and cha- 
otic trajectory (d) [30]. 

reaction A1--,A 2. Then the reactor model (15,16) may 
need energy balance equation for the solid mass of the 
reactor, 

v d T ~ _ h ~ S , ~  
~ p,,,C .~,,., (T - T,,,) (18) 

and the term on the right-hand side must be added to 
~he equation (16) with negative sign. This obviously 
does not affect the zero solution of the system. How- 
ever, in dynamic character and stability of steady 
states, this was known to affect greatly. Planeaux and 
Jensen[44] made a thorough analysis for this effec.t us- 
ing normal form theory[45]. They found some new 
dynamical behaviors not previously observed in the 
:single reaction CSTR problem, including periodic bi- 
furcations to invariant torus and an isolated branch of 
periodic solutions which contains no Hopf bifurcation 
points (See Fig. 8). 

The periodic bifurcation to invariant torus can be 
noticed by the Floquet multipliers that the complex 
conjugated pair leaves the unit circle. In this case the 
system can show doubly periodic oscillations just like 
the motion on an invariant torus. Figure 9 shows three 
dimensional quasiperiodic oscillations seemingly dou- 
bly periodic. Though it was not shown whether the 
torus propagates further bifurcations displaying ergodi- 
city, the tori branch is thought to extinct by colliding 
with the separatrix of the saddle type equilibrium 
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point bringing about a complex homoclinic explosion. 
It is very interesting to observe the dynamic motion on 
the invariant toms near homoclinic orbit, a tortuously 
tangled feature of manifolds as Silikov[46] has sug- 
gested. At this moment, however, we may be satisfied 
with the fact that three dimensional system, obtained 
by adding the extraneous thermal capacitance effect 
without changing the equilibrium states of the system, 
can show different variety of dynamical behavior. 
4. Forc ing  ef fect  

The effect of an external periodic forcing with the 
natural frequencies of chemically reacting systems 
gives rise to some interesting dynamic features. The 
inte~'est in the periodic operation of chemical reactors 
was first surged in the late 1960s and early 1970s with 
the idea that the periodically operated processes might 
produce advantages over steady state processes in 
terms of mean conversion rate[47-49], and the subject 
is reviving in recent years. 

Now we put into the system equations, [eqs. (15) 
and (16)], the forcing that the coolant temperature is 
varied according to 

T = a  sin wt +T~  (1'~) 

0.78" 
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0.76 
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0.74 

>,~ 0.73 

0.72- 

0.71- 

0.70 
0 

4'o go t;0 26o 
T ~ 

t 1 i ! 

4 80 120 160 200 T 
(b) 

Fig. 9. Various quasbperiodic oscillations [44]. 

The forcing of nonlinear oscillators then makes the 
system nonautonomous and can be considered to in- 
crease the dimension of the autonomous system by 
one with the parametric variation of the amplitude and 
the frequency in coolant temperature_ Mankin and 
Hudson[50] have shown by putting the forcing ampli- 
tude change on the basic state of periodic oscillation 
that the reactor state can change from quasi-periodic to 
chaos through a sequence of period doubling bifurca- 
tions. In their observation for much smaller forcing 
amplitude than the autonomous(natural) oscillations of 
the reactor, there appeared also multiple oscillatory 
states where both states are either periodic oJ ~ one 
periodic and the other chaotic. This would be a very 
interesting feature that can be deduced from the idea 
that there cannot exist only static point in a perio- 
dically forced system and the steady states in autono- 
mous system begin oscillations when periodic forcing 
is given to the system. 

Kevrekidis et a1.[51] have studied the same system 
in some detail with the variation of the forcing ampli- 
tude and frequency ratios with respect to the natural 
oscillations of the autonomous system. For the con- 
venience of visualization they used the stroboscopic 
mapping that carl produce the trajectory at every pe- 
riod of time in the forcing term, so that the closed or- 
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Fig. I0. (a) Stroboscopic view of transient starting 
(b) Phase plane projection of the oscUlations 
(c) Transient response with time [5 I]. 

bits are reduced to a finite number of discrete points 
and the space filling trajectories appear closed curves. 
They also used the Floquet multipliers to predict the 
loss of stability by observing whether any multiplier 
crosses the unit circle in the complex plane. One inter- 
esting phenomenon they typically observed is entrain- 
ment that when the frequency ratio of forcing to natu- 
ral is close to any rational number (p/q) the period of 

response oscillation becomes an integer multiple of 
the forcing period. Therefore, in the resonance region 
(horn-like) with its tip at oJ/o., o = p /q  one can find an 
attractor of period p(actually p times the period of forc- 
ing) and this oscillatory motion appears it~ the mapp- 
ing as p discrete points with q loops in their phase 
space of the forced system. 

Figure 10 shows the stroboscopic view of transient 
oscillations at amplitude ratio a ,= 0.5 and r 
1.498 close to the unstable focus of period I(F1) 
gradually approaching to the stable node of period 3 
(N3) and two loops as in the 3/2 resonance. Figure 11 
illustrates the sequential events of otions as the forc- 
ing frequency moves across 3/2 resonance at constant 
amplitude ratio (a~ = 0.5). At A there exists a quasi- 
periodic attractor appearing as an invariant circle with 
stroboscopic mapping. At B the onset of entrainment 
as ,;hown in Figure 11, three saddle-node points ap- 
pear as periodic points on the invariant circle. Cross- 
ing through the horn as m/~0 moves, the saddles and 
nodes move apart from each other in C and recombine 
at the other entrainment boundary D with different 
pairing. Meanwhile, the arrows indicating the rotation 
orientation of a phase point change from B on the in- 
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Fig. I I. One-parameter cut through 3/2  resonance 
horn with a r = 0.5 and bifurcation diagram 
on invariant torus [51]. 

a 

b 

x 

Fig. 12. Perspective view of the three reactions B, C 
and D of Figure I I with letters showing cor- 
responding points in Figure II [52]. 

variant circle, and at E quasi-periodicity appear again. 
The perspective view of the three regions B, C and D of 
Figure 1 1 is shown in Figure 12. Further increase in 
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forcing amplitude is known to lead the motion in the 
resonance horn to bifurcate to a chaotic motion with- 
out sequential period doublings. 

Similar behaviors were found in other chemical 
reaction systems such as homogeneous autocatalytic 
reaction or bimolecular surface reaction[52,53]. The 
response patterns of periodically forced systems in- 
clude the interplay between entrainment and quasi-pe- 
riodicity for small and intermediate forcing amplitude 
or chaotic motions for some specific regions. One may 
note here that the forced system can be thought only a 
special case of a cascade system and thus the 
understanding of this system helps to elucidate the 
coupling mechanisms and interaction between reac- 
tors. 
5. Coupled  CSTRs 

The coupled reactor system is an extension of sin- 
gle reactor system such that the output of the first reac- 
tor acts as a forcing to the second. Varma[54] has 
shown in the general case of N CSTRs in series that 
there can be up to 2N+L1 steady states and no more 

than N + 1 can be stable. The stability of a cascade sys- 
tem may be determined by the product of the Jaco- 
bians of each reactor. However, this does not hold if 
any counter-current flow is present. For a two CSTRs 
system with recirculation, the region of existence of 
multiple steady states and stability were investigated 
through the analysis of the eigenvalues of the Jaco- 
bians[55]. Some case studies al:o have been done in- 
cluding the test for the direction of bifurcation of limit 
cycles[56]. Mankin and Hudson[57], by coupling two 
CSTRs with heat and mass transfer, have found cha- 
otic motions through period doubling bifurcations with 
the increase of coupling strength. 

Typically to investigate the coupled effect of two 
CSTRs, Chang and Aris[58] devised counter currently 
cooled CSTRs in which a first-order reversible exother- 
mic reaction takes place. This system may be worthy 
of attention in relation to the optimal design o'F coupled 
CSTRs to obtain a better productivity. Taking into ac- 
count the coolant dynamics, the system can be repre- 
sented as a set of six ordinary differential equations. In 
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this high dimensional nonlinear system, the entangle- 
ment of input and output between the two reactors 
leads to chaotic behavior through sequential period 
doubling bifurcations. As the control parameler chan- 
ges beyond the limit point of T'-cycles, the system ex- 
hibits the universal dynamics of alternating periodic- 
chaotic sequences with k.2~-cycles for ever 3, natural 
number k. Such changes from chaotic motior may re- 
sult from the collision of the chaotic attractor and a co- 
existing unstable fixed point or periodic orbit: they 
have been called crises [42]. Such crises may result in 
the sudden destructior~ of the chaotic attractor and its 
basin of attraction, or cause a nonchaotic attractor and 
ultima~:ely to replace it. During the sequences of k.2 ~'- 
cycles found in this system, k takes from 1 through 7 
in the regime. Typically period 3T solution and chaotic 
3 x 2~-cycles are shown in Figure 13 and 14, respec- 
tively. Period 3T solutions, in a certain sense, can be 
regarded as an indicator of chaotic dynamics in mapp- 
ing or flow. By the theorems[59,60] for one dimen- 

sional maps, it is said that if any continuous map of a 
segment onto itself has a cycle of period 3T, then it can 
have a cycle of any period. Though these do not ca~rry 
over to higher dimensions, it is interesting to note 
when they arise. Concerning the universal dynamics 
of periodic-chaotic sequences, the common features 
can be noted as that the sequences are finite; i.e., suc- 
cessive states exist for comparable ranges in parameter 
space, and the route by which a period state becomes 
chaotic is in most cases through period-doubling bifur- 
cations. 

CONCLUDING REMARKS 

We have discussed the various chemical reaction 
systems involved with a CSTR or CSTRs for some qua- 
litative aspects. Chemical reactions, depending on the 
physical and chemical properties of the reacting spe- 
cies and mechanisms, can be varied from quite simple 
to complex structure of reaction steps. Excluded from 
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this review are some complex reaction systems such as 
Belousov-Zhabotinskii well known for its periodic and 
aperiodic behavior of dynamics[32,35,36,61,70] and 
chain reactions of polymerization[62-66]. Regarding 
biochemical systems, the dynamic character of the 
predator-prey species growing in a chemostat is also 
worthy of attention[67,68]. Beside those reaction 
systems, there are various incorporation of chemical 
reaction steps revealing oscillatory motions (periodic 
or aperiodic), which we have not described in detail 
due to the limitation of space. Considering the whole 
contexts of substance, we find that this subiect has not 
been completely put in order to resolve the whole 
dynamic aspects of reaction systems, and there is plen- 
ty of room for experimental studies. Engineers must be 
prepared to encounter chaos as well as varieties of 
phenomena that the theoreticians have been incor- 
porated into the structure of the subject. Considering 
the aperiodic or chaotic motions of systems, it is quite 
a delicate matter that just a nearby point can be the fu- 
ture state (or could be a past state) far away from the 
present time. We finally hope that this review may 
help the reader surveying the whole works of this resr 
arch field. In addition, the works of Razon and Sch- 
mitz[69] and Hudson and his colleagues[32,70-73] 
may deserve special mention as introducing the most 
thorough treatment, using both experiment and thr 
ory, of chaos in the context of chemical reactors. 
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