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Almtract--The conditions marking the onset of natural convection due to buoyant forces are in- 
vestigated in the thermal entrance region of horizontal plane Couette flow. The base temperature profile pro- 
duced by pure forced convection is approximated as a fourth order polynomial using the integral method. 
With this approximate base-temperature profile stability criteria are obtained by means of the local stability 
analysis, its modification, and the natural-amplification analysis. The last one takes into consideration the ax- 
ial amplification rate of disturbances at the onset of thermal instability. This new concept is tested here for the 
first time. The consideration of axial amplification of disturbances makes the system more stable. It is shown 
that the results of the natural-amplification analysis agree well with the existing experimental data. 

INTRODUCTION 

When a horizontal layer of fluid is heated from below 
with a high heating rate, the system becomes unstable 
and linally natural convection sets in. in the laminar 
forced-convection flow over a heated flat plate the occur- 
rence of longitudinal vortex rolls is well known. Once 
such a secondary flow appears, the heat transfer 
characteristics based on the primary forced convection 
are no longer applicable. Thus, the determination of 
critical conditions of the onset of natural convection has 
been of great interest from both theoretical and practical 
viewpoints. 

Irk plane Couette flow Choi[1], and Davis and Choi[2] 
suggested the modified local stability analysis that for 
large Prandtl numbers temperature disturbances at the 
axial position of the onset of natural convection are con- 
lined within the local thermal boundary layer. Using the 
Gale~ckin method, they solved this extended Rayleigh- 
B~nard problem. They concluded that their theory pro- 
duces the most reasonable stability criteria in com- 
parison with the experimental data for water. Recently, 
Choi and Kim [3] transformed the base nonlinear 
temperature profile to the approximate one in a power 
form and used the rapidly converging power-series solu- 
tion technique in plane Couette flow. Then, they critical- 
ly re-examined the results of Davis and Choi [2]. 

in the present study the onset of buoyancy-driven 
convection in the plane Couette flow over a uniformly 
heated horizontal flat plate is analysed by means of 

linear stability theory. The base temperature profile is 
approximated as a fourth order polynomial, by using the 
integral method. With this approximate base- 
temperature profile, the stability condition will be found 
by means of the local stability analysis, its modificaiton, 
and the natural-amplification analysis. The last one 
takes into consideration the axial rate of change of 
disturbances. This new concept is introduced here for 
the first time. Therefore, the purpose of this study is to 
critically examine various concepts in order to test their 
validity. 

METHOD OF ANALYSIS 

Base Temperature 
The system considered here is the thermal entrance 

region of horizontal plane Couette flow of an incom- 
pressible Newtonian fluid with the free-right boun- 
daries. The fluid is heated with constant heat flux 
through the bottom plate. A schematic diagram of the 
flow system is shown in Figure. 1. See Nomenclature for 
the notations of all variables and parameters that appear 
in this paper. 

it is essential in the stability analysis to describe the 
base temperature profile caused by both conduction and 
pure forced convection. The base temperature profile is 
obtained by solving the following partical differential 
equation: 

00o a~Oo 
Zffx--x = ~ z '  (1) 
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Fig. 1. S c h e m a t i c  Diagram of  the S y s t e m  

0 o - 0  for b ' ; z ~ l  (9) 
where b '= (15x) ' / '  

In Figure 2 a comparison is made between the exact 
base temperature profile and the approximate ones at 
x=0.05. It is shown that the base temperature profile 
obtained by the integral method agrees very well with 
the exact one on the whole. The base temperature pro- 
file from the integral method is almost exact before the 
thermal boundary layer approaches the upper surface 
(x < 0.06). 

x=O. 05 

with the boundary conditions: 
Oo (0, z) = Oo (x, 1) = 0 (2) 

000 (x, 0) = - - 1  (3) 
Oz 

The above equation is valid, wherein the Peclet number 
is larger than 100. 

A Graetz-type solution, based on the method of the 
separation of variables, is obtained as follows: 

8o=1 z - - ~ ,  K . R . ( z )  S.(x)  (4) 
n=l 

where K n -  3 ' /3 
2 7/3 j2 2 F (~.),~. , / ,  (~r~.)  

R n ( Z ) = Z  1/2 J , / ,  ( - ~ A n Z  3/2) 

/ , ]  \ 
s o  (x) = exp 

o 

,/3 (~ -X . )=  0 J 

At small axial positions (say x<0.05) this solution 
converges very slowly and thus the following approx- 
imation (Leveque type) based on the fluid having an in- 
finite depth and the similarity variable q =z/(4.5x) tr3 is 
known to be more useful: 

2 0o (4" 5x) l/3 [ e - '~  -- r /F (~ ,  ~7 3)] (5) 
r (2) 

The derivation of Equations (1) to (5) are described in 
the work of Choi[l], and Davis and Choir2]. 

Choi and Kim[3] approximated the base temperature 
profile by the following form: 

0o=0o, w (1 z/b') 'r/~ for 0 ~z~b"  (6) 
Oo=0 for 6 ~ z ~ l  (7) 

They showed that the above simulated base 
temperature profile represents the system well. 

But the simulated base temperature profile is still 
complicated in mathematical treatment for the stability 
analysis. Therefore in the present study the base 
temperature profile is approximated as a fourth order 
polynomial using the integral method which was 
developed by yon Kfirmfin and Pohlhausen. According 
to their procedure the following equations are derived: 

Oo=8"/2--z+z3/b "2 z4/2~ for 0 ~ z ~ 6  (8) 

1.0 
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Comparison of  the E x a c t  B a s e  Tempera-  
ture Prof i le  and the Approximate  Ones  
a t  x - 0 . 0 5  

Stabi l i ty  A n a l y s i s  
At the onset position of natural convection the pro- 

per governing equations are constructed from the equa- 
tions of continuity, motion, and energy under the 
Boussinesq approximation. To perform the stability 
analysis, we apply the usual method of introducing in- 
finitesimal perturbations on the undisturbed com- 
ponents. 

On the basis of the conventional stability theory, the 
following assumptions are made: 

1. The principle of exchange of stabilities holds 
locally at the axial position marking the onset of natural 
convection. Thus, the onset of natural convection will 
be marked by a regular 2-dimensional vortex roll with a 
unique standing wave number 'a' at each axial positon. 

2. The Prandtl number is infinite, it is believed 
that this simplification provides at least a qualitatively 
correct desctiption of fluidus in a range Pr>~ 7[4]. 

Neglecting the squares and products of the velocity 
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and temperature perturbations by the linear stability 
theory, the following linearized perturbation equations 
are obtained [1,2]: 

`92 
(~9-~---aZ) 'w* a2Ra 0 " =  0 (10) 

[ ~ : z a ~ _ _ ( ~ _ _ a , ) ]  ~ . ,  . a O o  v T w  ~ z z  = 0  (11) 

: w*(x, 0 )=w*(x ,  1 ) = ~ z * ( X ,  0)=  B. C. 's  

~ z '  (• 1) =0 

30"  
and 0* (x, 1) = ~ z z  (x, 0) = 0 (12) 

Local  Stabi l i ty  Analysfs  
~8o.  ~nce ~ - l s  a function of x as well as z, the variables 

z and x in Equations (10) and (11) may not be separable. 
In the local stability analysis [1,2] the nonlinear base- 
temperature profile is fixed at each axial position so that 
,90o. ~ i  oecomes a function of z only and x is considered as 

a parameter, l t is then possible to separate the variables 
z and x in the differential Equations (10) and (11) so that 
the disturbances can be expressed as the following rela- 
tionship: 

(w* (• ~), o* (x, z.)~ = ~-~ (~), g(~)~ exp(,~, x) (t3) 
where d is the spatial growth rate. Then, from the 
nuetral stability concept d can be set to be zero. Thus 
Equations (10) and (11) can be written as follows: 

d '  w A a '  

d '  - ( ~ - + -  a ' )  ~ -  ^ ,900 v ~ w ~  z = 0 (15) 

Substituting Equations (8) and (9), and eliminating 
from the system of Equations (14) and (15), we can refor- 
mulate the perturbation equations as follows: 
[ ( D ' - a  *~) ~+a* '  Ra* (1--3 ~"+2~")~ w~ = 0 

tor 0 ~ ' ~  1 (16) 
(D'--a*')+w~+ = 0  for 1 < ~ ' < 1 / 8  (17) 

The appropriate boundary conditions are: 
~v, ,=D~v~=D(D~--a*~)~v~=0 at ~ ' = 0  (18) 
w~,=D w b = ( D ~ - - a * Z ) ~ , = 0  at ~ = 1 / 6 '  (19) 

At ~" = 1, the conditions can be obtained from the 
assumption that disturbance velocities, stresses, tem- 
perature, and heat transfer are all continuous: 

A ,,~ n A w~--w~=D wa--DnGb = 0 (n=1,2 ,3 ,  4,5) 
at ~" = 1 (20) 

A general solution of the above problem can be con-  
s tructed in the form: 

~v. =Y], Ht f'" (~') (21) 
l = o  

R'~,= (Hi + H ,  ~ + H ,  ~'*)e -~'* r  

~" ~ e (22) 

where H,(i=0,1,2 . . . . . .  I l) are arbitrary constants and 

g0(~) are rapidly convergent power series similar to 
those developed by Sparrow et al. [5] as follows: 

f+(~) = ~  b~> ~n (23) 
n - 0  

where b~l~ =b"~ = b!!~ = 0 

b~ ~=b'm for n = 0 , 1 , - - . , 5  

b~l~ = 3 a .  ~ (n--2)! b ~  _ 3 a .  + (n-4)~b~i,_ 4 ~, 
n! n! 

a.+ (n--6) [ ,:i, (n--6) t 
�9 bn s --a*zRa* n! n! 

(b~L+ b "1 2b <i/ --3 n - s +  n-9) for n-->6 
The constants H i are chosen to satisfy the twelve 

boundary conditions (Equations (18) to (20)). From the 
boundary conditions at ~" = 0, we obtain: 

H a* ' Ho=H,  = 0 and s =10  H3 (24) 

From the above relationships (21) to (24) and the re- 
maining boundary conditions the characteristic equa- 
tions in the form of a(9 x 9)square matrix are obtained. 
For a nontrivial solution, its determinant must vanish. 
Thus, for a given x the minimum Ra is obtained by 
means of a plot of Ra vs. 'a' to satisfy the above relation- 
ship. That minimum value of Ra is the critical Rayleigh 
number and the corresponding 'a' is the critical wave 
number. 
Modif ied  Local  Stabi l i ty  A n a l y s i s  

There is some experimental indication that at the 
onset of thermal convection the disturbances are confin- 
ed to a thin region near the heated surface. Although the 
velocity disturbances are controlled mainly by the bOun- 
dary conditions at the fixed and free surfaces, it seems 
reasonable te assume that temperature disturbances are 
confined to the thermal boundary layer produced by the 
pure forced convection. So Choi [1], and Davis and Choi 
[2] suggested the modified local stability analysis using 
this premise. 

Since in the modified local stability analysis 
temperature disturbances vanish outside the thermal 
boundary layer, the equations can be reformulated as 
follows: 

[ (D2- -a*2)~+a  .2 Ra*(1--3 ~ '+2~ '3 )~  g ~ =  0 
for 0 ~ ' ~  1 

(D: a * ' ) 2 ~ + -  0 for 1 ~ "  ~1/5" (26) 
+ , .x 

B.C.  s : w : = D ~ ' , = D ( D '  a*:) ' & , =  0 
at ~'=0 (27) 

" = D ~ v b = 0  at ~ '=l/b" (28) "*Vb 

~v,, --g-~, = D "~ : - -Dr '~ ' , ,=0  (n= l ,  2, 3, 4) 
at ~" = 1 (29) 

Following the same procedure in the local stability 
analysis as is described above, the critical conditions can 
be obtained. 
Na tura l .Ampl i f i ca t ion  A n a l y s i s  

In the local stability analysis and its modification, the 
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axial rate of change of the temperature disturbances in 
Equation(11) was neglected by the neutral stability con- 
cept. But it is in doubt whether the disturbances at the 
onset of thermal convection begin to grow, once the 
thermal instability has been generated, or not, 
Therefore, the axial amplification rate of disturbances at 
the onset of thermal instability is considered. Here, this 
concept is called "natural-amplification analysis''. 
Nobody has ever introduced that concept. For lhe con- 
venience of mathematical manipulation, the similarity 
variable is employed in the following form: 

g - z / 6 ,  and 6"- (15x)'7~ (30) 

10" .  ",, ........ l ' ' ''""l ........ 

', O Choi's Data 
,~ , ",, -- Galerkin 
~= \ ,  o o ~ - - -Simulated Base Temp. 

Z N ~ . _  ",o~ - -  Integral Method 
\ \  

>-. 

10' 

~ O  O 

10~ i0 -~ 10 -~ 10-'  10 ~ 
x~,, Critical Axial Position 

Fig .  3. Cr i t ica l  Axial Position versus  Cr i t ica l  

Rayleigh Number for the Modified Local 

S t a b i l i t y  Analysis 

Here ~" is the one from the integral method. Then, by 
the chain rule the axial rate of change is obtained as 
follows: 

Ox 0~" Ox 3x O~" 

Assuming that the temperature disturbances be con- 
fined to the thermal boundary layer, the equations can 
be formulated as follows: 

I10~'ZD(D 2- a*Z)2+(D 2 a * ' ) 3 +  

a*2Ra*(1--3~'2+2~'a))  w*=:0  for 0 ~ ' ~ 1  (32) 

(D 2 a * ' ) ' w * =  0 for 1 ~ { ' ~ I / 6 .  (33} 

B. C. ' s : w * = D w *  = D  ( D ' - - a * ' ) ' w ~ * =  0 

at ~" = 0 (34) 

W ' b =  D ' w b *  = 0 a t  ~=  1/8 (35) 
w~ ~b - -D  w~--D w~ = 0  (n=1 ,2 ,3 ,4 )  

at ~'= I (.36) 
By following the same procedure in the previous sec- 

tions the critical conditions can be obtained. 

March, 1984 

1 0  . . . . . . . .  , " ' ' "  . . . . . .  , . . . . .  " j  

o-: 1 ~, 

",~ �9 Choi's Data 
'~ -- Galerkin 

- Simulated Base Temp. 
- -  Integral Method 

1 , , , ~ , , , , ~  , , , , , , l , l  , J i i 1 , 1  

103 10" 10 s 106 
Rac, Critical Rayleigh Number 

Fig.  4. Critical Rayleigh Number versus  Crit ical  

Wave Number for the Modified Local 

S tab i l i ty  Analys i s  

RESULTS AND DISCUSSION 

In order to test the validity of the approximate base- 
temperature profile obtained by the integral method, we 
present Figure 3 which shows the relationship between 
the critical Rayleigh number and the critical axial posi- 
tion for the modified local stability analysis. The ex- 
perimental points were obtained with water having Pr in 
the range from 6 to8.  The curve "Galerkin" represents 
the one from the Galerkin method. All these ex- 
periments and Galerkin procedures are described in the 

�9 Choi's Data 

~ ~ - -  Natural-Amplification 
.~ \ ~ o ~176176 - Modified Local 
Z . \  ~ _  o ~ ..... Local 

10~ -- .  ~176 

Cd o 

"- 10" e,.) 

"--..jaN:" ca o 

- - . . . . ' . . ~ >  ~ ~ 

"':~ % 
0 0  

i , , , .... | . . ...... I . . . .  ..*, 

103 0-3 10-2 10-' 10 ~ 

Xc, Critical Axial Position 
Fig. 5. Cr i t ica l  Axial Posit ion versus  Cri t ical  

Rayleigh Number for the Local Stabili-  

ty Analys i s ,  i ts  Modification, and the 

Natural- Amplification Analysis  
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work of Choi [1], and Davis and Choi [2]. The curve 
"Simulated Base Temp ." represents the one obtained by 
Choi and Kim[3]. The curve "Integral Method" indicates 
the one using the approximate base-temperature profile 
obtained by the integral method. Figure 4 shows the 
relationship between the critical wave number and the 
critical Rayleigh number for the modified local stability 
analysis. 

t O ,  . . . . . . . .  l . . . . . . . .  I . . . . . . . .  
0 Choi's Data / . ~  
- -  Natural-Amplification Q / / - /  
- - Modified Local ~ , ~ ' "  

i i O  . ~  E --Lo0al <> 

Z 5 ~ o~,.-- 

Q) 

d 

1 , , , J I | J l ]  i f i 1 1 , | 1 ]  i i i I , . , ,  

10 3 10  4 10  s 1 0 "  

Rac, Critical Rayleigh Number 
Fig. 6. Critical Rayleigh Number versus Crit ical  

Wave Number for the Local Stabi l i ty  A- 
nalysis ,  its Modification, and the Natur- 

al- Amplification Analysis 

[n Figure 3 the curve "Galerkin" locates among the 
experimental points. It is reasonable for the critical 
Rayleigh numbers to fall below those in experiments, 
for the enough amplification of disturbances to be 
observed is required. In Figure 4 the curve "Galerkin" 
deviates so much from the data points. It seems that the 
deviation of the curve "Galerkin" is due to the inade- 
quacy of the Galerkin scheme. In Figure 3 the curve 
"Simulated Base Temp." gives a little higher values of 
Ra, than the curve "Integral Method". The difference 
between thsese two curves seems to be caused by the 
fact that the simulated base temperature profile brings 
larger deviation from the exact values as is shown in 
Figure 2. 

With the base temperature profile obtained by the in- 
tegral method, in Figure 5 the critical Rayleigh number 
with respect to the critical axial position is shown and in 
Figure 6 the critical Rayleigh number versus the critical 
wave number for the local stability analysis, its 
modification, and the natural-amplification analysis. 

From Figures 5 and 6, the general trend of the curve 
"Local" does not agree well with that of the ex- 
periments. Based on these results, it seems clear that the 
local stability analysis brings too conservative stability 
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criteria. The curve "Natural-Amplification" gives higher 
values of the critical Rayleigh number than the curve 
"Modified Local" as shown in Figure 5, and it locates 
just below the experimental points. So it is found that 
the amplification of disturbances (the heat transfer in the 
x-direction) makes the system more stable. 

In Figures 5 and 6, it is shown that xr vs. Ra c or Rar 
vs, a c becomes linear on logarithmic coordinates as the 
onset position approaches the leading edge of heating 
section. Based on the modified local stability analysis 
and the natural-amplification analysis, the following 
asymptotic relationships are obtained for small xr 
(Modified Local Stability Analysis) 
Rac =24. 18x~ ' / s  and a t - 0 .  2798 Rar ~/' ; 

xo <10 -2 (37) 
(Natural-Amplification Analysis) 

Rat=48.  60xg '/~ and ac =0. 3071 RaU'  
; x~ <10- '  (38) 

In Figures 7 and 8 the distributions of temperature 
and velocity disturbances are shown for the modified 
local stability analysis and the natural-amplification 
analysis. The points of the maximum magnitude of 
disturbances of the natural-amplification analysis locate 
at the lower axial position than those of the modified 
local analysis. The distribution of temperature distur- 
bances of the natural-amplification analysis seems more 
natural than that of the modified local stability analysis. 
Therefore, it is concluded that as of now the natural- 
amplification analysis generates the most preferred 
stability criteria. And the modified local stability analysis 
could give good approximate solutions, although the 
local stability analysis produces unreasonable results in 
the thermal entrance region. Since we could get the 
most reasonable results by the natural-amplification 
analysis, the other existing stability analyses must be re- 
examined. 

1.0 , ~  

~ ---Modified Local 

O5 

1.0 2.0 

Fig. 7. Distribution of Temperature Disturbances 

for the Modified Local Stability Analysis 
and the Natural- Amplification Analysis  
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CONCLUSIONS 

The onset of thermal instability in plane Couette flow 
heated from below with constant heat flux has been 
analysed. The present results are summarized as: 

(a) The local stability analysis produces too conser- 
vative results in the thermal entrance region. 

(b) The following asymptotic relationships of the 
critical conditions are obtained: 
(Modified Local Stability Analysis) 

Ra~'=24. 18xg ~/s and a~=0. 2798 Ra~/4 ; x~ <10 -~ 
(Natural-Amplification Analysis) 

Ra~ =-48.60x~ ~/~ and ac =0. 3071 Ra~/ '  ; xr <10 
(c) The natural-amplification analysis, which in- 

eludes the axial amplification of disturbances, 
seems more reasonable than the conventional 
stability analyses. 
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NOMENCLATURE 

a: wave number 
a* : modified wave number [= a b" ] 
b,0): ccefficient defined in Equation (23) 
d: liquid-layer thickness (m) 
l(i): z-dependent series function in Equation (23) 
g: gravitational acceleration constant (nYsec 2) 
Hi: constants in Equations (21) and (22) 
Jm(~): Bessel function of order m 
K,: eigen constant in Equation (4) 

Pe: Peclet number [= < u> d/a  ] 
Pr: Prandtl number [ = v/a ] 
qw: wall heat flux (J/m2-sec) 
Ro: z-dependent eigenfunction in Equation (4) 
Ra: Rayleigh number [ = g,8 qwd4/a/x/v ] 
Ra*: modified Rayleigh number [ = Ra b "4] 
Sn: x-dependent function defined in Equation (4) 
T: temperature(K) 
Ti: inlet temperature (K) 
t: time (sec) 
U,V,W: velocities in rectangular coordinates (m k, ec) 
u,v w: dimensionless velocities [ = J~u (JI~-e,V,W)] 
fi,~,~: z-dependent perturbations in Equation (13) 
X,Y,X: positions in rectangular coordinates (m) 
x,y,z: dimensionless positions [ = - ~  (-~e, Y, Z)] 

Let te rs  
a : thermal diffusivities (m2/sec) 
,8 : thermal expansion coefficient (l/K) 
F(~" ): Gamma function 
F(a,b): incomplete Gamma function 
b" : effective thermal thickness 

~j: Kronecker delta 
~" : dimensionless reduced vertical distance [ =z/b" ] 
7/ : similarity variable in Equation (5) 
O: dimensionless temperature [= x(T-T~/qw/d ] 
x : thermal conductivity(J/m-sec-K) 
A n: eigen values in Equation (4) 
v : kinematic viscosity (m2/sec) 
F : dimensionless spatial growth rate 
S u b s c r i p t s  
a: refers to the disturbance within the thermal boundary 

layer 
b: refers to the disturbance outside the thermal bound- 

ary layer 
c: refers to the critical state 
w: refers to the lower boundary 
0: refers to the unperturbed state 
Superscripts 
* refers to x-and z-dependent perturbations for 
B r a c k e t s  
< > refers to average 

O,V,W 
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