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A b s t r a c t - A  relatively simple mathematical derivation is employed to obtain the relationship be- 
tween the solute concentrations and their velocities along the column. These equations are used 
to calculate numerically the breakthrough curves and delineate the elution behaviors of competing 
solutes in the chromatographic column. A hodograph constructed from the derived equations using 
published data for the coupled adsorption isotherms is adopted to visualize the concepts of the shock 
and the diffusive waves. The resulting elution curves at different column lengths show a successful 
application of the scaling relationship between the column length and feed period to the nonlinear 
coupled system. 

INTRODUCTION 

Chromatography has become a method of choice 
where a high resolution is required in the purification 
process of biochemical products. Despite its efficiency 
in separating hard-to-separate mixtures, the scale-up 
of column chromatographic processes has not been 
successful because of its inherent complexity of the 
separation dynamics. However, there have been sev- 
eral attempts to relate the separation behavior in col- 
umns of different sizes. Wankat and Koo [1] exami- 
ned the rules for scaling column diameter, length and 

operating conditions in an uncoupled chromatographic 
system. Elution chromatography has mostly been used 
to separate two or more solutes of similar physico- 
chemical properties. Consequently, the solutes com- 
pete for the limiting binding sites of adsorbent, and 
the adsorption becomes coupled. In other words, the 
isotherms are the functions of all solutes present in 
the fluid phase. Industrial processes often deal with 
large amounts of solutes, which belong to the range 
of nonlinearity. Rhee, Aris and Amundson [2] and 
Helfferich and Klein [3] described mathematically the 
chromatographic dynamics, but their analysis was con- 
fined to the Langmuir isotherms and a constant sepa- 
ration factor, respectively. In this study, a relatively 
simple mathematical derivation is employed to obtain 
the relationship between the solute concentrations and 

tTo whom all correspondences should be addressed. 

their velocities along the column. These equations are 
used to calculate numerically the breakthrough curves 
and delineate the elution behaviors of competing sol- 
utes in the chromatographic column. Finally, the elution 
curves at different column lengths show that ttle scal- 
ing relationship between the column length and feed 
period applies to the nonlinear coupled system suc- 
cessfully. 

THEORY AND PROCEDURES 

Dynamic analysis of column elution chromatography 
is based on the mass balance of solute in a finite vol- 
ume in a column. 

a ac~ 
0 [ c t + ( 1 - a ) e ] c l + ~ -  ( 1 - a ) q l + a v ~ - = 0  (1) 
0t 

Here, q, c, z, v, a and ~ stand for adsorbed concentra- 
tion, fluid concentration, axial distance along the col- 
umn, interstitial velocity, interstitial porosity and in- 
trastitial porosity, respectively. The first term of Eq. 
(1) represents the accumulation of solutes in fluid 
phase, the second term, the accumulation of solutes 
in solid phase and the third, the convection in a col- 
umn. The subscript denotes the solute species. Eq. 
(1) is rearranged to Eq. (2). 

0cl (Acl + ql) + B v - - :  0 (2) 
0t az 
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Here, A = [ct + (1 - a ) s ] / ( 1 -  a), B = a / ( 1 -  cO. The total 
differential of c~ is zero as the solute concentration 
does not change along the characteristic line. It is 
rearranged to give an expression for the reciprocal 
of solute movement velocity, dz/dt. 

0c~_ 0c~ dt 
0z 0t dz (3) 

This also applies to solute 2. 

A +  - B y  dt ] 0c~ + = 0  (4) 0ql 0q~ 0c2 
Oct dz / 0t 0c2 0t 

0q2 0c~ ~-(A+ 00.2 _ B v  d~_t ~0c2 = 0  (5) 
Oct 0t ~ Ocz clz/Ot 

The determinant of the coefficient matrix of Eqs. (4) 
and (5) should be zero to satisfy the equality. If we 
let ) ~ = - A + B v ( d t / d z ) ,  the determinant becomes Eq. 

(6). 

0ql ~. 0qt 

0 e l  0C2 : 0 (6) 

0q2 0q2 k 
OCt 0C2 

In Eq. (6), k is the eigenvalue of Jacobian, [-0(qa, q2)/0 
(ca, c2)~ from definition. 

The solute movement velocity, v,, can be expressed 

as a function of X. 

dz Bv 
v~ - (7) 

dt A + k  

This is the apparent speed at which a solute migrates 
along the column. The total differential of qt is written 

with respect to ct, c2 in Eq. (8). 

a q ~ ,  _ 0ql dc dql = - -  acl .- - -  2 (8) 
0c~ 0c2 

The same derivation can be done for q2. If we let 
d q t = k  dct, dq2=k dc2 and substitute into Eq. (8), the 
resulting determinant of the coefficient matrix of these 
equations becomes the same as Eq. (6). Then Eq. (9) 

holds true. 

dqt __ dq~ _ k (9) 
dc, dcz 

We obtain the relationship between the concentration 

changes of the two solutes by substituting Eq. (9) into 

Eq. (8). 

dc2 _ k -  (0ql/0C1) (10) 
dc, Oqt/Oc2 

When there arises a discontinuity in ca and c2, a shock 
wave occurs. The shock wave velocity can be calcula- 
ted from the mass balance just before and after that 
discontinuity. When two solutes exist in both sides 
of the shock wave, the following relations hold. 

A q l _  qlb-- ql" (11) 
A c I  cl  b - -  Cl a 

Aqz _ q2 b - q2" (12) 
c b - c  a AC2 2 

Here supercripts a and b stand for after and before 
the shock wave, respectively. And as only one shock 
wave exists for two solutes at that point, shock wave 
velocities of the two solutes are equal. 

Aql _ Aq2 (13) 
Act Ac2 

Substitution of Eqs. (11) and (12) into Eq. (13) gives 
the relations between the concentrations of two solu- 
tes before and after the shock wave. As the concentra- 
tion of solutes of one side are known, the concentra- 
tion of the other side can be calculated from Eqs. (11), 
(12) and (13). Then we can calculate the shock wave 
velocity at the intersecting point of diffusive and shock 
waves by substituting Aql/Acl or Aq2/Ac2 into )~ in 
Eq. (7). The diffusive wave velocity after the intersec- 
tion point also changes because the concentration of 
the wave changes to meet the mass balance around 
the point. With Eqs. (6), (7), (10) and (13), we can 
quantify any breakthrough curves of two nonlinear 
competing solutes and consequently analyze the col- 
umn dynamics, providing the adsorption isotherms 
have continuous first derivatives. Multicomponent sys- 

tem with more than two solutes can also be described 
by the same principles. The numerical calculation pro- 
cedure to obtain the breakthrough curves of solutes 

is outlined below. 

1. Obtain the derivatives of q, with respective to 

C4. 

2. Evaluate the eigenvalues of Jacobian [-Eq. (6)]. 
3. Start calculations of solute velocities [Eq. (7)] 

in conjunction with the incremental changes of solid 
concentration [Eq. (10)]. 

4. Calculate the shock wave velocities [-Eq. (13)]. 
5. Adjust the shock and diffusive wave velocities 

after the intersection point to meet the mass balances 
of each solute around the point. 

R E S U L T S  AND D I S C U S S I O N  

A nonideal Langmuir isotherm [-4] was chosen to 
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Liapis and Rippin: 

171 c 1 

q l  = 1 + 1 4 0 0 c 1 + 2 8 3 5 c  2 Cbe d = ( 0 . , 0 . )  
3 7 3  c 2 Creed = ( 0 . 0 0 1  , 0 . 0 0 0 9  ) 

q 2  = 1 +  1 5 7 3 c  1 + 2 5 6 5 c  2 

Fig. !. Hodograph and adsorption isotherms [4]  for sol- 
utes 1 and 2; F: feed condition, A: first plateau 
for solute I, B: second plateau for solute 2, 1: ini- 
tial bed condition. 

represent the nonlinear competing solute system. The 
adsorption parameters are shown in Fig. 1. The inter- 
stitial velocity chosen for the computer calculation was 
2 cm/sec, and the values for the interstial and intrasti- 
tial porosities were 0.5 and 0.7, respectively. A general 
perspectives for the elution behavior of solutes in a 
column can be obtained from the relation between 
solute concentrations, as shown in Fig. 1. This hodo- 
graph was calculated from Eqs. (6) and (10), starting 
from point I (initial bed condition oi c1=0 g/cm 3 and 
c2=0 g/cma), and F (feed condition of c1=0.001 g/cm 3 
and c2=0.0009 g/cm3). The concentration increment 
of solute 1 was 10 6 g/cm 3. The higher eigenvalues 
(ka) constitute the line IB and FA, while the smaller 
eigenvalues (k2) constitute the line IA and FB. The 
L value increases along the line FBI and decreases 
along IAF. 

The resulting breakthrough curves are drawn in 
Fig. 2, where the numbered lines represent the con- 
stant concentration (concentration units are omitted for 
convenience); 1 [Cl=0.001, C2----0.0009 (F), then after 
passing shock wave, c1=0.00167, Cz=0 (A)], 2 (c~= 
0.0008, c2=0.00075, then c1=0.00133, c2=0), 3 (cl = 
0.0006, c2=0.00061, then c1=0.00100, c2=0), 4 (Cl = 

Fig. 2. Breakthrough curves of  solutes 1 and 2; F: feed 
condition, A: first plateau for solute 1, B: second 
plateau for solute 2, 11: initial bed condition, 12: 
region between the elution curves of  solutes 1 and 
2, 13: region after the elution curves of  solute 2. 

0.0004, c2=0.00046, then ci=0.00066, c2=0), 5 ( C 1 =  

0.0002, c2=0.00031, then cx=0.00033, c2=0), 6 I - e l =  

0, c2=0.00017 (B), then c1=0, c2=0 (Iz)], 7 [c1=0, 
c2=0.00017 (B)], 8 (ca=0, c2=0.0001), 9 (ca=0, c2 = 

0.00005), 10 I-Ca=0, c2=0(I3)]. The dashed lines in 
the hodograph are simply to show that the numbered 
points at the ends of the lines denote the lines of 
the same concentration numbered same in Fig. 2. 

Note that the point numbered 6 (upper) and 7 at 
the same time, and B for the same concentration (c1 = 
0, c2=0.00017) in the hodograph correspond to the 
plateau B, surrounded by the lines 6 and 7 in Fig. 
2. The points numbered 8, 9 and 10 are only for solute 
2 as solute 1 already passed through. The L value 
decreases and the velocity increases at the same time 
by Eq. (7) along the line IA in the hodograph. 

A shock wave develops between I1 and A, because 
at a fixed point in the column, the fast moving plateau 
A (high concentration) catches up the slow moving 
baseline Ix (low concentration). Along the line AF, the 
L value decreases and the velocity increases. For so- 
lute 1, the fast moving plateau F (low concentration) 
pushes the slow moving plateau A (high concentra- 
tion), resulting in a shock wave between A and F. 
For solute 2, the fast moving plateau F (high concent- 
ration) catches up the slow moving baseline (low con- 
centration), resulting in a shock wave between A and 
F. 

The k value increases and the velocity decreases 
along the line FB. As the concentrations of the solutes 
at point F are higher than those at point B, diffusive 
waves of solute 1 and 2 develop between F and B. 
Along the line BI, the k value increases and the veloc- 
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Fig. 3. Elution curves of  solutes 1 and 2 at different col- 

umn lengths. 

ity decreases. As the concentration of solute 2 is 
higher at point B than at point I, a diffusive wave 
of solute 2 develops between B and Ia. Along the line 
AI, the ), value increases and the velocity decreases. 

As the concentration of solute 1 is higher at point 
A than at point B, a diffusive wave of solute 1 develops 
between A and I2. We can judge from these that a 
shock wave develops in the front end and a diffusive 
wave in the rear end. The thick lines including those 
between I~ and A, A and F, and I2 and B are the shock 
wave paths. The thin lines between A through I2, F 
through B, and B through I3 are diffusive wave paths. 
Solute 2, the more strongly adsorbed species, dis- 

places solute 1, resulting in region A where the con- 

centration of solute 1 is higher than the feed concen- 

tration. 
Elution curves of solutes at different column lengths 

are shown in Fig. 3. At a column length of 5 cm, we 
can observe solute 1 being displaced by the more 
strongly adsorbed solute 2 and forming a plateau (A), 
the concentration of which is 0.00167, higher than that 
of the feed. Both solutes show shocks at 193 sec. The 
second plateau of solute 1 disappears at a column le- 
ngth of 9 cm, while the first plateau (A) holds, though 
the length of which is shortened. At the same length 
of the column, the first plateau of solute 2 disappears, 
while the length of the second plateau (B) is length- 
ened. The elution curves verify the fact that a discon- 
tinuity in one solute concentration must accompany 
that of the other solute. Finally, the two solutes are 
separated completely from each other at a column le- 
ngth of 14.9 cm. The second plateau of solute 2 is 
to disappear as it continues to migrate along the col- 

Fig. 4. Elution curves of  solutes 1 and 2 calculated from 

the mass transfer model with different values of  

mass transfer coefficients at z = 5  cm. 

u m n .  

The total mass of each solute in the column at time 

t1 was numerically calculated to be exactly same as 
in the feed. The mass balance was exact for solute 
1 and was less than 3% off for solute 2 at time t2. 
The deviation in the mass balance of solute 2 is as- 
cribed to the inherent  error originated from the nu- 
merical addition. 

The elution behaviors of nonlinear, coupled system 
predicted in this study was partly confirmed by com- 
paring them with the elution curves predicted by the 
mass transfer model. In the mass transfer model, we 
assume that the rate of variation of the concentration 
of each component in the stationary phase is propor- 
tional to the difference between the actual concentra- 
tion in this phase and the equilibrium value with re- 
spect to the corresponding mobile phase concentra- 
tion. The mass transfer coefficient (k) works :as the 
proportionality constant in that relation. For the same 
nonlinear adsorption isotherms [41, the elution curves 
of the two solutes, calculated numerically from the 
mass transfer model, are shown in Fig. 4. Finite diffe- 
rence method was used for the numerical integration. 
The elution curves look closer to the ones al: z - 5  
cm in Fig. 3 as the k values (cm/sec) for each solute 
become larger from 0.1/0.1 to 100/100, confirming the 
propriety of this method. Note that in the local equili- 
brium model upon which the theory of this study is 
based, the mass transfer resistance is neglected (i.e., 

the k value is infinite). 
A simple scaling relation between column length 

and feed period were examined by calculating the 
breakthrough curves with different feed periods. As 
shown in Table 1, the time and distance of the com- 
plete separation of two solutes vary exactly in propor- 
tion to the feed periods. For example, the solutes of 
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Table 1. Scaling behaviors of nonlinear coupled chroma- 
tographic system 

Complete separation 
Feed period (sec) 

Time (sec) Distance (cm) 
50 269.9 3.73 

100 539.8 7.46 
200 1079.5 14.92 

same concentration can be found at doubled distance 
and at doubled elution time for the doubled feed pe- 
riod. Therefore, a same separation can be achieved 
with the column length and elution time which are 
proportional to the previous ones implying a success- 
ful scaling. 

In summary, we developed simple mathematical 
manipulations based on the mass balance in a column 
to describe the separation behaviors in a nonlinear, 
coupled chromatographic system. Compared with the 
previous attempts, this study is relatively easy to un- 
derstand the physical meanings underlying each equa- 
tion derived. Also, many nonlinear adsorption iso- 
therms differentiable with respect to the constituting 
fluid concentration, such as polynomial or bi-Langmuir 
type, are considered to be analyzed by this method. 
The calculated elution curves with different feed pe- 
riods illustrate that the scaling rules successfully app- 
lied to the nonlinear, coupled chormatographic sys- 
tems, often occurring in bioseparation processes. The 
applications of this analysis to the nonisocratic elution 
chromatography and related separation processes such 
as chromatofocussing and isotachophoresis remain as 
future works. 

NOMENCLATURE 

c~ : concentration of solute i in fluid phase [g/cm 3] 
c, a : concentration of solute i in fluid phase ~ifter the 

shock wave [g/cm 3] 
c, b :concentration of solute i in fluid phase before 

the shock wave [g/cm 3] 
q, : concentration of solute i in solid phase [g/cm 3] 
qf : concentration of solute i in solid phase after the 

shock wave [g/cm 3] 
q b :concentration of solute i in solid phase before 

the shock wave [g/cm 3] 
t : time [sec] 
v :interstitial velocity [cm/sec] 
vs :solute movement velocity [cm/sec] 

Greek Letters  
a : interstitial porosity 
e : intrastitial porosity 
k : eigenvalue of Jacobian in Eq. (6) 
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