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Abstract−−−−We suggest a molecular thermodynamic framework to describe the phase behavior of dendritic polymer
systems. The proposed model, which is based on the lattice cluster theory, contains correlations of molecular structure
and specific interactions such as hydrogen bonding to the phase equilibria of branch-structured polymer systems. We
examine liquid-liquid equilibria (LLE) of hyperbranched polymer solutions and vapor-liquid equilibria (VLE) of
dendrimer solutions in the viewpoints of effects of a branched structure and specific interaction formations among
endgroups of dendritic polymer and solvent molecules. We investigate VLE of dendrimer/solvent (Benzyl Ether
Dendrimer/Toluene) systems by the combination of a new lattice-based model and atomistic simulation technique. The
interaction energy parameters are obtained by the pairs method [Baschnagel et al., 1991] including Monte Carlo sim-
ulation with excluded volume constraint. In the pairs method [Baschnagel et al., 1991], we do not simulate the whole
molecule as in molecular dynamics or molecular mechanics, but only monomer segments interacting with solvent mol-
ecules. The proposed model shows improvements in prediction for both phase equilibria (VLE and LLE) due to the
branched structure and specific interaction due to endgroups at periphery of dendritic polymer molecule. Atomic sim-
ulation technique gives good result in prediction without fitting variables. Our results show that the specific interactions
between the endgroup and the solvent molecule play an important role in phase behavior of the given systems.
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INTRODUCTION

Macromolecular architecture is receiving increasing interest as
the search for new tailor-made polymeric materials with strictly spec-
ified properties intensifies. Many research groups are now focus-
ing their interest on dendritic macromolecules (dendrimer and hy-
perbranched polymers).

These consist of a central core, concentrated “shells” and an ex-
ternal surface. Each family of dendrimers, i.e., dendrimers made
with the same repeat unit, consists of different generations, each
corresponding to a different number of shells around the core. The
architecture induces new and intriguing properties for the polymers,
such as low viscosity, miscibility, high reactivity and high solubil-
ity in various solvents [Johansson et al., 1996] The high degree of
branching for dendritic polymers has some consequences, e.g., no
crystallization and no inter-chain entanglement have been observed
[Fréchet, 1994]. This gives rise to poor mechanical properties but
good solubility and decreased melt viscosity [Hawker et al., 1995].
For dendrimers, the variety of molecular structure, size, shape, to-
pology, flexibility and surface chemistry offer many possible appli-
cations for new materials. These include nanoscale catalysts and
reaction vessels, micelle mimics, magnetic resonance agents, im-
muno-diagnostics, agents for delivering drugs into cells, chemical
sensors, information-processing materials, high-performance poly-
mers, adhesives and coatings, separation media, and molecular an-

tennae for absorbing light energy and funneling it to a central c
[Dagani, 1996] Most of the ideas focus on the peculiarities of 
dendritic interior and a large number of endgroups for their ra
nalization. Despite the wealth of possible application, little work h
been reported on the thermodynamic properties of solution c
taining dendritic polymers.

In this work, we propose a lattice-based thermodynamic fram
work and present the molecular thermodynamic approach for
phase behavior of dendritic polymer systems using molecular s
ulation. The framework includes thermodynamic modeling on 
branched structure and interactions due to endgroups at the pe
ery of dendritic polymers, both of which are major factors for ch
acteristics of dendritic polymer systems. Although molecular th
modynamic framework for polymer systems is well established
calculation for their thermodynamic properties dealing with ne
polymer systems, mathematical models still require tedious exp
mental work to determine their interaction parameters. There
many difficulties in actual application due to the absence of deta
information regarding each component. In the case of dendrim
difficult synthesis using multiple repetitive procedures is also a 
vere obstacle to industrial application. Thus, molecular simulat
will be a useful and desirable tool to determine interaction para
ters without experimental efforts.

The standard lattice model of polymers was solved in the sim
mean field approximation independently by Flory [1953] and Hu
gins [1941], and the treatment of the former is customarily term
Flory-Huggins theory. Lattice theories have contributed much
the understanding of polymer solutions. In addition, much wo
has been done to improve the mathematical solution of the la
model including chain connectivity and non-random mixing [Gu
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genheim, 1952; Aranovich and Donhue, 1996; Kim et al., 2001].
However, the mean field approximation has been found to be quan-
titatively deficient in some aspects.

The lattice models are supplemented by an entropic contribution
to interaction energies. Barker and Fock [1953] developed a quasi-
chemical method to account for the specific interaction. ten Brinke
and Karasz [1984] have developed an incompressible model of bi-
nary mixture with the specific interaction. Using a quasi-chemical
approach to treat the nonrandom character of the polymer solution,
Panayiotou and Vera [1980] and Renuncio and Prausnitz [1976]
have developed an improved FOVE equation of state model, and
Panayiotou [1987], and Sanchez and Balazs [1989] have general-
ized the lattice fluid model to account for the specific interaction.
In 1990, Veytsman [1990] proposed an expression for the hydro-
gen bonds contribution to the free energy of fluid, valid for the gen-
eral case. Veystmans approach is widely used in thermodynamic
modeling of systems associated with hydrogen bonding because of
generality and simplicity [Jung et al., 2002]. Furthermore, Freed et al.
[Freed, 1985; Bawendi et al., 1988a, b] reported a complicated lat-
tice field theory for polymer solutions, which is formally an exact
mathematical solution of the Flory-Huggins lattice. Most of these
lattice theories, however, fail to yield a dependence of solution pro-
perties on the polymer architecture. In 1987, Nemirovsky et al. [1987]
proposed a new model with the effect of branched architecture of
polymer structure being considered. They have given a systematic
expansion of the partition function of polymer using the well-known
lattice cluster theory (LCT) [Freed and Bawendi, 1989; Dudowicz
et al., 1991; Freed and Dudowicz, 1992; Dudowicz and Freed, 1991;
Nemirovsky et al., 1992].

Molecular simulation methods such as molecular mechanics, mo-
lecular dynamics and Monte Carlo simulation are applied to sev-
eral polymer systems [Allen and Tildesley, 1987; Monnerie and
Suter, 1994; Burtkert and Allinger, 1982; Roe, 1991]. However,
such full atomistic molecular simulations have a severe limitation
in calculation power and in time scale [Jo and Choi, 1997].

The coarse-grained model [Binder and Heermann, 1988] is pro-
posed as an alternative for this problem. It is successful in predict-
ing physical properties of polymeric materials less sensitive to the
exact chemical structure but does not include detailed information
on the structure of materials. Some efforts are made to improve the
correlation of structure in the coarse-grained model by introducing
additional molecular parameters [Baschnagel et al., 1991] and im-
posing several potential functions [Kim et al., 1994]. The polymer
reference interaction site model theory [Schweizer and Curro, 1989]
is employed to study phase behaviors of polymer systems. In 1992,
Fan et al. [1992] proposed a new approach to predict phase dia-
grams by combining Flory-Huggins theory and Monte Carlo sim-
ulation method. Jo and Choi [1997] combined an equation of state
theory and molecular simulation on the basis of the coarse-grained
model to analyze the surface phenomena of polymeric materials.
Chang et al. examined the validity and accuracy of approximation
in equation of state model by comparison between theoretical pre-
diction and simulation results [Chang and Kim, 1998].

In this study, we propose a lattice model based on the lattice clus-
ter theory (LCT), which includes highly branched structure effect
and interaction factors due to numerous endgroups in the periphery
of the molecules. We compare the proposed model with experimen-

tal data on phase equilibria of dendritic polymer systems includ
hyperbranched polymer aqueous system and organic dendrime
lutions. Using an atomistic Monte Carlo approach, we investig
the application of simulation technique to phase behavior pre
tions for dendritic polymer systems.

MODEL DEVELOPMENT

We use a similar approach to the model developed by Pa
iotou and Sanchez [1991] to introduce the contribution of spec
interactions between molecules. We consider a system of NS mole-
cules of solvents, NP molecules of polymers. In the general cas
there are m types of specific donor groups and n types of spe
interaction acceptor groups distributed in the molecules of the 
tem. Let i kind molecules have di, the number of donor groups, an
ai, the number of acceptor groups. We assume that all donor 
are only one type of donating and acceptor sites are only one
of accepting. In order to get the free energy of mixing for a po
mer solution system, we assume that the number of configura
also factors into two independent parts. We consider only the p
ical intermolecular interaction in one factor, while the specific int
action in the other. This means that the intermolecular forces
divided into physical and chemical forces. Then, the number of c
figurations can be expressed as follows:

Ω=ΩLCTΩS (1)

Helmholtz free energy of mixing can be added as follows:

∆A=∆ALCT+∆AS (2)

where ∆ALCT and ∆AS are physical and chemical contributions t
the Helmholtz free energy, respectively. We develop a mode
the basis of “the coupling” approximation of interaction [Panayiot
and Sanchez, 1991]. In this assumption, we take into accoun
one bond contribution to Helmholtz energy for specific interact
contribution, while LCT considers multi-bond contribution to phy
ical force by cluster expansion. Thus, we consider specific inte
tion only between adjacent specific interaction donor and spe
interaction acceptor.

We first place the polymer solution on a lattice with N total sit
Each monomer or a solvent molecule occupies one lattice site
each polymer molecule is assumed to occupy M lattice sites. 
lattice is assumed to be fully occupied. Volume fractions of po
mer (φ2) and solvent (φ1) in solution are

φ1=NS/N (3)

φ2=NPM/N (4)

Each site has z nearest neighboring sites. Physical attractive 
action in this system are characterized by a parameter ε,

ε=ε11+ε22−2ε12 (5)

where ε11 is the energy of a solvent-solvent contact, ε22 is the en-
ergy of a non-bonded polymer segment-segment contact, and ε12 is
the energy of a polymer segment-solvent contact. Subscript 1 r
to 1-component (solvent) and subscript 2 refers to 2-compon
(polymer).
1. Lattice Cluster Theory

Freed et al. [Nemirovsky et al., 1987; Freed and Bawendi, 198
March, 2003
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Dudowicz et al., 1991; Freed and Dudowicz, 1992; Dudowicz and
Freed, 1991; Nemirovsky et al., 1992] have proposed the LCT ap-
plicable to arbitrary chain architecture. It gives general calculation
for an incompressible blend of two different polymers of arbitrary
architectures. The polymer-solvent system is but a special limit of
a blend in which one of the chains is quite short. A given chain ar-
chitecture may be represented by a linear sequence or complicated
branching pattern in which monomers have specified structure. How-
ever, all chains of given architecture are considered to have the same
bonding topology and not to have small closed loops. Nemirovsky
et al. [1987] described how the theory could be derived and Dudo-
wicz et al. [1991] generalized the theory to branched polymer ar-
chitectures, composed of structured monomer. In this study, Helm-
holtz free energy of the system is expanded in a double power series
of 1/z and ε/kBT, where kB is the Boltzmann constant and T is the
absolute temperature in Kelvin. We truncate the series at the sec-
ond order in 1/z and the forth order in ε/kBT. The free energy of mix-
ing for the polymer-solvent binary mixture is given by [Freed and
Dudowicz, 1992; Nemirovsky et al., 1992]

∆A=∆ALCT+∆AS=∆Aath+∆Aint+∆AS (6)

where ∆Aint, ∆Aath
 and ∆AS are the contribution of the attractive in-

teraction, the athermal limit of the entropy of mixing and the spec-
ific interaction formation, respectively.

(7)

where a(i) are parameters that depend only on the architecture of the
polymer molecules

β∆Aint/N=A(1)φ2(1−φ2)+(A(2)+B(3))φ2
2(1−φ2)

2+A(3)φ2
2(1−φ2)

2(1−2φ2)
2

β∆Aint/N=+A(4)φ2
2(1−φ2)

2[1−6φ2(1−φ2)(3φ2
2−3φ2+2)]

β∆Aint/N=+(B(1)+B(2))φ2(1−φ2)
2+B(4)φ2

3(1−φ2)
2

β∆Aint/N=+C(1)φ2(1−φ2)
2(1−2φ2)

2+C(2)φ2(1−φ2)
3

β∆Aint/N=+C(3)φ2
2(1−φ2)

3(1−3φ2)+C(4)φ2(1−φ2)
4 (8)

A(i), B(i) and C(i) are parameters associated with the architecture of
the polymer, for attractive interaction and the coordination number.
These parameters are listed in Table 2. The combinatorial numbers,
N(α) and N(α,β), describe the architecture of polymers. The defini-
tions [Freed and Dudowicz, 1992] of the structure parameters are
given as follows: M is the number of segments in each polymer
molecule; N(1) is the number of bonds in each polymer molecule;
N(2) is the number of ways in which three bonds intersect; N(3) is
the number of ways in which three consecutive bonds can be cho-
sen; N(�) is the number of ways in which three bonds meet at a
lattice site for a polymer chain; N(1, 1) is the number of distinct ways
of selecting two non-sequential bonds on the same chain; and N(1, 2)

is the number of distinct ways of selecting one bond and two se-
quential bonds on the same chain.

In the LCT model, dendritic polymer structure is characterized
by three parameters, the generation number (g), the separator length
(n) that is the number of bonds between branch points and the core
segment (n0) between zeroth generation points. The combinatorial
numbers, N(α) and N(α,β), are calculated by counting indices for these
types of polymers. Geometric parameters for dendritic polymer are
listed in Table 1.

2. Specific Interaction Contribution to the Free Energy
In this work, we use the “donor-acceptor” hydrogen bonding c

cept in order to take into account the specific interactions and
sume that the specific interaction formation is a kind of bondi
We consider a system containing molecules of k species, and i is
the number of ith kind molecules. Any molecule of the ith kind has
di donor sites and ai acceptor sites. For simplicity, we assume th
all donor sites are only one type of donating and acceptor site
only one type of accepting. We assume that association bond
formed as a specific interaction occurs. A donor site of an ith kind
molecule can form a specific interaction with an acceptor site of ajth
kind molecule if the sites are located in the adjacent cells. Such a 
is referred to as (i, j) bond and the free energy of an (i, j) bond 
mation is FSij . There are entropic contributions associated with 
specific interactions. From the number of ways, ΩS, of distributing
Mij bonds among the functional groups of the system, we ob
the additional contribution to Helmholtz energy as follows [Veys
man, 1990; Panayiotou and Sanchez, 1991; Jang and Bae, 20

(9)

β∆Aath

N
---------------- = 

φ2

M
-----lnφ2 + 1− φ2( )ln 1− φ2( )

+ a 0( )φ2 1− φ2( )  + a1( )φ2
2 1− φ2( ) + a 2( )φ2

3 1− φ2( )

AS
 = M ijFi j

S
 + kBT M ij ln

eNMi j

Nidi  − M im
m= 1

k

∑
 
 
 

Njaj  − Mnj
n = 1

k

∑
 
 
 

---------------------------------------------------------------------
j = 1

k

∑
i = 1

k

∑
j = 1

k

∑
i = 1

k

∑

+ kBT Nidi ln 1− 

M ij

Nidi

---------
j = 1

k

∑
 
 
 

 + kBT Njaj ln 1− 

M ij

Njaj

---------
i = 1

k

∑
 
 
 

j = 1

k

∑
i = 1

k

∑

Table 1. Geometric parameters for dendritic polymers

General structure Structure with n=1

M 4(2
g−1−1)n+2

g
×n1+n0+2 4(2

g−1−1)n+n0+2
N1 M −1
N2 4(2

g−1−1)(n−1)+2
g
×n1+3N⊥+n0 4(2

g−1−1)(n−1)+3N⊥+n0

N3 4(2
g−1−1)(n− 2)+6N⊥+n0−1+2

g
×n

1
4(2

g−1−1)×2+n0− 3
N⊥ 2(2

g−1−1)
N1, 1 N1

C2− N2

N1, 2 N2×(N1−2)− N3−3N⊥

Table 2. Parameters for lattice cluster theory

A(1)=(βε)z/2
A(2)=−(βε)2z/4
A

(3)
=−(βε)

3
z/12

A
(4)

=−(βε)
4
z/48

B
(1)

=−βεN(1)
B

(2)
=(βε/z)(2N(2)+N(3)+3N(⊥)+N(1, 2)−N(1)N(2)M)

B
(3)

=−(2βε/z)N(1)(2N(1)+N(1, 1)−[N(1)
2
M)

B(4)=−(4βε/z)[N(1)]3

C(1)=−((βε)2/2)N(1)
C

(2)
=−(βε)

2
N(2)

C
(3)

=−(βε)
2
[N(1)]

2

C
(4)

=−((βε2
/2)(N(1, 1)−[N(1)]

2
M)

a
(0)

=(1/z)[N(1)]
2
+(1/z

2
){ −4N(1)N(2)+(8/3)[N(1)]

3−2N(1)N(3)
a(0)=+[N(2)]

2−2N(1)(N(1, 2)−N(1)N(2)M)+2[N(1)]
4

a(0)=+2[N(1)]2(N(1, 1)−[N(1)]2M)−6N(1)N(⊥)}
a(1)=(1/z2)[(8/3)[N(1)]3+2[N(1)]4+2[N(1)]2(N(1, 1)−[N(1)]2M)]
a

(2)
=(1/z

2
)2[N(1)]

4

where N(α)=Nα/M (α=1, 2, 3 or ⊥) and N(αβ)=Nα, β/M (α=1or 2)
Korean J. Chem. Eng.(Vol. 20, No. 2)
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where, Mij is the number of (i, j) pair specific interaction formation.
We use a mean-field approximation in calculating the probability
that a specific acceptor j will be proximate to a given donor i [Panay-
iotou and Sanchez, 1991]. In equilibrium, the free energy AS at a
given Mij is obtained by minimizing with respect to Mij

(10)

(11)

where Mij are determined by the set of quadratic equations from
the relation of minimizing conditions

(12)

Eqs. (11) and (12) give the excess free energy due to specific inter-
action formation.
3. Correlating Equations

The equation for the chemical potentials of solvent is obtained
as follows:

(13)

But from Eq. (10) it simplifies to

(14)

Therefore, the chemical potential for physical contribution is giv
as the following equation:

(15)

(16)

+A(1)φ2
2−(A(2)+B(3))φ2

2(1−φ2)(1−3φ2)
−A(3)φ2

2(1−φ2)(1−2φ2)(1−9φ2+10φ2
2)

−A(4)φ2
2(1−φ2)(1−27φ2+138φ2

2−294φ2
3+306φ2

4−126φ2
5)

+(B(1)+B(2))2φ2
2(1−φ2)−B(4)2φ2

3(1−φ2)(1−2φ2)
+C(1)2φ2

2(1−φ2)(1−2φ2)(3−4φ2)+C(2)3φ2
2(1−φ2)

2

−C(3)φ2
2(1−φ2)

2(1−10φ2+15φ2
2)+C(4)4φ2

2(1−φ2)
3 (17)

Structures of target molecules are given in Fig. 1. We simplify th

∂AS

∂M ij

----------
 

 
 

T Ni Mrs, ,
= 0

AS
 = kBT M ij

j = 1

k

∑
i = 1

k

∑

+ kBT Nidiln 1− 
M ij

Nidi

---------
j = 1

k

∑
 
 
 

 + kBT Njaj ln 1− 
M ij

Niai

---------
i = 1

k

∑
 
 
 

j = 1

k

∑
i = 1

k

∑

NM ij  = Nidi  − M im
m= 1

k

∑
 
 
 

Njaj  − Mnj
n = 1

k

∑
 
 
 

exp − 
Fi j

S

kBT
-------- 

 

µk = 
∂A
∂Nk

---------
 

 
 

T Nj,

= 
∂A
∂Nk

---------  
 

T Nj Mij{ }, ,

+ 

∂A
∂M ij

----------   
 

T Nj{ } Mrs{ }, ,

∂M i j

∂Nk

---------- 
 

T Nj,j

n

∑
i

m

∑

µk = µk
LCT

 + µk
S

 = 
∂ALCT

∂Nk

------------- 
 

T Nj Mij{ }, ,
+ 

∂AS

∂Nk

---------
 

 
 

T Nj Mij{ }, ,

µ1 = µ1
LCT

 + µ1
H

µ1
LCT

 = 
ALCT

N
----------  − φ2

∂ ALCT N⁄( )
∂φ2

------------------------

βµ1
LCT

 = ln 1− φ2( ) + 1− 
1
M
----- 

 φ2 + a 0( )φ2
2

 − a 1( )φ2
2 1− 2φ2( )  − a 2( )φ2

3 2 − 3φ2( )

Fig. 1. (a) Polyamidoamine dendrimer generation 3. (b) Benzyl do-
decyl dendrimer generation 3.

Fig. 2. (a) Simplified structure of polyamidoamine dendrimer gen-
eration 3. (b) Simplified structure of benzyl dodecyl den-
drimer generation 3.
March, 2003
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structures as two types in Fig. 2. Given dendrimers are character-
ized by three or four parameters. Indices are calculated for the given
structure, so that those cannot represent a general case of dendrimer.
Those values are listed in Table 1.

We assume that solvent molecule has one donor site and one ac-
ceptor site. The dendrimer molecules have acceptor sites only: d1=1,
a1=1. The d2 has the same value as the number of endgroups of poly-
mer molecule. There is a possibility that the inner group of dendrimer
forms a specific interaction with solvent. Here, we assume that those
possibilities are low. Then, there are two types of specific interac-
tions in the given systems. Helmholtz free energy and chemical po-
tential of solvent are given as

(18)

µ1
S=∂AS/∂N1 (19)

(20)

where v11=M11/N, and v12=M12/N
The minimizing conditions of Eq. (10) give

(21)

(22)

Eqs. (21) and (22) are equivalent to 

(23)

(24)

By rearranging Eqs. (23) and (24), we have

(25)

(26)

where A11=exp(−FS
11/kBT), and A12=exp(−FS

12/kBT)
The activity of solvent a1 is then

lna1=β∆µ1=β∆µ1
LCT+β∆µ1

S

+A(1)φ2
2−(A(2)+B(3))φ2

2(1−φ2)(1−3φ2)
−A(3)φ2

2(1−φ2)(1−2φ2)(1−9φ2+10φ2
2)

−A(4)φ2
2(1−φ2)(1−27φ2+138φ2

2−294φ2
3+306φ2

4−126φ2
5)

+(B(1)+B(2))2φ2
2(1−φ2)−B(4)2φ2

3(1−φ2)(1−2φ2)
+C(1)2φ2

2(1−φ2)(1−2φ2)(3−4φ2)+C(2)3φ2
2(1−φ2)

2

−C(3)φ2
2(1−φ2)

2(1−10φ2+15φ2
2)+C(4)4φ2

2(1−φ2)
3

(27)

Since the pure solvent has been chosen as the standard state1=P/
P1

0, to the approximation that the vapor is an ideal gas. P is the
tem pressure and P1

0 is the vapor pressure of pure solvent at the s
tem temperature.
4. Simulation Technique

BlendsTM, a component of the commercial software Cerius2 from
Molecular Simulation Inc, is used for simulation. This approach g
erates energetically favorable configurations by employing a Mo
Carlo technique that includes excluded-volume constraints. 
excluded-volume constraint method is applied in a variety of sit
tions to sample energetics of molecules in simple or complex
pological environments [Panayiotou and Sanchez, 1991]. The
cluded-volume constraint method is a modified version of Blanc
molecular silverware algorithm. It aligns the molecules so that th
van der Waals surfaces are barely touching. The details of the
cedure used in this study are given elsewhere [Fan et al., 1992]
segmental units of dendrimer molecule and solvent molecule
modeled and minimized energetically on the basis of the force f
DREIDING 2.21. A generic force field, DREIDING, is useful fo
predicting structures and dynamics of organic, biological, and m
group inorganic molecules [Blanco, 1991]. Covalent interactio
may be described by terms such as bond, valence angle, to
and hybridization terms; terms describing nonbonded interact
including van der Waals, electrostatic and hydrogen-bonding in
actions. From this method, four Boltzmann-averaged pairwise
teraction energy values (ε11, ε12, ε21, and ε22) for each model seg-
ment are obtained. Temperature effects are taken into accou
weighting the distribution by the Boltzmann factor, exp(−εij/kBT).
The pairs method consists of several steps to apply the excl
volume constraint method. We make a brief description of the p
cedure. First, we construct the monomer repeat unit of dend
polymer and solvent molecule. The structures are optimized by u
energy minimization. Molecule 1 and molecule 2 (monomer rep
unit or solvent molecule) are located at the geometric center. T
in order to specify the orientation of molecule 2 with respect to m
lecule 1, the Euler angles (α, β, γ) are chosen randomly. Molecule
2 is translated along the vector randomly chosen until the van
Waals surfaces of each molecule just touch each other. After
translation, the pair interaction energy of this specific configurat
is calculated. These steps are repeated and εij is calculated by aver-
aging the entire accepted configurations. Blends in Cerius gives three
types of interaction energies: van der Waals interaction, coulom
interaction and hydrogen bond interaction. Target materials for s
ulation have no hydrogen bonding formation site. Therefore, we 
culate the total interaction energies with van der Waals and c
lombic interactions.

RESULTS AND DISCUSSION

We first examine phase behaviors of hyperbranched polym

βAS
 = M11+ M12 + N1d1ln 1− 

M11+ M12

N1d1

--------------------- 
 

+ N1a1ln 1− 
M11

N1a1

---------- 
 

 + N2a2ln 1− 
M12

N2a2

---------- 
 

β∂AS

∂N1

---------  = βµ1
S

 = d1ln 1− 
M11+ M12

N1d1

--------------------- 
 

 + 
d1 M11+ M12( )

N1d1− M11+ M12

-------------------------------------

+ a1ln 1− 
M11

N1a1

---------- 
 

 + 
a1M11

N1a1 − M11

----------------------- = d1ln 1− 
v11+ v12

φ1d1

----------------- 
 

+ 
d1 v11+ v12( )
φ1− v11− v12

-------------------------- + a1ln 1− 
v11

φ1a1

--------- 
 

 + 
a1v11

φ1a1− v11

--------------------

NM11= N1d1− M11− M12( ) N1a1 − M11( )exp − 
F11

S

kBT
-------- 

 

NM12 = N1d1 − M11− M12( ) N2a2− M12( )exp − 
F12

S

kBT
-------- 

 

v11= φ1d1− v11− v12( ) φ1a1 − v11( )exp − 
F11

S

kBT
-------- 

 

v12 = φ1d1 − v11− v12( ) φ2

M
-----a2 − v12 

 exp − 
F12

S

kBT
-------- 

 

v11= 
a1 + d1( )φ1− v12 + 1 A11⁄

2
---------------------------------------------------

− 
a1 + d1( )φ1− v12 + 1 A11⁄[ ]2

 − 4a1φ1 d1φ1− v12( )
2

--------------------------------------------------------------------------------------------------------

v12 = 
d1φ1+ a2φ2 M⁄  − v11+ 1 A12⁄

2
-----------------------------------------------------------

− 
d1φ1 + a2φ2 M⁄  − v11+ 1 A12⁄( )2

 − 4a2φ2 d1φ1− v11( ) M⁄
2

-----------------------------------------------------------------------------------------------------------------------

= ln 1− φ2( ) + 1− 
1
M
----- 

 φ2 + a 0( )φ2
2

 − a 1( )φ2
2 1− 2φ2( )  − a 2( )φ2

3 2 − 3φ2( )

+ d1ln 1− 
v11+ v12

φ1d1

----------------- 
 

 + 
d1 v11+ v12( )
φ1− v11− v12

-------------------------- + a1ln 1− 
v11

φ1a1

--------- 
 

 + 
a1v11

φ1a1− v11

--------------------
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water systems. Structures of hyperbranched polymers are given in
Table 3 and the simplified molecular structure of hyperbranched
polymer generation 2 is given in Fig. 2a [Jang and Bae, 2001].

Because the presence of linear segments in molecules makes a
difference between structures of hyperbranched polymer and den-
drimer, it is difficult to determine the separator length of the hyper-
branched polymer. We set n as a mean separator length of the given
system.

In Fig. 3, we compare experimental cloud point data for hyper-
branched polymer generation 2/water system with the calculated
coexistence curve. Open circles indicate experimental data [Jang
and Bae, 2001]. The solid line is calculated by this work. The sep-
arator length (n) and coordination number (z) are 4 and 8, respec-
tively. We determined the model parameters on the basis of the cri-
tical point and the tie line for a given system. The procedures are
given in the appendix. The parameter values are ε/kB=93 K, FH

11/
kB=−2,450 K, and FH12/kB=416 K. The calculated coexistence curve
shows a slight deviation in the dilute polymer concentration region.

Fig. 4 represents comparison of experimental cloud point data
for hyperbranched polymer generation 3/water with the model. Open
circles are experimental data [Jang and Bae, 1999]. The solid line
is calculated by this work. The parameter values are ε/kB=90.3 K
(Kelvin), FH

11/kB=−3,650 K, and FH12/kB=50 K. The model gives a
fairly good agreement with experimental data.

Fig. 5 shows the coexistence curve for the hyperbranched poly-
mer generation 4/water system. Open circles are experimental data
[Jang and Bae, 1999] and the solid line is calculated by this work.
The parameter values are ε/kB=103 K (Kelvin), FH

11=−3,750 K, and

FH
12/kB=−100 K. There is a slight deviation between the calcula

coexistence curve and experimental data. All the given systems s
that the specific interaction energy between solvent molecule
much higher than that between the solvent and the endgroups.
is because the lower value of hydrogen bonding gives more as
ation. The hydrogen bonding between solvent molecules can b
garded as dominating the phase behavior of those systems. A
number of endgroups increases exponentially with the genera
number, the effect of the hydrogen bonding between the sol
and the endgroup is growing. It is thought that the increase of 
vent-endgroup hydrogen bonding energy provides another so
of solvent-polymer interactions.

Secondly, we compared the proposed model with VLE exp
mental data of dendrimer solutions. Fig. 6 shows an activity of m
anol at 35oC in polyamidoamine (PAMAM) dendrimer (g=1). Ope

Table 3. The structures of the polymers

Structure

Generation 2
Generation 3
Generation 4

[O[CH2C(CH2H5)(CH2O-)2]2A4B8

[O[CH2C(CH2H5)(CH2O-)2]2A4A8B16

[O[CH2C(CH2H5)(CH2O-)2]2A4A8 A16B32

 A=[COC(CH3)(CH2O-)2]; B=[COC(CH3)(CH2OH)2]

Fig. 3. Coexistence curve for the hyperbranched polymer genera-
tion 2/water system open circles are experimental data and
the solid line is calculated by this work.

Fig. 4. Coexistence curve for the hyperbranched polymer genera-
tion 3/water system open circles are experimental data and
the solid line is calculated by this work.

Fig. 5. Coexistence curve for the hyperbranched polymer genera-
tion 4/water system open circles are experimental data and
the solid line is calculated by this work.
March, 2003
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circles are VLE data by Mio et al. [1998]. The vapor pressure of
the pure methanol is 27.9 kPa at 35oC. The dotted line is calcu-
lated from the original LCT. We fixed the geometric parameters,
separator length (n) and the number of core segments (n0) as 3 and
3, respectively. It shows a slight deviation from experimental data.
The interaction parameter ε/kB is 93.53 K. The solid line is calcu-
lated from the proposed model with the same geometric parame-
ters. Energy parameters are ε/kB=66.58 K, FS

11/kB=2,634.56 K and
FS

12/kB=−733.38K. From the relation of Eqs. (23) and (24), the num-
ber of specific interactions increases with decreasing interaction en-
ergy. The fraction of solvent-solvent interaction, v11, varies from 0.003
to 1.002×10−7 and v12 changes from 0.0944 to 0.001. It means that
the interaction energy between methanol and endgroups of PAMAM
is much greater than that between solvents in this system.

Fig. 7 shows an activity of methanol at 35oC in (PAMAM) den-
drimer (g=2). Open circles are VLE data by Mio [Mio et al., 1998].
The dotted line is calculated from the original LCT and the solid
line is from this work with the same geometric parameters except for

generation number. Energy parameter from LCT is ε/kB=101.90 K.
For the proposed model, ε/kB=67.01 K, FS

11/kB=2,352.14 K and FH12/
kB=−783.05 K. The solvent-endgroup interaction dominates 
chemical contribution in this system similar to that of PAMAM
G1/methanol system. Those systems show consistency with the
that PAMAM dendrimers are strongly hydrophilic polymer com
pletely miscible in the lower alcohol. Compared with the LCT mo
el, the proposed model taking into account the specific interac
contribution term gives better agreement with experimental d
In these systems, the solvent-solvent interactions are negligible

Finally, we choose benzyl ether dendrimer/toluene system 
model system for simulation approach. The model structure of d
drimer is given in Fig. 8(a). The types of monomer units are divid
into two parts: innergroups and endgroups. Figs. 8(b)-(d) repre
structures of innergroup, endgroup 1 and endgroup 2, respecti
The structures of innergroup, endgroup 1, endgroup 2 and tolu
are optimized with the DREIDING II force field. The relative size
of polymer segments (innergroup and endgroup 1) and the so
molecule are almost identical. The molecular surface area and
ume are calculated by using the van der Waals radii of the atom
the molecule. Such a definition of lattice size, however, is regar
with caution, as it may not be generally applicable.

In Fig. 8(b)-(d), “c”s indicate the dummy atoms. Because the po
mer segment is connected with the other segments, we con

Fig. 6. Fits with LCT (the dotted line) and this work (the solid line)
of VLE data for PAMAM-G1 in methanol at 35 oC (Open
circles).

Fig. 7. Fits with LCT (the dotted line) and this work (the solid line)
of VLE data for PAMAM-G2 in methanol at 35 oC (Open
circles).

Fig. 8. The model structure of dendrimer (a) and types of mono-
mer units (b-d). (b), (c) and (d) represent structures of inner-
group, endgroup 1 and endgroup 2, respectively. “c”s indi-
cate the dummy atoms.
Korean J. Chem. Eng.(Vol. 20, No. 2)
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the effect of chain connectivity by introducing dummy atoms at the
connecting positions of the polymer segments, making some posi-
tion of polymer segments inaccessible to the other segments. The
dummy atoms are considered a methyl group in the united atom
approximation. In the calculation of the number of configurations,
any configuration containing contacts with dummy atoms is rejected
and the interaction energies associated with the dummy atoms are
not calculated. For each calculation 30,000 of the molecular pairs
are generated.

Structures of dendrimers examined in this study are given in
Fig. 8. We simplify these general structures as two types as shown
in Fig. 9-1. Dark circles represent endgroups. Given dendrimers, in
this study, are characterized by three parameters: the generation num-
ber, the number of segments in core, and the number of segments
between generation points. In Fig. 9-2, we give a simplified struc-
ture for benzyl ether dendrimer. Because this structure is connected
with only a generation point, we give indices for this structure in
Table 1. Pair interaction energies determined from simulations are
listed in previous work [Jang and Bae, 2002]. We choose the arith-
metic mean of ε12 and ε21 for the single solvent-polymer interaction
energy parameter (ε12) in physical contribution to Helmholtz free
energy. From the simulation results attractions for pairs are given
as negative pair potential. Because the interaction energy is defined
as the energy required to separate two bodies to infinite intermo-
lecular separation, we take the absolute value of potential as the in-
teraction energy. We define the specific interaction energy for end-

groups (FS22) as the difference between the endgroup-endgroup
teraction energy and the innergroup-innergroup interaction ene
Also, the specific interaction energy for endgroup and solvent (S

12)
is defined as the difference between the endgroup-toluene inte
tion energy and the innergroup-solvent interaction energy.

We assume that a solvent molecule has one specific intera
donor site. The dendrimer molecules have both donor and acc
sites. The number of donor sites of solvent (d1) is a unity and the
numbers of acceptor sites and donor sites (a2 and d2) are the same
as the number of end groups of polymer molecules. Thus, ther
two types of specific interactions in the given systems. Helmh
free energy and chemical potential of solvent are

(28)

(29)

where v12=M12/N, and v22=M22/N
Minimizing Eq. (10), gives

(30)

(31)

From Eqs. (29)-(31), we obtain the activity of solvent molecule 
a given system. We calculate the numbers of specific interact
by solving Eqs. (30) and (31) simultaneously. Fig. 10 shows an
tivity of toluene at 70oC in polybenzyl ether dendrimer with end
group 1 (generation 4). Open circles are VLE data by Mio et
[1998]. The vapor pressure of the pure toluene is 30.1 kPa at 7oC.
The solid line is calculated from this work. In this study, we do n
fit experimental data to the model to determine adjustable para
ters. Those parameters are calculated by molecular simulation.
dotted line is calculated from the original LCT. Separator len

βAS
 = M12 + M22 + N1d1ln 1− 

M12

N1d1

---------- 
 

 + N2d2ln 1− 
M22

N2d2

---------- 
 

+ N2a2ln 1− 
M12 + M22

N2a2

---------------------- 
 

β∂AS

∂N1

--------- = βµ1
S

 = d1ln 1− 
v12

φ1d1

--------- 
 

 + 
d1v12

φ1d1 − v12

--------------------

NM12 = N1d1− M11( ) N2a2− M12 − M22( )exp − 
F12

S

kBT
-------- 

 

NM22 = N2d2− M22( ) N2a2− M12 − M22( )exp − 
F22

S

kBT
-------- 

 

1

2

Fig. 9. 1, Simplified general structure of dendrimer generation 2.
Dark circles represent endgroups. g, n0, and n mean the gen-
eration number, the number of segments in core, and the
number of segments between generation points. 2, Simpli-
fied benzyl ether dendrimer structure. Dark circles and
open circles represent endgroups and innergroups, respec-
tively.

Fig. 10. Prediction with LCT (the dotted line) and this work (the
solid line) of VLE data for benzyl ether dendrimer gener-
ation 4 with endgroup 1 in toluene at 70oC (Open circles).
March, 2003
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(n) and the number of core segments (n0) are 1 and 1, respectively.
From the simulation results, ε/kB=1.47 K, FS

22/kB=−572.35K and FS12/
kB=−257.75 K. FS22 is calculated by the difference between endgroup
1-endgroup 1 interaction energy (ε22) and innergroup-innergroup
interaction energy and FS

12 is considered as the difference between
endgroup 1-solvent interaction energy (ε12) and innergroup-solvent
interaction energy As shown in Fig. 10, the specific interaction con-
sideration associated with endgroups correlates with the experimen-
tal data.

Fig. 11 presents fractions of specific interactions with dendrimer
concentration for the same system in Fig. 4. The fraction of (i, j)
pair specific interaction (vij) is the ratio between the number of the
(i, j) pair interaction and the number of total lattice sites (vij=Mij /
N). The specific interaction of endgroup-solvent pair (v12) is greater
than that of endgroup-endgroup pair (v22). This explains that the
endgroup-solvent specific interaction is a major factor in VLE of

dendrimer solution. In this calculation, we set the coordination nu
ber z as 12 for the entire calculation.

Figs. 12 and 13 exhibit an activity of toluene at 70oC in benzyl
ether dendrimer generations 5 and 6 with endgroup 1, respect
Open circles are VLE data obtained by Mio et al. [1998]. The s
line is calculated with the same geometric parameters and inte
tion energies except the generation number as shown in Fig
The deviation from the experimental data increases with the gen
tion number. It may be due to the increase of steric hindrance f
crowded endgroups at periphery of dendrimer molecule with 
increase of the generation number. In VLE of benzyl ether den
mer/toluene system with higher generations, the solvent-endg
interaction also dominates the additional contribution in this s
tem.

An activity data of toluene at 70oC in benzyl ether dendrimer
generation 4 with endgroup 2 and hypothetical predictions for hig
generation are presented in Fig. 8. Open circles are experim
data [Mio et al., 1998]. The solid line is calculated with the sa
geometric parameters as in the case of dendrimer with endgro
Because of the lack of experimental data, we give only theore
predictions for generation 5 (dashed) and 6 (dotted). The en
parameters for benzyl ether dendrimer with endgroup 2 are ε/kB=
1.47 K, FS

22/kB=280.673 K and FS12/kB=32.563 K. We define spe-
cific interactions (FS22 and FS12) as differences of interaction energie
with respect to innergroup as a reference segment. Thereforeε/kB

is the same as in the case of endgroup 1. The difference of sp
interaction between endgroup 1 and endgroup 2 is due to thei
ferent structures. Endgroup 2 has acetate functional group at
position. The specific interaction energy of engroup 2 is higher t
that of endgroup 1. It shows that intermolecular forces of engr
2 are more attractive than those of engroup 1. Simulation result
well with experimental phenomena. From experimental data in F
10 and 14, the activity of dendrimer with engroup 2 is slightly high
than that of dendrimer with engroup 1. However, a reverse case
curs with the increase of solvent. As shown in Fig. 11, the num
of (2, 2) pairs (M22) decreases but the number of (1, 2) pairs (M12)

Fig. 11. Fractions of specific interactions with polymer concentra-
tion. v12 and v22 are specific interactions of endgroup-sol-
vent pair and endgroup-endgroup in the system given in
Fig. 4, respectively.

Fig. 12. Comparison with VLE data for benzyl ether dendrimer
generation 5 with endgroup 1 in toluene at 70oC (Open
circles).

Fig. 13. Comparison with VLE data for benzyl ether dendrimer
generation 6 with endgroup 1 in toluene at 70oC (Open
circles).
Korean J. Chem. Eng.(Vol. 20, No. 2)
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increases drastically. Because the cross association (12 pairs) is un-
favorable to activity of solvent, the activity of dendrimer with end-
group 2 comes to be lower than that of dendrimer with endgroup 1.

In optimizing structures, interatomic interaction energies calcu-
lated from this work show a great dependence on the force field
applied. Hence, it is essential to apply a proper force field for given
structures in predicting phase equilibria of polymer systems. In ad-
dition, the size difference between segments of each component and
the single type of coordination number z still remain difficulties in
bridging theories based on statistical thermodynamics with the mo-
lecular simulation technique.

CONCLUSION

We have developed and examined the thermodynamic frame-
work to describe phase behavior of dendritic polymers systems with
highly branched structure and specific interactions. In liquid-liquid
equilibria of hyperbranched polymer aqueous solution, the specific
interaction energy between solvent molecules is much higher than
that between the solvent and the end-group for all given systems.
Our results show that the solvent-solvent specific interaction domi-
nates the phase behavior of hyperbranched polymer/water systems.
However, the end groups of hyperbranched polymers also play a
great role in determining phase separation of a polymer system with
highly branched structure. It means that the type of end-group is
one of the major factors in non-aqueous polar solvent system. All
the results given in this work are for homogeneous and monodis-
perse hyperbranched polymer, i.e. polymer with identical segments
except for end-groups. However, hyperbranched polymers used in
many interesting applications are neither homogeneous nor mono-
disperse. In a typical hyperbranched polymer, segments inside are
different from those at the periphery and there is a distribution of
separator length.

In comparison with VLE data, this work shows that the specific
interaction between solvent molecules is much smaller than that
between the solvent and the end-group for PAMAMs in methanol
and benzyl dodecyl dendrimers in toluene. Our results show that

the solvent-endgroup specific interaction dominates VLE of d
drimer in solvent. It means that the type of end-group is one of
major factors determining VLE in dendrimer/solvent systems. B
cause the LCT used here is truncated after a finite number of te
it only accounts for a short-range correlation between polymer s
ments. Therefore, predictions from the LCT should be regarded 
caution, especially for higher-generation dendrimers.

For the prediction of the activity for systems of dendrimers, str
tured polymers with numerous branches and effective endgrou
the application of molecular simulation approach, we conside
the specific interactions among endgroups and solvents and 
the pairs method including Monte Carlo sampling method and 
cluded volume constraint in molecular simulation. Calculated res
for VLE of dendrimer solutions show some deviation from expe
mental data in higher generation system. In this study, we obta
all parameters by using molecular simulation. We did not fit 
experimental data to the model to determine model parameters. H
ever, the difference between the segmental size and the defin
of lattice size in lattice model, the rationalization of the coordin
tion number z and the dependence on the force field need to b
proved to correlate the phase behavior of polymer systems. Ne
theless, this approach shows that the combination of molecular 
ulation and the statistical modeling can be the substitute of fully
omistic molecular mechanics or molecular dynamics, which face
difficulties of time and space scale in polymer thermodynamics.
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APPENDIX

Critical Point conditions are given as

(A-1)

(A-2)

where

+a(0)2(−1+φ2)+a(1)2(−1+φ2)(−1+3φ2)+a(2)6(−1+φ2)φ2(−1+2φ2)
+A(1)2(−1+φ2)−2(A(2)+B(3))(−1+φ2)(1−6φ2+6φ2

2)
− 2A(3)(−1+φ2)(1−18φ2+78φ2

2−120φ2
3+60φ2

4)
− 2A(4)(−1+φ2)(1−42φ2+330φ2

2−1080φ2
3+1800φ2

4−1512φ2
5+504φ2

6)
−2(B(1)+B(2))(−1+φ2)(−2+3φ2)−2B(4)(−1+φ2)φ2(3−12φ2+10φ2

2)
−2C(1)(−1+φ2)(−6+39φ2−72φ2

2+40φ2
3)+C(2)6(−1+φ2)

2(−1+2φ2)
−2C(3)(1−φ2)

2(−1+17φ2−55φ2
2+45φ2

3)−4C(4)(−1+φ2)
3(− 2+5φ2) (A-3)

(A-4)

The first derivative of v12 with respect to φ2 is calculated by differ-
entiating Eqs. (33) and (34) with respect to φ2. It is calculated directly

∂µ
∂φ2

------- = 
∂µ2

LCT

∂φ2

------------  + 
∂µ2

H

∂φ2

---------  = 0

∂2µ
∂φ2

2
-------- = 

∂2µ2
LCT

∂φ2
2

--------------  + 
∂2µ2

H

∂φ2
2

----------  = 0

∂
∂φ2

-------βµ2
LCT

 = 
1

Mφ2

----------  + 1− 
1
M
----- 

 

∂
∂φ2

-------βµ2
H

 = 

a2M
2v12 φ2

∂v12

∂φ2

---------  − v12 
 

φ2 a2φ2 − Mv12( )2
-------------------------------------------------

Fig. 14. Comparison with VLE data for benzyl ether dendrimer
generation 4 with endgroup 2 in toluene at 70oC (Open
circles).
March, 2003



Molecular Thermodynamics Approach on Phase Equilibria of Dendritic Polymer Systems 385

, I.,
ed

ns

e-
er-

ec-
nd

ti-

ed

on

les

m-
ds
ms,”

uc-
ly-

m-

of
x-

lu-

m-
ds
en-

rs

ity,

.
et,

e-

mer
by the following two elements simultaneous equation

(A-5)

(A-6)

+2A(1)−2(A(2)+B(3))(7−24φ2+18φ2
2)

− 2A(3)(19−192φ2+594φ2
2−720φ2

3+300φ2
4)

− 2A(4)(43−744φ2+4230φ2
2−11520φ2

3+16560φ2
4−12096φ2

5+3528φ2
6)

−2(B(1)+B(2))(−5+6φ2)−2B(4)(−3+30φ2−66φ2
2+40φ2

3)
−2C(1)(−3+4φ2)(15−54φ2+40φ2

2)+12C(2)(−1+φ2)(−2+3φ2)
−2C(3)(−1+φ2)(−19+161φ2−355φ2

2+225φ2
3)

−4C(4)(−1+φ2)
2(− 11+20φ2) (A-7)

(A-8)

The second derivative of v12 with respect to φ2 is calculated by dif-
ferentiating Eqs. (A-5) and (A-6) with respect to φ2. It is also cal-
culated directly by the following two elements simultaneous equa-
tion:

(A-9)

(A-10)

The tie line conditions are

∆µ1'=∆µ1'' (A-11)

∆µ2'=∆µ2'' (A-12)
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