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Abstrac t -  This paper studies the dynamic mass transfer effects of solute through fluid-solid interactions in a het- 
erogeneous system. It is found that the convective velocity in internal pores of the membrane can be used to ac- 
celerate the speed of the solute by convective velocity at the fluid phase. The theoretical model for the membrane 
transport is studied in this paper by using the operator theoretic method. A typical example of this dynamic in- 
teraction problem is applied in a multi-layered composite membraoe. Danckwerts Boundary conditions are analyz- 
ed in the inner and outer regions of membrane process. A spectral evaluation of the transport operator is performed 
by the operator properties in the system. The findings of this paper are useful in guiding the design of membrane 
separation devices as well as in proving useful to the synthetic performance of composite membrane. 
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INTRODUCTION 

Many of the theoretical and numerical modelling efforts for 
membrane transport have traditionally been restricted to linear- 
ized models (for example, linear irreversible thermodynamics 
for transport and dissipation, and neglecting convection as a 
source of nonlinearity). Many membrane separations involve 
solid-fluid contacting in the membrane system which exhibits 
an asymmetric structure consisting of a thin microporous lay- 
er (skin layer) supported by a macroporous support. The selec- 
tive layers of a membrane providing information about pore 
size and shape in the membrane layer have been shown by 
microscope [Bessieres et al., 1996]; and they are therefore of 
importance for separating solutes in a system with average 
pore size from a few nanometers up to a few microns. 

A wide range of naturally occurring or synthetically con- 
structed chemical phenomena can be studied within this frame- 
work of mass transport. The operator-theoretic technique [Ram- 
krishna and Amundson, 1985] allows a full characterization 
of the dynamic behavior of systems without complete num- 
erical calculation of the governing differential models. This 
also allows for a coupling of different levels of information 
in a given system and leads to the analysis of the membrane 
composite system. The motivation of this paper is to show 
how the external force of a domain influences the transport 
processes that occur inside sub-domains, as well as those oc- 
curring between the domains through the environmental media. 
In this paper, convective-diffusive transport deals with a var- 
iety of applications of current interest in chemical engineer- 
ing. The overall objective is to investigate the chemical func- 
tion that arises from the diffusion and convection of molec- 
ular species. The emphasis is on applying operator-theoretic 
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techniques to analyze the dynamics of transport problems with 
multi-components and in a multi-dimensional domain of hi- 
erarchical structure. 

The dynamic problem by fluid-solid interaction results from 
the diffusive or convective coupling through adjoining bound- 
aries between macromolecules, organic chemicals and orga- 
nelles. The general model of the multi-layered composite 
membrane will be developed as the model for direct interac- 
tion via fluid and solid phases. A dynamic interaction prob- 
lem mediated by a fluid medium has been displayed in the 
packed column, which was studied earlier by Park [Pare 1995, 
Park et al., 1995]. An operator theoretic approach in indirect 
interactions has been used to solve the intraparticle mass trans- 
port problem in the previous paper. And this method leads 
to the formally non-self adjoint form. Within the framework 
of the interactions in the multi-layered membrane, we seek 
to analyze the dynamic behavior of heterogeneous phases. A 
spectral evaluation of the transport differential operator can be 
performed for a parametric study of physical properties on the 
solute concentration profiles. The equation for transport in the 
membrane reactor or the plug flow reactor is developed by a 
species mass balance equation. 

In this hierachical approach, a domain in the multi-layered 
membrane is considered in terms of sub-domains of each lay- 
ered membrane and the mathematical description accounts for 
the transport that occurs inside each of these layered domains, 
as well as for those occurring between the domains of fluid 
and membrane throughout the environmental media. 

M A T H E M A T I C A L  M O D E L  

381 

1. Membrane Transport in a Multi-layered Composite Mem- 
brane 
1-1. Mathematical Model 

The convective-diffusive transport is mathematically mode[l- 
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Fig. 1. Schematic picture in multi-layered membrane. 

E : Total thickness of M-layered composite membrane 

ed as coupling through adjoining boundaries between com- 
posite layers. Fig. 1 shows a schematic picture for M-com- 
posite layers. 

The molar species conservation equations in the M-com- 
posite layers are defined as 

~C'. = _ U,, OCn + Dn b2C~' 
bt Ox Ox ----U (1) 

The flux boundary conditions at the internal boundaries be- 
tween each composite layer are 

bC;+a C;+I = - bC; + U.C; (2) - D n + l ~  +Un+ 1 - -Dn~-- -  

at x=x. ; n=l,  2, 3, ..., M-1 

The species distribution coefficient by the linear phase equi- 
librium in each layer is given as 

fl.+lC'.+, = /~  C'. at x=x.;  n=l,  2, 3 ... . .  M-1 (3) 

Boundary conditions at the external boundaries, i.e. at x=0 
and x=L for the case of a fixed concentration in the outer re- 
gions, are 

~1C'1 = ]~0C'0 
g,c~, =/~c~ 

where the species molar concentration, convective velocity, 
and diffusion coefficient in the composite layers are given, 
respectively, by C' ,  U. and D., and/~,-the equilibrium distri- 
bution coefficient represents the fractional pore available to 
each solute in a porous composite layer where the pore space 
available for a particular molecule varies from layer to layer. 

The differential equations in Eq. (1) and boundary condi- 
tions (2)-(3) can be cast into non-dimensional form using the 
following change of variables, 

Dn s -  x -~2 L 
Iltn = D--~-' - ~ - ,  z = t  , Pe. =U.  D~- 

and the transformation variable C. = C" exp(-Pe,sJ  2) is appli- 
ed to Eq. (1). Several physical parameters such as the Peclet 
number (Pe,)-the relative ratio of convective transport to dif- 
fusive transport, V-the relative ratio of diffusion coefficients, 
and a variation in Pc. occurs if the convective velocity changes 
from layer to layer. The differential Eq. (1) can be written as 

be .  (b2C. Pe~ C. / (4) 
~T -- Iprn ~ 3S 2 4 

1-2. General Boundary Conditions in the External Regions 
Since we are not concerned with a chemical reaction in 

the external regions, the solute can only be delivered by dif- 
fusive or bulk fluid motion. The most efficient form to de- 
liver solute to the system is by fluid flow, and we shall re- 
strict our analysis to the case where the external phase is well- 
mixed fluids. Fig. 1 shows a schematic diagram of the over- 
all process in the external regions. Two general possibilities 
might arise in this problem. For controlled external concentra- 
tions the above boundary conditions (3) would be sufficient; 
however, for a controlled rate of delivery it would be neces- 
sary to develop material balances over the external regions 
as discussed below. In addition, the first and last layers could 
be the same or different phases than the extemal environments 
at x < 0 and x > L, respectively. If the external environments 
are of the same phase as the first and last layers the phy- 
sical problem would correspond to the case of finite stagnant 
boundary layers in contact on one side with a well-mixed 
fluid region (the external environment) and on the other side 
with a solid phase (the second or M-1 layer). 

A more general and realistic approach that more closely re- 
presents the physical problems considered in the present anal- 
ysis would require the addition of a material balance over 
the well-mixed external regions. This would give 

Vo dC'odt =C'~176 -C'oFo + A [ D I ~ - U I C ' I ]  at x=0+ (5) 

dC~ , OC~t 
VL--~-=CLfF L -C~F L + A [ D M ~ - -  x --UMCM] at x=L_(6)  

where V is the volume, C' the molar concentration, F volu- 
metric flow into the mixed reactor, and "A" is the cross-sec- 
tional area of the membrane surface. The subscripts 0 and L 
represent the two well-mixed external regions, and f repre- 
sents the feed stream into the two external regions. These 
boundary conditions must be coupled with Eq. (3), where the 
equilibrium coefficents at the external boundaries allow the 
above conditions to be applicable to the case where the end 
regions are of different phases from the first and last layers. 

SOLUTION M E T H O D O L O G Y  

1. Membrane Transport  with Dirichlet Boundary Conditions 
1-1. Definition of Differential Operations and Operator 

The formal solution to the transient problem of M-com- 
posite layers can be constructed from Eq. (4) and the initial- 
boundary value problem reduces to 

OC 
~---~- = -LC + B (2,) I (7) 

where L is represented as an M • M diagonal matrix having 
M differential diagonal operations, Lk. U is an M • 1 matrix 
representing the eigenfunctions, Uk, and I is the unit matrix. 
B can be calculated by a non-self adjoint form to satisfy the 
self-adjoint boundary conditions. Differential operation, Lk, 
in each composite layer is given by 

Lk = -  Vk "~-2 4 (8) 
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Let the interval of the dimensionless axial coordinate for the 
physical problem, 0 < s < 1, be partitioned into M internal re- 
gions such that 0<Sl<S2<- - - < %<-- < su-1 < 1. Now consider 
the following functional spaces for subinterval of the preced- 
ing partition, i.e. 

L2(Sk-1, Sk), U k = I~s' Uk2(S) ds<~ (9) 

with so=0 and sM=l. The following Hilbert spaces, Hk, can be 
defined : 

H t = [I.~(s,_t, %)], k = 1, 2, 3 ..... M (10) 

with a k-inner product of the foon 

(U,, U2) , =Is]'., Ul*U2k ds, k = 1, 2 .... M (11) 

In the above equation Uk = {Uj}k, j = 1, 2 are vectors in each 
Hilbert space, H,, k=l, 2, ..., M. In order to proceed with the 
solution of the mathematical model, it is convenient to define 
the direct-sum Hilbert space, H [Ramkrishna and Amundson, 
1985], as 

M 
H = (gY~ H, (12) 

k=l 

If we define an arbitrary vector w~ ~ H as 

w r = [Uai" U,j ..... Uji ..... UMi ], i = 1, 2 (13) 

then it is possible to write the following inner product for H : 

M 
<w~, wz> = Y~ 6j (U~, Uz)j (14) 

j=l 

where &=l and the remaining ~(j=2, 3 .... M) will be proper- 
ly def'med in a subsequent section. 

The following M differential operations associated with 
the physical problem and arising from Eq. (8) are 

( d  2 Pe~ for k = 1, 2, 3 M (15) L, = -Nk ~ 4 

The composite differential operation L (i.e. the operation as- 
sociated with M layers of the physical problem) is now de- 
fined on the basis of Eq. (15) as [Ramkrishna and Amund- 
son, 1985] 

L = [L:, ]g~, (16) 
L~, = L,, k= 1,2,3 ..... M 

L~ = 0 when j is not equal to k. 

The domain associated with this differential operation is given 
by 

D(L) ~ { w  ~ and Lw ~ H: u~(0)=0; 
u~(s,) r,(s~) = u,+,(s,.,)r,+,(s,+,); 
/~,+1 ~,+~ c,+1 (s,+~) = 1% ~,  c ,  (s,); 
k = 1 , 2 , 3  ..... M-l ;  uu(1) = 0 } 

where the following operations have been defined: 

(dU, U i Ni(sj)=- I ~ -  - Pei---~ Jri(s,) (17) 

and r,(%)=e (e~''/2) for any arbitrary i and j. Finally, the com- 
posite differential operator is given by I_,={L, D(L)}. 
1-2. Eigenvalue problem 

The eigenvalue problem associated with the operator L de- 
fined previously is given by Lw = &w. This equation yields 
two types of problem : 

v u ~  + qk~(,~)u, = 0, q~ - ~" re~ (18) 
Vk 4 

ee~ Z (19) 9 
VZU, + ps = 0, P~ = 4 Ig, 

where k=l,  2 .. . . .  M. The general solution to these two dif- 
ferential equations for the kth component can be written as 

U, (2, s) = A, ~, (2, s) + Bk ~k (2, s) (20) 

where ,% and B, are constants to be properly determined by 
the use of the domain D(L). The functions ~,(2, s) and (a(,L 
s) are given by 

~k (2, s) = sin[o a (~)s] 

~, (2, s) = coslq ~ (;t)s], A > N (21) 

4, (2, s) = sinh[q~(;t)s] 

~,(2, s) = cosh[q~(A)s], ;t < ~ (22) 

where ?i = (P@4) ~ and s is given by s--s1 for k=l, s--s,- sk-1 
for k=2, 3 ..... M-l, and s=l--sk-i for k=M. These changes of 
variables allow the eigenfunction to automatically satisfy the ext- 
ernal boundary conditions at s--0 and s=l with B~--0 and B~0 .  
The application of the boundary conditions at all the interfacial 
regions gives 

B2 - [{w2(2, S2 - 51)02 + Y2} - w1(2, s - 1)]02(~. ) 

A2 [{wz(2, s; - %)} {Yz - Wa(2, Y0} - x/O~(;t)] 

B, 
(wk+l (2, %+t - s,)0,+, +Y*+I ) ~ -  + Q, (;t) 

+ Q,+I (X) 

Ak41 {Wk+l (2, %+1 -- Sk )Yk+t -X*+1Q~+I (~)}-~- 

+wt+, (2, %+~-%)] +Qk+~ 0.) 

Bu-1 QM-1 (~) 

A._l  wu(2, 1 - sM_l)0u +YM 

with the parameters given in Table 1. Starting with Bu.l 
and working backwards by substituting for the B,+d`%+~ it is 
possible to develop the characteristic equation for the eigen- 
values in the form 

='-(2, Pk, Ok, • )  = 12(2, p,, Ok, Pk) (23) 

where the function contains all the trigonometric and hyper- 
bolic eigenfunctions and 12 is monotonic function of ;t. Since 
the physical system is composed of M layers, there are M dif- 
ferent functions of the type o ~ ) .  Depending upon the relative 
values of 71 and 2, these functions change their form from the 
trigonometric cotangent functions to hyperbolic cotangent func- 
tions, and each function is a set of vertical lines where the 
function goes to zero, i.e. where .,'2 goes to (positive or neg- 
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Table 1. Unknown parameter values of Eq. (20) 

P% P%+1 

Zl+l = I//t+1 ak+l Qk+I 

~'k+1 (/~ Sk+I ) 
o~+1 (Z) = ~1+1 (;t, sl+~) 

ak+ 1 = 1;~<7l ) 

Qk+I = ;/I, < }t k ) 

ative) infinity or 1/a~(/.)=0. These vertical lines occur at 

lt" 4 

where ~(A) is equal to qk(A) for 2>?~. 

1-3. Transient Solution 
The formal solution to the transient problem can now be 

constructed. Applying the inner product, Eq. (7), to give a 
self-adjoint eigenvalue problem yields 

d<C, O. > _ ~ <C, Un > + B(~I~) I (25) 
dz 

where U~ is used to indicate U(2., s) and the function B(A~) 
is given by 

/ 
B(/~t) m ~ll~lCl(0)ui(0,  ~ ) -  r ~gMCL e --7-- U ; ( 1 ,  L , )  (26)  

u' is the differentiation of u and for the present problem C1(0) 
=1 and CL is a specific function. The notation n indicates the 
nth eigenvalue of the operator L. The formal solution can 
easily be written for the nth layer as 

C~(s, ~) = '2 U~(s, ~)  e~-~OI<C(T= 0), u~> 
n=l 

+ I.~ B(2,) e (~0 dT] (27) 

2. Membrane Transport Problem with Generalized Boundary 
Conditions 
2-1. Definition of Differential Operations and Operator 

These generalized boundary conditions represent the addi- 
tion of well-mixed vessels at both ends of the composite me- 
dia. The operator formulation for this case can be developed 
on the basis of the previous problem. First, two new Hilbert 
spaces are defined in order to accommodate the time variables 
associated with the generalized boundary conditions, i.e. 

H o = F, HM+ 1 =/" 

where F is the space of real numbers. Second, the following 
inner products for the spaces defined above are given. K u 

Hk, with k=0 and k=M+l,  then 

(U1, U2)t = ct U102 

where ck is a weighting function for the Hilbert space Ilk. 

The direct sum Hilbert space is now defined as 

M 
H = Ho +.~, Ht +HM+ 1 

k=1 
(28) 

where the Hk, k=l ,  2 ... . .  M are the Hilbert spaces already in 
Eq. (10). A vector w ~ H may be written as 

Uo(0) ] 
Ul(x) 

W =  I 
I 

(29) 

where U(x) is a vector in the direct-sum Hilbert space, H, 
of  the previous problem. With w / ~ H  the inner product <wl, 
w2> identified previously in Eq. (29) is formally applied to 
H. However, a reinterpretation of the ~, j=0, 1 . . . . .  M+I,  is 
necessary and will be given in a subsequent section. 

The following two differential operations must be defined 
from boundary conditions (4) and (5) 

Lo=lim,~0 ~2+~3N-s 

~2 = - 4o ~ ' 1 ~  0o Pel VfJto 0o 
-- ~1 " 2 ' ~ 3 -  ]~1 ' 

%,/~ 0L PeM WMI~OL 
N 2 N 

In addition, the Lk (k--l, 2 . . . .  M) operations defined in Eq. 
(30) are required to complete the set of operations to identify 
the composite operation, L, of the problem. Eq. (16) can be 
extended to include the operators L0 and LM§ as 

L =  [Ljkl~jl (L~ =Lt)  k=0 ,  1, 2 ..... M,M+I 

The domain D(L) associated with  the operation L defined 
above is clearly the same as the domain D(L) already iden- 
tiffed in Eq. (25). The composite differential operator is now 
given by L={L, D(L)}, where L is the operation defined in Eq. 
(17). The problem recast in an operator form is given by 

dC 
- LC + g(z) (31) 

dz 

where the vector gr(t)= [~o(t), 0, 0 . . . . .  0, ~(t)] and C is the 
vector of concentrations whose form is given by Eq. (15), 
and 

NI(1") = CL ~L (T) e -~-- (32) 

where we may, in general, consider 0 and L to be specified 
functions of  time. The initial conditions for this problem are 
given by C ( ~ 0 ,  s)= Co(s). 
2-2. Eigenvalue Problem 

The eigenvalue problem for the present case is analogous 
to the previous cases except that the homogeneous Robin 
boundary conditions 
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0UI OUM 
~2U,+~3---~---=0 a t s = 0 , ~ M _ , U M + ~ M ~ = 0  a t s = l  

must be used to obtain the characteristic equation. The de- 
velopment is similar to that given for the Dirichlet condition, 
and it will not be considered further in this part. 
2-3. Transient Solution 

The formal solution to Eq. (31) is analogous to the pre- 
vious case and can be written as 

C. (z, s) = .~ U(s, ;t.)e -z~ [<C(r= 0), U. > 
n = l  

+ J[< g(r), U. > e ~" ~dz] (33) 

where g(r) is, in general, a specified function of z through 
the feed condition to the mixed cells at the boundary. Again, 
if g(r) is not a function of  time, the spectral expansion of  
the steady-state solution can be replaced with the steady=state 
solution given in order to facilitate numerical computation of 
the transient solution. 

RESULTS AND DISCUSSION 

1. Analysis of Well-mixed Boundary Conditions in the Mem- 
brane Process 

Several attempts made in the past to assess the validity of 
the Danckwerts boundary conditions have considered append- 
ing a semi-infinite fore section at the inlet to the membrane 
and semi-infinite after section at the outlet to the membrane 
shown in Fig. 2(1). If the appended sections are considered 
to be of infinite length as shown in Fig. 2(5), one faces the 
rather difficult task of specification of proper boundary con- 
ditions at the upstream end of the fore section and at the 
downstream end of the after section. It will be seen later 
that when the appended sections are considered to be infi- 
nite in length, the boundary conditions to be specified at the 
extremities of the membrane are natural. 

The membrane is either preceded or succeeded by a contin- 
uous stirred reactor of constant volume serving as an inter- 
mediary open system. Boundary conditions for these situa- 
tions have been proposed by Ramkrishina and Amundson. 
There is a need for ascribing a definite length of the append- 
ed sections; the Danckwerts boundary conditions in this case 
can be used. The formulation of the appropriate boundary con- 
ditions is thus govemed by the configurational details of the 
membrane assembly. 

The axial coordinate x is chosen such that the reactor prop- 
erly stretches from x=0 to x=L. 

l imC'= limC', l'.m~0D_ 0C' = lim D 0C' (34) 
x ,0 x .0' ~ x - 0 .  

l imC'= limC', limD 0C' = lim D+ 3C' (35) 
x~L" x~L" x~L ~X x 4." ~X 

where the diffusion coefficient in the fore section, the mem- 
brane section and the after section are denoted as D , D and 
D+ respectively. The diffusion coefficient in each section is 
assumed to be constant there. Let C' denote the membrane 
concentration and t the time. The concentration field C'(x, t) 
then must satisfy the continuity conditions. 

Case Configuration of the Reactor  A s s e m b l y  

i ) 

X ~ -o= X=O X=L X ~ 

I 

X ~ -oo X=O X=L 

X ~ -=0 X=0 

_[ , _ 

X=O X=L X ~ ~ 1 7 6  

-[ I- 
x=0 X=L 

X=O X=L 

I - I  F 

X=O X=L X ~ o o  

-I I- 
x=0 X=L 

X=O X=L 

Fig. 2. Various possible configurations in membrane reactor 
systems. 

Eq. (34) holds when the fore section is infmitely long with 
a finite, non-zero diffusion coefficient as shown in Fig. 2(2). 
Eq. (35) holds when the after section is infinitely long with a 
finite as shown in Fig. 2(4), non-zero diffusion coefficient. 
Boundary conditions for the case where a well-stirred tank of 
constant volume V. precedes the membrane can be written 
a s  

l imC'=C ' ,  lim ID OC' ] + U C f -  A d t x-o - x .0" ~ - x  - uC' V_ dC'_ (36) 

where Q is the concentration in the feed, C_ is the concen- 
tration in the continuously stirred tank, and U is the uniform 
velocity of the fluid and A is the uniform cross section area 
of reactor. The boundary conditions (36) are obtained by con- 
sidering mass balance in this stirred reactor. Similarly, when 
a well-stirred reactor of constant volume V. succeeds the mem- 
brane, a mass balance in the stirred tank yields the boundary 
condition at the reactor proper outlet as shown in Fig. 2(3). 

[ o  c'l v+ lim C'= C; ,  lim - - (37) 
�9 - t  . . . . .  L,,L 3x J A dt 
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C§ is the concentration of the reactor in the well-mixed after 
section. It is interesting to note that the Danckwerts boundary 
condition may be obtained at either of the membrane ends by 
allowing either volume V+ or V_ to vanish. The solution in 
the reactor section is independent of the degree of mixing in 
semi-infinite entrance and exit sections in the Fig. 2(3) and (7). 
Eq. (34) can also be used to ~tablish the Danckwerts boundary 
condition at the membrane inlet in the limit of vanishing D_. 
Similarly, the Danckwerts zero gradient condition can be de- 
rived from Eq. (35) in the limit of vanishing D+. When the fore 
section is infinitely long with a finite, non-zero diffusion co- 
efficient, in addition to Eq. (34), one must have 

lim C'= C} (38) 

when an infinitely tong after section is used, the concentra- 
tion at x=oo must be bounded. Thus 

limE'< oo (39) 
x - - , ~  

Pearson [1959] has shown that the boundary conditions used 
by Danckwerts for these cases are the proper ones by solv- 
ing the problem with a diffusion coefficient that varies con- 
liunously throughout the entrance, membrane, and exit sections. 
This diffusion coefficient can be chosen such that in the lim- 
it it approaches the discontinuous one used by Danckwerts. 
Pearson then showed that the continuous solution approach- 
ed the solution of Danckwerts in the limit, thereby justify- 
ing Danckwerts' boundary conditions. Eqs. (34)-(39) form a 
complete set of boundary conditions for various configura- 
tions of the reactor assembly. The various possibilities that 
may arise in dispersed systems of interest here are listed in 
Table 2. 

The case of Fig. 2(5) represents the situation for which the 
Danckwerts conditions are applicable at both ends. Brenner 
[1962] has presented solutions for pure convective dispersion 
problems arising in the foregoing case. Solutions for the sit- 
uation where a linear rate process occurs in a tube of finite 
length can be obtained in a similar manner. The solution in 
the membrane section is identical to that of Danckwerts. Its 
key conclusion is that the distribution of reactant in a reactor 
is entirely independent of the degree of axial mixing in en- 
trance and exit sections. 

In cases of Fig. 2(5), (6), (8) and (9), the conservation 
equations need be solved over a region of finite length. The 
boundary value problems in these cases are therefore of 'finite 

domain' nature. A general approach would require the addi- 
tion of a material balance over well-mixed external regions 
in analogy with the approach of Ramkrishna and Amundson. 
The Eqs. (5)-(6) can be redescribed as follows 

3C' _ u_C'_] (40) V dC' =C ' fF  - C ' F  + A [ D _ ~ -  x 
- dt . . . .  

3C' _ u+C'+] (41) dC' = C'+yF+ - C'+F+ + A[D+ V+ ~ -  

where V is the volume, C' the molar concentration, F the vo- 
lumetric flow into the mixed reactor and A the cross sectional 
area of the membrane. The subscript f represents the feed 
stream into the two external regions. 
2. Transient Analysis of Membrane Transport 

A complete analysis of the three layered membrane in the 
transient state and a full description of the effects of  system 
parameters including diffusion coefficient, convective velocity, 
and porosity, on the dynamic problem are presented in this 
section. The detailed solution for the transient analysis has 
been studied in the previous paper of  Park [1996]. In our 
transport model, diffusion and convection are assumed to 
govern the membrane transport. Hydrodynamic convection 
is neglected in order to give a representation of what would 
be occurring in the stagnant boundary of membrane in the 
fluid phase. 

Concentration profiles in the membrane and in the bound- 
ary layer around the membrane can be calculated from the 
solution to the model solution of Eq. (27). In the model equa- 
tions, the dimensionless Peclet number is a major control vari- 
able of the convection and diffusion. The convective-diffusive 
transport in the membrane can be analyzed through two dif- 
ferent Peclet numbers in the fluid phase and solid phase of 
membrane. Transient concentration profiles in the membrane 
and in the boundary layer surrounding membrane are associat- 
ed with the convective fluid velocity. Fig. 3 shows several 
of these concentration profiles at different Peclet numbers. 

The membrane transport of Fig. 3(a) is governed primarily 
by diffusive transport due to small value of Pe I (the relative 
ratio of convective velocity and diffusion coefficient in the 
membrane) ; thus the transient concentrations of solute on the 
two boundary regions of the membrane become nearly equal. 
Dynamic speed in the membrane is faster in greater Pe r as 
shown in Fig. 3(c). The transient rate to approach at steady 
state in the membrane is significantly reduced as the con- 

Table 2. Various possibilities in axially dispersed membrane systems 

Volume of Volume of Boundary Boundary 
Case D_ D+ fore section after section condition section condition at outlet 

1 (0, ~) (0, oo) infinite infinite Eq. (34) Eq. (35) 
2 (0, oo) 0 infinite - Eq. (34) Eq. (B) 
3 (0, co) oo infinite finite Eq. (34) Eq. (37) 
4 0 ({3, ~) - infinite Eq. (A) Eq. (35) 
5 0 0 - - Eq. (A) Eq. (B) 
6 0 ~ - finite Eq. (.4,) Eq. (37) 
7 oo (0, o~) finite infinite Eq. (34) Eq. (35) 
8 o~ 0 finite - Eq. (34) Eq. (B) 
9 ,~ o~ finite finite Eq. (34) Eq. (37) 
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Fig. 3. Transient concentration profiles in three-layered com- 

posite membrane (The concentrations at each layer are 
plotted as dividing by porosity (~) of  each layer). 
(a) 13=0.5, ~ . 5 ,  Per=Pe~=Pe~=lO.O 
(b) fl=0.5, ~tr~0.5, Per=P%=Pek=20.0 
(c) fl=0.5, IW=0.5, Per=Pe~=Pe,=40.0 

vective fluid velocity becomes greater when the solute pene- 
trates farther through the membrane than s=sl. It is because 
the dynamic speed of solute in the membrane becomes fast- 
er to approach to the steady state in the lower interphase re- 
gion of  membrane. It is theoretically shown in Fig. 3(b) that 

the concentration gradually builds up with Peclet number as 
solute penetrates farther from s=s~. The dependence of the 
concentration increase in the membrane arises because the 
convective velocity in the membrane depends on the dynamic 
behavior by the direct interaction between fluid velocity and 
membrane. This observation is obtained because the flux of 
solute that is transported to the pores of the membrane from 
the bulk fluid phase equals the flux transported through the 
membrane. 
3. Membrane Transport in Multi-layered Membranes 

The dynamics in the membrane process can be related to 
the dynamics of the individual layer problem of a multilayer- 
ed membrane. The convection effect in a multilayered mem- 
brane may be enhanced due to the interactions between mem- 
brane layers. As the porosity of each membrane layer increas- 
es gradually in the multilayer membrane, the convective velo- 
city becomes accelerated as .solute passes acro~ each mem- 
brane layer. Solute transports more quickly through the mem- 
brane with higher porosity than lower porosity. Concentra- 
tions gradually increase due to fast movement of solute as 
shown in Fig. 4(a). But in the reverse case, concentrations 
in each layer significantly decrease with lower porosity in com- 
parison with constant porosity in each membrane layer. A I ~  
solute moves faster in more porous membrane as convective 
velocity is increased. 

As Peg of each membrane layer gradually increases to the 
x-direction, the concentrations are linearly increased by the 
stacked effects of the multi-layered membranes as membrane 
transports are performed layer by layer as shown in Fig. 4(b). 
This indicates that the solute in the interface of each mem- 
brane layer can be accumulated. The accumulation of concen- 
trations can be enhanced by the appropriate selection of phy- 
sical parameters such as membrane porosity and the ratio of 
membrane transport in each membrane layer. It is shown in 
Fig. 4(b) that the concentration profile at the fifth layer of a 
six-layer membrane can be significantly increased with the 
fluid convective velocity when the porosity in each membrane 
layer increases layer by layer. 

This result occurs because the flux of solute transport to 
the pores of  the membrane layer equals the flux transported 
through next membrane. The gradients of concentrations are 
found to be steeper at the interfaces between each membrane 
layer. Even though the porosity in each membrane layer is ir- 
regularly changed, concentration profiles have maximum pro- 
files as seen in Fig. 4(b). The porosity in each composite 
membrane layer affects the accumulation of concentrations. 
The convection effects in the multilayered membranes are 
determined by several physical properties of membranes. They 
must play an important role to design multi-layered composite 
membrane. 

If the number of membrane layers is increased, the accu- 
mulation of solute in each membrane layer may be further 
enhanced. Fig. 4(c) shows that as the number of membrane 
layers increases from M=3 to M=9, the concentrations of 
membrane layer significantly increase with the number of mem- 
brane layers as the porosity gradually increases from layer 
to layer. Concentration in the (M-1)th layer membrane is sig- 
nificantly increased. This kind of structural composite mem- 
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Fig. 4. Concentration profiles in multilayered membrane (k= 
6) (The concentrations at each layer are plotted as di- 
viding by porosity (fl) of  each layer). 
(a) Porosity effects - 

1) fl~=l, fl~--0.5, fl3--0.4, fl4=0.3, fl~=0.2, flb=l.0 and ~gk= 
0.5, Pek=10 

2) fl~=l, fl~=0.5, fl~--0.6, fl4=0.7, fl5--0.8, flr=l.0 and ~gk= 
0.5, Pek=10 

3)/~=1, fl~--0.9, fl3=0.9, fl4=0.9, fl~=0.9, flr=l.0 and Igk= 
0.5, Pe,=10 

4) fl~=l, fl2--0.5, fl3=0.5,/~4~--0.5, ~5~-0.5, fl~=l.O and gk= 
0.5, Pe,=lO 

Co) Convection effect: 
1) Pel=5, Pe2=6, Pe3=7, Pe4=8, Pes=9, Pelo=5 at ill=l, 

f12=0.1, fl3=0.3, fl4~--0.5, fl5=0.7, flr=l.0 and ~=0.5 
2) Pe~l  at fl~=l, fl~--0.5, fl~--0.4, fl,=0.3, /~---0.2, fl6=l.0 

and ~=0.5 
3) Pc,=5 at ]~=1, fl~=0.1, fl~=0.3, fl4=0.2, fls=0.1, fl~= 

1.0 and ~k=0.5 
4) Pek=10 at fl~=l, fl-z.--0.1, ]33--0.3, fl4---0.2, ~---0.l, fl~=l.0 

and Ig~--0.5 
5) Pek=15 at/~=1, fir---0.1, /~--0.3, fl~--0.2, /~---0.1, /~=1.0 

and ~--0.5 
(c) Effects of number of membrane layer: 1) M=3, 2) M=4, 

3) M=5, 4) M--6, 5) M=7, 6) M--8, 7) M=9 at ~--0.5, 
Pe~=10 

brane can be sufficiently designed by varying the porosity of 
each membrane layer. The .separation of solute can be enhanc- 
ed as controlling physical parameters as well as number of  
membrane layers. 

C O N C L U S I O N  

A complete analysis of an M-layered membrane in a tran- 
sient state, and a full description of the system parameters 
including diffusion coefficient, convective velocity, and poro- 
sity, on the dynamic problem have been presented. The me- 
thodology is a complete a priori characterization of the solu- 
tion with minimal computations. Furthermore, these calcula- 
tions can be a guide for the dynamic effect of  membrane 
transport by direct interaction. The advantage of  direct mem- 
brane convection is to make the acceleration of the speed in 
the membrane process possible. The speed in the membrane 
can be controlled by the convective fluid velocity in the ex- 
ternal space of the system. Transport in an M-layered mem- 
brane can be significantly varied by continuously varying 
properties of  each layer. 

This study suggests a useful guide for the design of  labo- 
ratory devices as well as larger scales required for a variety 
of membrane separations. 

N O M E N C L A T U R E  

A : cross sectional area of system 
Ak,Bk: integral constant 
c : species molar concentration 
C, C': non-dimensional concentration 
D : species diffusivity 
D(L) : domain of the differential operation L 
f : kinetic function of species concentration 
F : volumetric flow rate into external boundary regions 
L : total length of composite media 
Lk : differential operation 
N : molar flux 
Pe :Peclet number 
P,, qk: functions defined in Eq. (18), (19) 
s : non-dimensional spatial coordinate 
t : time variable 
U : convective velocity 
V : volume of external regions 
w : element of the Hilbert space H 
x : dimensional spatial coordinate 

Greek 

7 
t5 
). 

V/ 
E 

F 

Letters 
: equilibrium coefficient 
: parameter defined in Eq. (21) 
: constant in the inner product of H 
: eigenvalue 
: constants defined in Eq. (21) 
: constants defined in Eq. (21) 
�9 diffusivity ratio 
: monotonic function of ~ in Eq. (23) 
: transcendental function of )~ in Eq. (23) 
: the space of real number 

Ju ly ,  1998 



Dynamic Effects in the Membrane Process 389 

Subscripts 
f : feed to external boundary region 
k : layer of the composite membrane layer 
o : first layer of the composite membrane layer 
M : total number of layers in the composite membrane layer 
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