
Discussion of "Thermodynamic 
Consistency of the Interaction 
Parameter Formalism"* 

M. NAGAMORI  

Srikanth and Jacob t~j stated that the general relations 
between interaction parameters derived by Lupis and 
Elliott r21 are subject to errors due to improper truncations 
of  the Maclaurin series by the latter. It will be proven 
in this note that the relations of  Lupis and Elliott remain 
generally valid, while the relations derived by Srikanth 
and Jacob are valid only for regular solutions. Indeed, 
it will be demonstrated that both relations are equivalent 
insofar as ternary regular solutions are concerned. 

For ternary solutions of  the system 1-2-3 where the 
component 1 is the major solvent, Lupis and Elliott ~2~ 
derived the following relation: 

2 L = p 2 ' 3 +  e3_2p32_  e 2 = 0  [1] 

In contrast, for the activity coefficients of  solutes that 
can be expressed by the Wagnerian first order and 
Lupisian second order interaction parameters, Srikanth 
and Jacob derived the following relations (their 
Eq. [14]): 

J , = p 2 2 ' 3 + 2 p  2 +  e32+ e 2 = 0  [2] 

J 2 = p 2 " 3 + 2 p 2 +  e32+ e 2 = 0  [3] 

J3 = P22'3 + 2p~ - p].3 _ 2p22 = 0 [4] 

Equations [2], [3], and [4] appear so different from 
Eq. [1] that Srikanth and Jacob concluded that Eq. [1] 
is not a general relation. They derived Eqs. [2], [3], and 
[4] by truncating third and higher terms in series expan- 
sions, as expressed by their Eqs. [9] and [10]. Since such 
a truncation is the necessary condition for ternary regular 
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solutions, the present discussion may be begun with the 
redefinition of a ternary regular assembly, as will be done 
below. 

The concepts of  regular solutions are based on random 
atomic distribution for entropy and nearest neighbor bond 
energies for internal energy of mixing. A ternary sub- 
stitutional regular solution consisting of N~ atoms of 
metal 1, N2 atoms of metal 2, and N3 atoms of metal 3 
can be defined most elegantly by use of  the Grand Par- 
tition Function (GPF), as shown in Table I. All the ther- 
modynamic properties of  a regular solution, such as 
activities, activity coefficients, interaction parameters, 
and their temperature dependence, can be derived from 
this sole equation, Eq. [1.1], Table I. When this regular 
assembly is in thermal equilibrium, it satisfies the fol- 
lowing conditions: t3'4] 

0 In =o 0 In ~o 0 In ~o 
- - - 0 ;  - - - 0 ;  - - - 0  [51 

ON1 c3N2 c3N3 

When the Raoultian standarization is applied, these three 
relations become the expression of the Raoultian activity 
coefficient of  each constituent, as shown by Eqs. [1.3], 
[1.4], and [1.5], Table I. These three relations are valid 
for all binary and ternary compositions from concen- 
trated to infinitely dilute solutions. 

It may be of interest to prove here that Eqs. [1.3], 
[1.4], and [1.5] satisfy the Gibbs-Duhem relation, as 
shown in Table II. This is quite natural since the three 
equations are all derived originally by differentiating 
partially one single function, GPF. Nonetheless, this 
confirmation is important in that the GPF method hence- 
forth annihilates the need for the Gibbs-Duhem integra- 
tions which may bring in unnecessary complications due 
to its path dependency or inevitable introduction of  in- 
tegration constant. By Wagner ' s  definition of interaction 
parameters, tSj In 72 is treated as a function of x 2 and x3, 
or the atomic fractions of  two solutes. The Taylor series 
expansion can also be made by looking upon In ")/2 as a 
function of x~ and x2, or that of  Xl and x3, which are 
called non-Wagnerian in this note. They are all valid 
mathematically. For regular solutions, they can be ex- 
pressed analytically, as shown in Table III. Partial dif- 
ferentiation of these analytical expressions readily yields 

Table I. Grand Partition Function for Ternary Regular Solutions and Its Conditions for Equilibrium 
i 

(N, + N2 + N3)! 1 ] 
= E E E (qlA')N~(q2A2)N2(q3A3)N3 exp  (w,2NIN2 + w23N2N 3 + w31N3NI) [1.1]  

NI N2 N3 NI!NE!N3! Nl + Nz + N3 

In ~o  = (N 1 + N2 + N3 ) In (NI + N2 + N3) - NI In NI - N2 In N 2 - N 3 In N3 + N�91 In q lh l  + N 2 In q2A2 + N 3 In q3A3 
1 1 

(wI2NIN2 + WE3N2N 3 + WalNaNI) [1.2]  
kT N1 + N2 + N3 

O In =o qlAl 
- -  = 0: In = (1 -- Xl) (Vl2X2 q- V31x3) - V23x2x3 = In 3'1 [1.3] 

ONl xl 

O In ,~o q2A2 
- 0: In = (1 - x2) (V23x3 + VlEXl) - V31xaxl = In 72 [1.4] 

ON2 x2 

0 In ~o q3A3 
- -  = O: In = (1 - x3) (V31xl + V23x2) - Vlzxlx2 = In 3'3 [1.5] 

ON3 x3 

where -~~ = maximum term in E; x, = N,/(NI + N2 + N3); V, s = wu/kT 
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the Wagner i an  and non-Wagner i an  interact ion pa rame-  
ters,  as summar ized  in Tables  IV and V. 

W h e n  these values are subst i tuted in the Tay lo r  series 
expans ion  for  In ~2, for  example ,  it  can be p roven  that 
the or iginal  regular i ty  express ions  can ful ly be res tored  
by  Wagner i an  e ' s  and Lupis ian  p ' s  a lone wi thout  any  
remainder  o f  h igher  order  in the infinite series,  as shown 
in Table VI. Conversely,  the truncation of  third and higher 
o rder  terms in the inf ini te  series,  as was done  by  
Sr ikanth and Jacob in their  Eqs.  [9] and [10], s ignif ies  
that the ternary act ivi ty  coeff ic ient  has then been  

approx imated  by  the regular  solut ion model .  The 
Eqs. [9] and [10] of  Srikanth and Jacob  may be  with- 
s tood by solut ions other  than regular ,  but  Eq. [ 1.1 ] still 
remains  va l id  as a sufficient condi t ion ,  thus affect ing no 
argument  here.  

Whi le  Lup is -E l l io t t ' s  Eq. [1] was de r ived  for any ter- 
nary solut ions,  those o f  Srikanth anq! Jacob were  de- 
r ived,  perhaps  unintent ional ly  but  in essence ,  for  regular  
solutions when  they chose only the first and second order 
terms. Let  us substi tute the values  g iven  in Tables  IV 
and V in Eqs.  [1] through [4]: 

Table II. Ternary Regular Solutions and Gibbs-Duhem Equation 

In Yl = (1 - xl) (Vl2xz + V31x3) -- V23x2x3 

In "Y2 = (1 - x2) (V23x3 -~- VI2X1) - V31x3xI 

In Y3 = (1 - x3) (V31xl + V23x2) - Vl2xlx2 

( d  In , l )  -VI2x2--V3113 ~- 
xl \ dxl / xl \dx~/ 

x2(dln y2) ( = X2 V12(1 - -  X2) - -  V31X3 -~- 
\ dxl / 

{ d  In y3"~ _ _  ( 
) = + 

x ld ln  yl +x2dln y2 +x3dln y3 = dXl[xl(dln yl~ + / .~/{dlny2'~ 
L \ j 

c x't } 
[V12(1 - Xl)  - V23x3] + [V31 (1 - -  Xl)  - -  V23x2] 

\ dx l /  

( x2t c.x.i } 
dXl/I [ - V I 2 X I  - V23x3] "~ \dXl / [V23(1 - x 2 )  - V31Xl] 

1 dxl,] [V23(1 - x 3 )  - V12xl] + \dxl,] 

/ d i n  T3~] 

I2.1] 

[2.2] 

[2.3] 

I2.4] 

[2.5] 

[2.6] 

[2.71 

Table Ill.  Wagnerian and Non-Wagnerian Expressions for 
Activity Coefficients of  Solutes in Ternary Regular Solutions 

Wagnerian: In "Y2(x2, x3) = Vi2(1 - x2 - x3) (1 - x2) + V 2 3 x 3 ( 1  - x 2 )  - V31x3(1 - x2 - x3) 

Wagnerian: In "Y3(x2, x3) = -V12x2(1 - x2 - x3) + V23x2(1 -x3)  + V31(1 - x3) (1 -- x 2 -- x3) 

Non-Wagnerian: In "~2(Xl, X2)  = VI2XI(1 - -  X2)  -1- V23(1 - x2) (1 - xl - x2)  - V31xI(1 - xl - x2) 

Non-Wagnerian: In y3(xl, x2) = -V12XlX2 + V23x2(xl q- x2) + V31Xl(Xl + x2) 

Non-Wagnerian: In Y2(X3, xl) = Vl2Xl(X3 21- Xl) -~- V23x3(x3 ~- xl) - V31x3xI 

Non-Wagnerian: In ya(x3, xl) = -VlEXl(1 - Xl - x3) + V23(1 - x3) (1 - x I - x3) + V31Xl(1 - x3) 

[3.1] 

[3.2] 

[3.3] 

[3.4] 

[3.5] 

[3.61 

Table IV. Partial Derivatives of In V2 for Ternary Regular Solutions 

Wagnerian Non-Wagnerian Non-Wagnerian 
Function In yz(x2, x3) In Y2(Xl, x2) In Y2(X3, xl) 

Condition x2 ~ 0; x3 --~ 0 xl ~ 1; x2 ~ 0 x3 ~ 0; xl ~ 1 

In y~ V12 V12 VI2 

0 In yz/OXl - -  VI2 - V23 ~- g31 2V12 

O I n  y2/Ox2 -2V12 ~--- E22 - V I 2  - -  V23 + g31 ,~ - -  

O I n  y2/Ox3 - V j 2  "~ V23 - V31 = e 3 - -  VI2 -+ V23 - V31 

0 2 In "y2/0Xl 2 - -  2V31 2V12 

0 2 In y2/Ox 2 2V12 = 2p22 2V23 - -  

0 2 In y2/Ox~ 2V31 = 2p 3 - -  2V23 

O 2 In "y2/(OXlOX2) - -  --V12 ~- V23 -~ ]/31 - -  

O 2 In  y2/(Ox2Ox3) V1z -- V23 -]- V31 = p2,3 _ _  _ _  

02 I n  y2/(Ox3Oxl) - -  - -  VI2 -I- V23 - V31 
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Table V. Partial Derivatives of in 3/3 for Ternary Regular Solutions 

Wagnerian Non-Wagnerian Non-Wagnerian 
Function In `73(X2, X3) In y3(xl, x2) In T3(X3, Xl) 

Condition x2 ~ 0; x3 ~ 0 Xl ~ 1; xz ~ 0 x3 ~ 0; x~ ~ 1 

In y]  V31 V31 V31 
O In ")'3/axi - -  2V31 V12 -- V23 -~ V31 
O In `73/ax2 -V12 + V23 - V31 = e 2 -Vl2 + V~_3 + V31 - -  

O In ~/3/0X3 -2V31 = e~ - -  V12 -- V23 - V31 

02 In `73/0X 2 - -  2V31 2V12 

O 2 In 'y3/Ox~2 2V,2 = 2p~ 2V23 -- 

O 2 In 13/ax 2 2V~, = 2p~ - -  2V23 
O z In y3/(dxlaxz) - -  - V t 2  -~- V23 q- V31 - -  

0 2 In `73/(C)X2OX3) VI2 - V23 -[- V31 --~ p2,3 _ _  _ _  

02 In `73/(Ox3Oxl) - -  - -  V12 q- V23 - V31 

L = p ~ ' 3 +  e ] - 2 p 3  z - e ~  

= (V12 - -  V23 -~ V31 ) + ( - V 1 2  -q- V23 --  V31 ) 

-- 2VI2 - ( -2V12)  = 0 [6] 

~-~ (V12 - V23 --t- V31 ) -~- 2V12 

"~ ( - V 1 2  -]- V23 - V31) - 2V12 = 0 [7]  

�9 1 2 = p Z ' 3 + 2 p 2 + e ] + e  2 

~-~ (g12 --  V23 + V31 ) + 2V12 

-'}- ( - V I 2  -[- V23 - V3I ) --  2V12 = 0 [8] 

~--~ (V12 - V23 q- V31 ) -4- 2V12 

--  (V12 - V23 7L V31) - 2V12 = 0 [9]  

Table VI. Wagnerian and Non-Wagnerian Series Expansions for in 3'2 in Ternary Regular Solutions 

General: In T2(gen) = Vl2xl(1 - x 2 )  + V23x3(I - x 2 )  - V31xaxl [6.1] 

Wagnerian: In "y2(X2, X3) = VI2(I - x 2 - x3) (1 -- x2) -~- V23x3(I - x2) - V31x3(1 - x 2 - x3) [6.2] 

In `72(X2, x3)=  [ln ~]a ~- X 2 [ (  0 In Yz~ ] + X3r( 0 In y2 t ] 1 2[{02 In `72~ ] 
L*tk 0X2 /]'%-IA L\ 0x3 + 2X2L\  -x  L,J,, 

1 2r(dZln`72 ~ ] {O21n'y2~ 
+ 2 x3 L ~ ' - ~ X ~ ) x 2 J a  + X2X3to~zOX3JA = In y2(gen) [6.3] 

Non-Wagnerian: In 72(xl, x2) = V12xl(1 - x2) + V23(1 - x2') (1 - xl - x0  - V31x~(l - Xl - Xz) [6.4] 

/ 1 [ (  ! [ (Ozln`7''] 1 r( + x .  < x , - m  - -  ln'yz(Xl,X2) = [lny~]n + (x I - - 1 ) L X  Ox, / ~ j ~  L \  Ox2 /: , ,Ja 2 \ Ox~ //x J 8  

1 2 I r a  2 In `72~ 1 / /0 2 In Y2'~ 
+-  2X2Lt-~'~x22 Jx, J + (x,-  1)x2t ax----~-~x2 ) n = In yz(gen) [6.5] 

Non-Wagnerian: In 3"2(X3, Xl) = VIzXI(-X 3 -}- Xl) "~ V23x3(x 3 ~ Xl) - V3IX3X 1 [6.6] 

In 'Y2(x3, xO = [In `72]c+(X,~ I 1)[(O In 3,2 t ] + x3[(8 In `7'/ ] + 1 I 1)2[( ~ In `72"] ] 
\ OX] /~r3JC k OX3 /xl_]C 2(Xl L\ 0x~ 

~ [(aelny2"~ ] /'021n`7.\ 
+ 4 L,j  + - = In`7 <ge.) 16.7] 

Notes: (1) The subscripts A,  B, and C refer to the conditions A(x  2 ~ 0; X 3 ~ 0), B(xj --~ 1; x2 --~ 0), and C(x~ ~ 1; x3 ~ 0), respectively. 
(2) The actual values of partial derivatives are given in Table IV. 
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Surprisingly, Eqs. [1] through [4], which appeared so 
different that Srikanth and Jacob were induced to de- 
nounce the generality of the Lupis-Elliott equation, are 
all equivalent so long as regular solutions are concerned. 
Owing to the fact that Srikanth and Jacob assumed un- 
intentionally the ternary regularity, Eqs. [2], [3], and [4] 
become invalid in dealing with solutions other than reg- 
ular. On the other hand, the Lupis-Elliott equation should 
be considered of general validity for all regular or non- 
regular solutions. 

Not only the integration for the activity coefficient of 
solvent, as discussed by Srikanth and Jacob, but the def- 
inition itself of interaction parameters also depends on 
path in ternary solutions, as restated correctly by 
Sukiennik and Olesinski. t6] This fact can be put in 
evidence most demonstratively by the GPF method. For 
example, directly from Table IV, we have 

- -  = V12 + V23 - V31 [10] 
L \  OX3 /IxI-Jxl---->I,x3---->O 

[(0ln~'2t t :-V]2+V23-V3I [11] 
\ OX3 IIx2_]X2-..>O,x3--.~ 0 

Equations [10] and [11] clearly indicate that the partial 
derivative along the path of Xl = const converges to a 
value different from that along the path of x2 = const. 
Although Srikanth and Jacob used only the Wagnerian 
terms, namely their Eq. [23], the present Eqs. [10] and 
[11] are derived based on more rigorous expressions in- 
cluding both Wagnerian and Lupisian terms, as done 
earlier by Srikanth and Jacob in their Eqs. [9] and [10], 
for which the activity coefficient of solvent has already 
been given by Eq. [1.3] without any integration. This 
tremendous simplicity is a merit of the GPF method which 
obliterates all integrating operations from solution the- 
ories. Equation [1.3] does not depend on path, being valid 
for all compositions, dilute or concentrated, binary or 
ternary. It may be suggested that the activity coefficient 
of solvent is best assessed by regularity approximation, 
or Eq. [1.3], even if the solutes may not behave exactly 
regularly. 

In reference to Eqs. [10] and [11], it is of great im- 
portance to note that in a ternary solution 1-2-3 where 
the component 1 is the dominant solvent, the condition 
of (Xsolven t ~ 1), or (xl ~ 1, x 3 ~ 0 ) ,  is not the same as 
that of  (x2 ~ 0, x3 ~ 0). Thus, the GPF formalism for 
regular solutions lends support to Srikanth and Jacob when 
they meant that some previous researchers and authors 
were misled due to the overlooking of the path depen- 
dence of interaction parameters. Incidentally, Wagner's 
original definition TM clearly designates the condition of  
(x2 ~ 0, x3 ~ 0) with categorical rejection of the other 
conditions such as (x~ ~ 1, x3 ~ 0), (xl ~ 1, x2 ~ 0), 
and ( x 2 / x 3  = const, xl ~ 1). 

Eq 
k 
N, 
q, 

N O M E N C L A T U R E  

pairwise single bond energy between i and j 
Boltzmann constant 
number of atoms of  metal i 
vibrational partition function of atom i 

T 

w U 
x, 
z 

Y 
Ai 
E 
P 

temperature in Kelvin 
= w d k T  

= z [ E  v - 0.5(E, + E~)] 
atomic fraction of atom i 
number of nearest neighbor atoms 
Wagnerian interaction parameter, Tables IV 
and V 
Raoultian activity coefficient " 
absolute activity of component i 
grand partition function (GPF) 
Lupisian interaction parameter, Tables IV 
and V. 

The author expresses his gratitude to the Centre de 
Recherches Min6rales, Quebec Government, for per- 
mission to publish this note. 
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Authors' Reply 

S. SRIKANTH and K.T. JACOB 

Nagamori's discussion of our paper on the thermo- 
dynamic consistency of the interaction parameter for- 
malism t~j is based on an incomplete understanding of 
several aspects of our analysis. Further, Nagamori re- 
stricts his attention to ternary regular solutions, whereas 
the thrust of our paper is on the representation of thermo- 
dynamic data for dilute multicomponent solutions in 
general. Most multicomponent solutions encountered in 
metal processing are nonregular, although Darken's qua- 
dratic formalism [2'3] may be obeyed in the terminal re- 
gions, especially in weakly interacting systems. 

Thermodynamic treatment of ternary and higher order 
regular solutions is well established in the literature t4'5'6j 
and does not require reformulation on the basis of the 
grand partition function. When the integral mixing prop- 
erties are defined, the partials derived therefrom obvi- 
ously satisfy Gibbs-Duhem equation. This does not require 
further demonstration for ternary regular solutions. The 
interaction parameter representation was formulated for 
partial properties; therefore, its thermodynamic consis- 
tency has to be explored with respect to both the rela- 
tions of Maxwell and Gibbs-Duhem, as done in our paper. 
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