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Abstract 

Pollen-related allergy is a common disease resulting in symptoms of hay fever and asthma. Control of symptoms depends 
(generally) on avoidance and pharmacological treatment. Both of these approaches could benefit from accurate predictions of 
pollen levels for future days. We have constructed a model that uses meteorological data to predict ragweed pollen levels based 
on air samples collected daily in Kalamazoo, MI from 1991 to 1994. Ragweed pollen counts were converted to pollen grains/m 3 
of air (24-h average). We used Poisson regression, which appropriately handles the heterogeneous variance associated with pollen 
data. Using standard statistical model selection procedures, combined with biological considerations, we selected rainfall, wind 
speed, temperature, and the time measured from the start of the season as the most significant variables. Using our model, we 
propose a method that uses the weather forecast for the following day to predict the ragweed pollen level. This approach differs 
from most previous attempts because it uses Poisson regression and because this model needs to be fit iteratively each day. By 
updating the coefficients of the model based on the information to date, this method allows the fundamental shape of the pollen 
distribution curve to change from year to year. Application to the Kalamazoo data suggests that the method has good sensitivity 
and specificity for predicting high pollen days. �9 1997 Elsevier Science Ireland Ltd. 
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1. Introduction 

Pollen and fungal spores are the most abundant  
biological particles in the atmosphere (Arizmendi et 
al., 1993). Pollen-related allergy is a common disease 
resulting in symptoms of hay fever and asthma in 
about 10% of the population. Control of  pollen-in- 
duced symptoms depends (generally) on avoidance and 
pharmacological treatment. Both of these approaches 
could benefit from accurate predictions of  pollen levels 
for future days. 

The relationship between pollen levels and meteoro- 
logical variables has been clearly established. 

*Corresponding author. Tel.: + 1 617 4321056; fax: + 1 617 
7391781. Also affiliated with Massachusetts General Hospital, 
Boston, MA 02114, USA; Tel.: +1 617 7246985; fax: +1 617 
7244015. 

O 'Rourke  (1988) used a ;(2 goodness-of-fit test to ver- 
ify the existence of a positive relationship between 
temperature and pollen dispersal. Temperature,  rainfall 
and wind have been shown to be significant predictors 
of  ragweed and oak pollen levels using multiple linear 
regression (Reiss and Kostic, 1976; Fairley and 
Batchelder, 1986). McDonald (1980) used correlation 
coefficients to support the importance of  wind in grass 
pollen dispersal. Correlation coefficients have also been 
used to demonstrate that there is a strong relation- 
ship between these weather variables and 'weed', 
birch and grass pollen concentrations (Bringfelt et al., 
1982; Glassheim et al., 1995). In addition, Frenz et al. 
(1995) establish that latitude influences the date of  
maximum ragweed pollen concentration. However, lat- 
itude may simply be a surrogate for temperature in 
their studies. 
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While the relationship between these weather vari- 
ables and pollen production is undisputed, use of statis- 
tical models to predict the daily ragweed pollen counts 
have been less successful (Goldberg et al., 1988) possi- 
bly due, in part, to inadequacies in the models. A more 
recent attempt, discussed by Comtois and Sherknies 
(1992), develops a forecasting model based on the 
probabilistic distribution of ragweed pollen curves; we 
take a different approach. We have focused our efforts 
on predicting pollen levels for the following day on 
ragweed (Ambrosia spp.) pollen from a single Midwest- 
ern site (Kalamazoo, MI) and have used environmental 
variables and Poisson regression to develop our model. 
It seemed reasonable to focus our analysis on ragweed 
pollen because pollen derived from Ambrosia spp. has 
long been recognized as a major cause of pollinosis 
(Buck and Levetin, 1983). Also, ragweed pollen in the 
Midwest is shed by only two species (A. artemisiifolia 
and A. trifida). In addition, the factors that control the 
production of ragweed pollen are consistent and well- 
documented. Ragweed initiates pollen production only 
when periods of darkness (nighttime) are sufficiently 
long. Thus, in temperate regions, ragweed pollen is 
usually not available for dispersal until late July (when 
nights become long enough). In addition, for ragweed, 
the overnight temperature must exceed about 10 15~ 
(50 60~ for anther extension to occur (Bianchi, 
1959). Therefore, little additional pollen is released after 
the beginning of October (after the first frost) in North- 
ern climates. 

The goal of this work is twofold. Firstly, we develop 
a model, using the framework of Poisson regression, to 
determine which environmental variables have the most 
significant impact on pollen counts. These will be the 
independent variables in the model, with pollen counts, 
in grains/m 3 of air (24-h average), as the dependent 
variable. Next, we utilize this model and the weather 
data (since many of the explanatory variables are 
weather-related) in an attempt to predict the ragweed 
pollen levels for the following day. 

2. Materials and methods 

2. I. FieM data 

2.1.1. Pollen collection 
Pollen was collected 7 days a week from 1991-1994 

using a Rotorod Aeroallergen Model sampler (Burge 
and Solomon, 1987) located on a flat roof of the local 
television station about 20 feet above grade. The station 
is in a suburban neighborhood 1.25 miles south of the 
city center. Just to the northwest is an 160 acre nature 
preserve surrounding a small eutrophic lake. 

The Rotorod is a rotating arm impactor, rotating 
silicone-greased plastic I-rods intermittently 1 min in 10 

at 2400 rpm. After each 24-h exposure period, between 
17.00 and 19.00, rods were removed and one of each 
pair mounted in Calberla's solution and ragweed pollen 
counted on the entire rod surface at 600 x using an 
A.O. 150 microscope. Counts were converted to grains/ 
m 3 of air (24-h average). We chose Kalamazoo because 
several years of consistently collected data were avail- 
able and the site generally reported ragweed pollen 
levels above the overall average for the American 
Academy of Allergy, Asthma and Immunology's 
aeroallergen network (AAAAI, 1995). 

2.1.2. Meteorological data collection 
Meteorological data, collected at the Kalamazoo air- 

port, 3 miles southeast of the pollen collection site, were 
obtained from the National Center for Atmospheric 
Research. 

2.2. Statistical packages 

Data manipulation and the creation of variables oc- 
curred in SAS (SAS Institute, Cary, NC). However, the 
data analysis was performed in S-PLUS (Seattle: Statis- 
tical Sciences, a division of MathSoft Inc., Version 3.4). 

3. Development of the model 

3.1. Motivation for using Poisson regression 

Scatterplots of pollen levels over time indicated that 
the mean pollen levels follow an inverted U-shaped 
curve, with a slightly skewed right tail (Comtois and 
Sherknies, 1987) (Fig. 1). It is clear from Fig. 1 that as 
the mean pollen level increases, so does the variation of 
the pollen levels. This property suggests that Poisson 
regression may be appropriate since this technique as- 
sumes that the variance of the data is proportional to 
its mean. Poisson regression is often the appropriate 
statistical model to use for data that will always take on 
integer values, as in our case. Poisson regression models 
the mean (or expected value, denoted EY) of the re- 
sponse as a function of covariates on the natural loga- 
rithm scale. For example, if X1 and J(2 are two 
covariates of interest, and Y is the outcome, Poisson 
regression assumes that: 

log(EY) = ~o + :~IX1 -~- 0~2X2 

or,  

EY = exp(~ 0 + ~lXi + ~2X2). 

More specifics about the predictor variables to be 
considered in the model will be given presently. In this 
paradigm, all models will include the variables day and 
ln(day). Ignoring other covariates for now, this implies 
that the m e a n  pollen levels will have the following 
form: 
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Fig. 1. Pollen grains/m 3 of air (24-h average), over time. 

E Y  = exp(e0 + elday + e21n(day)) 

o r ,  

E Y  = exp(~0) exp(~day)day ~2 

This function has the required flexibility to allow the 
mean pollen counts to rise, reach a peak, then fall off 
again to zero. Poisson models were fit by maximum 
likelihood using the glm function in S-PLUS. To adjust 
for overdispersion, all standard errors were multiplied 
by a scaling estimate that was estimated as the scaled 
deviation divided by the degrees of freedom (McCul- 
lagh and Nelder, 1992, pp. 199). All reported P-values 
are based on 2-sided Wald tests. 

3.2. Creation of  explanatory variables 

Aerobiologists generally agree that the day-to-day 
variation in the concentration of airborne pollen is 
likely to be related to daily air temperatures, wind 
velocity, the amount and duration of precipitation and 
the water content, (i.e. humidity) of the air (Moseholm 
et al., 1987) The meteorologic data available to us 
included hourly observations of a myriad of weather-re- 
lated factors. These observations were summarized into 
daily values. 

The primary time period of pollen dispersal is during 
the late morning, so it is important to note whether or 
not there was significant rain during this period. Hence, 
we created the binary or indicator variable: r a i n  = 

�9 0 if there were at least 3 h of steady rain or brief but 
intense rain (in the late morning), 

�9 1 otherwise. 
Similarly, an overnight temperature below 50~ 

(10~ is likely to decrease pollen dispersal for the 
following day. We therefore created the indicator vari- 
able: cold = 
�9 0 if the overnight temperature ever dropped below 

50~ 
�9 1 otherwise. 

Wind speed in knots (wind) is also included in the 
analysis as a continuous or quantitative variable since it 
has been shown that wind tends to influence pollen 
dispersal in a linear manner (McDonald, 1980). 

In addition, functions of temperature (in ~ need to 
be considered. Daily average temperature was an infor- 
mative variable. However, having only daily average 
temperature in the model will not fully explain the 
effect of temperature. For example, an 80~ (27~ day 
may have a much different influence on pollen produc- 
tion in late September than it will in late July. Instead, 
two functions of temperature were created. They were a 
smooth function of temperature (temp.trend), which 
was created using the loess function in S-PLUS, and 
the deviation of the daily average temperature from the 
loess line (temp.resid) (Fig. 2). The former can be 
thought of as a smooth function of the average temper- 
ature, while the latter as the departure from the average 
expected temperature on any given day. Akaike Infor- 
mation Criterion (AIC) was used to determine the 
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Fig. 2. Average daily temperature (in ~ over time. 

optimal window size for the loess functions (McCul- 
lagh and Nelder, 1992, pp. 91). 

Temp.trend and temp.resid allow the model to dis- 
tinguish between the two previously described temper- 
ature scenarios. Thus, an 80~ day in September is 
likely to be associated with a high value for temp.resid 
and a low value for temp.trend, whereas the same 
type of day in late July will have the opposite values 
for the corresponding parameters. 

Finally, we needed a means of defining the appro- 
priate time frame for our analyses. We created a vari- 
able called day that is, simply, the day in the season, 
with day 1 being the first of 4 consecutive non-zero 
pollen days. For example, for 1991, day equals 1 on 
the 209 th day of the calendar year (28 July), 2 on the 
210 th day of the calendar year (29 July), etc... Justifi- 
cation of this choice for the start date criterion will 
be giving in the Section 5. Since day will clearly be a 
monotonically increasing variable (i.e. it will always 
increase, never decrease), and the pollen levels start to 
decrease midway through the season, we needed an 
additional function of day to accommodate this non- 
linear pattern. As discussed in the previous section, 
the natural logarithm of the day in the season, In(- 
day), was useful for this purpose. The inclusion of day 
and In(day) as predictors in the Poisson regression 
provides a simple, yet flexible modeling framework 
that can easily capture the typical pattern of pollen 
dispersal over the season. 

4. Results 

4.1. Fitting the model 

The primary objective in the model selection pro- 
cess was to determine a representation of the biologi- 
cally meaningful variables that provided a parsimo- 
nious model (i.e. one with only a few variables) 
that would best allow for the prediction of the pollen 
levels. After a series of stepwise regression proce- 
dures and examination of the resulting residuals to 
assess the model fit (Fig. 3), we arrived at a model 
that meets these requirements. The model included the 
following variables: rain (the indicator variable), day, 
In(day), temp.trend, temp.resid and wind. Because we 
are using Poisson regression, the expected pollen level 
on any given day takes the form: 

E[pollen] = exp(~o + ~ X I  + ~2X2 + c~3X3 + ~4X4 + ~5X5 

+ ~6X6), 

where the ~ terms are the unknown regression coeffi- 
cients to be estimated and the X's are values of the 
corresponding variables (i.e. day, ln(day), etc.). Con- 
trary to expectations, relative humidity and cold (the 
indicator variable) did not appreciably improve the 
model, and were ultimately not included. The influ- 
ence of cold may already be explained by the inclu- 
sion of the two temperature variables, and the 
primary effect of relative humidity by the rain vari- 
able. 
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Fig. 3. Pearson residuals of the pollen prediction model, over time. 

Table 1 summarizes the final model fits for all 4 
years. Ideally, the sign, magnitude and significance of 
the estimated coefficient of any given variable should be 
consistent across the 4 years, especially if the coeffi- 
cients from the final model from 1 year were going to 
be used to predict the pollen for the following year. As 
can be seen from Table 1, the consistency holds reason- 
ably well. In general, inspecting the estimated coeffi- 
cients in Table l allows us to assess the influence of 
each individual variable on the predicted pollen level, 
while holding all other variables constant. The one 
exception to this is the pair of variables day and 
In(day). It does not make sense to try to interpret these 
separately, but rather, the pair together allows the 
mean model to assume its basic shape: that is, pollen 
levels start at zero, rise during the main pollen season, 
then decline back to zero. The purpose of additionally 
modeling the meteorological variables is to account for 
day-to-day departures from this basic shape. 

4.2. The prediction model  

Having established a model that explains the ob- 
served patterns in pollen dispersal, our next goal was to 
use this model to develop a strategy for prediction 
based on the weather forecast for that day. Clearly, 
there will be some imprecision in the forecasts. It 
becomes especially difficult to forecast the indicator 
variable, rain. We suggest that the rain variable be 

assigned the value 0 if the weather forecast calls for a 
chance of late morning rain for the following day to be 
greater than or equal to 50%. 

The proposed algorithm for predicting ragweed pol- 
len levels is as follows. Note that one must have 7 days 
of data (the 4 consecutive non-zero days, plus 3 addi- 
tional days) before a prediction can be made. 
l. Start gathering data for the variables identified in 

Section 4.1, and begin to collect the pollen counts. 
2. Determine the start of the season (assign day = 1 for 

the first of 4 consecutive non-zero pollen days). 
3. Starting at day = 7, create the derived variables 

(temp.trend, temp.resid and rain) and run a Poisson 
regression on the data, where pollen count is the 
predicted variable (there will be seven observations 
for each variable). 

4. Check to see if the coefficient for In(day) is signifi- 
cant. If it is not, drop it from the model and rerun. 

5. Use the weather forecast for the following day and 
the coefficients from the model to calculate the 
predicted pollen for the following day. This is ac- 
complished by using the fact that: 

E[pollen] = exp(c% + 7~X 1 + o~2X 2 --}-- ~3X3 -}- ~4X4 

"~ ~5X5 ~- ~6X6) 

6. On the next day, update the data based on the 
actual observed values, and return to 3. 
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Table 1 
Final parameter estimates from prediction 
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Parameter 1991 

Value S.E. 

1992 1993 1994 

P-value Value S.E. P-value Value S.E. P-value Value S.E. P -value 

Intercept -25.579 3 .837  <0.001 - 19.751 7.740 0.010 -23.295 4.514 < 0.001 -24.710 6.325 < 0.001 
Rain 0.768 0.457 0.093 0.997 0.451 0.031 1.055 0 . 2 4 2  <0.001 0.938 0.417 0.025 
Day -0.002 0.039 0.965 -0.101 0.043 0.021 -0.123 0.049 0.012 -0.104 0.035 0.003 
In(day) 1.393 0.756 0.064 2.771 0 . 5 2 3  <0.001 4.474 0 . 7 0 7  <0.001 2.069 0 . 5 9 3  <0.001 
Temp.trend 0.335 0.064 <0.001 0.245 0.113 0.035 0.213 0 . 0 6 9  <0.001 0.339 0.100 <0.001 
Temp.resid 0.042 0.015 0.006 0.044 0 .011  <0.001 0.040 0 . 0 1 0  <0.001 0.052 0 .011  <0.001 
Wind 0.057 0.024 0.019 0.095 0 . 0 1 9  <0.001 0.098 0.018 0.002 0.087 0 .021  <0.001 

To test our prediction model, we applied it to the 
data from Kalamazoo. Because the weather forecasts 
were unavailable, we used the actual weather data to 
predict daily pollen levels using the algorithm described 
above. By comparing predicted and actual pollen levels, 
we were able to assess the accuracy of our approach. It 
is important to note that we have not fallen into the 
statistical trap of assessing prediction accuracy with the 
same data used to construct the model. Our approach is 
different because the prediction process involves refit- 
ting the model using only data up to the day to be 
predicted. Our initial analysis of the entire data set 
served only to identify the variables to be used in the 
prediction process. 

The iterative method introduced here did usually 
predict pollen levels that were close to the observed 
levels. Occasionally, however, a value outside the realm 
of possible values was predicted. The reason for this is 
that when running the regression early in the season 
(when there are so few data points), the coefficients of 
the variables are prone to experience great changes as 
new data is added. This problem disappears if the 
model is used only to predict whether the pollen levels 
will be low, moderate or high. We used the cutoffs 
established by the American Academy of Allergy and 
Immunology specifically for Kalamazoo (AAAI, 1994) 
and collapsed the high and very high category into one 
high category, based on the assumption that any pollen 
count at or above 72 grains/m 3 will result in pollen-re- 
lated symptoms. 

We then created a table that demonstrates the success 
of our model in predicting the pollen level correctly 
(Table 2). For example, in 1991 there were 52 low 
pollen days observed. Our model predicted correctly on 
50 of those days. On the other 2 days our model 
predicted that the pollen level would be high. Clearly, 
one would hope that the majority of the values in the 
table would be on the diagonal (indicating a correct 
prediction), which is were the greatest numbers are 
usually found. Using the AAAI categories, our model 
works best for predicting low or high levels. 

5. Discussion 

5.1. General discussion 

While much research has been conducted to under- 
stand the factors that influence pollen levels, there has 
been very little work in developing a model that can 
adapt to the changes in the weather as the season 
progresses. Predictive models have recently been re- 
ported for grass pollen (Antepara et al., 1995; Norris- 
Hill, 1995). However, the biology behind the 
development and dispersal of grass pollen differs signifi- 
cantly from that of ragweed pollen and there is no 
reason to assume that a grass-based method would 
work well for ragweed pollen. 

Table 2 
Observed vs. predicted pollen levels 1991 1994 

Predicted Observed 

Low Moderate High 
(<18) (18-71) (72+) 

1991 
Low (< 18) 50 10 0 
Moderate (18-71) 0 9 3 
High (72+) 2 3 15 
Total observed 52 22 18 

1992 
Low ( < 18) 39 4 1 
Moderate (18-71) 3 9 0 
High (72+) 0 8 17 
Total observed 42 21 18 

1993 
Low (<18) 50 2 0 
Moderate (18-71) 5 6 4 
High (72+) 0 5 15 
Total observed 55 13 19 

1994 
Low (< 18) 43 5 1 
Moderate (18 71) 1 6 6 
High (72+) 0 5 8 
Total observed 44 16 15 
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The most successful work to date addressed at mod- 
eling ragweed pollen levels has been in formulating 
models that fit well after the season had ended. For  
example, regression analyses by Bringfelt et al. (1982) 
and Comtois and Sherknies (1987) have resulted in as 
much as 80% of  the variation in ragweed pollen levels 
being explained by the model  While impressive, these 
models will not help pollinosis sufferers, since the ef- 
fects of the ragweed have already been felt before the 
analysis is completed. 

Our model is fit iteratively using all information to 
date within the season, (i.e. it is meant to be used for 
prediction only from day-to-day within each ragweed 
season). An attempt to fit this model at the end of the 
season and then use the coefficients from that model to 
predict the pollen levels for the following year was 
unsuccessful. This is not surprising when one considers 
all of the factors that affect the amount of pollen that 
is available for dispersal, virtually none of which are 
included in this model. For  example, the sum of all the 
daily pollen counts in grains/m 3 for 1993 and 1994 were 
4087 and 2422, respectively. Clearly, any attempt to use 
the coefficients from the final 1993 model to predict the 
1994 pollen levels will result in a systematic overestima- 
tion. This further justifies why it is not necessary to use 
some data to develop the model and other data to test 
it. 

The choice of defining the start of the pollen season 
as the first of  4 consecutive non-zero pollen days was 
somewhat arbitrary. In a recent study of  grass pollen 
allergy, the start date was defined as the first day in the 
season at which 100% of a sample of patients under 
study suffer from symptoms (Antepara et aI., 1995. 
Clearly, this approach will often not be practical. Fur- 
thermore, it is not likely to be useful for predicting the 
start date for a specific pollen type, such as ragweed. 
Stix and Ferretti (1974) defined the start of each pollen 
season as the first day of the year on which the cumula- 
tive pollen count exceeds 2% of the average yearly 
counts of the same taxon over the last 35 years. A 
disadvantage of this method is that it requires a great 
deal of historical data to implement. The 1994 AAAI 
report uses the day on which 1% of the total ragweed 
pollen for the season has been collected (AAAI, 1994). 
However, this method cannot be used until after the 
end of the season. Our approach consistently yielded 
the same start date for our 4 years of data as would 
have been obtained using 3 or 5 consecutive non-zero 
days. Our method produced a start date that was within 
1 day of the 1% method for 1992 and 1994, but that 
was 8 days earlier for both 1991 and 1993. 

Because this model includes the two functions of  
time, day and ln(day), predicted pollen levels automati- 
cally go to 0 as the season draws to a close. Thus, for 
the purpose of  fitting our model, it is not necessary to 
specify a rule for predicting the end of  the pollen 

season. The models represented in Table 1 used all 
available data on pollen counts, with each season last- 
ing about 80 days. We considered applying some rules 
to indicate the end of the season. For  example, the first 
of 4 consecutive days with no detectable pollen (pollen 
counts = 0) as the first day after the season has ended. 
However, our data suggested that such a rule would 
result in the omission of several potentially important 
days. Take 1994, for example. Even a criterion of 11 
consecutive days with a pollen count equal to 0 would 
have resulted in the omission of at least 6 days, some 
with counts as high as 4 grains/m 3 of  air. These counts 
may not seem that high when compared to the 250 
grains/m 3 of air experienced in the middle of that 
season, but they may be high enough to cause symp- 
toms at the end of the season. 

Developing a tool to correctly predict the end of  the 
pollen season is of little biological importance. The 
choice of the last day of the pollen season will also have 
very little influence on our model. We implemented the 
rigid criterion of  4 consecutive days with no detectable 
pollen to see how our results would change. For  the 
most part, the parameter estimates in Table 1 experi- 
ence a negligible change (usually on the order of  1%). 
The only cell in Table 2 that will be affected is the 
low-low cell. On average, this number will be reduced 
by 10. 

5.2. Limitations o f  the model  and fu ture  work 

One minor limitation of our approach is that the 
model cannot be used during the first 7 days of the 
season. The reason for this is two-fold: firstly, to run 
the regression, there need to be more observations than 
explanatory variables; and secondly, to calculate the 
loess line for temperature (temp.trend), there need to be 
at least seven data points. However, because at least 4 
consecutive non-zero pollen days are required to signal 
the start of  the season, the model will be applicable 
after just 3 more days. Also, there are rarely danger- 
ously high levels of ragweed pollen during the first week 
of the season, so this limitation is relatively insignifi- 
cant. 

One final limitation of  this approach is that it relies 
on the weather forecast for the following day. There is 
inherent imprecision in the weather forecast, and our 
method must utilize this imperfect tool. Future work in 
this area will include testing the model using the 
weather forecast (and not the observed weather) for a 
given day to make the pollen prediction. 

Much current work in the area of forecasting pollen 
has focused on using pollen data from previous days to 
help predict current pollen levels. One danger in this is 
that there is clearly high autocorrelation between day- 
to-day pollen levels, so one would need to use sophisti- 
cated time-series techniques to adjust for this lack of  
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independence.  A n  example  o f  a t ime-series analysis  on 

grass pol len d a t a  can be found  in M o s e h o l m  et al. 
(1987). I t  is unclear  if an a p p r o a c h  such as this would  

p rov ide  a significantly be t te r  p red ic t ion  than  our  i tera-  

tive me thod .  A t r ade -o f f  exists between the ease o f  

appl icab i l i ty  o f  the mode l  and  the exactness o f  the 
predic t ion.  The  mode l  p r o p o s e d  here can be imple-  

men ted  by anyone  with access to the basic  meteoro log ic  

da ta ,  dai ly  pol len  levels, and  vir tual ly  any stat is t ical  
package .  However ,  extensions o f  our  mode l  to incorpo-  
rate  pred ic t ions  based  on the previous  day ' s  pol len level 
would  be useful. 

F ina l ly ,  there  is reason to be opt imis t ic  tha t  an 

a d a p t a t i o n  o f  this  mode l  could  be ex tended  to sites 
o ther  than  K a l a m a z o o ,  MI ,  p rov ided  tha t  the locale in 

ques t ion has s imilar  character is t ics  with regard  to the 
factors  tha t  influence ragweed pol len  dispersal .  The  

mode l  is mos t  l ikely to be useful where few closely-re-  
la ted species shed pol len  o f  the ragweed type.  In  areas  

where  species o f  Franceria con t r ibu te  significantly to 
ragweed pol len  counts ,  the character is t ic  Poisson distr i-  
bu t ion  o f  pol len  levels dur ing  each season, which is 
basic  to our  model ,  may  no t  be consis tent ly  present .  

However ;  the mode l  m a y  be adap t ab l e  for  o ther  pol len  
types for  which levels consis tent ly  fol low the Poisson 
dis t r ibut ion .  
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