
Introduction

Inflammatory bowel disease (IBD), which
is characterized by two forms of intestinal
inflammation, Crohn’s disease (CD) and
ulcerative colitis (UC), is a group of chronic,
relapsing, and remitting inflammatory condi-
tions that affect individuals throughout life
(1). Several factors such as immune imbal-

ance, dysregulated host/microbial interaction,
and genetic susceptibility are involved in the
pathogenesis of IBD (2–5). Experimental IBD
models have provided a useful means to dis-
sect the pathogenesis of this disease (2–6).
Among these models, chronic intestinal
inflammation that spontaneously develops in
T cell receptor α knockout (TCRα KO) mice
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shares several features with human UC, e.g.,
marked increase in autoantibodies such as
antineutrophil cytoplasmic antigens (ANCA)
and antitropomyosin (3,5,6), predominant
Th2 responses (3,5,6), and negative associa-
tion of colitis development with prior appen-
dectomy (resection of cecal patch) (7).
Importantly, B cells and autoantibodies in
TCRα KO mice are involved in the regulation
of this inflammation (8–10). Therefore, a
screening approach utilizing autoantibodies
present in TCRα KO mice was proposed to
have an ability to provide a useful tool in the
identification of molecules, which may have
a role in the pathogenesis of UC (11). Indeed,
the screening approach [serological analysis
of recombinant cDNA expression libraries
(SEREX) for the identification of candidate
molecules that are recognized by autoanti-
bodies from TCRα KO mice] has provided us
an unexpected opportunity to identify
galectin-4 as a potential stimulator of CD4+ T
cells under intestinal inflammatory condi-
tions (12). In addition, DNA microarray
analysis has widely been used as a powerful
approach to identify novel molecular events
associated with inflammations (13,14). By
utilizing this approach, we also have found
that chitinase 3-like 1 (CHI3L1), which inter-
acts with carbohydrate polymer (chitin), is
involved in the enhancement of host/micro-
bial interaction that contributes to the exacer-
bation of intestinal inflammation (14).
Interestingly, the molecules (galectin-4 and
CHI3L1) that were unexpectedly discovered
through our screening approaches are both
carbohydrate-binding protein, emphasizing
the importance of carbohydrate/protein inter-
actions in the pathogenesis of intestinal
inflammation. Indeed, a recent study has
demonstrated that an alteration of carbohy-
drate composition (carboxylated glycans) on
macrophages and dendritic cells contributes
to the early onset of intestinal inflammation

(15). Alternatively, carbohydrate/protein
interactions also play a regulatory role in the
intestinal inflammation as indicated by a sup-
pressive effect of galectin-1 on this inflam-
mation (16).

The function of carbohydrates (oligosac-
charides) in mucus, which forms a gel layer
and serves as a semipermeable barrier
between the intestinal lumen and the epithe-
lium, has been well studied in IBD (17). We
herein review recently identified novel roles
of carbohydrates in immune responses and
host/microbial interaction under intestinal
inflammatory conditions.

Effects of Glycosylation on 
Immune Responses

The majority of surface receptors are mod-
ified by glycosylation. There are two main
types of protein glycosylation: N-glycosylation
(N-glycan) that is assembled on an asparagine
residue and O-glycosylation (O-glycan) that is
assembled on a serine or threonine residue. All
mammalian N-glycans share a common tri-
mannosyl-chitobiose core [Mannose(Man)3
N-acetyl-D-glucosamine(GlcNAc)2], which is
synthesized from a biosynthetic precursor, D-
Glucose (Glc)3Man9GlcNAc2 (18–21). In
contrast, there are at least seven core struc-
tures in O-glycan, four of which are wide-
spred in mammalian glycoprotein. After
establishment of such core formation, struc-
tural diversification of glycans is induced in
the Golgi compartments. The antennae stubs
attached to the core are generated by the
addition of a lactosamine unit [β-galactose (β-
Gal) and N-acetylglucosamine (GlcNAc)].
Subsequently, the oligosaccharide antennae
can be further lengthened by the sequential
additions of lactosamine units, resulting in the
generation of tandem repeats (“polylac-
tosamine”) of lactosamine. The addition of
fucose further modifies the glycan structure.
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Finally, the elongation is terminated by the
addition of negatively charged sialic acid
(18–21). Various kinds of enzymes such as
sialyltransferases, N-acetylglucosaminyl
transferases, galactosyltransferases, and fuco-
syltransferases are utilized for the elongation
and modification of glycans. The expression
pattern of these enzymes in cells is continu-
ously modified through their development
and activation stages and also influenced by
environmental factors such as inflammation
(18,19,22–26). Therefore, the oligosaccha-
ride composition as well as the number and
size of oligosaccharide branches (antennae)
within glycoreceptors are frequently altered
throughout the lives of cells (18,19,22–26).

The majority of key molecules that are
involved in innate and acquired immune
responses are glycoproteins (27). Recent stud-
ies have demonstrated that the glycoprotein-
mediated immune responses are controlled by
the glycan structures (oligosaccharide com-
position) (22–25,28,29). Glycan structure reg-
ulates major histocompatibility complexes
(MHC)–associated antigen presentation by
modifying the protein folding and assembly
(27). An ability of CD8+ T cells to interact
with MHC class I is regulated through their
glycosylation state (25,28,30). In addition,
alteration of glycosylation has been demon-
strated to affect several immune responses of
T cells, e.g., their homing/adhesion, cytokine
production, and TCR clustering on the
immunological synapse (23,28,29,31). Of
note, altered glycosylation state results in the
development of some autoimmune diseases
(28,32,33). Absence of β1,6-N-acetylglu-
cosaminyltransferase V (Mgat5), which adds
GlcNAc in β1-6 linkage to the α6-linked
mannose arm of tri- and tetra-antennary com-
plex N-glycan, leads to the development of
glomerulonephritis and increases the suscep-
tibility to experimental autoimmune enceph-
alomyelitis (28). In addition, mice deficient in

α-mannosidase II, which trims two mannose
residues and allows the subsequent addition
of multiple branches (antennae) to N-glycan
by glycosyltransferases, spontaneously develop
systemic lupus erythematosus-like disease
(32). These observations emphasize an impor-
tance of normally matured glycans to prevent
the development of autoimmune diseases.

Galectins

Plant-derived lectins such as concanavalin
(Con) A have long been used as surrogates for
authentic lymphocyte activational stimuli. Like
exogenous lectins, some endogenous mam-
malian lectins are also actively involved in sev-
eral immune responses (22–25,28). One of the
major mammalian lectin families is C-type
lectin (such as selectin, DC-SIGN, dectin, and
serum mannose binding protein) that not only
serves as a prototypic pattern-recognition mol-
ecule for both pathogens and self-antigens but
also contributes to the tether of leukocytes to
endothelium, cell/cell adhesion, and enhance-
ment of cytokine production (27,29,34–37).

Another major mammalian lectin family is
the galectins that are classified into 14 mem-
bers (galectin-1 to galectin-14) (38–40).
Galectins are characterized by two properties:
the ability to bind to lactosamine unit within
glycans and the preserved carbohydrate-
recognition domains (CRD) composed of 130
amino acid residues (38–40). The 14 members
of galectins are structurally subgrouped into
three groups; prototype, chimera-type, and
tandem repeat type (38–40). Prototype
(galectins-1, -2, -5, -7, -10, -11, -13, and -14)
is non-covalent homodimers that are com-
posed of two identical CRDs. Only galectin-
3 is chimera-type that is composed of a CRD
linked to a proline-, glycine-, and tyrosine-
rich N-terminal domain. Tandem repeat type
(galectins-4, -6, -8, -9, and -12) possesses two
distinct CRDs. The ability of CRDs to cross-
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link the lactosamine unit within surface gly-
coreceptors allows galectins to actively par-
ticipate in several immune responses
(22,23,28,41–48). For example, galectin-3
(chimera type) possesses abilities to dampen
TCR sensitivity to antigens and induce the
apoptosis of thymocytes (28,49). Galectin-2
(prototype) also induces the apoptosis of acti-
vated, but not resting, T cells in vitro (50).
Galectin-8 (tandem repeat type) stimulates the
proliferation of a T cell line through Rac-1
pathway (51). Galectin-9 (tandem repeat
type) has recently been shown to interact
with Tim-3 and, consequently, terminate
effector Th1 response (52).

Regulatory Role of Galectin-1 in
Intestinal Inflammation

Galectin-1 (prototype), which is expressed
by a wide variety of cell types including mus-
cles, neurons, and thymic stromal cells
(28,53), is specifically upregulated on
CD4+CD25+ regulatory T cells among T cell
population (54). Soluble galectin-1 has been
demonstrated to interact with a lactosamine
unit of mature core two-branched O-glycan
that is assembled within some glycoreceptors
including CD7, CD43, and CD45 (22,49,55).
Functionally, galectin-1 induces the apoptosis
of thymocytes (42,43) and also antagonizes

TCR signaling of a CD4+ Th1 T cell clone
specific to pigeon cytochrome c by affecting
lipid-raft clustering (44). A recent study
shows that CD7 is required for the galectin-
1–induced thymocyte apoptosis (55). In addi-
tion, galectin-1 has more recently been shown
to enhance the migration of dendritic cells
through extracellular matrix (56). Interest-
ingly, galectin-1 expression in the colon is
upregulated under an intestinal inflammatory
condition that is chemically induced in mouse
by rectal administration of 2,4,6-trinitroben-
zene sulfonic acid (TNBS) (16). Administra-
tion of human recombinant galectin-1
contributes to the suppression of this intesti-
nal inflammation by specifically inducing the
apoptosis of effector T cells responsible for
production of IFN-γ (16). In addition, a study
has demonstrated that treatment with recom-
binant galectin-1 also contributes to the sup-
pression of Th1-mediated retinal disease
presumably by inducing CD4+ regulatory T
cells (57). These data clearly address galectin-
1 as an immune regulatory molecule.

Pathogenic Role of Galectin-4 in
Intestinal Inflammation

The expression of galectin-4 (tandem
repeat type) is restricted to the digestive tract
(58,59) where epithelial cells are responsible
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Fig. 1. Galectin-1 (prototype) with a CRD forms homodimers and binds to a lactosamine unit within
mature core two-branced O-glycan. This binding induces apoptosis of thymocytes as well as activated T cells
involved in the pathogenesis of intestinal inflammation. CD7 has been proposed to be responsible for the
galectin-1–mediated induction of thymocyte apoptosis. In contrast, galectin-4 (tandem repeat type) with two
distinct CRDs binds to an immature carbohydrate structure (core 1 O-glycan with 3′-O-sulfation). This bind-
ing stimulates the CD4+ T cells in inflamed intestine to produce IL-6 through PKCθ signaling cascade. How-
ever, the glycoreceptor(s) that is specifically crosslinked by galectin-4 has not been identified.

Fig. 2. Glycosylation is controlled by a wide spectrum of glycosylation-associated enzymes. Expression
pattern of these enzymes is influenced by several inflammatory stimuli. Therefore, it is possible that intestinal
inflammation may suppress the expression of some glycosylation-associated enzymes that are involved in the
maturation of O-glycan from immature core-1 structure. This altered enzyme expression may allow intestinal
CD4+ T cells to respond to galectin-4 by enhancing the exposure of core-1 O-glycan on their glycoreceptor(s).
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for this production (12,59). Galectin-4 can be
secreted from both basolateral and apical
sides of the intestinal epithelial cells through
a nonclassical secretary pathway (60). In con-
trast to galectin-1 (16), intestinal inflamma-
tory conditions do not enhance the galectin-4
expression: there is no significant difference
in the expression level of galectin-4 in the
epithelial cells from control versus diseased
colons (12). Interestingly, through a com-
bined screening approach utilizing humoral
(SEREX) and cellular immune responses, we
have unexpectedly identified galectin-4 as a
potential stimulator of CD4+ T cells to exac-
erbate intestinal inflammation (12). Neutral-
ization of galectin-4 activity in vivo by
administration of the specific antibody sup-
presses the progression of chronic intestinal
inflammation that spontaneously develops in
B cell–deficient TCRα double knockout
(µDKO) mice (12). In contrast, pretreatment
with this antibody fails to abolish the devel-
opment of intestinal inflammation in these
mice (A.M., unpublished observation). These
data suggest that galectin-4 contributes to the
exacerbation, rather than initiation, of chronic
intestinal inflammation. Because it could be
predicted that both acute (induction of inflam-
mation) and healing (recovery from inflam-
mation) processes are simultaneously
involved in the chronic intestinal inflamma-
tion, galectin-4–mediated exacerbation of this
inflammation may result from a suppression
of the healing process. Indeed, treatment with
recombinant galectin-4 delays the recovery
from an acute intestinal inflammation that is
induced by transient administration of dextran
sulfate sodium (DSS), whereas treatment with
anti-galectin-4 antibody enhances the recov-
ery from this acute inflammation. In contrast,
galectin-1, as mentioned above, contributes to
the suppression of acute intestinal inflamma-
tion (16). Galectin-1 (prototype) is struc-
turally characterized by homodimers with

identical CRDs and binds to a lactosamine
unit within mature core two-branched O-
glycan, whereas galectin-4 (tandem repeat
type) consists of two distinct CRDs and pos-
sesses a unique carbohydrate-binding speci-
ficity as indicated by the capability of
interacting with an immature core 1 O-glycan
with 3′-O-sulfation (61,62) (Fig. 1). Therefore,
it is highly likely that the binding site (lac-
tosamine unit versus core 1) and the structure
(prototype versus tandem repeat type) are an
important determinant of galectin-mediated
immune function (40) (Fig. 1).

Galectin-4 specifically stimulates CD4+ T
cells but not other immune cells such as B
cells or macrophages to produce IL-6 (12), a
well-known cytokine involved in the patho-
genesis of intestinal inflammation (63–65).
Importantly, only CD4+ T cells that are pre-
sent in the inflamed, but not non-inflamed,
intestine can respond to galectin-4 (12).
Splenic CD4+ T cells even from the diseased
mice are unable to respond to galectin-4.
These findings are consistent with the binding
intensity of galectin-4 to the surface of CD4+

T cells; galectin-4 binding is significantly
enhanced on the CD4+ T cells from the
inflamed intestine as compared to non-
inflamed intestine and spleen. In addition,
galectin-4 specifically binds to the lipid rafts
on the CD4+ T cells to activate the protein
kinase C (PKC) θ-associated signaling cas-
cade (12). Notably, galectin-4 has been
demonstrated to interact with lipid rafts of
enterocytes as well and subsequently stabilize
the raft formation to generate “superrafts”
(66,67). A recent study has found that
galectin-4 interacts with carcinoembryonic
antigen (CEA) of colon adenocarcinoma (68).
Alternatively, it remains obscured which gly-
cosylated receptor(s) on intestinal CD4+ T
cells is crosslinked by galectin-4.

Production of galectin-4 by colonic epithe-
lial cells is not enhanced under intestinal con-
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ditions, whereas the reactivity of CD4+ T
cells to galectin-4 is specifically elicited
under these conditions. Therefore, it is possi-
ble that a specific receptor that is selectively
crosslinked by galectin-4 may be expressed
on intestinal CD4+ T cells only under the
inflammatory condition. However, galectin-4
can bind to the lipid rafts on both CD4+ T cells
from inflamed and normal intestines albeit the
binding intensity is much higher on diseased
CD4+ T cells (12). In addition, expression pat-
tern of the enzymes that are involved in the
glycan synthesis is altered by several inflam-
matory stimuli (18,19,22–26). Therefore, it is
more likely that an altered enzyme expression
pattern by intestinal inflammatory stimuli
results in the further exposure of core 1 O-
glycan (a binding partner of galectin-4) on
intestinal CD4+ T cells and consequently
allows intensified binding of galectin-4 to
them (Fig. 2). Indeed, our recent studies have
found that some glycosylation-associated
enzymes, which are involved in the synthesis
of core 2 from core 1, are significantly down-
regulated in the intestinal CD4+ T cells under
the inflammatory conditions as compared to a
state of health (our unpublished observation).

Chitin, Chitinases, and 
Chitinase-like Molecules

Chitin, a β-1,4-linked polymer of N-acetyl-
glucosamine, is the second most abundant
carbohydrate polymer next to cellulose in
nature, but entirely lacks in mammals.
Viruses, fungi, insects, nematodes, and house
dust mites contain chitin as a structural com-
ponent of these species (69–71).

Chitin is involved in some immune
responses. Small size (1–10 µm), but not
nonphagocytoble size (>50 µm), of chitin
induces Th1 response in vitro and in vivo
comparable to that induced by heat killed
Mycobacterium bovis bacillus Calmette-

Guerin (BCG) and HK–Propionibacterum
acnes suspensions (72,73). In addition, oral
administration of chitin significantly down-
regulates serum IgE level and lung
eosinophilia in an experimental allergic
asthma model (71). Therefore, it is possible
that chitin contributes to an enhancement of
Th1 immune responses by dampening Th2
immune responses.

Enzymes capable of degrading chitin are
classified to chitinases. Chitin-containing
organisms (e.g., parasites) produce chitinases
to remodel the chitin-containing structures for
their morphogenesis (71,74). Chitinases are
also produced by bacteria and plants for their
defense against chitin-containing pathogens
and for the maintenance the ecological bal-
ance (69,70). Therefore, chitinases have been
considered to play a crucial role in innate
immune responses in lower life forms to con-
trol the infection with chitin-containing
pathogens (69–71,75). Because chitin is not
produced by mammals, chitinase expression
was initially believed to be restricted to the
lower life forms. However, chitinases and
chitinase-like proteins (CLP) have recently
been noted even in mice and humans (Table 1)
(76). The mammalian chitinases and CLP are
grouped in “glycohydrolase family 18” that is
characterized by an eightfold alpha/beta
barrel structure (76). Mammalian chitotriosi-
dase and acidic mammalian chitinase
(AMCase) possess chitinase (glycohydrolase)
enzymatic activity, whereas other mammalian
chitinases or CLP do not exhibit this activity
(77,78). Mammalian chitinases with enzy-
matic activity have a chitin-binding domain
that contains six cysteine residues responsible
for their binding to chitin (79). In contrast,
CLP does not contain such typical chitin-
binding domains (80). However, the CLP can
still interact with chitin via van der Waals
interactions between the side chains of aro-
matic acid residues in a binding groove of
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CLP and GlcNAc within chitin (78, 81).
Based on these characteristics (ability to inter-
act with oligomer or monomer of GlcNAc and
absence of glycohydrolase activity), CLP
family has been called “chi-lectins” (82).

Chitinase in Th2 Inflammation

Chitotriosidase and AMCase are typical
chitinases with glycohydrolase activity (83).
AMCase is synthesized as 50 kDa protein in
both human and mouse. In contrast to chi-
totriosidase, AMCase is extremely acid stable
and has a distinct second pH optimum around
pH2 in chitinolytic enzymatic activity (83). A
recent study shows that AMCase expression is
induced through a Th2-specific, interleukin-
13 (IL-13)–mediated pathway in allergic
asthma patients and the experimental model
(84). Bronchial epithelial cells and pulmonary
macrophages are mainly responsible for the
AMCase production. Neutralization of
AMCase activity in vivo by administration of
anti-AMCase antibody or a pan-chitinase
inhibitor (allosamidine) significantly amelio-
rates airway inflammation as well as airway
hyper responsiveness. AMCase directly stim-

ulates the lung epithelial cells to produce
monocyte chemotactic protein (MCP)-10 and
eotaxin, and these induced chemokines may
subsequently contribute to the pathogenesis of
bronchial asthma (84). Therefore, chitinases
have been proposed as one of therapeutic tar-
gets in Th2-mediated inflammation (84).

Chitinase 3-like-1 (CHI3L1) in Acute 
and Chronic Intestinal Inflammation

Through DNA microarray analysis, we
have found that chitinase 3-like-1
(CHI3L1/YKL-40/HC-gp39) expression is
specifically induced only under intestinal
inflammatory conditions (14). CHI3L1 is
expressed by both lamina propria cells
(mainly macrophages) and epithelial cells
(CECs) in the colon of several experimental
IBD models including TCRα KO and IL-10
KO mice and DSS-colitis model (14). In con-
trast, the expression of CHI3L1 is unde-
tectable in the normal colon of not only WT
mice but also of these IBD models without
colitis. In addition, like experimental IBD
models, colonic CHI3L1 mRNA expression is
specifically detectable in active UC and CD
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Table 1. Members of mammalian chitinases in human and mouse

Chitinases Synonyms References

Human chitinases
Acidic mammalian chitinase CHIA, AMCase, TSA1902 83, 100
Chitinase 1 (chitotriosidase) CHIT1, Chi3, MGC125322, FLJ00314 101, 102
Chitinase 3-like-1 CHI3L1, YKL40, HC-gp39 88, 103
Chitinase 3-like-2 CHI3L2, YKL39 104
Oviductal glycoprotein 1 OVGP1, EGP, OGP, MUC9, CHIT5 105, 106
Stabilin-1 interacting chitinase-like protein SI-CLP 80

Mouse chitinases
Acidic mammalian chitinase CHIA, AMCase 83
Chitotriosidase CHIT1 107
Chitinase 3-like-1 CHI3L1, Brp39 108
Chitinase 3-like-3 CHI3L3, Ym-1, ECF-L 109
Chitinase 3-like-4 CHI3L4, Ym-2 110, 111
Oviductin/ Oviductal glycoprotein OVGP1, CHIT5, OGP 112, 113



patients but not inactive UC or CD patients or
control subjects (14). A positive correlation
between serum CHI3L1 and C-reactive protein
(CRP, a marker for the severity of inflamma-
tion) levels in UC patients has been reported
(85, 86). Notably, neutralization of CHI3L1
activity in vivo by anti-CHI3L1 antibody
administration significantly suppresses DSS-
induced acute intestinal inflammation (14).

CHI3L1, a member of CLP family, is N-gly-
cosylated at Asn60 residue and disulfide bonds
are formed between Cys26 and Cys51 and
between Cys300 and Cys364. CHI3L1 binds to
long carbohydrates such as chitin and chi-

tooligosaccharides (87, 88). CHI3L1 also inter-
acts with glycosaminoglycans such as heparin
and hyaluronan (82, 87, 88). Furthermore,
Bigg et al. have reported an ability of CHI3L1
to bind to collagen type I, II, and III (89).
Unexpectedly, our study has demonstrated that
CHI3L1 significantly enhances the adhesion
and invasion of Salmonella typhimurium and
adherent invasive Escherichia coli (AIEC) to
CEC in vitro and in vivo. AIEC have been
proposed as a potentially pathogenic bacteria
in CD due to the ability to strongly adhere to
intestinal epithelial cells and subsequently
invade into macrophages (90–92). In contrast,
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Fig. 3. CBP-expressing bacteria (left panel) may directly bind to chitin. CHI3L1 then interacts with the
chitin/CBP complex on the bacteria to enhance its adhesion and invasion to CEC. Alternatively, CHI3L1 may
directly bind to hyaluronan present in the capsule of bacteria (right panel). This interaction may subsequently
enhance the adhesion and invasion of bacteria to CEC.



CHI3L1 does not affect the adhesion and
invasion of non-pathogenic E. coli such as
DH10B and DH5α strains to CEC (14). These
in vitro data are further confirmed by in vivo
experiments; anti-CHI3L1 Ab treatment sig-
nificantly reduces the translocation of orally
inoculated S. typhimurium to host peripheral
tissues (e.g., spleen, mescenteric lymph
nodes, liver, and colon) (14). Therefore, it is
possible that adhesion/invasion of pathogenic
and potentially pathogenic, but not non-path-
ogenic, bacteria to host may be enhanced by
their interaction with CHI3L1.

Bacteria do not contain chitin. However,
Serratia marcescens expresses chitin-binding
protein-21 (CBP-21) and the majority of chiti-
nase-producing pathogenic microorganisms
contain a gene encoding the homolog of CBP-
21, suggesting a potential binding ability of
pathogenic bacteria to chitin (93). Therefore,
it is possible that CHI3L1 may bind to a com-
plex of CBP and chitin formed on bacteria and
this binding may subsequently enhance the
adhesion and invasion of these bacteria to
CEC (Fig. 3). Alternatively, hyaluronan is
present in the capsule of some bacterial strains
such as Streptococci and CHI3L1 contains two
potentially hyaluronan-binding domains (94).
Therefore, it is also possible that CHI3L1 may
enhance the adhesion/invasion of specific
enteric bacteria with hyaluronan to CEC (Fig.
3). Studies are currently being conducted to
define these possibilities for bacteria/CHI3L1
interaction and to identify the specific recep-
tor(s) of CEC to bind to CHI3L1.

CHI3L1 is produced by cartilage of
rheumatoid arthritis (RA) and osteoarthritis
patients, but not healthy individuals (95–97),
consistent with our data that CHI3L1 expres-
sion is specifically induced only under
inflammatory conditions. In RA, CHI3L1 has
been proposed as an autoantigen capable of
inducing pathogenic T cell responses (98).

Alternatively, CHI3L1 also has a potentially
protective effect on the destruction of chon-
drocytes and synovial cells by decreasing the
production of metalloproteinases and
chemokines (99). Therefore, it is possible
that CHI3L1 may play distinctly different
roles depending upon the cell types under
inflammatory conditions.

Conclusion

Because mucus is a source of carbohy-
drates in our bodies, the role of mucus-asso-
ciated carbohydrates produced by intestinal
epithelial cells has been well studied in IBD.
In this review, we provide additional, novel
insights into the role of carbohydrates
crosslinked by animal lectins in the immune
responses that are involved in the pathogene-
sis of IBD. The carbohydrate/lectin interac-
tions are actively involved in the determination
(activation versus suppression) of CD4+ T
cell–mediated immune responses under
intestinal inflammatory conditions. In addi-
tion, we discuss an unexpected aspect of a
recently identified chi-lectin that binds to car-
bohydrate polymers and glycosaminoglycans
and contributes to the enhancement of
host/microbial interactions for the exacerba-
tion of intestinal inflammation. These find-
ings emphasize an importance of carbohydrate/
protein interactions in intestinal inflamma-
tion. Strategies targeting carbohydrates might
provide a rationale to develop novel thera-
peutic approaches for IBD patients.
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