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Dedicated to the memory of  Rufus Bowen 

Introduction.  

The system of equations 

~ X = - -  IOX@IOy 

5 = - - -  z-k-  xy  
3 

ofE.  N. Lorenz [7] has attracted much attention ([3], [io], [12]) lately, in part because 
of its relation to turbulence. Lorenz obtained this system by " truncating " the Navier- 
Stokes equation; it offers a striking example of a strange attractor, vis-a-vis Ruelle- 
Takens [i I ] .  

We present the Ruelle-Takens idea briefly. In order that any type of motion 
be observable, the set of initial conditions leading to this motion must be of positive 
measure. This essentially says that the motion must be bound to an attractor. Until 
recently, mathematicians knew of only two types steady state attractols (or sinks) 
and periodic attractors. Thus when a persistent motion was seen to be neither steady 
state nor periodic, it was termed " random " or " chaotic ", and stochastic mathematics 
was invoked. It  is just this non sequitur that Lorenz was attacking; his article is entitled 
" Deterministic aperiodic mo t ion"  (1963). 

Though many scientists, especially experimentalists, knew this article, it is not 
too surprising that most mathematicians did not, considering for example where it 
was published. Thus, when Ruelle-Takens proposed (1971) specifically that turbulence 
was likely an instance of a " strange attractor ", they did so without specific solutions 
of the Navier-Stokes equations, or truncated ones, in mind. This proposal, controversial 
at first, has gained much favor. 

In particular, the paper of Guckenheimer (see below) gives a geometric description 

(1) This research partially supported by NSF Grant No. MPS74-o6731 AO~. 
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74 R. F. W I L L I A M S  

of  what  seems to be going on in the system (L) and it is indeed a strange at tractor .  (To 

prove this, one would have to make certain estimates; meanwhile  compute r  pr intouts  

surely indicate this is about  right.) This aids the advocate  of  strange at tractors  in two 

ways: it adds a fairly simple example to our  knowledge, and at the same time, one that  

comes up naturally. Meanwhile ,  the estimates needed to tie the system (L) to the 

geometr ic  work of  Guckenhe imer  or the present  paper  have not been made.  Th o u g h  

the current  work is of  independent  interest, it would certainly be enhanced by such 

a direct connect ion.  We begin by summariz ing a theorem of  [3]. 

Theorem (Guckenheimer) .  - -  There is an open set 5F in Jg, the space of all vector fields 
on 113 , such that: 

I) i f  X c ~ ,  then X has a two dimensional attractor (herein called Lorenz attractor) which 

contains a singular point; 

2) there are two dense subsets ~ ,  J C c~ such that the attractors for X in ~ are topologically 

distinct from those for Y G J .  

Here  we improve upon Guckenheimer ' s  result by showing that  there are uncountab ly  

ma ny  topologically mutua l ly  distinct Lorenz  attractors.  Therefore  this answers in the 

negative a quest ion asked by R. T h o m  [ i3] .  In  part icular ,  we show that  the obvious 

" kneading sequences " are invar iant  under  homeomorphisms  near  the identity.  Briefly, 

these sequences tell to which side of  the singular point  its own unstable manifold passes, 

in its various " trips " a round  the at t ractor .  

In  the process of  proving this, we develop a cell-structure of Lorenz attractors,  

and a singular f ibrat ion into a figure eight space, B 0. We proceed to show that  the 

kneading sequences can be thought  of  as infinite words in the monoid  of  positive words 

of  ,~l(B0). T h e  second main  tool is a kind o f p r e - z e t a  function, ~, whose arguments  x , y  

are the generators  of  this monoid.  The  funct ion ~ can be computed  in the following 

sense. First there is a (possibly, in fact, usually infinite) mat r ix  B(x,y) .  T h a t  is, B is 

a pair ing on certain symbols ~ ,  with values either x, y,  or o. T h e n  

tr B i \ ,  

i i 

where one must take care, as rzl(B0) is not  abelian. Finally we show that  ~ is a topological 

invariant  and that  the correspondence between the kneading sequences and ~ is one-to-one. 

This proves our  basic proposit ion,  that  the kneading sequences are topological invariants.  

More  precisely: 

Theorem. - -  There is a positive number A such that, i f  the attractors A x and Ay, for 

X, Y e ~ ,  are homeomorphic via a homeomorphism within A of the identity (C~ then X 

and Y have the same kneading sequences. 

The  n u m b e r  A is the " d iameter  " of  the hole (see Figure :) or about  3 ~ for the 

equat ions of  Lorenz.  
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THE STRUCTURE OF LORENZ ATTRACTORS 75 

From here it is just  set-theoretic topology to show that  the coN-conjecture of  Ren6 
T h o m  ( 1 ) _ l o n g  thought  to be f a l s e - - i s  indeed false. Tha t  is, the Lorenz attractors 
are not generically countable up to topological type. 

This differs significantly from Guckenheimer 's  result inasmuch as one of his 
two dense subsets is not a Baire set, and hence has no existence, generically. 

Another  basic geometric fact about Lorenz attractors is brought  out, and used 
as a strong tool. This is the fact that  these attractors are real objects, in ordinary 

euclidian 3-space, and that  they consist of many-many  two-dimensional layers, stretching 

from front to back in our line of sight. I t  follows that  these layers are linearly ordered, 
by tiffs front to back-ness. For example, see the stereoscopic computer  printouts of 
R6ssler [IO]. 

We conclude the introduction with two types of comments.  First, we use branch 

manifolds ([i7] , [I8]) in our proofs, and would like to call the reader's at tent ion to 

the sketches in Lorenz's original (I963) paper  [7]. Also his comments  , part icularly 
about  his Figure 3, correspond quite well to the author 's  theorem C [I8]. Secondly, 
we emphasize below certain nice aspects of Lorenz attractors. They  have a relative 
2-manifold structure, are orientable, have a smooth line as boundary,  form a singular 
fiber bundle,  and have a rich cell-complex structure; in a sense, all of this depends 

continuously on the original equation. 
I t  is a pleasure to thank Dennis Pixton for his helpful conversations. Also, 

J .  Milnor for his conversations about  work on kneading sequences he and W. Thurs ton 
have done recently, in another,  basically more difficult connection. Michael Kervaire  

for his hospitality and encouragement  at the third cycle in Geneva. Finally, and most 
important ,  the long conversation with W. Parry,  in par t  about  his early papers on maps 

like our Poincar6 map f ;  in part icular  he seems to have singled out the property  we 
call 1.e.o, locally eventually onto (Prop. i, w 2). 

x. U s e  o f  b r a n c h e d  m ~ n l f o l d s .  

Our  point of departure  is to describe a type of  semi-flow, ?t, teR+, on a certain 
smooth branched manifold L of dimension 2. Then  {L, qgt, t e R  +} forms an inverse 

system, and its inverse limit 

L = l i m { L ,  q~,, t z R  + ) 

inherits a flow ~L, t eR .  These L, ~t are the Lorenz attractors. 

There  are several addit ional  steps, required to show that  these L, ~t are indeed 
at tached to the differential equations of  Lorenz. First, there are analytic estimates to 

be made on the stable and unstable manifolds of the singular point. This task has 

(x) First proposed by Thom in about 1967 and restated in the volume on Hilbert's problems [2o], p. 59. 
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7 6 R . F .  W I L L I A M S  

been carried out  by various researchers, on computers  ([7], [lO], [I2]) ,  the only way 

now known. 

The  missing step involvcs a novel and fascinating problem, which I state here 

as a conjecture.  

Conjecture. - -  There  is a vector field Xx, transversal to the flow r t of  the Lorenz 

equat ion,  such that  for cach t and each x near  the at tractor ,  

dq~ t. X~ -- cX'X.,~, c = c(x, t) e(o, m) 

where o < ? , < i  and m > o  are independent  of  x and t. 

Thus  X determines a strong stable (oriented) line bundle.  Next,  one needs to 

prove a strong stable manifold theorem for the Lorenz  attractors,  along the lines of 

the Hirsch-Pugh [5] version of  the Smale formula t ion  [13] for hyperbolic  systems, and 

related to the Hi rsch-Pugh-Shub paper  [6]. However ,  one familiar with these tech- 

niques will have little t rouble making this step; admit tedly,  this should be done in print ,  

but  should p robab ly  await  a more  general  description of  Lorenz structures. 

Finally, one needs: 

a) to proceed  f rom the actual  at t ractors  to the artifact, L, %, t > o ;  

b) to proceed from L, ~t, t e R  to a vector  field (=d i f f e r en t i a l  equation) in some neigh- 

borhood  of  11 a. 

These two steps were t reated in great  detail  in the author 's  papers  ([17] , [18]) 

for the case of  diffeomorphisms. Admit tedly,  this too should be done in print;  mean-  

while, those familiar  with this earlier work will have no trouble in these last two steps. 

As a final remark,  note  that  we do not  use the assumption that  the equations (and 

hence the attractors) of  Lorenz  are symmetr ic  (see, e.g. [12]). This  general i ty seems 

natural  to us. On  the other  hand,  all our  work is (or can be) done symmetrical ly,  

so that  the theorems apply in the symmetr ic  case as well. 

2. The  b r a n c h e d  n ~ n l f o l d  L. 

Let L be the branched manifold of Figure 1 

FIG. i 

G 
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THE STRUCTURE OF LORENZ ATTRACTORS 77 

Note that it has the homotopy type of a figure eight, that these two holes could be filled 
in by inserting two disks, or plugs, like the one to the right of figure one. The branch 
points are indicated by a heavy line, in the middle. Note that we have indicated an 
immersion into the plane, from which it inherits a counterclockwise orientation. Its 
boundary OL is an open line interval terminating in the end points of the branch line; 
L - - ( O L  •branch set, extended) is an open disk. 

A smooth semi-flow is sketched in Figure 2; we also sketch to the right in Figure 2, 
the f i r s t  return, or Poincard map, f .  

r 

FIC. 

Graph of f 
f '>  V'~ 

Note the singular point O, where the linearized equation has the form 

{~ = - -  [xy ~  
Xx 

Note that if the plugs described above were inserted, they could carry flows with singular 
points (sources) where the eigenvalues are complex with positive real part. Note that 
as L is embedded in R 3, it can be thickened in R 3 by adding a tubular neighborhood; 
this can clearly be done, so that the flow lines can be put in. The semi-flow % is defined 
only for t ~ o ,  because at each point of the branch line, two trajectories enter while 
only one leaves. But in the thickened version in R a, such trajectories just come closer 
together, without touching. 

It  is of considerable importance that the unstable manifold at O (which fills 0L, 
then goes on into the interior) is not thickened in this process of " exfoliating " 0L into 
the attractor A in R 3. This is automatically handled by the process of taking inverse 
limits and is described in detail, below. 

The branch line is extended to the right and left as indicated by the dotted lines, 
to form I, our section. The Poincard map f :  I---~I is indicated to the right in figure 2. 

Note that f is undefined at a central point O', corresponding to the fact that this point 
on I is on the stable manifolds of O and hence never returns. Next, that with our 
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78 R. F. W I L L I A M S  

choice ix<X, f has infinite derivatives on both sides of this point. One can adjust, 
with some liberty, the remainder of the graph o f f ,  and we do so to arrange that f '  >.V/2 
at all points of I. This is a simplifying assumption, adequate for our purposes here. In 
fact, a similar analysis can be carried out for slopes 21/~n+1) < f ' <  21/~, (f2")' :>~v/2 (see [9]), 
and thus for all expanding f .  Note that this range is compatible with the computer 
machine studies which indicate A (the upper right in the graph o f f )  to be about x2 % 
of the length of I. It follows that the " slope " o f f  is somewhere near 2(.88) = 1.76>V'~. 

We close this section with a basic Proposition, which gives the motivation of our 
choice of V ~  as the lower level for f .  

Proposition 1. - -  I f  J c I is a subinterval, then there is an integer n such that i f ( J )  = I. 
That is, f is locally eventually onto. 

Proof. - -  Let I 0 = I ,  if Or  otherwise let I 0 be the bigger of the two intervals O 
splits I into. Similarly, for each i such that I~ is defined, set 

[ ctI~ .,~ ~j, if OCf(I~) 

I '+ l=[bigger"  of two parts O splits f ( I , ) i n t o ,  if Oef(I , ) .  

Now lengthf( I ,+l )>Xlength  I,+~, where X=minf ' (x)>~v/~.  
Thus unless O is in bo th f ( I i )  andf( I i+x)  we have 

X~ 
length I i + 2 >-- ~ length I i. 

But as X~>2, this last cannot always hold, say 

Oef( I ._2)  and O~f(I ,_~).  

Then f ( In_ t) contains O and one end point of I, so that I n is one " ha l f"  of I. Note 

f(In) contains the other half, and finally f s ( In )>I .  

Basic assumption. - -  The Poincard mapfsatisfies f '  > f i  and the kneading sequences 

(see w 3, below) begin yx~.., and xy3... 

Neither of these assumptions is necessary, but doing without them would be a 
further complication, whereas this is already complicated enough. In particular, the 
example of Guckenheimer, and some of the other illustrative examples of this paper 
do not satisfy the assumptions on the kneading sequences. However, they are illustrative, 

and are comparatively simple. 

3" The orthogonal  trajectory space B 0 and kneading sequences.  

Consider the unstable manifold W,(O) C L. It  has two sides; we label the one 
that leaves O to the right, W~, and the other W~. This seeming perversion of labeling 

(the right hand one is called the left, and vice-versa) is a compromise which makes 
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T H E  S T R U C T U R E  OF LORENZ A T T R A C T O R S  79 

notation simpler, below. This is because W~ first enters I at its right-most point, and 

similarly W~ enters first at the left-most point. 

Next, let Po : L-+B 0 be the quotient map of the orthogonal trajectories of q~. In 
detail, note that the orthogonal trajectories of L form smooth line intervals except that F, 
the one through O, is the union of two intervals, intersecting at an angle at O. Then 
these intervals foliate L, and the leaf space formed by collapsing each one to a point 

is B0; P0 is the collapsing map. Then F = p o l ( ~ ) ,  where 

O 

O" 

k 

Bo 

Fra. 3 

we use ffeB 0 to denote p0(O). Then B0 has the homotopy type of a figure eight, 
and we label two generators x a n d y  of r~x(B0, 0). We also think of x a n d y  as oriented 
paths; in this sense, each orbit beginning on F, forms a positive word in x and y, where 

positive means that no negative exponents are involved. 

Kneading sequowes have been considered by many researchers who have studied 
endomorphisms of a line interval. The phrase is due to B. Thurston [8]. They are 

sometimes sequences of + ' s  and -- 's  and possibly a o; for our purposes they are sequences 

of x's and y's. 

Definition. - -  Given the branched manifold L and a semi-flow q~t, t > o  on L, 

we define the kneading sequences k t ,  k r by 

kt = y -  l opo(W~), k, = x-lopo(W~"). 

T h e y  - t  and x -1 are to simplify the ordering, below. Then P0(W~) is a path in B 0 and 

can be written uniquely in the monoid of positive powers of the elementary paths x 

and y, so that P0(W~)=yxxx... Hence k t = x x x . . .  and similarly kr =yyy . . .  
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8o R .  F .  W I L L I A M S  

We emphasize here that  we are making the following assumptions throughout  
the paper:  

Basic Assumptions. - -  k r begins with yyy and k t begins with xxx. The  Poincard 
return map f satisfies f ' > ~ v / 2  and hence is locally eventually onto (1.e.o). 

We  close this section with a quick indication of  how Guckenheimer 's  result is 
proved.  We  introduce two sequences ri, fi which we use below. 

Define r i - - i - th  point  in which W~ hits F and t~ = i-th point  in which W~ hits F. 
Note  r 0 = g0 = OEF .  Note  the sequences {ti}, {ri} can be finite in case k~ or k t is finite. 
The  two cases, both  finite and both infinite, correspond to the two topologically distinct 
examples of Guckenheimer:  

Theorem ( G u c k e n h c i m e r ) . -  I f  the f low ~?, on L yield,~ finite sequences {r~}, {ti} and 9; 

on L' yields infinite ones, then the inverse limits L, L' are not homeomorphic. 

Proof. - -  A point  ~e~.im{L, q~t} consists of  a point  x0EL together with a choice ~(s), 

s < o ,  of  its " p reh i s to ry" .  Tha t  is, ~?={s176 such that 9 t s163  s+t<_o.  

We can distinguish the points ~ei', which are in the unstable manifold of O, as follows. 
"VV~ -{Yei ' ,  : s from the left as s ~ - - o o } .  Similarly for ~ ,  whereas ( ) - { O }  

as ? t O =  O all t. Roughly  speaking, ~7, is distinguished in that it comprises the only 
two semi-orbits with a unique (unbranched)  past history. We show below that each 
point  " ^ "  ^"  in turn x a W  t U W ~  lies in the interior of  an interval I 'C  ^"  ^"' W t w V ~ ,  so that  I '  
lies in a s e t  I ' •  where C i s  the cone over a Cantor  set, 

FIG. 4 
6 

whereas no other point  of  L with the possible exception of  O lies in such a set. 
Then  Guckenheimer 's  theorem follows, as @," u O u ~r~t is a distinguished line 

in i'/ in one case, and a distinguished figure eight in the other case, i',. 

4" ~ a s  cel l  c o m p l e x .  

Recal l  that  we have chosen F (the " fiber ") to be made up of  two line intervals, 

jo ined at O. Then  FC i', consists of  all s with s  In part icular  r i , / ieF ,  

defined above (w 3), yield the vertices ~', ?'~ of  ~', where 
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THE S T R U C T U R E  OF LORENZ ATTRACTORS 8~ 

?0=F0 = 6 is the rest point, 

? i = O - -+ r x -+ r ~ -+ . �9 �9 - ~  q , 

and ~ = O + - + t l - + t ~ . . .  -+lj.  

More formally, note that  there are positive numbers At, As, . . . ,  A~_ 1 such that  

q~Ai_~(ri_t)=ri. In  case of  choice, choose the A's to be the smallest possible. Now 
define 

?,(s) =q~a ~,(rl) 

where ~ x = A I + A z + . . .  +A~_ 1. This last is okay because q~t is unambiguously  defined 
on rt for all negative as well as positive values of  t. Note that  as t - + -  o% ~t(r~)~ 0 - .  

Similarly for a fixed j > I ,  there are ~1, ~2, . . - ,  3 j_~>o such that  

These are chosen as small as possible, and we define 8 = 3 1 + . - - - ~ - 3 j - 1  and 

There is a tricky point here: the vertices of  ~" are finite only if  there is a saddle connection 
on both sides of W"(O),  and not when the sequences {ti} , {q} are periodic. We illustrate 
this by an example. 

E x a m p l e  (4. �9 - -  Consider the case r~=g2, ga=r2- Then  the vertices of F are 
infinite. 

Proof .  - -  The prehistories for ri, i = o ,  i are unique.  But for r 2 = r 2 i - - g 2 i + l  , 

i - - I ,  2 , . . .  there are infinitely many  prehistories, as follows: 

?2:  O - = r o - + r t - + r  ~. From O + to r 1 is infinite. 

~ : 0 + = t + - ~ t l - + t 2 - + t 3 = r ~ .  

7 4 : O -  = r o - + q ~ r 2 - + r ~ - - ~ r 4 = r  ~. 

E . g . ,  ? ~ . ( s ) = F 4 ( S + S o )  , when s 0 = m i n { t > o :  ~ , r 2 = r 4 } .  Hence ?2+?4. 

(4 .2)  The  one cells o f f  are in a one-to-one correspondence with a one-sided shift 
space on a set Y~ of  certain (usually infinitely many) symbols. We proceed to define these 

symbols inductively in such a way that  if [ i , j ]  is defined, t h e n / i  and rj are points on the 
same side of  O. (For this purpose, O itself is on the same side of O as any point of  F.) 

x) [o, i] and [i ,  o] are symbols. 

2) I f  [ i , j ]  is a symbol and if  

a)  t i + l = o  , then [ o , j + I ]  is a symbol; 

b)  r ~ + l = o ,  then [ i + I , O ]  is a symbol; 

3 ~  
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8'~ R. F. W I L L I A M S  

C) t i+  1 < 0  < r j  + 1, then both [i + I, o] and [ o , j  + x] are symbols;  

d) nei ther  a, b, nor  c, then [ i + I , j + i ]  is a symbol .  

Next ,  define the (possibly infinite) ma t r ix  B(x,y)  as a pa i r ing  as follows: if  , ,  zeY,, 

B ( x , y ) ~ , e  = p . ( o r b i t  f rom ~ to v) 

where  the answer  is o unless 

~, " : = [ i ,  *], [ i + I ,  *] 

or [ . , j ] ,  [ * , j - t - I ]  

where  �9 means  this t e rm  is un impor t an t .  I n  the lat ter  cases, there is an orbi t  which 

proceeds  f rom l i to t i+ x (resp. rj to rj ~ 1); its project ion onto B 0 traces out ei ther  x or y 

and  this is the value of  B(x,y)o, .  

Examples .  

(!oxx 1 o and o x o 
o y o o 

y o o o 

are the simplest  such matrices.  

T h e  second corresponds to the original  example  [3] o f  Guckenhe imer .  

Definition ( 4 . 2 . x ) .  - -  I f  B o , + o ,  we say cr~-r  (~ maps  to "r) via x, if  B o , = x  and  

via y ,  if  y;  in ei ther case o---~'r, or ~ precedes "r. 

We next  p rove  that  our  symbol ic  system has a p rope r ty  like " indecomposability " 

Lemma ( 4 . 2 . 2 ) .  - -  Given any two symbols cr, "r, there is a f inite sequence 

(YO ~ ( y ,  ~1, (Y2, �9 " ", (Yn ~ T  

such that (~i- 1 precedes (~i f o r  each i = z, . . . ,  n. 

Proof. - -  Note  tha t  it suffices to p rove  this for " r = [ o ,  I] and [z, o] as all o ther  

symbols  follow these by  our  induct ive  definition. And  this in turn  is essentially a special 

case of  our  earlier l e m m a  abou t  " locally eventual ly  onto " .  Recal l  tha t  there we find 

a sequence I 0 - - I  , I1, I2, . . . ,  I , ,  such tha t  for each i, e i ther  

f ( I i )  = I i  + 1 

or f ( I i )  = I i + 1 u J  

when  J is ano ther  interval ,  intersect ing I i+ l  in only  the point  O.  I t  thus follows that  

Ii+ 1 follows I i. Final ly I , _ 1  and  I ,  are the two intervals into which 0 divides I ,  i.e. one 

corresponds  to [t0, rl] , the other  to [t l ,  r0]. 
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THE STRUCTURE OF LORENZ ATTRACTORS 83 

Definition (4.2.3).  - -  Let C(B) be the sub-shift space of all sequences {a~}i~:0= 
such that B~i .xo; +~ i.e. *i+ x~a i .  We write such a sequence ending with ~0 : 

( ~ ' "  " �9 ( ~ 2 ( ~ 1 ~ 0 "  

The cylinder set C [ i , j ] - - ( ~ e C ( B ) :  ao=[ i , j ]} .  For oeC(B) 
sequence k'(a) by 

k'(~) . . . .  z~z~zo, 

where z i = x o ry  according as to whether a~ ~ 1-* a~ via x or viay. 
order the k'(a)'s with x<y. 
[O, 1 1 . . .  <[O, I], [I,  O] . . .  

define the prekneading 

We lexicographically 
This induces a linear ordering ,<-c  on G(B). E.g., [I, o], 
as their kneading sequences begin with x, y respectively. 

(4 .2 .4)  The following sequences are allowable by B: 

Proof. 

[I, O] --~" [9, O] ~ [O, I] 

[o, i ] ~ [ i ,  o]-+[o, ,]. 

The basic assumption (w 3) about k t means 

[,, o] ~ [2 ,  o], [o, ,]; [2, o]-~ [3, o], [o, ~]; 

and dually 

[o, ~] -+ [,, oJ, [o, 2]; 

The lemma follows. 

[o, 2J ~ [i, o], [o, 3]- 

{l<t~<t3<O.  Thus 

(4.3) Structure proposition. - -  The fiber F: 

a) has vertices V={~i, 7~:/i and ~ are defined}; 
b) two vertices OfF are joined by a i-cell i f f  they are ~ and ?~for some [i,j]eY~; 
c) a dense subset Eo of the i-cells joining "[~ to ~ is in one-to-one correspondence with the cylinder 

set C[i, j]  (see (4.2.3));  
d) U E o is dense in F and contains all the periodic points of F; 

e) the map F---~F given by s 1 6 3  maps each connected component of F - - V  homeomorphically 
onto a (perhaps degenerate) subinterval of F. 

We proceed with the rather lengthy proof, first introducing a sequence {F,,} of 
approximations to F. 

(4-4) Definition of F,~, % : ~ '~F , .  - -  A prehistory s  is said to alternate for 
s<_s', provided adjacent intersections of ~(s) with F, for s~s*, lie on opposite sides 
of O. A point s  is in F, provided: 

a) ~ = 0 ,  /~ or ~ for some i, j S n ;  or 
b) .~ alternates for s<s" where s* is the n-th value of s such that ~?(s)eF. Here tile 

first value is s = o ,  the second is the next value of s<o ,  etc. 
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Finally, for n = I , 2 ,  . . .  define ? , : ~ ' - + F ,  by 

a) q~,,(~?)=Z, for s  ~ or r'), i , j < n ;  or 
b) otherwise ~ crosses F for more than n values of  s; let s* be the n-th one. Then  %Y 

is the unique prehistory which agrees with s for s * < s < o  and alternates for s<s*. 

(4.5) %: F--->F, is a continuous retraction within ~, of the identity, where ~,-+o 
as  n--> oo.  

Proof. - -  Tha t  % is a retract ion is clear, since a point  ~ is determined by its initial 
value 2 ( 0 )  and its prekneading sequence. I t  is easy to prove continui ty in each of  
the three cases of  the definition of  %. 

For example,  for s i<n, note that f o r~  near ~i, 9 34= ti, we have ~'i(O)<93(O). 
Further inore  93(s) maintains this position to the right of  ~(s) until 93(s) passes slowly 
by  O and ~(s ) -+O' -  as s ~ - - o o .  This, because ~(s) passes along a boundary  of  L 

fbr s<s*, where ~(s*)=l~.  Then  % ( ~ ) = ~ i  and for a large r a n g e o f s ,  (%.~)(s)=93(s). 
Continui ty of  % at [~ follows. Finally, the fact that  ~ ( s ) =  (%~)(s) for all s down to 
the n-th value of  s for which ~(s) is on F, implies the last s tatement and completes the 

proof  of  (4.5) .  

Lemma (4.5.I) . --For ~,~'~eF,,, q~21(~)=~ and ~,T'(~'j)=Tj. 
Proof. - -  As % is a retraction, no point  of  F n maps to ~ except ~. O n  the other 

hand if ~q~F,, then %(~') has infinite (alternating) prehistory and hence is not ~i. The  
other case is similar. 

Remark (4 .6 ) .  --- The  first return map  f :  ~'---~" is given as follows: . p ( 6 ) = O ;  
for .~e~'--() ,  let T be the tirst value of  t > o  such that ? tZ (O)eF .  Then  

[Z(s + T ) ,  s '~  - - T .  

f(Z)(s) = [~T+~Z(O ) , /  --T<s<o. 

Remark (4 .7 ) .  --- j"  maps F,, onto F n + 1. We may regard L as being " swept out  " 
by the flow lines which determine the first return map.  (This " sweeping out  " occurs 
in Ra.) 

Pro@ --- I f  . . . s i < . . . < s  1 = o  are the values o f s  for which :~ crosses F, then 

�9  h - - T < . .  �9 < s t - - T < - - T < o  

are the values ofs  for which ( f s  = o .  Hence  f(F,,) = F , +  1 . Finally, F,C F,,+tC t:C II  3 

and the first r e t u r n f i s  based on the first re turn map f :  F--->F, and f s  ). 

D~nition (4 .8) .  - -  Let  C,,(B) be the set of  all e eC(B)  of  the form 
t 

�9 �9 �9 --> ~7--+ Gn---> 6"n-+r 1 --+" �9 �9 -"> ~Yl 

where {%, e , ]}={[i ,  o], [o, I]} or {[o, I], [I, o]}. Tha t  is, all deC(B)  
{ei+l ,  ~ i}={[  I, o], [o, i]} or {[o, I], [I, o]} for i>_n. 

such that 
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Remark (4.9) .  - -  There  is the commutat ive  d iagram 

?- 
F .  - -  , 

wheret he vertical arrows denote a one-to-one correspondence between the i-cells of  F,, 
and the points of  Cn(B ). The  map s simply drops the first symbol a 0 from ~. 

Proof. - -  By induct ion on n. First, CI(B ) consists of the two sequences which 
alternate between [i ,  o] and [o, i] .  Similarly, s  x is determined by its initial point 

.$(O)r as its prekneading sequence is alternating. () is in F 1 by choice; ~ and 71 are 

forced to be in vertices F 1 as we see as follows: t a ( O ) = t  1 has no point o f F  to its left. 

As s -§  t'l(s) flows along the boundary  of L with all of L to its right. Thus there 

is no s to the left of  ~'1. Similarly for ?'l- 
Now suppose we know the lemma for n. Then  by (4.7) a I-simplex e joining 

to ~ maps to a I-simplex e' or two I-simplices e', e" according to the various cases detailed 
in the definition (4.2) of  B; the symbol [i , j]  was defined to map exactly to the cor- 
responding symbol ~', or the two symbols a', a"  so that  the one-to-one correspondence 
carries over to n q-I.  The remark follows. 

Lemma (4. �9 O ) ,  - - I f  e is a I -cell joining ~ to ?j in F, for  some n, then the map .given by 

s163 is a homeomorphism of  e onto [ti, rj]CF. 

Proof. - -  Let cr ={~}~o ~ be the point of C,(B) corresponding to e, say ~ , - -  [ i , , j , ] .  

Then [gi~, rj~] is a subinterval of  F, lying on one side of  O and mapping  onto [ti~_~, ri~_, ] 

(and perhaps more). Thus  by induction, to each point xle[t~, 5] we can complete 
a " h i s t o r y "  x~e[gi~, r j  so that  f x ~ = x ~ _ l ,  e = I ,  2, . . . ,  n. Then there is a unique 
point s  which passes through the x~ in succession as s decreases, then alternates 
after the n-th intersection of F. The  lemma follows. 

Corollary (4. xo. �9 ). - -  Part e) of  the structure proposition (4.3) is true. 

Proof. - -  Note that  the map qg:~'-+F given by s  factors as q~=q0o?, 
for each n. So let C be a component  of  F - -V .  Then  q~n(C) contains no vertex of F, 
by (4-5. i), so that  it lies in a I-cell. Since q~lq~,(C) is a homeomorphism,  it follows 
that  q~ o q~,]C is an e,,-map. But as this is true for each n and as e,,--* o with n, it follows 

that  q~lC is a homeomorphism onto its image, which must be a (perhaps degenerate) 

subinterval of F. 

The following is due to Guckenheimer  [3]; we include it here for completeness. 
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Proposition (4 .x I ) .  - -  In case both k t and k, are finite (two " saddle connections ") the 
symbol set ~ is finite and the structure proposition holds with F=  U E O. 

Proof. - -  ~ is finite as there are only finitely many  ?i and r~. Note  that  we have 
two growing sets 

F1C F~C . . .  CF 

ClC C2C... C(B) 

thc lowcr corresponding onc-to-onc with thc l-cells of thc upper. Furthcrmore, F is the 
closurc of U Fi. Likewise, in this case, C(B) is the closurc of U C,(B). That is, if 

n 

. . .  -+cr~i-~. . .  ~ is a sequence in C~, for each 0c we may choose subsequences ~ , . - - ~  

for 0t>0~ i. Thus  

lim~ C~(B)=C(B) .  

We  need check only one thing further: that  if a sequence e~ of  ~-cells, joining 
to r~, converges to e, then e is actually a 1-cell, i.e. a homeomorph  of [% l].  But 
by (4. i o. I ), s ~ s  is a homeomorphism of  e~ onto [/~, r~] for all 0~ and the prekneading 
sequences of  all points s agree. Thus  the prekneading sequences of  all points on e 
agree, so that  e--~[/i, r~] is also a homeomorphism.  

(4. x2. x) I f  ~ 0 - + ~ 1 ~ . . .  -+%_1--~% is allowable, then each % = [i~,j~] satisfies 
o 5 i ~ ,  L < p .  

Proof. - -  Note that for each 0c one of  the following must hold: 

a) i ~ + l = i ~ + i  , j ~ + l = - j ~ + I ;  
b) i ~ + ~ = o ,  j ~ + x = j ~ + i ;  

c) i ~ + a = t ~ T i  , .7~+1=o.  

And since ip=i o and Jp=Jo, 
follows that i~ ~ , ~ ,  
Similarly, all j~<p. 

both  b) and c) must occur.  But beginning at i~ = o, it 
where ~+0~ is computed  m o d p .  Hence  all i~<p as required.  

Lemma (4.I2.2). - -  The periodic points of F lie in U.E 0 as claimed in part d) of the 
Structure proposition (4.3) .  "~ 

Proof. ~ As case one, we suppose as in (4.1 i) that  both k t and k r are finite. Then 
~" = U Eli so that  the lemma is clear. 

No w the general case. Let  ~ e F  be a point  of  period p and let x = s  Then  

x is a point  of  period p of  f :  F ~ F  and is stable, since the slope o f f  is always > ~ / 2 .  
Thus  if we per turb  f a small amoun t  to f ' ,  there will be a nearby  point  x' of  period p 
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u n d e r f ' .  Likewise, the relative position of the ~ p + I  points, O', g~, r], . . . ,  g~, r~ f o r f '  
and the corresponding points for f will be the same if we perturb only slightly. We 
suppose this is done and done so that we obtain two saddle connections f o r f '  and hence 
finite k~ and k' r (see w 5, below). 

In the perturbed system we can apply (4. I i) to the periodic point x' and find 
' Y' lies in a 1-cell determined by a point Y' such that S ' ( O ) = x ,  

( ,)  . . .  ~ . . .  ~ a  0 in C(B'), 

and s is periodic of period p. 

It follows that the orbit of the point s under j~' lies in only p i-cells of ~". As 
these in turn are labelled by the ~ of ( ,)  it follows that ( , )  is also periodic of period p. 
Thus by (4 . I2 . I )  all of its entries ~ = [ i ~ , j ~ ]  satisfy i~,j~<p. 

Hence, by our choice o f f ' ,  the sequence ( .)  is also allowable in C(B). Further- 
more, such a periodic sequence clearly determines a point s  which is of period p. 
We claim, finally, that Y"=s  This is because these points have the same prekneading 
sequences and thus the same kneading sequences as these concepts coincide in the 
periodic case. But then, by the basic proposition of w 2, ~ " ( O ) = s  Therefore 
Y"=s  which completes the proof of (4. I2.2). 

(4. x3) Completion of the proof of the Structure Proposition. As F,C F for all n, 
the t'i, ~'~ are vertices in F, which proves a). Similarly, consider a sequence 

(*) . . .  ~ , ~ . . .  ~ 1  in C(B). 

Then, given i, (4.2.2) says there is a finite allowable sequence of the form 

This can in turn be completed by alternating between [I, o] and [o, i]. Thus for each 
there is an ~' and a sequence 

(**) . . . - + % + 1 - + % - + . . . - + ~ ,  in C~,(B) 

with cr,i=cr i for all i<0t. Then the sequence (**) corresponds to a l-cell e~,,CF~,,; 
we claim this sequence converges to the sequence (,) .  This follows quickly from (4. IO) 
as the prekneading sequences of all s agree and agree with those of ~ee, for a long 
way out. Thus s 1 6 3  defines a homeomorphism from e=l im~ e~ to Its, 5], where 
~j=[i , j] .  This is the 1-cell corresponding to the sequence (,),  so eEEi~. On the 
other hand, if a I-cell e joins two vertices v~, vz of V, then we can choose n large enough 
so that vx, v~F~,  for a>n .  It follows that q~[e is a homeomorphism of e into F~, 

which is within e, of the identity. Hence v~, v2 must be ~ and ~ where [i,j]~Y~. This 
proves b) and c) of the Structure Proposition. Certainly .UE 3 U F, ,  so that .UEij 

$~J $,J 

is dense in F. This completes the proof of the Structure Proposition. 
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There are four types of perturbations we wish to consider, one each at the four 

special points of " OL ": 

88 

We will call these, respectively, left outside, left inside, right inside and right outside. 
We will discuss formally only the later two, as the others are similar. 

/ \\ 

/Y t 
/ \ 

/ \ 

-E - E ~  E 

At each of these points we make a perturbation by pushing W ~, to the right or left, 
corresponding to t positive or negative, for te[ - - r  ,]. Each perturbation is to be 
supported in an interval small enough to miss the other four of the five points (the 

middle one is unlabeled) indicated in the figure. 

Proposition. - -  The map t ~ { k t ,  k ,}  which assigns to tE[--r ~] kneading sequences 

of  the vector field perturbed by t units is order preserving. The order on [ - -  ~, ~] is the usual, and 

the lexicographical ordering on the kneading sequences. 

Proof. - -  L e t f b e  the unperturbed Poincard map and g =gt  be the one perturbed 
by t units. We think of I as being a subset of R in the natural order. We discuss the 
inside perturbation first. Then there is the sequence r[, r~, . . .  (finite or infinite) where 
r~ is the i-th point in which the right unstable manifold W~ hits I, under the return map f ,  

t t p t t and similarly rlt , r2t , . . .  for gt. We note that r l t = r  1 and r2t is less than, equal to, 
or greater than r~ according as to whether t is negative, o or positive. We suppose 
t > o  as the other cases are similar. Then as long as the points r~ and r~ are on the 
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same side of O, for i = I ,  . . . ,  n, r~<r~t, for i = I ,  . . . ,  nq - i .  Furthermore,  the distance 

between them is increasing with i, by more than  a factor of  ~r Hence there is an n 
so that  r~ and r~', are on the same side of O up to i -= n and  on opposite sides for i = n § I. 
This latter case is taken to include the possibility that  one of  them is O. Tha t  is 

r~+l<o<r~+l,  t where only o n e = c a n  hold. Thus the right sequence f o r f c o m e s  before 
that  for gt, as they agree up to the ( n + i ) - t h  place, where there is a change to one of 
the following cases: 

r I I 
r.+ 1 - -  O - -  

. . . . ,  + +  o rn+ l,t 

Thus in any case k,( f ) <  k,(gt). 
We next consider k t ( f )  and kt(g): to this end let {r g~, . . . }  and {ts , t~,, . . . }  

be defined as we defined r~, r-~ above. Now consider the question: is there an integer i 

so that  t" is in the support of  our per turbat ion? I f  not, then t~ =t i '  t for all i and hence 
k t ( f ) = k t ( g t ) .  In  case there is such an i, let n be the least such and note that  gi' =t'L 
for i = i ,  . . . ,  n, whereas t~<g,  for i = n + x .  The argument  is then completed, just 

as before. 

6. Distlngulshl-g "~ and C). 

The unstable manifold W of O ~ L  is clearly well defined, being the union of 

the left orbit  W r and the right orbit W e exiting from 0 .  We let W = W t u O u W r ,  
and define @ by 

E : 1 i% o+} 

: l i r a  o - )  

O ( s ) = O ,  all - - o o < s < o  

In order to distinguish various types of points in [', we introduce the following 

terminology. By a Cantor-fan is meant  the cone over a Cantor  set. By a Cantor-book 
is mean the Cartesian product  

F x I '  

where F is a Cantor-fan and I '  is a line interval, and the spine of a Cantor-book is the 

obvious arc = A •  where A e F  is the cone-point. 

Proposition. - -  Each point of fV lies on the spine of  a Cantor-book lying in Ir No other 
point in L lies on such a spine. 

Proof. - -  The positive par t  of  this proposition follows from our knowledge of 

(w 4, L e m m a  r). This requires a special a rgument  in the case of O. But as fl  [t, o] 
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maps this interval to an interval that contains O in its interior, it is easy to argue. Now 
suppose ~ L - - W .  Then as O is the only singular point of qh, s has a neighborhood 
of the form l q •  an interval and lqCF.  Then wemaysuppose  s 2 1 5  ~ F  and 
t~I. Then the points of F consist of: 

i) vertices; 
2) points interior to I-cells; 
3) neither i) nor 2) but  limit points of both I) and 2). 

Of  these, only the first type lies on Cantor-fans, so that s does not lie on the spine of 
a Cantor-book. 

We next turn to the question as to whether our two sequences {rl, r 2 , . . . } ,  
{tl, t z , . . . }  can have any behavior other than finite, periodic, and dense in I. 
They probably can, but for genericity questions this is no problem because of the 

Proposition. - -  The subset ~ C .LP o f  all vector fields such that the corresponding sets 

A={r0 ,  q ,  r2, . . .} and {t0, el,12, - . . } = B  both have 0 as a limit point is a Baire set 

( =  a second category set). 

Proof. - -  W e  introduce the set 

---- {X ~ ~ : A x n ((i / i)-neighborhood of O) ----- 93 }. 

Here of course A x is the set {r0, rl ,  r2, . . . }  resulting from the vector field X, 
and the (z/i)-neighborhood N1/~(O ) of O is taken to be open. Then obviously .~  is 
closed as its complement is open. 

To see that .~i is nowhere dense, take an instance L, %, and perturb according 
to a left inside perturbation (w 5); since we can arrange an arbitrarily small perturbation 

eo  

to yield some r j = o ,  we can perturbe a bit less and get rj~Nl/i(O ). Thus .~r I, JF~ i . =  

is of the first category. Similarly, define ~ and note it is of the first category so that 
~ = ~ - - ~ r  is of the second category. 

Corollary. - -  For X ~ ,  the corresponding L ' s  have C) as a distinguished point. 

Proof. - -  We only need distinguish ~ from the other points of ~r But for X e ~ ,  
0 definitely has no neighborhood of the form M • I, as "~r makes arbitrarily close 

" passes " at (3, in a hyperbolic manner; 0 is clearly the only such point. 

We close with the remark that O is not distinguished at least in this way, in the 
periodic, periodic case alludcd to above, in Section 4. 

7. ,~nnni,r  words  and a pre-zeta function. 

We show below that the special words 

{p0(h) : A is a closed orbit of q~}Cnl(B , 6) 
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not only characterize the topological conjugacy class of  ~, but  even the homeomorphism 

class of the Lorenz at t ractor  I',. We use the obvious fact that  a periodic orbit A lies 
in an annulus A lying in turn  in L - - W .  Conversely: 

Proposition. - -  I f  A is an annulus lying in L - - ~ V ,  then A can be deformed in I.--'~V to 

an annulus A '  whose central circle is a periodic orbit A or (exceptionally) to an annulus A '  where 

one edge o f  A '  is a saddle connection. 

The proof  requires several steps, beginning with the 

Definition. - -  By an annular word in r~i(B0, ~) is meant  a word of the form 
po(0coSlo0~ -1) where S t is the central,  simple closed curve (no retracing allowed) of  an 
annulus A C L - - W  and ~ is an arc lying in ~', joining O to a point of S i. 

Lemma. - -  Annulus words are monotonic--i.e, all their exponents are o f  the same sign. 

Proof. - -  Let p0(0~o $1o ~-1) be an annular  pa th  in B 0. We think of  B o as 0 together 
with two directed loops x and y,  a t tached by a slight abuse of notation.  

We can obviously deform S j up in ~ ,~r so that  our pa th  p0(~oS'o~ -1) has no 
doubling back in the middle of  the arcs x and y.  

Now let [5 be the last ha l f  of  x, ending in ~ and T the last hal f  o fy .  Then  [5 o 3'- 
is a pa th  in B0, but  no part  of  our  pa th  po(0~oS'o~ -1) could be like [5oy -1, since in L, 

0 separates po1([5--~) from po1(3 '--0);  po1([5--~) is the " back h a l f "  of I'. and 
pol(T--O) the " front h a l f " .  T h a t  is, such an S 1 would have to be " tangent  " to 
at C), which is not allowed in annular  words. Similarly p0(eoSlo0~ -1) cannot  contain 
a segment like 3'-1o[5. 

So suppose p0(0~oS'oe -1) contains a bit like [5. Then  the next portion is either 
an x or a y  and thus ends in [5 or T. By induct ion all parts are positive. The cases 
where p0(~oSloe -1) contains a port ion like [5-1 or 3'-1 are quite similar. 

Proof o f  the proposition. - -  Thus via L e m m a  i we have deformed S 1 and A into S' 
and A' so that  the word p0(0~oS'o~ -~) is, say, positive. Thus S' can be taken 

to be transverse to the orthogonal  trajectories (used in the definition of  Po)- Let 
% . . .  %_ ieC(B)  be the I-cells of  F that  A'  intersects, say ~ = { ~ } ~ = 0 .  Then  the 

symbols ,o0 ,01 . . .  *0,,-i~oo form an allowable word in our symbol space. In  particular 
this means that  *o~ flows onto *o,i+i (and possibly more), i + I  taken mod n. 

Consider the composite map 

(T0--~-61 ~ . . . -->- ( ; n _  1----> (YO, 

where we think of  the symbol [i , j]  as being the interval [t~, rj]. This map  has either 

a) a unique fixed point ae in t  %, or 

b) the right end points of  the *i are permuted  cyclically, or 

c) the left end points of  the ,~ are permuted  cyclically. 
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In case a),  one can easily further deform our annulus A' to A", an annulus centered 
about the periodic orbit through a. Note that the minimum period of a is n, just by 
the geometry: that is, no circle embedded in an annulus goes around it more than once. 

For case 2, recall that the only right end points are the points ~, and that ~ - ~  +1, 
unless r j - -o .  Thus, in this case, we can renumber the a0~'s so that ?i is the right end 

point of %~, and 

(,)  0 = ; 0 - ~ . . .  § x ~ ' 0  = 0 

where the first and last involvc an infinite amount of the parameter t. 
Thus we can further deform A' to an annulus A" intersecting the ~-cell z~ in its 

right hand half, so that the right edge of A" is the saddle connection ( ,) .  In particular 
the annular word of A is the word given by this saddle connection. Case 3 is similar 

to Case 2, so this completes the proof of the proposition. 

For later use, we preserve a bit more of the technical details of our proof. First a 

Definition. - -  Let A(w) be the periodic orbit in Case I and the saddle connection 

(thought of as a loop based at O) in Case 2 and 3. 

Definition. - -  To each annular word w we have associated a sequence 

0"0 ~ O ' l  - ->"  �9 �9 �9 - - ) "  a ,n - -  1 --~" ~ ' 0  

of z-cells of F so that ~ maps onto ~+ 1 (mod n), and perhaps more, under the Poincar~ 
map.fi Then, for each i, let D~ denote the disk formed by moving the closed i-cell at 
around to its first return in F, under the flow ~. 

There are three cases, one in which r  to ~i+1, and two cases in which 
t . 

6i---~6i+ 1 and G i +  z.  

~/' ~i  

0'i*1 1 

We define A ( w ) = D o U D 1 u . . .  u D , _  z and note the interior A~ ifA(w) is a topological 
annulus. The boundary consists of IQ. z~, and portions of ~ ' - - w h e r e  portions of "VV, 

including O, are perhaps included in several of the disks Di. 

Lemma. - -  For each annular word w, there is a path A(w) determined in L, which is either 

a periodic orbit or a saddle connection; A(w) lies in a special annulus A(w) which is the unstable 

manifold WU(A(w)). Moreover W"(A(w)) is the arc component of  L - - ~ V  containing A(w). 
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Proof.  - -  We have already proved everything here except the parts about the 
unstable manifold. But s i n c e f i s  expanding on each I-cell and since A(w) is an orbit, 
it is clear that A(w)CWU(A(w)). 

This leaves only the last statement to be proved; but  clearly the orbits leaving A(w) 
exit through and cover the ~ mentioned above. This last means that W"(A(w)) contains 
the successors of the e~, their successors, etc., so that it indeed contains the arc-component 
of L-'VV containing A(w). 

Remark .  - -  W"(A(w)) has exponential growth. 

Proof. - -  This is just a fact (4.2.2)  about the matrix B. 

We mention this exponential growth because in another paper [I4] it was proved 
that certain types of attractors of dimension u carried u-dimensional homology classes. 
l 'he technique was to show that the unstable manifolds had less than exponential growth. 
Note that L could carry no 2-dimensional class, as it does not separate R 3. It  inherits 
this last property from L, which obviously has it. 

We proceed toward our pre-zeta function. 

Definition. - -  Given A, a periodic orbit of ?, its projection p0A can be thought 
of as a positive word w(A)enl(Bo, 0), determined up to cyclic permutation. Let 

~ ( x , y ) = ~  yw(A) 

where the sum is over all closed orbits A, and for each A, all distinct cyclic permutations y 
of the word w(A). Here retracing an orbit A is allowed; however, this produces a 
periodic word, which thus has f e w e r  permutations. 

Remark .  - -  exp ~(t, t )=~( t ) ,  the usual ~-function of the Poincard map f .  

Proof.  - -  Suppose z e F i x f " .  Say z has minimal period p and n = p q .  Then the 
orbit A through z determines a word w(A) of length p. If  we retrace it q times we get 
a contribution of 

E_ I_ (*) v pq{yW(A)_____, y w ( A )  . . .__.____yw(A)} 

q-times 

to ~ ( x , y )  where y is a cyclic permutation of w(A). The other permutations of the 
word w ( A ) . . ,  w(A) are duplicates and don't  count. By the usual definition of ~, the 

q-umes 

orbit of x counts as p points and contributes p to Nn, Nn= c a r d ( F i x f " ) ,  which is n times 
the coefficient of t ~ in log ~(t). Evaluating ( ,)  at ( x , y ) = ( t ,  t) we get 

p t  ~ p t  ~ 
-- , as required. 

pq n 

341 



94 R .  F .  W I L L I A M S  

Then "~(x,y) seems quite natural ;  we have forced its definition a bit to make it 
correspond to ~. In  turn,  this makes for the formula (where no saddle connections occur) 

= ~ tr B ~, 
i 

proved below in w IO, along with various other computations.  

Definition. - -  We write ~ < ~ '  if  ~q' has a word w' as summand  such that  w < w "  

for all summands  w of ~. 

8. Re la t ions  b e t w e e n  ~q and k. 

We show here that  the correspondence between kneading sequences and n-functions 
is order preserving and hence one-to-one. A better result would be a formula,  giving one 

in terms of the other. Such a formula has been given elsewhere [2I, 22]. I t  would 
lead us too far afield to describe it in detail. Briefly, a periodic word w occurs in -rj 

iff k t < u u u . . . < k r ,  for any cyclic permuta t ion  u of w. 

Proposition. - -  I f  L, ~ and L' ,  ~' determine two Lorenz attractors, then k(?)<k(q~') / f f  

Proof. - -  First consider the case that  k(q~)<k(qJ). By symmetry and the facts 
about  saddle connections, we need only deal with the case where kr(cp)i=kr(q~')i i<n ,  

Then  ^ "  . . . .  ' . . ^' W r ,  considered as a path,  passes successively through to, rl, . , r,,  so 
that  there are allowable symbols 

[ , ,  o ] ' - ,  [ , ,  q ' - , . . .  --, [ , ,  hi' 
in ~ ' ,  where the asterisks mean that  we are not concerned with this part  of the symbols. 

But by the indecomposabil i ty of  B' (4.2) we can complete this sequence to a periodic word. 
This is then an annular word, and taking a cyclic permutat ion,  we may  suppose that  
our annular  word w' begins with the first n symbols ofk~(q0'). Then  clearly w ' > ' ~ ( ? )  
considered as a path,  and this in turn exceeds or equals any possible path  in L, ~, as 

other orbits get pushed to the left by @~. 

We conclude the proof  by considering the case k~(q~)=kr(~' ) and kt(~)--kt(~?' ). 

This quickly implies that  the points {rl ,  r 2 , . . . , r  l , , . . . }  are in the same relative 
p t r ! positions as are the {rt,  r2, . . . , t l , 1 2 , . . . } .  For any disparity in order will become 

greater, until  something like rr  occurs, which will contradict  the fact that 
kr (~ )=kr (~ '  ). But this now means that  the symbols Y~=Y~', and the matr ix  B = B ' ,  

so that  in turn "q(?)=~(q0'), as required. 

9" H o m e o m o r p h i c  Lorenz  at tractors .  

Throughout  this section we suppose we have given two systems L, q~ and L',  9' 

and a homeomorphism h : i ' ~ L '  from the attractors they determine. '~Ve emphasize 

that  we do not assume that  h is related to the flows, ~, ~?'. 
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Step 1. - -  It  follows that h [ ~  7 maps W homeomorphica l ly  onto V~ 7'. Next  we 

can deform h so that  h(()) --- h((7)'). This is automat ic  in case q0 (or q~') is in ~ (w 6) 
or  if there is a saddle connection.  Then  by the barycentr ic  0~ approximat ion 
theorem [IX;  ~], we have the factorization -hoqt of the map  qooh 

(L ,  O )  ^ ^ , , (L ' ,  0 ' )  

qo.-[ L / qt q~ 
I 

t 
I 

/ 

(L, 0 ) +  . . . .  (L, O ) - - : - , . - ( L ' ,  0 ' )  
~ t tt 

Here  qt is the projection onto the t-th coordinate-- i .e ,  q t ( g ) = s  The rectangle 
is commuta t ive  up to homotopy.  The triangle to the left is commuta t ive  by the definition 
of  inverse limits. 

Taking rh, and adding the projections onto B0, 6~ and B0, ~', we get 

6 )  ^ ^ -~ ~I(L' ,  O')  

1 
.~(L, O) < ~ ( L ,  O) > r~(L',  0 ' )  

,~ h 

. . . . . . . . . . . . . . . .  + r~l(Bo, 0')  rh(B~ r a 

In an earlier version as well as in [2I],  it was claimed that J is either the identity 
or  interchanges x and y. This is incorrect,  though an example would lead us too far 
afield to reproduce here. This is not needed in our counterexample  to r for the 
principal  theorem we have added an assumption which clearly guarantees that  J is 
the identity: 

Remark. - -  I f  h :  L - + L '  is within A (see the introduction) of  the identity, then 
J is the identity. 

Proof. - -  For xEL, x and }ix are never on opposite sides of  a hole in L. Hence  
there is a deformation of  h to the identity. T h u s / / i s  the identi ty on rq and the Remark  
follows. 

Proof of  the Main  Theorem. - -  As h is a homeomorphism it sends annuli to annuli. 
Thus  h ( A ( w ) ) = A ' ( J ( w ) ) = A ' ( w ) .  Hence  r / ( x , y ) = r ~ ( x , y )  so that k = k ' .  

We conclude this section with a remark that is proved just  as the lemma in w 7: 

Remark. - - J ( x )  is either entirely positive or entirely negative as a word in x, y.  
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IO, (0~ iS f a l s e .  

Suppose we are given a second category set of vector fields, which we intersect with 
the set ~ of the Introduction, and then call 5.  By w 5, we have an arc [--~, r of vector 
fields surrounding each point Xc&q. Furthermore, this correspondence can be taken 
to be continuous, with a little care in choosing the perturbation. In fact, for each 
X~.LP we define X~----X+Yu, for u~[--r  r where Yu is independent of X. 

Lemma.  - -  For some X~& ~ [--r r is second category in [--r r 

Proof.  - -  Say 5 =  [']cg, where 5 ,  is open and dense. Choose a countable 
?i 

basis {U,} of open sets in 5~'. Then for each integer i and each pair j ,  k such that 

U k C Us, the set 

XOk={Xe cd :  [--r ~]xt~Ukoe(O and [--r r  

is closed. If  the lemma is false, [.J X~$=c~ so that some Xij  k contains an open set, 
i , j , k  

say r But then 

{ X + Y , :  Xe$/" and ue(--~,  ~)}nU~ 

is a non empty open set which does not intersect ~ .  This is a contradiction. 
Hence [--~, ~]x is uncountable, so that, for r to be true, there must be an 

uncountable set U such that the Lorenz attractors for all X,,  ueU,  are mutually 
homeomorphic. To simplify the notation, we assume O e U .  Then for each ueU,  
we have the diagram 

I i Pu PO 

nl(B0(%) ) ---> ~(S0(%) ) Ju 

where we have left out the base point, though it is always our special point O, resp. r 
Now the map J ,  is determined by two words in (x,y), and thus there are only countably 
many of them. Hence there are two values u, u'EU (actually uncountably many) 
so that J , = J , , .  Then the diagram 

Pu [ Pu' 
4, 

1 
=l(B0(q>,) ) -____> ~1(Bo(%,)) 

J~: Ju 
commutes. 
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It follows that an annulus A(w), corresponding to the annular word w, maps to 
an annulus A'(w) corresponding to the same word w. Thus ~(%)-----~(%.), so that 
k(%) =-k(%,). But this contradicts the fact that k(%)4-k(%,), by the proposition (w 5) 
that says the map [--r r given by u~,k(%) is order preserving. 

I I, C o m p u t a t i o n s  o f  c e r t a i n  ~'s.  

An advantage of the usual ~-function is its computability in lots of intersecting 
cases [i, 4, I3, 16, 17]. In  some sense, our r A is almost as computable, which we illustrate 
by the following remarks. 

tr g i 
Remark 1 . -  ~(x,y)= E - ~ - e Z [ [ x , y ] ] .  

Proof. - -  This is completely formal, see [i], once we get used to multiplying without 
x 

commutativity. We illustrate with 

[xi~ :1 B2= xy 
yx yx j  

o 1 xyx xyx 

B3=[yxy yxy+ yx2 J. 

y2x 

[o i] B(x,y) = o . Then 

Y Y 

xy + yx x2y + xyx + yx 2 
Thus, to 3 terms ~- -  k- + . . .  

2 3 
It is also possible to retrieve the annular words: just reject any word which is 

periodic with period > I .  The primitive ~q-function :%: 

Remark 2 . -  ~ p ( x , y ) = Z  d~ where doe(polynomial in x,y) means: 
i 

(x) discard all periodic words (of period > I), and 
(2) replace each word by the cyclically equivalent, biggest word. 

Remark 3. - -  I f  there are two saddle connections, then 

( I -  WUr)(I--W~) 

~ I =  det( I - -B)  

Here we abelianize to H,(B0, 0); W~ and W~ are the words in x, y given by the saddle 

connection. 

3.15 
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Remark 4 .  - -  Again in the saddle connect ion case 

( I - - t a ) ( I - - t  b) 

~(t) = dct(I~-- tB(I; I)) 

where the saddle connections are of  period a and b, respectively. 

Proof. - - J u s t  set x = y  = t in R e m a r k  3- 

We close this section with the 

Proposition. - -  The periodic orbits are dense in each Lorenz attractor. 

Proof. - -  Let :?eL be a point.  Follow the orbit  of  ~ under  ~ to the first point  
~0~ ' .  Cont inue the orbit  to the second ~71, third ~ ,  . . . , ~ ,  points in F. Similarly, 
follow ~ backwards  to s 1, �9 �9 -, x - , ~  ~. Then  each xi lies in a 1-cell Ii of  ~" and each I~ 
has a first symbol,  say ~ .  Then,  by  the indecomposabi l i ty  proper ty  of  B (4.2) ,  there 
are symbols 

( y n - - - ~  ~ n  + 1 - - > -  . . . ---~ e 3 m - - ) -  (Y n . 

Then the infinitely repeated,  periodic word  

~ _ , . . .  e m e _ ,  . . . c r , ~ . . .  ~ C ( B )  

determines a periodic orbit  A. Now A, in its passage through the I-cells, agrees with 
the orbit  ofs as far as the first symbol  of  these I-cells are concerned.  Since this happens 
n-times in a row, in both directions, x0 must be quite  near  A. This is true as A is a 
hyperbolic  orbit, of  course. 

Northwestern University.  
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