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Abstract. - -  I f f  is a G T M  diffeomorphism of a compact  manifold M, we prove 
the existence of stable manifolds, almost everywhere with respect to every f-invariant 
probabili ty measure on M. These stable manifolds are smooth but  do not in general 
constitute a continuous family. The proof  of  this stable manifold theorem (and similar 

results) is through the study of random matrix products (multiplicative ergodic theorem) 
and perturbation of  such products. 

o. I n t r o d u c t i o n .  

Let M be a smooth compact  manifold, f a diffeomorphism, and p an f- invariant  
probabili ty measure on M. The asymptotic behavior for large n of the tangent map T x f  n 
is determined for p-almost all x by the multiplicative ergodic theorem of Oseledec [I I]. 
This theorem (see (I .  6) below) is a sort of spectral theorem for random matrix products. 
It treats the ergodic theory of  the d i f feomorphismfso  to say in linear approximation. The 
aim of the present paper is to tackle the nonlinear theory, and our main result is an " almost 
everywhere " stable manifold theorem (see Theorem (6.3)). This theorem says that 

for p-almost all x, the points y such that the distance o f f n x  and f~y  tends to zero at a 
suitable exponential rate (when n -++oo)  form a differentiable manifold (1). The 
proof  goes via a study of  perturbations of  the matrix products (Theorem (4. i)) occurring 
in the multiplicative ergodic theorem. The proof  of the multiplicative ergodic theorem 
given by Oseledec is not appropriate for our discussion, and we use a proof due to 

Raghunathan [15]. A version of  this proof  is reproduced in Section I. 
We have included in the present paper some results of general interest, which 

fitted naturally, but  are not needed for the proof  of Theorem (6.3). The reader who 

only wants to get to the stable manifold theorem may thus omit Section 3 and the 

(1) That something like this should be true was suggested by Smale in [20]. 
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28 D A V I D  R U E L L E  

Appendices B and C. We have not tried to present all our results in the greatest gene- 
rality. Since the articulation of the proofs is reasonably simple, the reader should be 
able to obtain further results without too much work. 

Our  theorem (6.3) is very close to results of Pesin ([i 2], [I3], [14] ) who has a stable 
manifold theorem almost everywhere with respect to a smooth invariant measure, 
assuming that such a measure exists. Our  techniques are however rather different 
from those of Pesin. We refer the reader to the monograph of Hirsch, Pugh and 
Shub [6] for the much studied case where a continuous splitting of the tangent space 
exists. 

The present paper originated in an attempt at proving certain conjectures on the 
asymptotic behavior of differentiable dynamical systems. These conjectures, presented 
in [I8], generalize results obtained for Axiom A systems (see [I9] , [I6], [2]). The 
results obtained here constitute a preliminary step towards proving the conjectures 
of [I8]. Another step is contained in [i7] (see also Katok [8]). Ultimately, this 
work should serve to determine the measures which describe hydrodynamic turbulence, 
and more generally the asymptotic behavior of dissipative physical systems. 

(o. i ) Note on the multiplicative ergodic theorem. 

Besides its applications to differentiable dynamical systems, the multiplicative 
ergodic theorem has applications to algebraic groups. The idea is due to Margulis 
(see Tits [2I]), and involves extending the theorem to local fields. The original proof 
of the multiplicative ergodic theorem is due to Oseledec, and applies to flows as well 
as maps. In  view of the applications to algebraic groups, Raghunathan [i5] devised 
a simpler proof, based on a theorem of Furstenberg and Kesten [4]. This theorem 
in turn is a corollary (Corollary (I .2)  below) of Kingman's subadditive ergodic 
theorem ([9], [io]) (see Theorem ( i .  i) and Appendix A). An extension of the sub- 
additive ergodic theorem to quasi-invariant measures has been obtained by Akcoglu 
and Sucheston [I], and would permit a similar extension of all our results. While 
Raghunathan's  results apply to maps, an extension to flows, following the ideas of Oseledec, 
is easy, and carried out in Appendix B (1). 

(o. 2) Terminology. 

Here are a few definitions which might be helpful for what follows. 
A class X of subsets of a space M is a a-algebra if OeE,  and if X is stable under 

countable intersections and complementation ( X ~ M \ X ) .  
A (finite) measure space (M, E, 0) is a space M with a a-algebra E of subsets 

(measurable sets) and a countably additive function ~ : E - + R + .  The function p is 

(1) I am indebted to A. Connes,  M.  H e r m a n ,  and  D. Sullivan for point ing out  to me  the l i terature on the 
subaddit ive ergodic theorem, and  in general  for encouragement  in writ ing the present  paper .  I also want  to thank 
J.  Tits who informed me  of  the  work of  R a g h u n a t h a n .  
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E R G O D I C  T H E O R Y  OF D I F F E R E N T I A B L E  D Y N A M I C A L  SYSTEMS 29 

a (finite positive) measure. We also assume completeness: if p(X)----o and Y C X then 

YeN (and p (Y)=o) .  I f  p ( M ) =  i, we say that (M, E, p) is aprobability space, and p 
a probability measure. 

Let M be a topological space; the elements of the e-algebra generated by the open 
sets are called Borel sets. In particular, if M is compact metrizable, and p is a positive 

Radon measure on M, one can define o(X) when X is a Borel set. A measure 
space (M, E, p) is then defined where the measurable sets are all the sets X u N  with 
N C Y ,  X and YBore l ,  and p ( Y ) = o .  

Let S be a topological space and M a measure space (resp. a topological space). 
A map q0 : M ~ S  is called measurable (resp. Borel) if ? - ~ 0  is measurable (resp. Borel) 
for every open ~7 C S. These definitions extend to sections of fiber bundles, using local 

trivializations. As usual a map from a measure space to a measure space is measurable 
if the inverse image of a measurable set is measurable. 

x. S o m e  b a s i c  r e s u l t s .  

map 

In this section (M, Z, p) is a fixed probabili ty space, and z : M - + M  is a measurable 
preserving p. Almost everywhere means p-almost everywhere. 

We denote b y f  + the positive part  of a function f : f ~ ( x ) = m a x ( o , f ( x ) ) .  

Theorem (x.  � 9  (Subadditive ergodic theorem). 
Let (fn),>0 be a sequence of measurable functions M ~ R w { - -  ov } satisfying the conditions: 

a) integrability: f + e L l ( M ,  p); 
b) subadditivity: fm+,  < fm §  oZ m a.e. 

Then, there exists a v-invariant measurable function 
f +  eLl(M, p), 

I 
lim - f ,  = f  a.e., 
n - + ~ n  

and 

f :  M - + R w { - - o e }  such that 

l i r n -  x)p(dx) = inf x)p(dx) = x)p(dx). 
n n 

This is one version of Kingman's theorem (see [io], Theorem (I .8)) .  In 
Appendix A we reduce Theorem (I. I) to another version, for which an easy proof has 

been given by Derriennic [3]. 

Corollary (x.  2). - -  Let T : M - + M  m be a measurable function to the real m • m matrices 

such that 

log+ll T( )  [leL'( M, o). 

Write T~" = T (z" - l x ) .  - . -  . T(-~x). T(x). 
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3 ~ D A V I D  R U E L L E  

Then there exists a z-invariant measurable function X: M ~ R w { - - o o }  such 
)+ eLl(M, p), 

lim :-logllT~ll = x(x) 
n~oo n 

for  almost all x, and 

limoo Iflogll T:llp(dx ) -= inf~flog[ I T:llo(dx ) = f Z(x)p(dx). 

This is proved by taking f.(x)=1ogl[%"l[ in Theorem (I. I). 

that 

l . l )  

We write: 

Proposition (* .3)  ( 1 ) .  - -  Let (T.)n> o be a sequence of  real m •  matrices such that 

lim sup -: log[ I T,[150. 
n 

T " = T . . . . . . T 2 . T :  

and assume that the limits: 

lim Llogll (W")^'l[ 
~l~oo n 

exist for q =  I7 . . ., m. Then: 

a) l ina (T~*T~)I/2'~= A 

exists, where �9 denotes matrix transposition. 

b) Let exp X(1)<... <exp X (') be the eigenvalues of  A (real X (r), possibly X(1)=--oo), and 

U (1), . . . ,  U (') the corresponding eigenspaces. Writing V(~ and V (r) =U/t~-t- . . .  -t-U (r), 
we have: 

lim I-log [ITnul[ =X It) when ueV(~)\V ('-a) 
n --4- oo n 

f o r  r~--- I~ . . . ~ s .  

(~) I f  the assumptions of the proposition are satisfied, and det A -# o (i.e. X 1 > - -  o0 ), ( i .  I ) can be replaced by 

lim X-logtlT,,ll= lira I l o g l t T y ~ a l r = o .  
~ -'-'~- 0 0  n ~'l "r 0 0  n 

( In  view of  a), lim ~ ~ log [det T n ] = log act  A,  hence lim -~ log I det  T n I = o, and since 
N-*oo IN n = I n - + ~  rt 

I[T;, ~ [I < I[T,~[lm- ~/Idet Tn [, 

we have l i t m s u p ; l o g t l T n l [ ] < o  ) .  
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Let  t ,(a)<. . .  < t ,  (") be the eigenvalues of  (T"*T") ~/2. By assumption,  the limits: 

l im - log l im - log I I (Tn) ^q [] 
n-~oo R p = m - - q  + l n--,.oo n 

exist for q = - I ,  . . . ,  m, and  therefore also the  limits: 

l im I_ log t~ v) -= Z (p) 
n~r  ?/ 

for p = i, . . . ,  m. Let  X(~)<... <X (~) be the dist inct  Z (p), and  U(n ~) be the space spanned  
by the eigenvectors of  (T"*T") 1/z cor responding  to the eigenvalues t~ v) such tha t  

(z.  ~,) l im I log t(.r)= X C'). 
7*-->00 n 

We in te r rup t  now the p roof  of  Proposi t ion (I .3) for a l emma.  For  simplicity 
we shall assume tha t  X(~)+--oo. 

Lemma ( I . 4 ) .  - -  Given 8 > 0 ,  there is K > o  such that, for all k>o, 

( '  .3)  max{l  (u, u ' ) l :  ueU~ ~), u ' e U ( ~ k ,  llull = Ilu' fl = I  } < K  exp(--n(lX(~')--X/')t--3)). 

We first prove  ( I .  3) for r<r'. Equivalent ly ,  it suffices to prove  that ,  if  v,,k is 

the o r thogona l  projec t ion of  u~ Y' --n lI(t) in ~] -~,lr(t')+k, then  
t < r  t ' ~ r '  

( I 4 )  l[~,.,[lSKllull e x p ( -  n(X(")-- X(')-- 8)). 

I t  will be conven ien t  to assume 8 less t h a n  all IX(~')--?dr) 1 for r4=r', a n d  to wri te  
8"=8/s. In  view of  ( I . I )  there is C > o  such that ,  for all n, 

3" 
l o g l l T n + a l [ < C + n - .  

4 

For  large n we have  thus: 

( (,  t[vl,,l[exp ( n + I )  X( ' ) - -~  <ilT~+lu[l 

< IIT.+llI.IIT"ull 

<exp(Oq-n~) . l l u "exp (n (X( ' )q -~ ) ) .  

3" 8* 
I f  n is so large tlaat C - - X ( " ) + ~ - < n ~ ,  this gives: 

II vL, I I< I1~11 exp(--n(XC~')--X/~)-- 8")) �9 

F r o m  this we obta in  in part icular :  
k- - I  

II 4 ~+1 II <_ ~}o I1 u II exp (--  (n +j)(X ('+ t)-- X(r)-- 8") ) 

< K1 II u It expC--n(Xr + 1)-- X(~)-- 3")) 

2 7 9  
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Kl=(I--exp(--(k(r+l)--X(~)--S*))) -1. Therefore also: 

k - - 1  

ZollUl[ exp(--(n+j)(X(~+2)--)~(~)--S*)) 

k - - 1  

+ 2 glliull exp(--n(X(~+l)--X(~)--8*)) exp(--(n+j)(X(~+2)--X(~+x)--8*)) 
J = 0  

In general: 

!K~l lu l [  exp (-- n(X(r + ~)-- X(')-- 23")). 

If V~r' I I _<; K~'-r  [I u I I e x p ( -  n(x (r')- x (r)- ( r ' -  r)8*). 

Since (r'--r)3*<3, this proves (1.4). 
Notice that  the lemma gives bounds on the elements of the m • m matrix S of scalar 

products between the eigenvectors of (T'*T") a/2 and those of (T("+k)*T"+k)l/~. We 
have proved up to now the bounds for the elements on one side of the diagonal of S. 
The  other bounds are readily obtained from the calculation of S* = S-  ~ by the minors 
of S. Allowing for change of ~ and K, it suffices to use the bounds already obtained, 
and the fact that  all matrix elements are bounded by 1 in absolute value. This conclude 
the proof  of the lemma. 

Lemma  (I .4)  shows that  (u(,r)),>0 is a Cauchy sequence for each r. Part a) 
of Proposition (I .3)  follows from this and (I .2) .  Let U(r)=lirng(nr); (1.3) then 
becomes: 

max{[(u, u')[:  u e U  (*), u'aU(, ~'), I l u l l= l Iu ' l l=  i}<_K exp(--n(IX(*')--x(~)[--3)). 

Therefore we have, for large n, if o + u e U  (r), 

x("/--,:, ~ < ! l o g  [1T"u[I < X(r) § 2 8, 
- n  Ilull - 

hence: 

lim I-log [IT"ul[ = k  (~) if ueU(')\{o} 
n --~ oo n 

and part  b) of the proposition follows. 

Corollary (x .5)  (of Proposition ( I .3) ) .  - - L e t  X(r)<)~<X (~+1) 
r =s).  Then: 

R={u~R": IIZnull<e for all n>o} 

is a bounded open neighborhood of o in V (r). 

Tha t  R C V  (~) is clear from Proposition ( i .3)  b). 

, ! ira II W"ul[ e-"X= o 

(put X (~+1)= § /f  

Furthermore,  we have: 
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uniformly for u in the unit ball B of V (r). Since R C B, there is N finite such that 

e={ueV(r): llT-ull<e -x for o < n < N }  

proving the Corollary. 

Theorem (x. 6) (Multiplicative ergodic theorem). - -  Let T : M - * M  m be a measurable 
function to the real m • m matrices such that 

(1.5)  log + [IT(')I[~L~( M, 0)- 

Write T ~ = T ( z ' - ~ x ) .  . . .  . T ( v x ) . T ( x ) ,  and use * to denote matrix transposition. 
There is F C M  such that zFC F, p ( F ) = I ,  and the following propert#s hold i f  xeF: 

a) lim (T~*T~)I/2~-----A 

exists. 
b) Let exp X ~ ) < . . . < e x p  X~ / be the eigenvalues of  A~ (where s = s ( x ) ,  the X(~ ~1 are 

real, and X~ I may be - -  or), and UJ 1, . . . ,  U~ "/the corresponding eigenspaces. Let m~ ~/= dim U~ ~/. 
Writing V~ ) ----{o } and V (r) = I I  (~) + .  d- lr(~) The functions x~X~ ), m(~ ~) are z-invariant. 

we have: 

lim - log l[ T~u [I when 
n - ~ o o  n 

for r = I ~  , , .~ s .  

According to (i-5) and the ergodic theorem, there is I'lC iV[ such that "~I~IC I'l, 
o(Fa)=I ,  and 

lim ! l o g  + IIy(-:"-lx)[[=o if xeF1. 
n ~ c o  n 

By Corollary (I ,2), there is also P2 such that -:F2C P2, P(P2) = I ,  and, for q = I ,  . . . ,  m, 

lim I l og  If(z" )^ ll 
n ---> oo n 

exists, and is a v-invariant function of x. 
Let I ' = P l t ~ P  z. The theorem follows 

Tn=T(vn- lx )  for xeP.  

from Proposition (I .3)  applied to 

Corollary (z .  7). - -  Let x~P,  ueR";  

(x. 6) lim ~-log llT;ull = Z(x, u) 
n ---~ oo n 

then: 

exists, finite or --oo. I f  XeR, the linear space 

V~X=(ueRm: Z(x,u)<X) 

b a measurable function of x e r .  
This is an immediate consequence of Theorem (2.6). 

if usV(~r/\V~ -t/ ,  and V 2 =  [J{V~rl: X(~r/<X}. 
We have X(x, u)=X~ ) 
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34  D A V I D  R U E L L E  

Remark ( I . 8 ) . -  (1 .6 ) imp l i e s  

Z('rx, T(x)u)=z(x , u). 

T(x)V~CV,~, T(x)V(~)CV(,~. I f  x~)+--oe,  T(x) is invertible and In particular x x 
therefore T(x)V(~ ~/=V(~, T(x)V~ =V,X~. On the other hand,  the U~ / do not transform 
simply under  T(x). 

2. T h e  s p e c t r u m .  

and lim 

This determines the 

Writing T A =  

lim 
tb ---~ o0 

(e. 2 ) Spectrum 

As in Section I, (~V[, ]~, p) is a probability space, and v : M - + M  a measurable 
map  preserving p; T : M - + M  m is a measurable function such that  

log+[[W(.) [[eLI(M, p). 

We write T ~ = T ( z " - l x ) . . . . . T ( x x ) . T ( x ) .  According to Corollary (1.2) and the 
multiplicative ergodic theorem (Theorem (I .6)  and Corollary ( i .7) ) ,  there is P C M 
with -:I'C I', o(P) = i, such that, if xeP, we can define A~; s=s(x) ; X~)<. . .  <X~=Z(x)  ; 
U~/, . . . , U ( f ;  { o } = V ~ / C V ~ I C . . . C V ( ~ I = R m ;  and the functions u~z(x ,u) ,  X~VX~. 

Let m J / = d i m  U ~ / = d i m  V(~l--dim V(x ~-~/ The  numbers  X~ / are called charac- 
teristic exponents; with the multiplicities m(~ ~/ they constitute the spectrum of (% T), or T, 
at x. We shall say that  V~ ale . . .  C V~ ~/ is the associated filtration of R m. The  spectrum 
is v-invariant. I f  p is v-ergodic, the spectrum is almost everywhere constant. In  what  
follows we shall determine the spectrum of (% T^), (z-~, T*) and (% T*-~). 

( e . I )  Spectrum of (~, TA). 

Let TAP:M~M(,~)  be the p-th exterior power of T. We have: 

TAP('r '*-*x) . . . - .  TAP(':x). TAP(x) = (T~)Av 

((T~) A;* (T~) Ap) 1/~ = Ax/Xp . 

spectrum of T Ap and the associated filtration of R (~). 

@ T:';, we obtain in particular: 
~0=0 

I log 11 (T~)A][ = Y~ ,~(%(,) 
n r : k(xr) > 0  

o f :  
- - 1  

IkT , T * ) ,  

Suppose that  v has a measurable inverse, we shall show that  the spectrum of (x-1, T*) 
is almost everywhere the same as that  of (% T). Let X~= lirno (~-~,T~)1/2~ where 

~'~ = T*(-:-" +ix).  �9 �9 �9 T*(z-lx) .  T*(x). Since the spectrum of ,~  is v-invariant it is also 
v v 

the limit almost everywhere of the spectra of the ~_~(T~*T n~lj2"_zj , where 
v 

T~" = T* (x) T* (zx). �9 �9 �9 T* (-: -~ x). 
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v v v v 

The  spectrum of T~ T~ is the same as that  of T ' T  "*~_~ = T~ T~. 
of _A~ is the same as the spectrum of A~. 

(2 .3)  Spectrum of (% T*-I) .  

35 

Therefore the spectrum 

3" The invertible case. 

In this section, (M, E, p) is a probability space, and -~ : M ~ M  is a measurable 
map  with measurable inverse preserving p. 

Theorem (3. I) .  - -  Let T :  M-+GL,~ be a measurable function to the invertible real 

m • m matrices, such that 

IoN+ ]l T(") II, log+ 11 T-l(") lieU( M, P)- 
Write: 

T ~ =  T(-r"-J x). . . -  . T(,rx). T(x) 

T~ -~ = T - l ( v - ~ x ) . . . . .  T -  1 (.~ - 2x). T - l ( v  - ix). 

There is then A C M  such that - rA=A,  p ( A ) = I ,  
~ , w ~ l ) e .  . . e w ; ' ~  of  S ~ ooer a (with s=s(~)), such that 

k~•176 IlZ~ull=x~ ~ /f o,u~W~'>. 

and a measurable splitting 

Let again the numbers  X~)<. . .  <X(f with multiplicities m~ ), . . . ,  m(~ 8) constitute 
the spectrum of (% T) at x. Let V~ )C . . .  CV(~ ~) be the associated filtration of R". 
F rom Sections (2.2) and (2.3) we know that  the spectrum of ('r- 1, T -  1 o'r- 1) at x consists 
of  the numbers  - -9~])<. . .  < - -X~ ) with multiplicities m(~ *), . . . ,  m~ ). Let: 

v~-'~ c . . .  c v~-l~ 

be the associated filtration. Suppose that  we can show that 

(s- ' ) v ~ ' - '  n v~-~/= [o} 

(3.2) V(,'-I) § V~-'/---- R '~ 

for r = 2 ,  . . . , s ,  and almost all x. Then,  put t ing 

w~rl = v~,l,-, v~-'> 

283 

Suppose that  T is almost everywhere invertible and that  

log + I [ T - ~ ( . ) l i e U ( M ,  p). 

Define A~= lim ~--x(T~*Tn~l/2n--xJ , where ~I~-----T - l (v"- lx)  . . . . . T * - l ( ~ x ) . T * - l ( x ) .  We have 
~ - - >  o 0  

then ~ =  A~-I. Therefore the spectrum of (% T*-I)  is obtained by changing the sign 

of the spectrum of (% T):~r/=__..~Zds--r+t/. The  filtration of R m associated with 

(% T *-1) is the orthogonal  of the filtration associated with (% T) : ~(~/=V~ ~-~1• 
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we obtain: 

It" = v~-'~ n (W~ + v~-~) n ( v ~  + v~-~) c~. . .  c~ v ~  

(1) (2) = W,~ | |  | ~ 

and the theorem holds. I t  remains thus to prove (3. i) and (3.2). 
Define S as the set of those x such that  (3.I)  does not hold. Given 8 > o  and 

rs[2, s], let S~ be the subset of S such that,  if xeS~, 

(3.3)  IIT:ull_<_llull exp n(k~-l) +,3) and 

(3.4) IIT;-"ull < l lu l l  exp n(--X;) + 8) 

for all e (r-~)c~ (-r/ u V~ V~ . From (3.4) we get, if xez-"Sn,  

(3.s) II W:u II_>_ [lull exp n(?,(~*)-- 8) 

for all ueV~-l)c~V(z-*). For x~SJ~z- 'S~ ,  (3.3) and (3.5) yield x,lr)--Xx(*--l/<2~. 
- -  n _ . ~  - - X  - - X  Since p(S,c~-: S,) p(S) we have ),(r/--?,(r--~/~23 for almost all xeS and, since 

is arbitrary, we get p (S )=o .  We have proved (3.1);  (3.2) follows because 

dim V~-  l/-t- d im V(~ - r) = m. 

(3.2)  Spectrum and associated splitting. 

The  characteristic exponents Z ~ / < . . .  <Z~ s/ with multiplicities m(~ rl = dim W~ r/ 
constitute the spectrum of (% T) at x. We call W~I |  | / the associated splitting 
of It". Notice that  the X~ r) are all finite, and that: 

T(x)W~ ) =W(,~ r = I, . . . ,  s. 

(See Remark ( i .  8).) 
The  spectrum of (% T Ap ) at x consists of the numbers ~=~nrX~ r/ with 

o<nr<m~ rl, and E n = p .  The subspace corresponding to [z in the associated splitting 

of R (~) is generated by u l ^ . . . ^ u "  where ujeW~i) and ~ x(ri}=[X. (This follows 
readily from Section (2. I).) j~ 1 

The  spectrum of (v-1  T- lo .~-1  at x consists of the numbers  --X(zs)<... < - - k ~  ) 
with multiplicities m(f, . . . ,  m~ ). The  associated splitting of I t "  is W(~")|174 

The  spectrum of (% T *-1) at x consists of the numbers  - -X~ /< . . .  <--X~ 11 with 
multiplicities m(f, . . . ,  m~ I. The  associated splitting of I t "  is W~-~/ |174 a/ 

where W(Z r) is the orthogonal complement  of ~] W f  / in It".  (This follows readily 
from Section (2.3).) r': ~' *r 

The  spectrum of (.:-1, T.o.~-l) at x is the same as that  of (% T). The  associated 
splitting of I t  m is W(Z~I| | -~/. (This follows from what  has been said of (% T *-~) 
and (-~-~, T-~o-:-~).) 
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Corollary (3.3). - -  Define: 
",AT(r). ~] W (r'), u' v~(x)=max{l(u,u ' ) l :  u~vv z u'e I lul l=[ l  I [= I}  

r' : r '  + r  

(put y~(x)------o /f  s (x)=I) .  Then: 

ar(X) = (~ - v,(x)'?/~ 

= min max{](u,v)l:  veWF ~),]Iv][=I} 

and lirn _I log 8~(~x) = o. 
k-+ i ~ 1 7 6  k 

Letindeed p=m~ ~), q = m - - p ,  o,w~(W~))  ^p, o , w ' e (  E WJ>) Aq, then: 

li((Tb~w) ̂  ((T})̂ "w')l} <_ ~r(~)11(T})̂ ~wIl. ll(T~)̂ ~w' II 

and it suffices to apply what has been said on the spectrum of T A in Section (3. @. 
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4. A perturbat ion  theorem.  

(4" I )  

We write 

(4 .2)  

with 

and 
g;> I with the following properties: 

I f  ] tW'--Wll< a, 

(4.3)  l im o (T'"* T"*)'/2n= A' 

exists and has the same eigenvalues as A (inclu•ng multiplicity). 
the orthogonal projection of A' corresponding to exp X (r), and I I T " - -  Tit <_ a, 

(4 .4)  11 P(')(T')- P(')(T")II<A II T ' - - T  '' II 

(4.5) B~ exp n(X (,>- e) < I I T'"W)(T')[[ <_ B~ exp n(X (r) -I- ~). 

Theorem (4. x). - -  Let T = (T,),~> 0 be a sequence of real m • m matrices such that (1) 

lim_+sup i log I I T,, I] <~ o. 

T " = T n . . . . .  T~.T1 and assume the existence of 

l i m  (T"*T")I/2"=- A 

det A#:o. Denote by k(1)<... <X (") the eigenvalues of log A. 
Let ~ > o  be given and, for T'=(T~) ,>0,  write 

I IW' - -Wl l=sup  l l T L - - Z . l l d "  
n 

T ' " = T ~  . . . .T~.T~.  Then there are 8, A > o  and, given ~>o, there are B~>o, 

Furthermore, i f  P(r)(T') denotes 
we have: 

(a) Instead of (4. i) one could write: 

lira .-X_log IlTnll = o .  
n ---~ oo n 

See the footnote to Proposition ( i .3) .  
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If  (4- I) holds, it is known (Proposition ( i .  3) a)) that the existence of the limit (4.2) 
is equivalent to the existence of the limits 

lim I l og  II(T' )A II 
~ ---~ oo n 

for q = I ,  . . . , m .  Since (4. I) and ] [T ' - -TII<-[-oa 

I 
lim sup--log IIW~ll <_ o, 

n ---~ c~ n 

(4.3) will follow if we can prove the existence of 

lim -Ilog II(T"~)^,[I 
,tl - ~  n 

imply 

for q = i ,  . . . ,  m. Furthermore these limits determine uniquely the eigenvalues of A'. 
Therefore, to prove (4.3) and the fact that A' has the same eigenvalues as A, it suffices 
to show that 

( 4 . 6 )  lim -Ilog [I(T TM) II^q= lim -~log II(T")^qll. 
~t ---~ co n ~,t - ~  oo n 

Let o < ~ ' < ~  and define: 

I [T '^ ' - -T^q[ l=sup l  T_,~Aq--T~ql[e 3'~'. 

Then (4. i) implies the existence of Eq>o such that 

(4-7) [[ Z ' ^ ' - - T A q l l !  Eq II r ' - - Z  [1 

for 8 ~ i .  Therefore, the replacements T~ ~ T  Aq, T~ ~ T ~  Aq reduce the proof of (4.6) 
to the case q = I ,  i.e.: 

lim I log [1T'Y'[[ = X ('~>. 

Equivalently, it suffices to find an open set U C R  m such that 

l i m ~ l o g l l Z ' " u I l = x  for u u. 
~ ---.-- Qo n 

To see this take u(l/, . . . ,  u ('~! linearly independent in U and notice that the matrix 
norm [1[. I1[ defined by: 

[llXlll = II xu<a ll + . . .  + II Xu( )ll 

is equivalent to ][" [1- The existence of the limit (4.3), and the fact that A and A' have 
the same eigenvalues, are therefore a consequence of the following result: 

Lemma ( , t .2) .  - -  Let X('(1;'<...<X('(ml}=X ("> be the e@envalues of log A repeated 
according to multiplicity. Let ~ot, . . . ,  ~1 be unit vectors spanning R m and such that 

( 4 . 8 )  l im _I log [1 T" ~(k~ ! [ ----- X ('(k)). 
n .--~ oo n 
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There is then 8 > 0  such that 

lira -~ log I[ T'nu ][ = x(~) 
~ ---> oo n 

whenever o<~z<i ,  lIT T[I<S~,  and 
[ m - -  1 g(O) 

ueU, where: 

max,<,, u~l<lu,,I}. 
The existence of ~[0), . . - ,  ~)  satisfying (4.8) follows from Proposition (I .3)  b). 

The reason for not assuming the ~(k ~ orthogonal will appear in Remark (4.7). 

(4.3) Proof of the lemma and further inequalities. 

By Proposition (I .3)  a): 

n (0) ~ )~(r(k)). (4.9) lim I log  ItTn~i~ ^T ~ tl = 

Let ~(k ~) be a unit vector proportional to T ' ~  ~ and write: 

( 4  I O )  % ~ ( k  n - l ) -  t ( n ) g ( n )  
�9 - -  vk ~ k  " 

Let also ~J~) be the j- th component of ~'~). The matrix ~(") --~-- (~(~)~jkJ satisfies I[ ~(')[I <V/m 
and, because of (4-9), 

lim ~ log l det ~(~)l ---- o. 
w --*- oo ~,/ 

Therefore 

lira i log I[ ~( ")- ~11 = o 
n - + o o  n 

and given ~>o, we have: 

(4. II) D~ = s u p  e-"~ [ I ~(n)- 1 l I < -~-oo. 

We write D ~ = D .  
In view of proving (4-5) we shall obtain a result somewhat stronger than the 

lemma. We suppose that I [T '--TI]  <_ ~ and estimate the components u~ '~/, . . . ,  
~(') for any u + o  in R "~. (~) u (') of T'~u along ~i")/a, ~ ) - t / a ,  -,m, 

Let ~ be the smallest integer such that 

(4 .X2)  ('fin) maxluJ"?12maxlu~l I. j_<~ k>~ 

(In particular if ueU,  we have ~x=-rn.) Because of (4. io) and (4. II) we have: 

I ui.~ I < t~ ~) j u~,~-~t + D ~ e - ~ Z  I u?-~)[. 
- -  t 
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We weaken  these inequali t ies  if  we replace the  okt(n) by v~t(n)*"~-- ts ") such tha t  

a) ~-.o~lim N ,~2 log ts ")* = X (~(~)) for k _< tz and  

b) t(~)* = t2 *) . 

In  view of (4-8), ( 4 - ' ~  this can  be achieved by mul t ip ly ing  the sequences (t~")), for 
k < ~ ,  by constants  ~ i .  Since ~q>o, a) implies the  existence of C > o  such that ,  
for all v ~ o ,  N > v ,  and  k , t < ~ ,  

N --2  H t ( ' ' )*/ N 
(4.1a) ~=~+~ t In=H+2 ~(')*~'Ce~'~ ~k ~ �9 

One  can also choose C i n d e p e n d e n t  of ~x. 
In  view of the above we have  l u(k"liSU(k *~) for n 2 v ,  

U ~ ) =  U (~) = max  ]u~ ~) l, 
t 

and  T r(~) > ~(,*)* 11(,, - 2) + D ~ e- 2,,~. m. max  U} '~- 2). "-'k - -  ~k ""k  t_< 

Using  (4.13) we see tha t  this is satisfied by 
N N 

(4. i 4 )  U(k~l = ,=~+ tt(k " ) * 1 ~  . =~+~IV[ (i + mCD 3e-"~) . U  (~). 

p rov ided  

We choose 

I oo 

(4"15)  3=mC1)n~l (I - -  e-n~)2" 

In  this way m C D 3 <  I, and  
oo 

I1 ( , + m C D ~ e  - '~) co i + e - ~  ~o - -e - '~)  - 2 =  I 
( 4 . 1 6 )  C'__ n=2 <n ~ 1~ ( ,  . 

o~ - -  = i - - e  -~'~ n 2 m C D 3  
I I  ( I - - g  - n ~ )  

n = 2  

Therefore  (4.14) gives: 
N N 

( 4 . 1 7 )  ] . ~ N ) , / ' r v ( N ) / ~ , u k  [ ~ w  k ~ ~ I  t~ ( ' ) * .  I 1  ( , - - e  - n n ) . U  ('). 
n = v + 2  n = v + l  

In  view of  the defini t ion of  ~ by (4 - ' 2 ) ,  we may  choose v such tha t  

t u(;) I = %ax Ir = u("). 

Using (4-13) and  (4.17) we obta in  then,  for N > v :  

u(n) t(N/ (N-1)I__D3e-2NnE lu~N-2)[ 

N 
(~) ( N - l )  > t ~  [u~ [ - - m C C ' D ~ e  -N~ I I  t(~ n). 

- -  n = v + 2  

N- -1  

n = v + l  
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Using (4. i6) gives: 
N--1  N--1  

lu~> I ]> t,(+s)(luC~n-t)I--e-~ [I t .  Cn) . II 
n = , ~ + l  ~ n = v + l  

which implies, by induction, 

N N 

(4.x8) lukN)12 II t (~) [I (i--e-n~).lu~) 1. 
n = v + l  IJ- " n = v + l  

From (4. i I ) ,  (4.i7) and (4. I8) we obtain: 

�9 I 

(4. I9) !1s N log II Z"+u II--x (+(+)>. 

(t--e-'+~).lu~)l) 

In particular, if u~U we have r(~x)=s, and the lemma results from (4. I9)- 

(4.4) Partial proof of (4.4). 

41 

we obtain: 

hence 

I I p~+; (T') P(+)(T) It ~ ~ I  - -  ~.211 ~(0 ) -  1 112. 

We apply this result to the situation where A' is replaced by A 'As, p being the sum of the 
multiplicities of the largest eigenvalues of A' corresponding to the projections P(r)(T'), . . . ,  
P(+)(T'). 

Writing :r instead o r e ,  e'-~%l[(~(~ and 

= W)(T) + . . .  + P(+)(T) 

~' = W)(T') + . . .  + P(~)(T') 

PP'P has at most p non zero eigenvalues, with product 2 I - - ~ , 2 ,  SO each eigenvalue 
is > 1 - - s  2. Therefore I I P - - P P ' P I ] _  , o r  ] I ( I - - P ' ) P I ] < ~ .  Similarly: 

II ( I - - P ) P ' I I S s  
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Suppose that the eigenvalue expX (') is simple, i.e. the corresponding pro- 
m -- 1 ~(0) 

jection P(+)(T) is one-dimensional. I f  U=k~=lUk~+Um~'~m)CU , we have: 

[iP(+)(T)u 11 <_[u,,,,[ < max .~l<++lt~(O>-lll. [l,,tl. 
- -  k < m  

Let ~ be a unit vector in the range of P(+)(T). Since the kernel of P(")(T') cannot inter- 
sect U, we have, in view of the above estimate and triangle similarity: 

It ( t -  P(+)(T'))P(+)(T) t1 = II (I--P(+)(T'))~[I <--~ ~(~ 
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so that  II~'-~ll!2~' provided [[T'A'--TA'[I<~p% with ~v de te rmined  by the 
I 

lemma.  In  view of  (4.7),  we can take % =  ~ E ,  I IT ' - -TI I .  This is less than  i because 

we choose S in the theorem < bp/Ep for each p. Thus: 

Therefore:  

(4.2o) 

with 

(4-2I) 

I1~'-~  I[ <_2~' = ~EvI[ (K(~ [1T'--TI[. 

1[ P(~)(T') - -  V(r)(T) [I ! A l l  T ' -  T II 

max 4 A - -  , ~Ev[  I (~,(~ 

(4 .5)  Proof of (4-5). 

I f u  is in the range of  P(~)(T'), and  u # o ,  (4. I9) shows that  r(~x) = r. In  part icular ,  
we may  use (4 . I7)  with v = o  to obtain 

liT'null <_g21[u][ exp n(Xr + ~) 

which is the second half  of  (4.5).  

I f  ueU, then  ~x = m ,  and  one can take ~ = o  in (4- i8) .  Therefore  (4. I I ) ,  (4. I7), 
and  (4.18) show that,  given ~>o,  there are C~, C ' > o  such that  

( 4  ~2) c~[I.  I I exp n(X ( ' ) -  r <[I T'~u [I <--C'di u [I exp n (x (~) -k z). 

We shall now prove that  ~ may  be decreased so that  these inequalities hold for all u 
in the range of  P(~)(T') when  [ ] T ' - - T ] [ < S .  

Let u be a unit  vector in the range of P(~)(T), and  u' be such that  

(4.23) [lu'[] <I ,  11.'-~ll<(2mIl~(~ 

Write 
u ~ ~(o) u' ~ ,/~(o1 

U k q k  ~ = ~ k " ~ k  " 
k k 

I 
T h e n  E ,, ~(o) has no rm > I. Therefore  [ukl> ~k~k --  -- for some k with 

k:  r(k) = s Ir[t 

by renumber ing  the ~(o) I sk , we may  assume [ u m l > -  Since 
m 

lu~_u/l<ll~(0~_,ll . l lu,_.l l  ~ i , 
2 m  

r(k)=s and, 

w e h a v e  ] U m [ > ~ .  A n d s i n c e  [ [ u ' l l ! I  w e h a v e  luLl![l~(~ for k<m. Therefore  
2 m  

u '~g  when ~<(2m11~(~ -1. According to (4.2o),  every vector in the range of 
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P(~)(T') is proport ional  to u' satisfying (4.23), provided AI]T ' - -Tl l<(2mlI~(~ 
We also want  [ IT ' - -T I [<~8 .  This is achieved by replacing 8 by 

(4.24) min ( (2m ][ 4 (0) --1 [[) --18, (2ma][ 4 (0) -1 [1) - t). 

With this choice (4.22) holds whenever u is in the range of P(~)(T') and I I T ' - - T I [ < 8 .  
Let q be the sum of the multiplicities of exp X (~+11, . . . ,  exp X (~), and apply (4.22) 

with T '  replaced by T ''~q and T '^(q+l) One finds, for u in the range of P(')(T'), and 
v # o  in the range of (P(~+I)(T')-k. . .+P(~)(T'))^q: 

_ _  ~ ' r  iiT,.ul[> llT,.u^(T,.)Aqvl I c(q+~l -- II(Z"~)^'vll ->- ~.,2~'('1 " []ull-exp n(X(~l--~)" 

Therefore: 

I I T '"W)(T ' )  I1 ~B=exp n(X (~)- ~). 

This completes the proof  of (4.5). 

(4 .6)  Proof o f  (4.4)- 

The  earlier " partial proof  of (4.4) " in Section (4.4) yields (4-2o). We obtain 
(4.4) from (4.2o) by the replacement T ~ T "  i fA  can be chosen independent  of T" .  In 
view of (4-2I) this is achieved if we can replace T by T"  in L e m m a  (4.2) and get bounds 
on 8~ -t, Ep (defined by (4.7)) and 114(~ uniform in T" .  Since [ITL'II<IIT, I I + 8  
it is easy to obtain a bound on Ep. We take the vectors 4~ ~ . . . ,  4~ ~ in the lemma to 
be orthogonal,  so that  I1~/~ = I. 

The  choice of 8 made in the proof  of the lemma is given by (4. i5). Therefore 
it suffices that  we find upper  bounds to C and D independent  of T" .  Remember  that  
C is given by (4.13), and D is given by (4. I ~). In  view of (4.5) we can bound  C by 
(B'~/4/Bv4)2.exp(--XI"t). Applying (4.5) to T ''Am we obtain an estimate: 

B/-,/ 
[ det ~("/I> ~ - ~  exp ( - -  n (m + i ) ~). 

Taking ~=~/ (m-4- I )  yields the desired bound on D. 

(4 .7)  Complement to Theorem (4. I). 

If, instead of (Tn),>0, we consider the sequence T/ t l=  (T,~+t),>0 , the conditions 
of Theorem (4-i)  are again satisfied. We check here that  8 -a, A, and B" can be chosen 
to increase with t at most like e 3tn, e eta, and e t~ respectively. This result will be used 
in Remark (5.2) c) and the proof  of Theorem (6.3). 

First, we replace in L e m m a  (4-2) the vectors ~0), . . . ,  ~)  by 4~ ), �9 �9  -~m.~(t) Then  
D~ and C are multiplied at most by e t~ and e t~. Therefore 8 is multiplied by a factor 
not smaller than  e -~tn. 

Replacement  of T by T Ap replaces 8 by 8p which is multiplied by a factor not 
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smaller than e -zt:/ .  The Ep (see (4.7)) are multiplied by at most e 3t(*- ~'), and therefore 

Sp/Ep is multiplied by at least e -t(3~--*') Remember  that min bp/Ep is the choice of 
p 

used to prove the existence of the limit (4-3), and also in Section (4.4). From (4. i i )  
it follows that the choice of A given by (4.2I)  does not grow faster than e t(~*- ~; +~) 

The choice of ~ in (4.24) therefore does not decrease faster than e t(3~-,,+2~), i.e. e -zt~ 

if ~ ' = 2 z ;  going over to min 8p/Ep does not change this. 
In Section (4.5), B'~, C~, C -t~ , B~ -1 do not increase faster than e w for any ~ '>o,  

e.g. z' = ~. Therefore in Section (4.6) we obtain finally that A does not increase faster 

than e 2t~'. 

5. A non l inear  ergodic theorem.  

In what follows we denote by B(0~) the open unit ball of radius ~ centered at the 
origin of R m, and by B(a) its closure. We shall say that a map is of class C r'~ if its 

derivatives up to order r are H61der continuous of exponent 0; similarly for manifolds. 

Theorem (5. i ). - -  Let (M, E, ~) be a probability space and -r : M-~-M a measurable map 
preserving p. Givenaninteger r~I, and 0~(o, I], let x ~ F x m a  p M to cr '~  m, o). 
We write 

F~= F,,-~xO... o F~o Fx 

and denote by T(x) the derivative Of F~ at o. We assume that x~T(x ) ,  [lF~][r,o are measurable 

and that 

(5" I)  flog+ll FxIlr, 0 p(dx)< + oe. 

We choose X<o and assume that almost everywhere the spectrum of T at x contains neither X 

nor --oo (the spectrum is ,finite, in particular T(x) is invertible). 

There is then a measurable set P C M such that -rF C F, p(P) ----- I, and there aremeasurable 

functions ~>c~>o, y > I  on P with the following properties: 

a) I f  x e F  the set 

Z = { u e g ( ~ ( x ) )  : IIF2uil<~(xDe "x for all n > o }  D x 

is a C ~'~ submanifold of  ~J(e(x)), tangent at o to V 2. 

b) I f  u, veuX~, then 

I lF:u--F;v l l  < y ( x )  l lu--vl le  nx. 

I f  p is ergodic, the spectrum may be assumed constant on F. IJ" X' < X and the interval IX', X] 
is disjoint from the spectrum, there exists y' measurable on F with the property: 

b') when u, veuX~, then 
I1 ~ n  v IlLu-I  vll<_  (x)llu-vlle 

We first study the case r =  I; the case r > I  will be dealt with later. 
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We may take P C M  such that  -~PCF, p ( F ) = l ,  

(5. ~' ) li+rnoo (T~* Tx ~)*'2~ = A~, 

(5.3)  det A~+o, det(A~--eX 1) + o  and 

and, if xeP:  

(5 -4 )  l im _i log+{l F.._~xll~,0 = o. 
,O, -~- oo n 

This follows from Theorem (1.6) for (5.2), by assumption for (5-3) and from (5. i) 
and the ergodic theorem for (5-4)- Notice that  (5.4) implies 

l im I-log+llT(z"-lx)11 = o. 
n - - + o o  

Let o<4~q<_--X0; we may then write, using (5-4), 

{ G = sup II F,,-**ill,0 exp(--  mq--x0) < + oo 
( 5 . 5 )  

I I F,,_1~111,0 exp (n(X0 + 3~) -- x0) < G .  

Given xeP,  we write A ~ = A  and let log A have the eigenvalues X(1)<... <X (~) 
(characteristic exponents) with the multiplicities m {1], . . . ,  m (*/. Let V (~lC . . .  C V (*/ 
be the associated filtration of R m. We assume that  X (p) is the largest characteristic 

z _ V(V) exponent <X. Therefore, with the notat ion of Corollary (I.  7), V~--  . We write 

( 5 . 6 )  ~ = X-- X (p). 

o < ~ < i ,  we shall use the definitions: 

S~(~)={ueR~:  llFgull<f3e 'a for o < n < v } ,  

S([~) = { u e R m :  IlF';ull< e "z for all n 2 o } .  

8, A > o  such that  Theorem (4-I) holds with ~ as defined above and 
We can make 8 smaller so that  

Given }, 

( 5 . 7 )  

(5.8) 

There are 

(5.9) 
I 

A S <  - -  

and then choose ~=~(x)  satisfying 

(5. xo) o < ~ < I ,  G ~ ~  

The functions x ~ 8 ,  A may be assumed measurable, as follows from their (essentially) 
explicit construction in the proof  of Theorem (4.1). Therefore also x ~  may be 
assumed measurable. 

Take x > i  such that  x ~ 5 i  , G(•176 We shall show that there is me(o, ~) 

such that, for all v>o,  

(5" IX) g(0~) nS~([3)n{u~R '~ : 1] Tt"~;-~V;ull< [3e "x for all n>v} 
= n n 
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ueS~( •  ~ - 1  x c~ (F~) V~,x. The  m • m matrices: 

f: % =  DF~,-t~(tF2-~u)dt if n <  v, 

T , I = T  ~ if n > v ,  

are such that  

T'nu--T  , . . . . . T ' l u = F ; u  

and using (5.7), (5-5), we have 

if n< v, 

1[ T'--TII = sup IIZ~--Z, IIe 3n~ ! sup IlDF~-lzl[0 (~)0 exp(n(X0 -t- 3~)--X0)< O(•176 8. 

Therefore, Theorem (4. I) applies. In  particular u is in the space V '(p) C R  m spanned 
by the eigenvectors of log A' corresponding to the eigenvalues X (~), . . . ,  X (pl. Using (5-6), 
(4.5) gives 

llZ'"ull:<__g'~e "~ Ilull 

v - - I  I, uniformly in v and ueS~(K~)r~(F~) Vt~ ~. I f  o~----~/B~<~, we see that the right- 
hand  side of (5. I I) is contained in the left-hand side. The  converse inclusion is 
immediate.  As for ~, we can assume that  x ~  is measurable. 

Let D~(00 be the set defined by (5. I I ) .  Since the boundary  of S~(,:~) is disjoint 
from S~(~), and hence from D~(e), we conclude from (5. I I)  that  D~(00 is open and closed 

v - - i  k in g(~) n(g) V~x. 
x (in the latter case, write v=oo) .  Let now u, veD'(e) or u, v e g ( e ) n S ( ~ ) = u ~  

The  m•  m matrices 

T~=f2DF~,-~,(tF~-~u+(i--t)F~-~v)dt if n ~ v ,  

T~ = T .  if n>,J, 

are such that  

T ' n ( u - - v ) = T ~ . . - . . T ' l ( u - - v ) = F ~ u - - F ~ v  if n_<v, 

and, using (5.7) or (5.8), and (5.IO), we have 

][ T ' - - T  I[ <_sup l[ DF~"-lxl[o D ~ exp(n(X0 + 3~) --X0) 
n~V 

< G~~ 

Therefore Theorem (4. I) applies and, since u--v is in the range of P(P)(T'), (4.5) yields 

(5. I2) I1F;u--F:v I[ <--Y 1[ u--v [I e"x. 

In  this formula we have written T = B _ ' > I ,  and x ~ T  may be assumed measurable. 
This proves par t  b) of the theorem. Part b') is also obtained if we take r  (vl 
instead of (5.6). F rom (4-4) we obtain: 

(5. I3) [ ] ( I -  P( ' )(T))(u--v)[  I = I[(P(')(T')--P(')(T))(u--v)l[ < A8 [ lu-v l l  
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which implies: 

(5" I4 ) 

Define 

[[(~- P{')(T))(u--v)[I ~ A8 

l/~ --(A8) ~ 

+ : ( v w  n g(~)) x (v(')~ n g(~)) -~ g(~) 

+(u~, ,,~)-- u l v ' ~ - I I , , ~  I I" + u.. 

Let +(u~, u~), +(u;, u~)~D'(,) 
and, by (5-I4): 

It P<')(T) (u-- ~)ll- 

by: 

or g(~)nS(~) .  Then (5.13) yields 

so that 

II~=ll, Ilu~ll~ Aa~ 

%/I --(AS) 2 
A8 

0C 

AS~ i i i .~li-II411 i < 
--  %/~. (A8002 

A8 < 
--%/I --(A8) = 

+ ! ~ / ~ _ _  ilu~ll ~ " II ~ -u~ l l  

A8 %/I----22-A8) -- 

In view of (5.9) the expression in parenthesis is >o.  Since D~(00 is open and closed 
in B(~)r~(F;)-IV~,,x as a consequence of (5 . i i ) ,  we conclude from (5.I5) that D~(a) 
is the connected component of o in B(00n(F;) -1 x V~,. Furthermore +-ID~(~) is the 
graph of a G 1 function ~ :  V/r)r~B(~) ---~V(r)• with derivative bounded uniformly 
with respect to v. 

Let q~ be the limit of a uniformly convergent subsequence of (%). Since 
+(graph q~)=D~(00C B(~)nS'(~), we have +(graph q0C B(~)nS(~). The converse 
inclusion follows from (5- I5) applied to B(~)nS(~). Therefore 

+(graph ~) = B(o~) n S(}) 

and, by uniqueness of % 

lira q~= q~ uniformly. 

Let u, veDa(00 and define m •  matrices: 

T', = DF,,_~,(F,'- ~u), T ' / =  DF~,-x,(F~-'v) if n~v, 

T ~ = T Z = T ~  if ~>~. 
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IT"  T [ [ < 8 .  Using (5-I2)  we have also Then  [IW'--W[I, I , -  - 

I W',-- T,' [I < l l  II F g - ' u - -  F7- 'v  !l ~ 

~l [F , , -~ i l t , 07~  -- v'l~ 

if n<_v, and therefore 

l I T '  - T "  ! [ ! G ? l l g - - v l l  ~ 

By (4.4) we have then 

I P(p~(T')-  P',P/(T")II < (AGu176 l[ u --vll~ 

where  the ranges of  P(P)(T') and P(P)(T") are the tangent  spaces to DV(~) at u and v. 
X Lett ing v-+oo we find that  the tangent  space to ]J (a)c~S(~)=u~ at w also depends 

H61der cont inuously  on w, with exponent  0. This tangent  space is the range of  p~F (T), 
where T,, --= DF,,_~,(F~ - '  w) for all n: to see this notice that  we may  assume 1' T ' - -  ]"i ~ ~o 

x at o is P(v~(T), i.e. \;~;. as ~ o o ,  and apply (4.4) .  In  par t icular  the tangent  space to u~ 
This proves par t  a) of the theorem when  r =  i. 

Xis C~,0 We prove  now that  u~ by induct ion on r for r > i .  Let 

F~: g(I) | 

be the C ~-a,~ map  defined by  

F,(u, v ) =  (V~u, DF,(u)o).  

We  can apply  the results ob ta ined  till now to F instead of  F. In  part icular ,  let S(~) 
be replaced by  g(~) CR" |  The  above identification of  the tangent  space to S(~) 
as the range of  p/p~(~) shows that  (u, v)~]~(~)c~'S(~) if  and o n l y i f  ue l3 (~)nS(~)  and 
v is tangent  to S(~) at u and sufficiently small. Since B(~) n g ( ~ )  is C ~-~'~ by  induction,  
the dependence  on u of  the tangent  space to B ( ~ ) n S ( ~ )  at u is C ' - u ~  Therefore  
g ( a ' ) n S ( ~ )  is C ~'~ if  a ' < ~ .  

Remarks (5 .2) .  - -  a) The  theorem as we have stated it assumes only the measurabi l i ty  
of  x ~ T ( x ) ,  I]F~[Ir, 0. One  could easily give an " abstract  " version for a sequence 
of  maps F,,ECr'~ m, o) satisfying conditions corresponding to (5.2) ,  (5.3) ,  

(5.4)-  O n  the other  hand  further  measurabi l i ty  propert ies  of  xi ~F, would  imply 
x is the, ~, x Such propert ies  follow from the fact that  u x measurabi l i ty  propert ies  of  x l  ,~. 

C r limit, as v ~ o o ,  of  the connected  componen t  DV(~) of  o in B ( e ) c ~ ( F ; ) - ~ V ~  (with 
C ~,0 estimates uniform in ~). 

b) Let T~=DF~,_~x(F~- 'u) .  The range of P"r for q - - I  . . . .  ,s, has C r-~'~ 

dependence on u~uX~. This was shown above when  q=p.  For general q tile step r =  x 
is the same;  the a rgument  used for r >  I has to be modified by writ ing 

F~(u, v ) =  (Vzu, eX-X'DVz(u)v) 

where  k' is not in the spec t rum and q is the largest characterist ic exponent  <X'. 
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c) From Section (4-7) and (5.9),  it follows that  we can take 8 at ztx to decrease 
at most like e -3tn. From (5.5) we see that  G increases at most like eel Therefore,  
by (5. Io), we can take }(ztx) to decrease at most like e -4t~'/~ Since ~=~/B~ ,  ~(=tx) 
decreases at most like e -~t~'/~ 

(5 .3)  The C ~ case. 

T h e o r e m  (5-I )  has a C ~ version as we now indicate.  Let x ~ F ~  map M to 
o; R m, o). We assume that x,-,Y(x), I lLl l ,  are measurable and, instead of  (5. i),  

that 

(5 .x6)  f log~llF~[Iro(dx)< + oo 

for every integer r> o. Then the conclusions of Theorem (5. x) hold with u~ a C ~~ submanifold 

of B(~(x)). 
Let P,., ~ ,  ~ ,  y~ be a choice of P, a, ~, y according to Theo rem (5. i), for r > I  

and any  0e(o, I], say 0 =  -I-. Let: 
2 

o t ', hR. , /  ( n "~ 

We have o < ~ 1 < I  (see (5.1o)) and  o < ~ < I ;  

' U r,(n); implying ,-.colim o ( M \ P , ( n ) ) = o .  Let P'=,,_>_0 

therefore f~ ,',(,,)%(='x)p(dx) 5 e  ''x, 

then p(P ' , ) - - I .  I f  xeI"~, there 

is some n>o_ such that  F~ maps u xx,1 (i.e. u,x defined with ~x and ~1) onto a subset of  
the C * manifold u,,~,x ~ (i.e. ux,, defined with z~ and ~) .  Since F~ is C ~, and is a C t diffeo- 

x is therefore CL Let now x it is also a C ~ diffeomorphism, and  ux. 1 morphism on u~.,, 

P ~ =  fi fi  v-kF'~. We have ~ ( P ~ ) = I  and v F ~ C  P~;  let ~ ,  ~ ,  Y~o be the res- 
r - - l k = 0  

trictions of  ~a, ~1, 5"1 to 1"~. T h e n  the desired C ~~ version of  Theorem (5. I) is obta ined 

with Po~, ~ ,  ~ ,  Y~o in place of I', a, ~, y. 
Notice that  we have also shown the following: / f  the conditions of Theorem (5. I) 

are satisfied, the functions ~, ~, y can be determined by considering x ~ F x  as a map from M to 
Ct '~  o; R, o) (but F might depend on r). 

(5 .4)  The analytic case. 

Let B(I) denote  here the open unit  ball centered at o in C"  and H(B(I ) ,  o, C "~, o) 
be the space of  maps holomorphic  in B(I) and continuous on B(I) .  The  holomorphic  
version of T h e o r e m  (5. x) is as follows. Let xP~F~ map M to H(]~(I),  o; C'", o). We 
assume that x ~ T ( x ) ,  [IFxl[1 are measurable and, instead of (5 . I ) ,  that 

( 5 . I 7 )  flog-IlF=l!lo(dx)< +oo. 
?, 

Then the conclusions of Theorem (5-I)  hold with u x a holomorphic submanifold of B(~(x)). 

Notice that  (5-I7)  implies: 

f log+l l  F~II~ o(dx)< + oo 
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where  I1" II~ is the C 2 norm on a ball with radius < I, Therefore  a C t manifold is defined 
by T h e o r e m  (5. I). By construction,  this manifold is a limit of  holomorphic  mani- 

x is holomorphic .  folds D~(a), defined by (5. I I), and  therefore u, 
In Section 6, this result on holomorphic  maps will be used to handle real-analytic 

maps. 

6. S t a b l e  m a n i f o l d  t h e o r e m .  

Let M be a compac t  differentiable manifold,  and f :  M---~M a C t map.  Applying 

Appendix  D with -: -=f, E = T M ,  T = T f  yields a Borel set F C M with the following 

properties:  

I. f I ' C  1" and e ( l ' ) =  i for every f - invar ian t  probabi l i ty  measure ~ on M. 
II .  For each xeP ,  the spect rum { X ~ , . . . ,  k~ )} of  T f  and the associated filtration 

V ~ ' : C . . .  CV(2)- -T~M of  TxM are defined. We write  v x = U { v ~ : :  k~"<X}. 

I I I .  P is the union of  disjoint Borel subsets I'o indexed by the f -e rgodic  measures, 
such that  vP~C Pc, and 

lim I n~_~l q~(f kx) =_ p(q0) 

whenever  xc-P~ and q~ : M - + R  is continuous.  The  spect rum is constant  on each P~. 

Theorem ( 6 . i ) .  - - -Le t  M be a compact differentiable manifold and f :  M - + M  a diffe- 
rentiable map of class C ~'~ (r integer > I ,  0e(o,  I]). Let d be a Riemann metric on M and 
denote by B(x, ~) the open ball of (sufficiently small) radius o: centered at x in M.  Given Z < o  
there are Borel functions ~ ; > ~ > o  and u  on the set 

F X - - { x e P :  the spect rum of  ~if at x contains neither X nor --oo} 

with the following properties: 
a) I f  x e P  x, the set 

�9 d " . t " ' x ) < g ( x ) e  ~ z  " o} u~'(~(x))--={.),EB(x, c~(x)) : ( f y  . . . . . . . .  for all n •  

is a C ~'~ submanifold ofB(x,  ~(x)), tangent at o to VX~. I f  M and f a r e  C ~ (resp. C '~ i.e. real- 
analytic), then ,~z~(:~(x)) is C ~~ (resp. C~~ 

b) I f  y,  zeuX~(~(x)), then 

d ( f " y , f " z )  _<T(x)d(y, z)e '~ 

Give~ 0 ergodic, i f  X'< X and the interval IX', X] is disjoint from the (constant) spectrum 
on I'~, there exists a Borel function X ~ T ' ~ T  with the property: 

b') I f  y ,  zeu~(a(x)), then 

d ( f " y , f " z ) < T ' ( x ) d ( y  , z)e "x'. 

We  may assume that  M is C ~. There  is then a C ~ map  (x,u)~+~(u) of  T M  

to M such that  +~ maps the open unit  ball o f T x M  diffeomorphical ly onto a subset of  M 
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and ~ ( o ) = x .  With a finite Bore1 partition of M trivializing the tangent bundle we 

may associate a Borel map (x, u).~ds which is piecewise C ~, is a bijection of M •  
m onto TM, and is such that +~:11 T~M is a linear contraction. We choose 3 so 

small that the image byf~.~+~ of the closed ball B(3) is contained in +:~:'~B(I) for all x. 

T ' g(I)  M and F , = T t T ~ o f o ~ , .  Given X<o, the proper- Define now u:~-=y~+~8 : -+ 

ties (5-2), (5.3), (5.4) hold if x e F  x. Therefore Theorem (5.1) holds (with F x 
replacing F) and we obtain readily the C ''~ version of thc prescnt theorem. The 
(essentially) cxplicit construction of xebec, ~, y ensures that these functions are Borel. 

In thc C ~ case, Scction (5.3) should bc used instead of Thcorem (5. i). 
I f  M and f are C ~', lct f be a holomorphic extension o f f  to a neighborhood N 

of M in a complexification 1~I. There is then a C ~ map (x, u)~+~(u) of T~tlQ to 
such that ~, restricted to the open unit ball of T~IQ is a holomorphic reality preserving 

diffeomorphism onto a subset of N, and +~(o)=x. With a finite Borel partition of M 
trivializing T ~ I  we may associate a Borel map (x, u)!~d?~(u) which is piecewise C '~ 

is a bijection of M • C" onto TM.-Q, and is such that +~ : C"-+%~I is a C-linear realily 
preserving contraction. Choose now 8 so small that the image byj~+~+;, of the closed 

- " ' " g ( i ) ~ N  ball B(S) (in C m) is contained in ~t~+:~B(I) for all x. Define ~ = y ~ + ~ :  
/ I 2 - -  1 ~ I I ?  and F~ = ~t~ ~ o ~ ~. Given X< o we may apply section (5.4) and we obtain a t~amily 

of holomorphic manifolds. Their real parts are the desired C ~ manifolds u2(e(x)). 

Corollary (6 .2) .  - -  I f  p is ergodic and all the characteristic exponents of T f  are strictly 
negative on Pp, then p is carried by an attracting periodic orbit. 

Let the characteristic exponents be <X<o .  There is xeFo such that 

Since we have here u~x(~(x))--i3(x, 0~(x)), we find 

f"l~(x, ~(x) ) C B(f"x ,  ~(x)e "z) 

and we have 

p(f"B(x,  ~(x))) >~. 

Thus thc set B ( f " x ,  ~(x)e "x) has measurc at least ~. Using compactness, and taking 
a limit, we find a point with mass ~ .  Its orbit carries p by crgodicity, and is finite. 

Clcarly, it is also attracting. 

Theorem (6.3) .  - -  Let M be a compact differentiable manifold, and f a diffeomorphism 
of class C" o. We have here .IT = P, and the following properties hold: 

a) Let X ~ ) < . . . < X f  be the strictly negative characteristic exponents at x e r .  Define 
@ I t . . .  C u~ ) by 

_:,P)={yeM : lim sup,,.+~o -n'l~ d(f"x,f"y)<X~"} 
for p = I, . . . ,  q. Then ~" (p) is the image of V~  ) by an injective C" e immersion I= tangent to 
the identity at x. 
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b) I f  xeF and ipl uTI ergodic ~. 7"&filtration V~/C CV~ X x < o, then C F~ for some is, �9 ~ �9 , . 

has C r- l '~  dependence on I ; - lyeV~ ~. 
One may in the above replace C r'~ (resp. C "-1'~ in b)) by C ~~ or C% 

With q=q(x )  defined above, choose a Borel function ~ on P such that 

o < - 

We take q + I  numbers Xl, . . . , X ~ , ~  such that 

(6. x ) X~I<XS-X(s <XT!<Xq< -- ~(x), 

O 

and such that X l , . . . ,  Xq, ~ are constant on a countable family of f- invariant Borel 
sets forming a partition of I'. On each one of these sets, and for p =  I, . . . ,  q, a 

function ~ is defined by Theorem (6. i) with respect to X=Xp. We call again ~ the 
minimum over p of these functions. This new function e defined on I' is again Borel, 

and is such that whenever X is one of the Xp, u2(~(x)) is defined and Theorem (6. I) 
holds. The number  ~ is that appearing in the proof  of Theorem (5. i), it satisfies 

o < 4 ~ < - X 0  as it should. 
By reference to Appendix D one sees readily that if xeI'p, then u~(~(x))C Fo. 

(The main point is to check that u~x(~(x))CF '. This follows from the inequality 
I I T - - T ! I < ~  in the proof of Theorem (5 . i ) ,  and application of Theorem (4.I) .)  In 
particular, if X=  X~, ~2(~(x)) is tangent to V(u p) for each yeu~(~(x)). Also the filtration 
V(r'C CV~ ~ has C ~--1'~ dependence o n y  as noted in Remark (5 2) b). (In the y . . . . .  

C ~ case, the dependence is C ~ (cf. Section (5.3));  in the C ~ case the dependence is C'~ 

use a complex extension o f f  and M as in the proof of Theorem (6. I).) 
We come now to the proof  of the theorem. For the fact that f P = P  see 

Remark D.2  a). 
By Remark (5.2) c), we know that ~( f tx )  decreases at most like e -St':~ (This 

asymptotic behavior is not changed by the mappings in the proof of Theorem (6. I).) 
Here 5r,/0<~(x) by (6. i), so that ~( f tx )  decreases less fast than e -t:(~). Therefore 
for each k > o  there are arbitrarily large integers l > o  such that 

(g. 2 ) he- tv,~', < c,.(ftx). 

Let xsP ,  X~P)<o, and X=Xp. If  ,(~> ye,Jx , there is k such that, for all n>o ,  

d( f f  x, f"y) <_ he "x. 

In particular there are arbitrarily large t ~ o  such that, for n~o,  

d( f t  :-~,y, f t  '"x) < ke-t~(~! e"Z< ~( f t  x)e"X< ~( f t  x)e"X. 

Therefore f t ye@~(e ( f t x ) ) ,  hence 
oO 
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The argument applied above to yEu~P) also applies uniformly to all y e f - ' @ , ( a ( f " x ) ) .  
Thus, for each n > o  there is g>n such that 

f - , u ~ , x ( ~ ( f , x ) ) C f - t  ~ t x)), 

and we may assume that f~-"@,~(~( f 'x ) )  is contained in the open ball B ( f t x ,  ~( f fx ) ) .  
In particular u~ p) is the union of an increasing sequence of " disks " f - t @ ~ ( ~ ( f t x ) )  

tangent to V~ p) at x. It  readily follows that u~ p) is the image of V~ p) by an injective 
immersion tangent to the identity at x (see Hirsch [5], Chapter 2, Section 5). This 
proves a) and b). 

Remarks (6.4).  - -  a) I f  f is replaced b y f  -1, F will be replaced by a set F- ,  and 
there is no reason to expect in general that P and F -  will coincide. 

b) One sees easily that 

In particular the manifolds 

u:q)={y~M : l imsup-~log d ( f " x , f " y ) < o }  

may be called stable manifolds for f .  They provide a foliation (discontinuous in general) 
of the set r .  Theorem (6.3) provides a variety of other foliations depending on the 
choice of an f- invariant  function X < o on r .  

APPENDIX A .  Proof of Theorem ( I . I ). 

The assumptions a) and b) of the theorem imply that 

f + <  f +  + A  + o r + . . . - { - f + o v n - l e L  '. 

Therefore I ,~ f f , (x)p(dx)  exists, finite or --0% and b) gives Im+ , ,~ Im+l~ .  The 

sequence (I,) being subadditive, we have 

For every positive integer N, define 

= m a x { f . ( x ) ,  - -  n N } .  

It is easy to see that the sequences ( f (s ) ) ,> .  again satisfy the subadditivity condition b) 
of the theorem. Let us assume that the conclusions of the theorem hold for these sequences. Then 

-If, (N) has a l i m i t f  (~) a.e. for each N, and there is f :  1V[ ~ l l u { - - o o }  such that 
7/ 

f(S)(x) = max { f (x ) ,  --  N} 
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(A.3) 

In view of (A. i), (A. 2), (A. 3), Theorem (I. I) is a consequence of the following result. 

Theorem (A. x ). - -  Let (f~),> 0 be a sequence of real functions such that 

a) f~eLl(M,  p); 
b) f m + n ~ f m @ ' f n O ' V  m a . e . ;  

there is N > o  such that fA(x)o(dx)2--nN. c) 

Then there is a z-invariant real function fELl(M, p) such that ~ fn tends to f almost every- 
where. Furthermore: 

i i .  

l" I . . I 
(A.4)  lmoon f J,~(x)p(dx)=Infn f f~(x)p(dx) 

=ff(x) o(dx). 
For a proof, see Derriennic [3]. 

APPENDIX B. Semiflows. 

In  this Appendix, (M, 23, p) is a fixed probability space, and ( v t ) t > 0 : M ~ M  
is a measurable semiflow preserving p. (This means that  (x, t)~vtx is measurable 
1VI• -:~ the identity, -?+t=-?o-~t, and each vt preserves 0.) Almost every- 
where means p-almost everywhere. 

Theorem ( B . I )  (subadditive ergodic theorem). 

Let the map (x, t) ~ f(x)  : M • R+ -+ R w {--oo} be measurable and satisfy the conditions: 

a) integrability: 

qh=  sup f f e L l ( M ,  p), ~02=  sup f~+_uo-~ueLl(M, p) 
O < u < l  0 < u < l  

3 0 2  

=inff lfn(X)O(dx). 

54 

for almost all x. In  particular 

( A . 2 )  . i h rnnfn= f a.e. and 

f f(x)p(dx) = inf  f f(~l(x)p(dx). 

Since the conclusions of Theorem (1. I )  hold for (f~(N))~>0 by assumption, we have 

(f(Nl(x)p(dx) = in f  f-I f~l(x)p(dx)" 
j n j n  

Thus 
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b) subadditivity: 

f ,+  t<f~ +f~o z' a.e. 

Then there exists a (~:t)-invariant measurable function f =  M--> R u{- -oo}  

f +  cLl (M,  p), 

I 
lim -f~ = f  a.e., and 
t-+oo t 

lim t fft(x)?(dt ) = inf  t f ft(x)p(dx) = f  f(x)p(dx). 

Let n be the integral part of t. We have then 

and, since q~t, q~2 ~L1, we have 

_ I n lim i ~~ o T n = lim - % o'~ = o a.e. 

by the ergodic theorem. 
theorem ( i .  I). 

(B. 2) Cocycles. 

A map 
a cocycle if 

T~+, t = 

We also assume that the cocycle is measurable M •  

defined by 

(B.x)  qh(x)= sup log+ltZ~ll 
0 < u < l  

(B.2)  q~2(x)= sup log+llT~;"l l  
0 < u < l  

are in L~(M, p). From Theorem (B.~) we obtain the existence, for 

and almost all x, of 

(B.3) lira -~log II(T )^ II. 
t -->-~o t 

We also have, for almost all x, 

I 
(B,4)  lim s u P t  sup logiiT~t+~li<o. 

t ~ c o  0 < u < l  
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such that 

The above theorem follows thus from the corresponding 

( x , t ) ~ T ~  from M •  to M m (the real m•  matrices) will be called 

-~ M., and that the functions %, q~2 

q = I ,  . . . ,  m ,  
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To see this, write t=n-+-v  (n integer, O<V<I) 
T l + u  ~ u+v 1--v 

I T"+"~,.+,~ [< IITCE-~[[ . I[T~.+,~I[ 
yield 

and observe that 

(if u + v > i )  

l~  + [I ~'~t T1 +x u lll[ 5 q)2( 'I'n X) J 7 q)l( Tn +1 X) @- q)l( %.n +2 X). 

(B.4) follows then from the ergodic theorem. 
Using the existence of (B.3), and (B.4), the proof of the multiplicative ergodic 

theorem in Section I is easily adapted to flows. 

Theorem (B.3) (Multiplicative ergodic theorem). 
Let (Tt)e_>0 be a measurable cocycle with values in M m (the real m •  matrices) such that 

the functions ~ ,  ~2 defined by (B.I) ,  (B.2) are in L~(M, p). 
There is I" C M such that ,:tP C F for  all t > o ,  and the following properties hold 

i f  x~P: 

a) lim ~_,(Tt* Tq r/2e_~, = A~ 
t ---~ oo 

exists. 
b) Let expX~)< . . .  <exp  X~ / be the eigenvalues of  A~ (where s = s ( x ) ,  the X~ ) are 

real, and X~ ) may be --  oo), and U~ I, . . . ,  UIJ ~ the corresponding eigenspaces. Let m2 r) = dim U~ r?. 
The functions x ~ X ~  ~, m~ rl are ('?)-invariant. Writing V~ ) ={o}  and V(~ r) = U~I/-F. . .  § U(f, 
w e  have 

l im-I logllT~u][ =),2 ) when usV~\V~(rl (~-~) 
t-+oo t 

fo~" Y ~  I ,  . . . ,  S. 

APPENDIX C. L o c a l  fields. 

The multiplicative ergodic theorem extends to local fields (1), as noticed by Margulis. 
I f  R is replaced by C, matrix transposition has to be replaced by Hermitean 

conjugation in Theorem ( i .6) .  In general, replacing m •  complex matrices by ( ( i )  
em•  real matrices reduces the complex case to the real case. Let I ~  i ' 

We shall not discuss ultrametric local fields, foi which see Raghunathan [I5]. 

APPENDIX D. Continuous maps. 

Let M be a metrizable compact space, z : M - + M  a continuous map, rc : E--~M 
a continuous m-dimensional vector bundle over M, and T : E-+E a continuous vector 
bundle map over v. 

(1) For definitions, see WEIL [22]. 
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Proposition ( D . x ) .  - There is a Borel set P C M  such that z F C F ,  and ~ ( F ) = I  
for  every z-invariant probability measure c on M.  Furthermore, for  each x~ F, there is a v-ergodic 

probability measure 9x such that 

(D.x)  lira _I ~ q~(vkx)=9~(~0) 
n - + m  n k = l  

for  all continuous q0:M-+l l ,  and 

! l og  I((Z;)^ql[ = l % n  logll(W~)^qll p~(dy)=inf  -I . l o g , , ( T ) A q  ox(dy) f fl l im 
n~~176  n d  

for q = i , . . . , m ,  where we have written T~-- - -T(v~- lx) . . . . .T(x) .  
Let F 1 consist of those x~M such that  

Vq(x) = lim ! log [] (T~) Aq [] 
~ ---~ oo r~ 

exists, and 

(D. 2) Vq(x) = Fq(-~x) 

for q = i, . . . ,  m. Then  Pl is a Borel set and a(Pl) = i for every invariant probability 
measure ~ by Theorem ( i .  I).  We write I " =  ~ "~-"Pl. 

n>0 
Let I" 2 be the set of all x e M  for which there is a -:-ergodic probability measure Pc 

such that  
n - - I  

vague lim I_ y~ 8~k. = Pc- 
n--~m nk=0 

Then  F 2 is a Borel set, vF~C F2, and ~(F2)= i for every "~-invariant probability 
measure ~. This follows from the Bogoliubov-Krylov theory (see Jacobs [7]). Further- 
more, if ~ is a z-invariant probabili ty measure we have, by (D.2),  for a-almost 
all x e F ' ~ F ~ ,  

(D. 3) Fq(x) = f Fe(y) p~(dy). 

We define continuous functions F~, by 

11(x) I[,-e}. Vl.(x) = max{log T "Aq 

From Theorem (I. I) we get: 

'Fq(y) 9,(dy) = l i rn  I_ [ log [I (T~)Aq l[ p~(dy) 
n j  

n j  
p i  N - - 1  

= l im l im l im _I j N --~0 F~n(%'kx)" 
n - + m t ~ r  N ~ m  n k 

Therefore the set P of those xeP 'c~P 2 for which (D.3) holds isBorel, zFC P, ~ ( P ) =  2, 
and Proposition (D. i) holds. 

a0a 
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Remarks ( D . 2 ) . -  a) The proof of the proposition gives - : P = r  when T(x) is 
invertible for all x. 

b) Since E can be trivialized by a finite Borel partition of M, a multiplicative 
ergodic theorem follows from Proposition (D. I) and Proposition (I.  3). The arbitrariness 
in the choice of norm on E is without consequence for the definition of the spectrum 
of (-:, T) at x~P, and the associated filtration of E(x). 
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