ERGODIC THEORY
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by Davip RUELLE

Dedicated to the memory of Rufus Bowen

Abstract. — If f is a C'** diffeomorphism of a compact manifold M, we prove
the existence of stable manifolds, almost everywhere with respect to every f-invariant
probability measure on M. These stable manifolds are smooth but do not in general
constitute a continuous family. The proof of this stable manifold theorem (and similar
results) is through the study of random matrix products (multiplicative ergodic theorem)
and perturbation of such products.

o. Introduction.

Let M be a smooth compact manifold, f a difftomorphism, and p an f~invariant
probability measure on M. The asymptotic behavior for large n of the tangent map T, /"
is determined for p-almost all x by the multiplicative ergodic theorem of Oseledec [11].
This theorem (see (1.6) below) is a sort of spectral theorem for random matrix products.
It treats the ergodic theory of the diffeomorphism fso to say in linear approximation. The
aim of the present paper is to tackle the nonlinear theory, and our main result is an ¢ almost
everywhere > stable manifold theorem (see Theorem (6.3)). This theorem says that
for p-almost all x, the points y such that the distance of f"x and f"y tends to zero at a
suitable exponential rate (when n—4- ) form a differentiable manifold (*). The
proof goes via a study of perturbations of the matrix products (Theorem (4.1)) occurring
in the multiplicative ergodic theorem. The proof of the multiplicative ergodic theorem
given by Oseledec is not appropriate for our discussion, and we use a proof due to
Raghunathan [15]. A version of this proof is reproduced in Section 1.

We have included in the present paper some results of general interest, which
fitted naturally, but are not needed for the proof of Theorem (6.3). The reader who
only wants to get to the stable manifold theorem may thus omit Section g and the

(1) That something like this should be true was suggested by Smale in [20].
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28 DAVID RUELLE

Appendices B and C. We have not tried to present all our results in the greatest gene-
rality. Since the articulation of the proofs is reasonably simple, the reader should be
able to obtain further results without too much work.

Our theorem (6. 3) is very close to results of Pesin ([12], [13], [14]) who has a stable
manifold theorem almost everywhere with respect to a smooth invariant measure,
assuming that such a measure exists. Our techniques are however rather different
from those of Pesin. We refer the reader to the monograph of Hirsch, Pugh and
Shub [6] for the much studied case where a continuous splitting of the tangent space
exists.

The present paper originated in an attempt at proving certain conjectures on the
asymptotic behavior of differentiable dynamical systems. These conjectures, presented
in [18], generalize results obtained for Axiom A systems (see [19], [16], [2]). The
results obtained here constitute a preliminary step towards proving the conjectures
of [18]. Another step is contained in [17] (see also Katok [8]). Ultimately, this
work should serve to determine the measures which describe hydrodynamic turbulence,
and more generally the asymptotic behavior of dissipative physical systems.

(o.1) Note on the multiplicative ergodic theorem.

Besides its applications to differentiable dynamical systems, the multiplicative
ergodic theorem has applications to algebraic groups. The idea is due to Margulis
(see Tits [21]), and involves extending the theorem to local fields. The original proof
of the multiplicative ergodic theorem is due to Oseledec, and applies to flows as well
as maps. In view of the applications to algebraic groups, Raghunathan [15] devised
a simpler proof, based on a theorem of Furstenberg and Kesten [4]. This theorem
in turn is a corollary (Corollary (1.2) below) of Kingman’s subadditive ergodic
theorem ([g], [10]) (see Theorem (1.1) and Appendix A). An extension of the sub-
additive ergodic theorem to quasi-invariant measures has been obtained by Akcoglu
and Sucheston [1], and would permit a similar extension of all our results. While
Raghunathan’s results apply to maps, an extension to flows, following the ideas of Oseledec,
is easy, and carried out in Appendix B (}).

(0.2) Terminology.

Here are a few definitions which might be helpful for what follows.

A class X of subsets of a space M is a o-algebra if UeX, and if X is stable under
countable intersections and complementation (X M\X).

A (finite) measure space (M, Z, p) is a space M with a c-algebra X of subsets
(measurable sets) and a countably additive function p:X—R_ . The function p is

(*) I am indebted to A. Connes, M. Herman, and D. Sullivan for pointing out to me the literature on the
subadditive ergodic theorem, and in general for encouragement in writing the present paper. I also want to thank
J. Tits who informed me of the work of Raghunathan.
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ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 29

a (finite positive) measure. We also assume completeness: if p(X)=o0 and YCX then
YeZ (and p(Y)=o0). If p(M)=1, we say that (M, Z, o) is a probability space, and o
a probability measure.

Let M be a topological space; the elements of the c-algebra generated by the open
sets are called Borel sets. In particular, if M is compact metrizable, and p is a positive
Radon measure on M, one can define po(X) when X is a Borel set. A measure
space (M, Z, p) is then defined where the measurable sets are all the sets XUN with
NCY, X and Y Borel, and p(Y)=o.

Let S be a topological space and M a measure space (resp. a topological space).
A map ¢: M-S is called measurable (resp. Borel) if ¢~ 0 is measurable (resp. Borel)
for every open @CS. These definitions extend to sections of fiber bundles, using local
trivializations. As usual a map from a measure space to a measure space is measurable
if the inverse image of a measurable set is measurable.

1. Some basic results.

In this section (M, Z, p) is a fixed probability space, and = : M—M is a measurable
map preserving p. Almost everywhere means p-almost everywhere.
We denote by f* the positive part of a function f:f*(x)=max(o,f(x)).

Theorem (x.1) (Subadditive ergodic theorem).
Let ( f,),~0 be a sequence of measurable functions M—~RU{—c0} satisfying the conditions:

a) infegrability: fi"eL}Y(M, p);
b) subadditivity: f,, ., < fo+f.ot" a.e.

Then, there exists a <-invariant measurable function f:M->RuU{—o} such that
STell(M, o),

1
lim - f,=f a.e.,

n—>0o 1

and lim - Jalx)e(dx) = inf i fn(x)P(dx)sz (x)p(dx).

n->0 N

This is one version of Kingman’s theorem (see [10], Theorem (1.8)). In
Appendix A we reduce Theorem (1.1) to another version, for which an easy proof has
been given by Derriennic [3].

Corollary (x.2). — Let T: M—M,, be a measurable function to the real m X m matrices
such that '

log™|| T(-){[eL!(M, p).
Write T'=T(v"~'x).---.T(zx).T(x).
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30 DAVID RUELLE

Then there exists a t-invariant measurable function y:M->RU{—ow} such that
1 eLli(M, o),

.1 "
Jim, * log| T2 (4

Sor almost all x, and
Jim, * [1og)| T2l lp(dx) = int [ Tog| T2lo(d) = [ x(x)e(dn).

This is proved by taking j;‘(x)%logl[TQI[ in Theorem (r.1).

Proposition (x.3) (). — Let (T,),~o be a sequence of real mxXm matrices such that
(r.1) tim sup * log]| T, | <o.

We write:
T =T

n

LT, T,

and assume that the limits:
lim —log]| (T")7]|

exist for g=1, ...,m. Then
a) lim (T™T")*"= A

7n—>©

exists, where % denotes matrix fransposition.

b) Let exp NV<. .. <exp A be the eigenvalues of A (real N7, possibly NV =—o0), and
UY, ..., UY the corresponding eigenspaces. Writing VO ={o0} and V" =UW4 +U",
we have:

lim £logHT"uH =\ when ueVI\VC-Y
n—>on
Sor r=1,...,s.

(1) If the assumptions of the proposition are satisfied, and det A7# o (i.e. A, > —®), (1.1) can be replaced by
1 I
im - = lim -1 2t =o0.
"lmzonlogHTnH nhmoon og||Tr]||=0

/ N
(In view of a), _lim -3 log|det T, | =log det A, hence lim 1log[det T,|=o0, and since
No>oNgzgZ1 n—>on

HTR < |[Tal[™=/|det Ty,

we have 1imsup£log\|T;1[|_§_0).
n—>w 1
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ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 3t

Let tW<...<t™ be the eigenvalues of (T™T")'2 By assumption, the limits:
I i I
im — P — Iim - nyAg
lim log Il 7= lim ~log||(T")A|

exist for ¢=1, ..., m, and therefore also the limits:

lim > log £ = @

n—>0pRn

for p=1,...,m. Let AW<...<A¥ be the distinct ¥®, and U be the space spanned
by the eigenvectors of (T™T")*? corresponding to the eigenvalues £ such that

1
oI (p)_ 3(")
(r.2) iimmnlogtn PN

We interrupt now the proof of Proposition (1.3) for a lemma. For simplicity
we shall assume that MV —oo,

Lemma (x.4). — Given 3>0, there is K>o0 such that, for all k>o,
(x.3)  max{{(u,&)|: 2eUD, weUL,, la]|=||«[| = 1}<Kexp(—n(2"'—2"|=3)).
We first prove (1.3) for r<r. Equivalently, it suffices to prove that, if of, is
the orthogonal projection of uetg UY in l'§ UY!,, then
(r.4) |75, [| <K[|u]| exp(—n(a—r"—3)).

It will be convenient to assume & less than all {A")—2a"| for r+¢’, and to write
8*=38/s. In view of (1.1) there is C>o such that, for all #,

IogliTn+1||§c+n%*.
For large n we have thus:
et flesp(in 0 (0= 2) )< T
SUTag [T ||

Sexp(C—}—n%).HuH exp(n()\(’)—i—%)).

*

If n is so large that G—)\(")—i—% < n%, this gives:

197 1| < [ u]] exp(—n(a"—2"—5)).

From this we obtain in particular:
k—1

H”Irc,r+1”§j§0 [|u|| exp(—(n +j)()\(r+1)__)\(,-)_8*))
SKI“”H exp(_n()\(7+1)_)\(f)__8*))
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32 DAVID RUELLE

with K;=(1—exp(—("+*"—2A"—8§))~% Therefore also:
k—1
12,21l 2 lul] exp(— () ¥ 20— )
k—1

+ I Ky |lu]] exp(—n(A" =27 —¥)) exp(—(n+j) (A" -2 H—57))
J=0
<Ky lul] exp(—n(i¢ +I—a"—25)).
In general:
125 1<K, [Ju]] exp(—n("—A"—(r' —1)¥).

Since (r'—r)3*<{8, this proves (1.4).

Notice that the lemma gives bounds on the elements of the mXxm matrix S of scalar
products between the eigenvectors of (T™T™'" and those of (T TH*Tr+k12  We
have proved up to now the bounds for the elements on one side of the diagonal of S.
The other bounds are readily obtained from the calculation of $*=S~! by the minors
of S. Allowing for change of § and K, it suffices to use the bounds already obtained,
and the fact that all matrix elements are bounded by 1 in absolute value. This conclude
the proof of the lemma.

Lemma (1.4) shows that (Ul"),., is a Cauchy sequence for each r. Part a)
of Proposition (1.3) follows from this and (1.2). Let U(T)z,}if}o UP; (1.3) then
becomes:

max {|(u, «')| : ueUY, w'eU", ||u|=||2'||=1}< K exp(—n(|a"—a"[—3))

Therefore we have, for large n, if o+ueU"),

A28 <~ log”lluH”<)\ + 23,

hence:

lim —10g||T"u|[——)\ if  ueU"™\{o}

n—>w0p

and part b) of the proposition follows.

Corollary (x.5) (of Proposition (1.3)). — Let WI<A<A" Y (put NHV=+too if
r=s). Then:

R ={ueR™: || T"u|[<e™ for all n> o0}
is a bounded open neighborhood of o in V.
That RCV®™ is clear from Proposition (1.3) b). Furthermore, we have:

lim ||T"u||e_”)‘ 0

n —> 0
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ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 33

uniformly for # in the unit ball B of V. Since RCB, there is N finite such that
R={ueV"; ||T"u||<e™ for o<n<N}

proving the Corollary.

Theorem (x.6) (Multiplicative ergodic theorem). — Let T : M—~M, be a measurable
Jfunction o the real mXxXm matrices such that

(r.5) log™ [| T(-)|[eL'(M, p).

Write TP=T(<""'x). -+ .T(wx).T(x), and use * to denote matrix transposition.
There is TCM such that tUCT, o(I')=1, and the following properties hold if xel:
2) lim (T2 T2 = A,

extists.

b) Let exp A< .. <exp A be the eigenvalues of A, (where s=s(x), the 3 are
real, and N may be —o0), and UYL, . .., UY the corresponding eigenspaces. Let ml) =dim U,
The functions x>\, m{" are ~-invariant. Writing V¥ ={o} and VI=UP ... +UY,
we have:

jl_l;rgoﬁlog || Tru||=2" when ueVIN\VI—Y
Jor r=1, ...,

According to (1.5) and the ergodic theorem, there is I')CM such that <I',CI,
o(I')=1, and

lim log* || T(x" )| =0 if xel\.

n-~>0on

By Corollary (1.2), there is also I'y such that <I',C Ty, o(I'y)=1, and, for ¢=1, ..., m,
lim ~log [|(T5)"|

exists, and is a t-invariant function of x.

Let I'=T,NnT,. The theorem follows from Proposition (1.3) applied to
T,=T(""'x) for xel.

Corollary (x.7). — Let xel', uecR™; then:
(x.6) lim ~log || Tial| = 1(x, u)

exists, finite or —oo. If AeR, the linear space
Vi={ueR": (x, 1)<}

is a measurable function of xel'.

This is an immediate consequence of Theorem (1.6). We have y(x,u)=x"
if ueVIA\VI~D and VA=U{Vvi: a0<al.
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34 DAVID RUELLE

Remark (1.8). — (1.6) implies
(w2, T(x)u)=x(*, u).

In particular T(x)VACV2 | T(x)VOCVP, If 2+ —oo, T(x) is invertible and
therefore T(x)VI =V T(x)V>*=V2. On the other hand, the U do not transform
simply under T(x).

2. The spectrum,

As in Section 1, (M, X, g) is a probability space, and t: M—M a measurable
map preserving p; T': M—M,, is a measurable function such that

log || T(-) [[eLX(M, p).

We write Ti=T(t""'x)...-.T(wx).T(x). According to Corollary (1.2) and the
multiplicative ergodic theorem (Theorem (1.6) and Corollary (1.7)), there is 'CM
with 7'CY, o(T) =1, such that,if xel', wecan define A;; s=s(x); A<, .. <a¥=y(x);
Ul ..., U8 {o}=VICVUC...CV¥=R"; and the functions u>y(x, u), A->V>,

Let my=dim U? =dim V{’—dim V=Y. The numbers A\’ are called charac-
teristic exponenis; with the multiplicities m{” they constitute the spectrum of (<, T), or T,
at x. We shall say that VI'C ... C VY is the associated filtration of R™. The spectrum
is r-invariant. If p is t-ergodic, the spectrum is almost everywhere constant. In what
follows we shall determine the spectrum of (r, T), (+7% T*) and (1, T*~1).

(2.1) Spectrum of (z, TM).
Let T'?: M)—»M(rg) be the p-th exterior power of T. We have:
TAP(e" =) oo JTAP(ex) . TAP(x) = (TT)NP
and lim ((T)Aer(To)AP)lee = ANP,

n > 0

This determines the spectrum of T”? and the associated filtration of R(”).

Writing T"= @ T"?, we obtain in particular:
p=0
.1
lim log|[|(T)"|= 5 miAl.
n—>ow r 7‘547) >0

(2.2) Spectrum of (v~1, T*).

Suppose that T has a measurable inverse, we shall show that the spectrumof (77, T)
is almost everywhere the same as that of (v, T). Let A, = }1_{130 (T Tm2r where
Tr=T*(x"*x). ... . T*(r"!x).T*(x). Since the spectrum of A, is t-invariant it is also

the limit almost everywhere of the spectra of the (T7*T%)" where

~

Tr=T* () T*(xx). - - - . T*(="1x).
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ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 35

The spectrum of T;*T7 is the same as that of T, T,*=T2*T%. Therefore the spectrum
of A, is the same as the spectrum of A,.

(2.3) Spectrum of (z, T*71).

Suppose that T is almost everywhere invertible and that
log™ || T7(+) [[eLi(M, ¢).

Define Xx: lim (TrTm¥ where Tr=T*"1(z""'x).--.. T '(zx).T*~'(x). We have
then XzzA;l. Therefore the spectrum of (r, T*~!) is obtained by changing the sign
of the spectrum of (t, T):A?=—2f-r+V  The filtration of R™ associated with

(r, T*7') is the orthogonal of the filtration associated with (v, T) :{I/‘ﬁ[)=V§f"“.

3. The invertible case.

In this section, (M, Z, p) is a probability space, and 7: M—M is a measurable
map with measurable inverse preserving p.

Theorem (3.1). — Let T : M—GL, be a measurable function to the invertible real
mXm matrices, such that

log™||T(-)]], log* || T*(-)[|eLY(M, p).
Write:
Ti=T(t""'x)...-.T(x).T(x)
Tor=T v "%). ... Tt %x). T (x7 ).

There is then ACM  such that A=A, p(A)=1, and a measurable splitting
xo>WHD ., .. OWE of R™ over A (with s=s(x)), such that

im kyll =20 4 (r)
kl)lrilwklogHTxu[]—_)\x if  oFueW].

Let again the numbers AV<...<A® with multiplicities m{"), ..., m{¥ constitute
the spectrum of (r, T) at x. Let VC...CV¥ be the associated filtration of R™
From Sections (2.2) and (2.3) we know that the spectrum of (7%, T~ o1™") at x consists
of the numbers —A<...<—A with multiplicities m%¥, ..., m{". Let:

V=IC .. CVED

be the associated filtration. Suppose that we can show that

(3.1) VE-IAVE " — (o}
(3.2) VU4 Ve =R

for r=2,...,s, and almost all x. Then, putting
WO = VA Vi)
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36 DAVID RUELLE

we obtain:
R = VA (VO £ VED) A (VB VEN AL AVE
=Wlhowke. . oWV
and the theorem holds. It remains thus to prove (3.1) and (3.2).

Define S as the set of those x such that (3.1) does not hold. Given 8>o0 and
re[e, s], let S, be the subset of S such that, if xeS,,

(3-3) || Tou]| <||u]|exp n(a{ =" +3)  and
(3-4) T ]| <||u]| exp n(—20 +3)

for all 2eVI=9AVE?. From (3.4) we get, if xer™"S
(3-5) [ Toul|> ]| exp n(3'—?)

no

for all ueVI=UnVE, For xeS,n+"S,, (3.3) and (3.5) yield A)—pr—1<as,
Since p(S,Nn77"S,)—>p(S) we have A?—2'~Y<2§ for almost all xeS and, since
3 is arbitrary, we get p(S)=o0. We have proved (3.1); (3.2) follows because

dim VI =Y 4 dim V& =m.

(3.2) Spectrum and associated splitting.

The characteristic exponents A!<...<)? with multiplicities m{”=dim W
constitute the spectrum of (z, T) at x. We call WH®...®@W the associated splitting
of R™. Notice that the A" are all finite, and that:

TE)WO =W r=1, ... 5.

Tz

(See Remark (1.8).)

The spectrum of (r, T?) at x consists of the numbers p=2XnA" with
r

0<n,<m!, and Xn,=p. The subspace corresponding to p. in the associated splitting
r

of R('e‘) is generated by u;A...AuU
readily from Section (2.1).)
The spectrum of (v=%, T~!ot™!) at x consists of the numbers —aFH<. . <1
with multiplicities m®, ..., m{). The associated splitting of R™ is W¥®... 0 W,
The spectrum of (r, T*~!) at x consists of the numbers —AP<...<—2l with

multiplicities m®, ..., m{". The associated splitting of R™ is W{¥®... oW1
where W7 is the orthogonal complement of % W{’in R™ (This follows readily
from Section (2.3).) T

The spectrum of (7%, T*o7™!) at x is the same as that of (r, T). The associated
splitting of R™is WY@, . . ®@W{" %, (This follows from what has been said of (r, T*™%)
and (74 T 'o7™1).)

b
n where ueWU) and X A=y, (This follows
i=1
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ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 37
Corollary (3.3). — Define:
(1) = max{[(w, v)| : ueWE, w'e B W, |[u]|=||u'|| =1}
rirkr
(put v, (x)=o0 if s(x)=1). Then:
8,(%) =(1—1,(x)*)**

= cofin _ max{j(w )] : 0e W, [[o]| =1}
and Rm, 713 log 8,(+x) =o.
Letindeed p=m{), g=m—p, o+we(W)"?, o#w’e(,,:,zlhw([))”, then:
[1((TE a0 A ((TE) M) || < 3, (%) | (TE) M| |[(TH ' |

and it suffices to apply what has been said on the spectrum of T in Section (3.2).

4. A perturbation theorem.

Theorem (4.x). — Let T=(T,),~o be a sequence of real mxm matrices such that (*)

(4.1) lim sup ~log || T, || <o.
We write T"=TT,..--.Ty. Ty and assume the existence of
(42) 31})20 (Tn*Tn)l/2n:A

with det Afo. Denote by NV<... <N the eigenvalues of log A.
Let n>0 be given and, for T'=(1}),.,, write

I T'—T || =sup | T;— T, | &
and T""="T,.---.T,. T{. Then there are 3, A>o0 and, given c>o0, there are B >o,

B.>1 with the following properties:
I IIT-T|<3,

(4-3) Lim (T T = A’

exists and has the same eigenvalues as A (including multiplicity). Furthermore, if P7(T') denotes
the orthogonal projection of A’ corresponding to exp X", and || T"—T|| <3, we have:

(4-4) [[PO(T) —PUT)||[<A[|T'—T"|]

(4-5) B, exp n(\"—¢) <|| T""P*(T")|| <B; exp n (A" +<).

(1) Instead of (4.1) one could write:
lim *log || Ty =o.
n—>oo N
See the footnote to Proposition (1.3).
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38 DAVID RUELLE

If (4.1) holds, it is known (Proposition (1.3) a)) that the existence of the limit (4.2)
is equivalent to the existence of the limits

lim ~log ||(T")]|

n—>opn

for ¢g=1,...,m. Since (4.1) and ||T'—T||<+o imply
lim sup—:glogHT,;HSO,

(4.3) will follow if we can prove the existence of

lim ~log [|(T"")]|

n-—>w0n

for ¢=1, ..., m. Furthermore these limits determine uniquely the eigenvalues of A’
Therefore, to prove (4.3) and the fact that A’ has the same eigenvalues as A, it suffices
to show that

(4.6) lim ~log ||(T"") || = lim ~log ||(T")"||.

n—>00n n-—>oon

Let o<%'<% and define:
[T T4 —syp || Ty T

Then (4.1) implies the existence of E,>o such that
(4-7) | T —T||<E,||T'—T]|

o
for 3<1. Therefore, the replacements T, T2, T, TN reduce the proof of (4.6)
to the case ¢=1, i.e.

lim ~log || T"™|] = A",

n—>00p

Equivalently, it suffices to find an open set UCR™ such that

lim—{logllT’”u[]:)\(” for wueU.

n—>wopn
To see this take «, ..., 4™ linearly independent in U and notice that the matrix
norm |||. ||| defined by:

X=X+ A [ X))

is equivalent to || - [|. The existence of the limit (4.3), and the fact that A and A’ have
the same eigenvalues, are therefore a consequence of the following result:

Lemma (g4.2). — Let NW< <\ =20  be the eigenvalues of log A repeated
according to multiplicity. Let 5O, ... B be unit vectors spanning R™ and such that

(4-8) Jim  log | T"E{'|| ="
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ERGODIC THEORY OF DIFFERENTIABLE DYNAMICAL SYSTEMS 39

There is then 8>0 such that

lim ~ log || T"™u|| =¥

n—>wpn

whenever 0<a<1, ||T'—T||<8«, and ueU, where:

m—1 ;CO)
U= kgluk?%—umi(,g’: gcn<aw>l<[uk|<|um!}.

The existence of &%, ..., £ satisfying (4.8) follows from Proposition (1.3) b).
The reason for not assuming the £ orthogonal will appear in Remark (4.7).

(4-3) Proof of the lemma and further inequalities.

By Proposition (1.3) a):

(4.9) lim Llog || T"20A. .. ATEQ]] = % 3,
n—~ w0 n

-1
Let £” be a unit vector proportional to T"£{, and write:

(4.10) T, B 1 = (g,

Let also £) be the j-th component of £”. The matrix " =(&7) satisfies [[£"[|<y/m

and, because of (4.9),

lim - log |det £ —o.

7 —> 0

Therefore

lim ~log ||£"~!|| =0

n—>0

and given =>o0, we have:

(4.11) D, = sup e[| £971]| < 4-co.

We write D, =D.

In view of proving (4.5) we shall obtain a result somewhat stronger than the
lemma. We suppose that |[T'—T| <8« and estimate the components u, ...,
u™  u of Ty along EY[a, ..., E_ [o, W for any u#o0 in R™

Let p be the smallest integer such that

{n) ()
(4-12) (V) max|u"] = max |u”].

(In particular if 2eU, we have p=m.) Because of (4.10) and (4.11) we have:

lu}(y)'gtlin)lul(cn—l)i +D86~2nn§]u{[n——1)i.
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We weaken these inequalities if we replace the £ by #"*>¢" such that

a) Lim Nn§1 log t{"* =) for k<up and
b) £ =g,

In view of (4.8), (4.10), this can be achieved by multiplying the sequences (#"), for
k<u, by constants >1. Since n>o0, a) implies the existence of G>o such that,
for all v>o, N>v, and &, ¢/<y,
N-1 N

. H t(n)* H (n)*< Nn-
(4 13) n=v+1[ n=v+1% __Ce
One can also choose C independent of u.

In view of the above we have [u{"|<U{ for n>v, provided

U= U = mpx 4],
and U > Up—U - Dse™ . m. max Uy,
e

Using (4.13) we see that this is satisfied by
N

N
(4-14) UM= 11 ¢+, *H+1(I +mCD§e~) . UM,

n=v+1
We choose
I €D
[, P A Y
(415) S—TIZGDnl;I1(I ¢ ) N
In this way mCD3<1, and

Il (1+mCD3e ™)

© 1T i 1
. '= < 11 < I (1—emy—2=
(4-26) ¢ ﬁ —nn —n=11—¢ ’”’“n:1(1 ) mCD3
nzl(l——e )
Therefore (4.14) gives:
N N
(4.17) N <TP<e T gee, T (—e). U,

In view of the definition of p by (4.12), we may choose v such that

4] = mas 4] = UV,
Using (4.13) and (4.17) we obtain then, for N>w:

4012 49 4]~ D3 S g
N N-1
> WY —mCC D3 3 . I (r—e™). )]

v n=v+1 n=v+41
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Using (4.16) gives:
N—1 N—1
(N) Zt(N) (N—=1)__p=Na T s ] |0
iuu. | t (|uu I ¢ n=v+1ty' n:v+1(1 ¢ )‘lup' I)
which implies, by induction,
N

N
(4.18) ™| > I gl T (1= |ul)].

LIS R

From (4.11), (4.17) and (4.18) we obtain:

(4-19) lim %log || T || = ),

n —> 0

In particular, if ueU we have r{u)=s, and the lemma results from (4.19).

(4.4) Partial proof of (4.4).

Suppose that the ecigenvalue exp A® is simple, ie. the corresponding pro-
m—1 (0)
jection PY(T) is one-dimensional. If u= 2 uk%%—umi",?)éU, we have:
k=1

[PCT Y| <[] < e || <o [0 ]

Let £ be a unit vector in the range of P¥(T). Since the kernel of P®(T’) cannot inter-
sect U, we have, in view of the above estimate and triangle similarity:

| (x—PE(T))PT) || =[] (1 —PO(T))E || <ol E9 1],
hence

[T PE(T) [ 1 — |02

We apply this result to the situation where A’ is replaced by A’"?, p being the sum of the
multiplicities of the largest eigenvalues of A’ corresponding to the projections P"(T"), .. .,
PE(T).

Writing «, instead of o, o =a[|(E”")"?||, and
P =P"(T)+...4P9(T)
P =P(T) +...+PYT)
we obtain:
|| BAPPAPPAR|| = || P APPAP| P> 1 — a2,
PP'P has at most p non zero eigenvalues, with product >1—a'% so each eigenvalue
is >1—a’%. Therefore ||P—PPP||<a? or ||(1—P)P||<«. Similarly:
(1 —B)P|| <«
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so that ||P'—P|[ <20’ provided || T""?—T"?|| <8,«, with 3, determined by the

lemma. In view of (4.7), we can take «,= 81 | T'—T]||. This is less than 1 because
p

we choose 3 in the theorem <3§,/E, for each p. Thus:

~l S 7 2 —_ 4
1P —P[| <20’ = =B || (B )| || T"— T,
p

Therefore:
(4-20) [[PY(T") —PUUT) || <A|| T'—T|]
with

— 4 (0~ 1) AP
(4.21) A max |0

(4.5) Proof of (4.5)-
Ifuis in the range of P"(T"), and u%o0, (4.19) shows that r(u)=r. In particular,
we may use (4.17) with v=o0 to obtain
I T"u]| <B|ull exp n(A" +)
which is the second half of (4.5).

If ueU, then p=m, and one can take v=o0 in (4.18). Therefore (4.11), (4.17),
and (4.18) show that, given ¢>o0, there are C,, C.>o0 such that

(4.22) Cullul] exp (9 —e) <[ T""a]| <Clju] expn(x +¢).

We shall now prove that 8 may be decreased so that these inequalities hold for all «
in the range of P*(T’) when || T'—T]| <3.
Let u be a unit vector in the range of P®(T), and «’ be such that

(4.23) e ||<1, |[o'—u]|<(2m]|E9=1]))~"
Write

U= % ukﬁg’), U = ,sk_: u,'ci(ko).

Then X uE? has norm >1. Therefore Iukl>l for some % with r(k)=s and,
m

k:r(k)=s

. 1 .
by renumbering the £, we may assume |u,|>—. Since
m

| < B — | < —
|t SITEO T[] [ < s

we have ]u;n[>—L Andsince ||u'||<1 wehave |u]|<||[E®~!|| for Z<m. Therefore
2m

u'eU when a<(2m|£®~!||)~% According to (4.20), every vector in the range of
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P¥(T’) is proportional to #' satisfying (4.23), provided A||T'—T||<(2m|[E®~1|)~L
We also want ||T'—T||<ad. This is achieved by replacing § by

(4-24) min((2m||E9 ) '8, (2mA[[E9 1)) 7).

With this choice (4.22) holds whenever u is in the range of P/(T’) and ||T’—T||<3.

Let ¢ be the sum of the multiplicities of exp A" Y, ... exp A%, and apply (4.22)
with T’ replaced by T’"¢ and T'A¢*!Y.  One finds, for « in the range of P"(T’), and
v+0 in the range of (P"+Y(T")4-...-PE(T))A%
IT’"U/\ (T/n)/\qvll S Cg;—l)

m !
e (GO

Nu]]-exp n(A"—c¢).

Therefore:
|| TR (T") || 2B exp n(2"—c).

This completes the proof of (4.5).

(4.6) Proof of (4.4)-

The earlier * partial proof of (4.4) ” in Section (4.4) yields (4.20). We obtain
(4.4) from (4.20) by the replacement T+—T"" if A can be chosen independent of T””. In
view of (4.21) this is achieved if we can replace T by T”" in Lemma (4.2) and get bounds
on 37!, E, (defined by (4.7)) and |[£”~!|| uniform in T". Since ||T,[|<|[T,|[+3
it is easy to obtain a bound on E,. We take the vectors £, ..., €Y in the lemma to
be orthogonal, so that [|£9~!|=1.

The choice of 3 made in the proof of the lemma is given by (4.15). Therefore
it suffices that we find upper bounds to C and D independent of T"". Remember that
C is given by (4.13), and D is given by (4.11). In view of (4.5) we can bound C by
(B;/B,.)*. exp(—A*). Applying (4.5) to T”™ we obtain an estimate:

B
|det £ > (Bf)mexp(—n(m +1)e).

Taking e¢=1n/(m+1) vyields the desired bound on D.

32

(4-7) Complement to Theorem (4.1).

If, instead of (T,),,, we consider the sequence T¥W=(T, ,),~,, the conditions
of Theorem (4.1) are again satisfied. We check here that 377, A, and B; can be chosen
to increase with £ at most like &, ¢2’" and ¢ respectively. This result will be used
in Remark (5.2) ¢) and the proof of Theorem (6.3).

First, we replace in Lemma (4.2) the vectors £¥, ..., 9 by £, ..., E¥. Then
D, and C are multiplied at most by ¢’ and ¢/". Therefore § is multiplied by a factor
not smaller than ¢~2/,

Replacement of T by T"? replaces 3 by 3, which is multiplied by a factor not
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— 24y

smaller than ¢ The E, (see (4.7)) are multiplied by at most ¢/~ "), and therefore

3,/E, is multiplied by at least e="®"~"), Remember that mpin 3,/E, is the choice of &

used to prove the existence of the limit (4.3), and also in Section (4.4). From (4.11)
it follows that the choice of A given by (4.21) does not grow faster than ¢~ *¢),
The choice of 8 in (4.24) therefore does not decrease faster than ¢ /31729, ,—3n
if 7' =2¢; going over to min 3,/E, does not change this.

In Section (4.5), B!, C/, C7!, B! do not increase faster than /¢ for any ¢ >o,
¢.g. ¢ =m. Therefore in Section (4.6) we obtain finally that A does not increase faster
than &,

5. A nonlinear ergodic theorem.

In what follows we denote by B(a) the open unit ball of radius « centered at the
origin of R™, and by B(«) its closure. We shall say that a map is of class C"° if its
derivatives up to order r are Hélder continuous of exponent 8; similarly for manifolds.

Theorem (5.1). — Let (M, Z, o) be a probability space and ~: M~>M a measurable map
preserving o.  Given an integer r>1, and 0¢e(o, 1], let x>F, map M to C"°(B(1), 0; R™ o).
We write

Fzz FTN—IxO P OFTxO Fz
and denote by T(x) the derivative of ¥, at 0. We assume that x—T(x), ||F ]|, o are measurable
and that
(5-1) J1og ™| F, 0 0(dx) <+ 0.

We choose <o and assume that almost everywhere the spectrum of ‘I at x contains neither h
nor —oo (the spectrum is finite, in particular 'T'(x) is invertible).
There is then a measurable set I' C M such that <1’ CT, o(I")=1, and there are measurable
Sunctions B>a>o0, yv>1 on U with the following properties:
a) If xel the set
vh={ueB(a(x)): ||Fru||<p(x)e™ for all n>o0}
is a C"% submanifold of B(a(x)), tangent at o to V.
b) If u,vev), then
|| Fyu—Fgo]] <y (0)||u—o][e".
If ¢ is ergodic, the spectrum may be assumed constant on I'.  If N <0 and the interval [N, }]

is disjoint from the spectrum, there exists y' measurable on I' with the property:
b') when u,vevt, then

[ Fyu—Fpo|| <y'(2)|lu—v|le"".

We first study the case r=1; the case r>1 will be dealt with later.
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We may take I'CM such that «I'CI, g(I')=1, and, if xel*

(5-2) Lim (T3 T3 = A,

(5-3) det A,+0, det(A,—e*1)+0 and
.1

(54) ,J;I_I,I:Ozlog+HF-r"‘1zH1,0:0'

This follows from Theorem (1.6) for (5.2), by assumption for (5.3) and from (5.1)
and the ergodic theorem for (5.4). Notice that (5.4) implies

lim Elog+HT(~r”“1x) [|=o.

n—»con

Let 0<4n<-—2a0; we may then write, using (5.4),

G :SngFr"‘laﬂHi,eexp(_ny}—xe) < +
(5-5)
H Ft”'lel,O exp(n()\() + 37]) - )‘6) —<_G'

Given xel', we write A,=A and let log A have the eigenvalues AV<... <¥®
(characteristic exponents) with the multiplicities m™, ..., m™. Let VWC...CV"¥
be the associated filtration of R™. We assume that A% is the largest characteristic
exponent <A. Therefore, with the notation of Corollary (1.7), V}=V®. We write

(5.6) g =rA— P,
Given B, o<p<1, we shall use the definitions:
(5-7) 8(g)=-{ueR™: ||Fjuf|<Be" for 0o<n<v},
(5.8) S() ={ueR™: ||Fru||<pe™ for all n>o0}.
There are 3, A>o0 such that Theorem (4.1) holds with v as defined above and

T,=T(t""'x). We can make & smaller so that

(5.9) AS< —

V2

and then choose B=B(x) satisfying
(5.10) o<p<i, Gp<a.
The functions x+>3, A may be assumed measurable, as follows from their (essentially)

explicit construction in the proof of Theorem (4.1). Therefore also x>f may be

assumed measurable.
Take »>1 such that »xB<1, G(xB)*<3. We shall show that there is ac(o, B)

such that, for all v>o,
(5-11) B(e) nS¥(B)n{ueR™: || Th Flu||< Be™ for all n>v}
= B(x) nS(xB) N (F) "'V,
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Let indeed u#eS*(xB)N(F})~'V}),. The mXxm matrices:
T = fol DF. 1 ((F*~tu)dt if n<v,
T/ =T, i >y,
are such that
T"u=T,. .- . Tiu=Fu if nly,

and using (5.7), (5.5), we have
I'T"—T|| = sup || T,—T,|[ 6" < sup || DF.a-1,[[ (xB)° exp(n(a0 + 37) —10) < G(xp)° < 3.
n n<y

Therefore, Theorem (4.1) applies. In particular u is in the space VP CR™ spanned
by the eigenvectors of log A’ corresponding to the eigenvalues A", ..., A", Using (5.6),

(4.5) gives
[T u]| <Ble™[|ul|

uniformly in v and ueS'(xB)N(F})~'V},. If «=B/B,<B, we see that the right-
hand side of (5.11) is contained in the left-hand side. The converse inclusion is
immediate. As for B, we can assume that x>« is measurable.

Let D*(«) be the set defined by (5.11). Since the boundary of S'(xB) is disjoint
from SY(B), and hence from D(a), we conclude from (5.11) that D¥(a) is open and closed
in B(a) N (F)~*V},.

Let now u,veD"(a) or u,veB(a)NS(B)=v? (in the latter case, write v=c0).
The mxm matrices

Ty= [ DFr (Fy a1 — ) )l i 0y,

T,=T, if >y,
are such that

T u—v)=T,. - . T{(u—0v)=Fu—Fp if nly,
and, using (5.7) or (5.8), and (5.10), we have

[T —T[<sup [ DFn-1,[]o f° exp(2(0 + 37) —29)

_<_G—B°<8.

Therefore Theorem (4.1) applies and, since z—u is in the range of P#(T"), (4.5) yields
(5-12) | Fu—Foo|| <y|lu—o||e™.

In this formula we have written y=DB.>1, and x—y may be assumed measurable.
This proves part b) of the theorem. Part b’) is also obtained if we take e=2\"—2'?)
instead of (5.6). From (4.4) we obtain:

(5-13) [|(x —=PPUT)) (u—) | = [|(P"/(T") = PY(T)) (u—2) || < A3 [|u—]|
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which implies:
Ad
V1—(A3)?
Define @ : (V' nB(«)) x (VWL AB(«)) > B(«) by:

(5-14) |[(x —P"(T)) (u—0)|| < || PP(T) (u—2)|].
D(uy, uz)_—-%\/ocz—||u2||2—|-uz.

Let ®(uy, u,), ®(u], u3)eD*(x) or B(a)NS(B). Then (5.13) yields ||uy]], ||us]| <ASa
and, by (5.14):

B I Ve T
s!«/auuuznz—\/«z—Huéllziﬂ%ﬂ
+VETGTE )
Ada|llwli—fimll| ,
< \/m + |y —uy ]
A3 , v —u
< Tyl i+l il
so that -

In view of (5.9) the expression in parenthesis is >o0. Since D”(«) is open and closed
in B(a)N(F) "'V}, as a consequence of (5.11), we conclude from (5.15) that D*(«)
is the connected component of o in B(a) N(F2)~!V},. Furthermore ®~'D¥(«) is the
graph of a C function ¢”: VWNB(a) - V7L AB(x) with derivative bounded uniformly
with respect to v.

Let ¢ be the limit of a uniformly convergent subsequence of (¢,). Since
®(graph ¢*) = D’(x) C B(«) nS*(8), we have ®(graph ¢)C B(x)nS(B). The converse
inclusion follows from (5.15) applied to B(«)NS(R). Therefore

@(graph ¢) = B(a) N S(B)=;,
and, by uniqueness of ¢,

lim ¢*=¢ uniformly.

Let u,veD%(a) and define mxm matrices:
T, =DFa_1,(Fi" '), T,=DF..1,(Fi~'s) if =n<ly
T,=T,=T, if =n>v.

b
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Then [|T'—T{|, ||T"—T||<8. Using (5.12) we have also
T =T (| <[IDFer.[o- [[F " u—F2 7 "o
<[P 1,07 lu o![Pexp(n—1)28
if #<v, and therefore
[T =T <Gy°llu—vl]"
By (4.4) we have then
| PO(TY) — PO(T) || <(AGY") || —o]}®,

where the ranges of P?({T’) and P¥/(T") are the tangent spaces to D¥(«) at « and @.
Letting v->c0 we find that the tangent space to B(a)NS(B)=uv} at w also depends
Hoélder continuously on w, with exponent 8. This tangent space is the range of P"P‘(T),
where T, =DF,..1,(F* “'w) for all : to see this notice that we may assume |:T’—T | >0
as v—oo, and apply (4.4). In particular the tangent space to v* at o is PP/(T), i.e. V.
This proves part a) of the theorem when r=1.

We prove now that v* is C"® by induction on r for r>1. Let
F.: Bu)®oR">R"@R"
be the C"~%° map defined by

F (u, v) = (F,u, DF (4)2).
We can apply the results obtained till now to F instead of F. In particular, let S(B)
be replaced by S(B) CR"®R™. The above identification of the tangent space to S(8)
as the range of PP(T) shows that (x, v)eB(«)nS(B) if and only if ueB(x)NS(B) and
v is tangent to S(B) at u and sufficiently small. Since B(x) ﬁg(ﬁ) is G"~"® by induction,
the dependence on u of the tangent spacc to B(a)NS(B) at u is C'~"° Therefore
B(a)nS(B) is C"° if o«'<a.

Remarks (5.2). — a) The theorem as we have stated it assumes only the measurability
of x>T(x), ||F,|l,s- One could easily give an “ abstract” version for a sequence
of maps F,eC"°(B(1), 0; R™ o) satisfying conditions corresponding to (5.2), (5.3),
(5.-4)- On the other hand further measurability properties of xi»F, would imply
measurability properties of xi»>v}. Such properties follow from the fact that v* is the
C" limit, as v—o0, of the connected component D¥(«) of o in B(oc)ﬁ(F;)—IV,)\‘,x (with
C"® estimates uniform in v).

b) Let T,=DF.1 (F*"'u). The range of P(T). for q=1....,s, has CT—10
A

dependence on uev;. This was shown above when ¢=p. For general g the step r=1

is the same; the argument used for r>1 has to be modified by writing
F (4, v) = (F,u, ¢~ DF (u)v)
where A" is not in the spectrum and g is the largest characteristic exponent <)\'.
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¢) From Section (4.7) and (5.9), it follows that we can take & at t‘x to decrease
at most like ¢~ From (5.5) we see that G increases at most like ¢/%. Therefore,
by (5.10), we can take B(zx) to decrease at most like e=#*®, Since «=8/B!, a(z'x)
decreases at most like e~ 3%,

(5.3) The C* case.

Theorem (5.1) has a G® version as we now indicate. Let x—F, map M

C*(B(1), 0; R™ 0). We assume that x->T(x), ||F.||, are measurable and, instead of (5.1),
that

(5-16) Jlog " || E.[|,e(dx) < o0

for every integer 1>0. Then the conclusions of Theorem (5.1) hold with v} a C* submanifold
of B(a(#)).

Let T, «,, B,, v, be a choice of T', a, B, ¥ according to Theorem (5.1), for r>1

and any fe(o, 1], say 0=~12-. Let:
L,(n) ={xel,: By(x)e" <a("x)}.

We have 0<B,<1 (see (5.10)) and o0<a«,<1; therefore jm - o, (7"x)p(dx) <e™,
implying 31_1}30 o(M\I',(n))=o0. Let F;:nyo I',(n); then p(F;)# 1. If xel'l, there
is some n>o0 such that F? maps v}, (i.e. uf defined with «; and 8,) onto a subset of
the G’ manifold v}, , (i.e. vl defined with «, and 8,). Since F;is C", and is a G' diffeo-
morphism on v} ,, it is also a C diffeomorphism, and vl is therefore C". Let now
rw:rr)lkr_lof-kr;. We have g¢(I')=1 and <[ CT_; let oy, 8., yo be the res-
trictions of «y, By, v to I'y. Then the desired C* version of Theorem (5.1) is obtained
with T, a_, By, Y 10 place of I’y a, B, v.

Notice that we have also shown the following: if the conditions of Theorem (5.1)
are satisfied, the functions o, B, v can be determined by considering x—F_ as a map from M to

CLO(B(1), o; R, 0) (but T might depend on 7).

(5.4) The analytic case.

Let B(1) denote here the open unit ball centered at o in G™ and H(B(1), o, C™, 0)
be the space of maps holomorphic in B(1) and continuous on B(1). The holomorphic

version of Theorem (5.1) is as follows. Let x—F, map M to H(B(1), 0; C", 0). We
assume that x—>T(x), ||F,||, are measurable and, instead of (5.1), that

(5-17) [log* || F, ||, (dx) <+ co.

Then the conclusions of Theorem (5.1) hold with v} a holomorphic submanifold of B(a(x)).
Notice that (5.17) implies:

[1og*[|E.l}s p(ds) < + o0
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where ||-||; is the C? norm on a ball with radius <1. Therefore a C' manifold is defined
by Theorem (5.1). By construction, this manifold is a limit of holomorphic mani-
folds D¥(«), defined by (5.11), and therefore v} is holomorphic.

In Section 6, this result on holomorphic maps will be used to handle real-analytic
maps.

6. Stable manifold theorem.

Let M be a compact differentiable manifold, and f: M—M a G' map. Applying
Appendix D with ==f, E=TM, T ="Tf yields a Borel sct I' CM with the following
propertics:

I. fTCI" and o(I')==1 for every f-invariant probability measure ¢ on M.

I1. For each xeT, the spectrum {AF, ..., A®} of Tf and the associated filtration
VIl ... CV®=T,M of T,M arc defined. We write V*-=U{Vi: a\r<y}.

IIL. T is the union of disjoint Borel subsets I', indexed by the f-ergodic measures,
such that ~I,CT_, and

n—1

lim © Y o fix) = p(e)

N0 L0
whenever xel', and ¢: M—R is continuous. The spectrum is constant on cach T',.

Theorem (6.x). — Let M be a compact differentiable manifold and f: M—M a diffe-
rentiable map of class C"° (r integer > 1, 0€(0, 1]). Let d be a Riemann metric on M and
denote by B(x, o} the open ball of (sufficiently small) radius o centered at x in M. Given r<o
there are Borel functions B>o>0 and v>1 on the set

[*={xel: the spectrum of Tf at x contains ncither » nor —oo}

with the following properties:
a) If xeT* the set
vMa(x) ={yeB(x, a(x)) : d(f"y, f"x) <B(x)e™ for all n>0}
is a C"9 submanifold of Bix, a(x)), tangent at o to V). If M and f are G (resp. C, i.c. real-
analytic), then v} («(x)) is C* (resp. C®).
b) If y, zev}(a(x)), then
A ) Sy, e
Given ¢ ergodic, if N <\ and the interval [X', \] is disjoint from the (constant) spectrum
on ', there exists a Borel function x>y’ >y with the property:
b)) If y, zeuy(alx)), then

d(f"9, [ <y (x)d(p, 2)e™.

We may assume that M is G®. There is then a G® map (x, u)>{,(¢) of TM
to M such that ¢, maps the open unit ball of T,M diffeomorphically onto a subset of M
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and g, (0o)=x. With a finite Borel partition of M trivializing the tangent bundle we
may associate a Borel map (x, )y, () which is piecewise C®, is a bijection of M x R™
onto TM, and is such that {¢_: R"—=T,M is a linear contraction. We choose § so
small that the image by fU_ . of the closed ball B(8) is contained in 4 B(1) for all x.
Define now W,=¢,¢;3:B(1)>M and F,=%¥;'cfo¥,. Given A<o, the proper-
ties (5.2), (5.3), (5.4) hold if xel* Therefore Theorem (5.1) holds (with I'?
replacing I') and we obtain readily the G"° version of the present theorem. The
(essentially) explicit construction of xh»a, B,y ensures that these functions are Borel.

In the C® case, Scction (5.3) should be used instead of Theorem (5.1).

If M and f are G, let f be a holomorphic extension of f to a neighborhood N
of M in a complexification M. There is then a G* map (x, v)~ ¢, (u) of TyuyM to M
such that {§, restricted to the open unit ball of T,M is a holomorphic reality preserving
diffeomorphism onto a subset of N, and ¢,(0o)=x. With a finite Borel partition of M
trivializing T, M we may associate a Borel map (x, u)>¢.(x) which is piecewise C©,
is a bijection of M X C™ onto Ty M, and is such that ¢,: C"—T,M is a C-linear reality
preserving contraction. Choose now § so small that the image by f{,y. of the closed
ball B(3) (in €™ is contained in $ ¥ B(1) for all x. Define Y,=q¢,{.3: B(1)—>N
and F,=¥;'sfo¥,. Given A<o wc may apply section (5.4) and we obtain a family
of holomorphic manifolds. Their real parts are the desired C® manifolds vl(a(x)).

xz

Corollary (6.2). — If o is ergodic and all the characteristic exponents of Tf are strictly
negative on I',, then o is carried by an attracting periodic orbit.
Let the characteristic exponents be <\x<{o. There is xeI', such that

o(B(x, a(x))) =2>o0.

Since we have here vl(«(x))=B(x, «(x)), we find
S8, 1(2)) CBOf7, B(x)e™

and we have

o(f"B(x, a(x))) Ze.

Thus the set B(f™x, 8(x)¢"™) has measurc at least e. Using compactness, and taking
a limit, we find a point with mass >e. Its orbit carries p by ergodicity, and is finite.
Clearly, it is also attracting.

Theorem (6.3). — Let M be a compact differentiable manifold, and f a diffeomorphism
of class Gr°  We have here fT' =T, and the following properties hold:

a) Let 2N<... <09 be the strictly negative characteristic exponents at xeDl'. Define
Wl C ... CulP by

U(Ip)z{yeM : lim sup;zlog d(f*x, f"y) 57‘(:’9>}

for p=1,...,q. Then P is the image of V¥ by an injective C"® immersion I, tangent to
the identity at x.
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b) If xeT and W}'<o, then WP CT, for some ergodic . The filtration V' C ... CV¥
has G’ =9 dependence on 17 'ye VP,
One may in the above replace C™° (resp. C"~"% in b)) by C= or C°.
With ¢=g¢(x) decfined above, choose a Borel function £ on I' such that
o<L(x) < —N?,

We take ¢+ 1 numbers 1Ay, ..., A, 7 such that
(6.1) A< <P, <L L <P < — (),
0<%< -0¢(x),
3
and such that %;, ..., A, n are constant on a countable family of f-invariant Borel
sets forming a partition of I'. On each onc of thesc sets, and for p=1,...,¢, a

function o is defined by Theorem (6.1) with respect to A=2,. We call again « the
minimum over p of these functions. This new function « defined on I' is again Borel,
and is such that whenever A is one of the A,, v)(«(x)) is defincd and Theorem (6.1)
holds. The number v is that appearing in the proof of Thcorem (5.1), it satisfies
0<47<—n0 as it should.

By reference to Appendix D one sees readily that if xel’,, then v}(«(x))CT,.
(The main point is to check that v}(«(x))CTI". This follows from the inequality
HT‘—THSS in the proof of Theorem (5.1), and application of Theorem (4.1).) In
particular, if A=2,, v}(«(x)) is tangent to V{/’ for each yeu}(«(x)). Also the filtration
VIEC...CVY¥ has C"° dependence on y as noted in Remark (5.2) 4). (In the
C* case, the dependence is CG® (cf. Section (5.3)); in the G case the dependence is G°:
use a complex extension of f and M as in the proof of Theorem (6.1).)

We come now to the proof of the theorem. For the fact that fI'=T" see
Remark D.2 a).

By Remark (5.2) ¢), we know that a( f’x) decreases at most like e~%"® (This
asymptotic behavior is not changed by the mappings in the proof of Theorem (6.1).)
Here 57,/6<¢(x) by (6.1), so that a(f‘x) decrcases less fast than ¢=’“#. Therefore
for each k>o there arc arbitrarily large integers £>0 such that

(6.2) ke CB < a( fx).
Let xel, a’<o, and r=2x,. If yeul?, there is k such that, for all zn>o,
d(f"x, f"9) Ske™.
In particular there are arbitrarily large />0 such that, for z>o,
A(f* 79, f* 3 e R0 < al )N B x)e
Therefore f’yeu}z(a(f’x)), hence

o= U £=00) (a(f15)).
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The argument applied above to yeuv?! also applies uniformly to all yef="v} (a(f"x)).
Thus, for each n>0 there is />n such that
F (o f10)) O (a£1),

and we may assume that f/~"v}, (a( /")) is contained in the open ball B( f’x, a( f*x)).

In particular v is the union of an increasing sequence of * disks” f“’u},x(a(f’x))

tangent to V? at x. It readily follows that v?) is the image of VI by an injective
immersion tangent to the identity at x (see Hirsch [5], Chapter 2, Section 5). This
proves a) and 5).

Remarks (6.4). — a) If fis replaced by f~*, T" will be replaced by a set I'", and
there is no reason to expect in general that I' and I'~ will coincide.
b) One sees easily that

ugﬂ):{yeM : y}iggo%log d(f"x, f’iy)Sl;”)}

:{yEM : liI"rLs;}pilog d( f"x, f"y)<min(o, )\5}]]-}-])) }
In particular the manifolds
@ :{yeM : lim Solélpilog d(f*x, fn)})<o}

may be called stable manifolds for f. They provide a foliation (discontinuous in general)
of the set I'. Theorem (6.3) provides a variety of other foliations depending on the
choice of an f-invariant function A<o on T.
APPENDIX A. Proof of Theorem (1.1).
The assumptions a) and b) of the theorem imply that
FE<fir+fifor+... 4 fiF o tell.

Therefore I,= f J.(x)e(dx) exists, finite or —oo, and b) gives I,,,<I, +1I. The

m+n_=

sequence (L) being subadditive, we have
Ax) i [feld) —int [£(xeld).

For every positive integer N, define

S (x) = max{f,(x), —nN}

It is easy to sce that the sequences ( f{V), o again satisfy the subadditivity condition b)
of the theorem. Let us assume that the conclusions of the theorem hold for these sequences. Then

! ™ has a limit /™ a.e. for each N, and there is f: M - RuU{—c} such that
n
S (x)=max{f(x), —N}
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for almost all x. In particular

(A.2) lim > f=f ae  and

n>xon

[ Fx)s (dx) = inf [ £ (x)p(d).

Since the conclusions of Theorem (1.1) hold for (f™),., by assumption, we have

[ 79 etan—int [ £ 000,
Thus
(A.3) [ #etan) = int [ 2 59 w)otan

—inf f > fw)e(dn).
In view of (A.1), (A.2), (A.3), Theorem (1.1) is a consequence of the following result.

Theorem (A.x). — Let (f,),~ o be a sequence of real functions such that
a) f,eL{(M, p);

b) frinS S+ Lo a.e.;

c) there is N>o such that [ f,(x)p(dx)> —nN.

. L . I
Then there is a t-invariant real function fell(M, p) such that - o, tends to f almost every-
where.  Furthermore:

(A.4) lim

n—>oon

Jrwetaa—=ine X [ et
—[fweta.

For a proof, see Derriennic [3].

ApPPENDIX B. Semiflows.

In this Appendix, (M, X, p) is a fixed probability space, and ();54: M—M
is a measurable semiflow preserving p. (This means that (x,¢)>1‘x is measurable
MxR,—>M, °is the identity, *"'=1"07,, and each ' preserves g.) Almost every-
where means p-almost everywhere.

Theorem (B.1) (subadditive ergodic theorem).
Let the map (x,t) > fi(x) : MXR, —>RU{—w} be measurable and satisfy the conditions:
a) integrability:

¢y = sup 1JifeL‘(l\L p), @= sup fil,o7"eLi(M,p)

0<u<< o<1
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b) subadditivity:
Sor i< Sfitfior® aee.

Then there exists a (t')-invariant measurable function f=M — RU{—o0} such that

Sreli(M, o),

lim - f=f ae,  and

t—ow f
. I
lim ~
t—ow [

[ reetany=int % [ Aelan) = [ £ix)ota).

Let » be the integral part of &. We have then
Jas1— 20T S S S @rot”

and, since ¢, g,€Ll, we have

LI AT
lm — ¢ ot"=lim ~g,01t" =0 a.e.

W >0 n n—>w0n

by the ergodic theorem. The above theorem follows thus from the corresponding
theorem (r1.1}.

(B.2) Cocycles.

A map (x,t) T, from MxR, to M, (the real mxm matrices) will be called
a cocycle if

Tet =T, TS

sy Tz

We also assume that the cocycle is measurable MXR, — M, andthat the functions ¢, ¢,
defined by

(B.1) 2(x)= sup log™ || Tf|]
0<u<1
(B.2) py(x)= sup log™ ||Ti"]|
0 <u<1
are in L}(M, p). From Theorem (B.1) we obtain the existence, for ¢=r1, ..., m,

and almost all x, of

(B.3) lim - log || (T4 |1

We also have, for almost all x,

(B.4) lim Supéogzllogllﬂzi“”ﬁo-
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To see this, write t==n-4-0 (z integer, 0<v<1) and observe that
TS | S T Tagenall
IR ST A Tl (i 2 22>1)

yield
log* [| T || Sea(7"2) + oo (747 12) + @y (7).

(B.4) follows then from the ergodic theorem.

Using the existence of (B.3), and (B.4), the proof of the multiplicative ergodic
theorem in Section 1 is easily adapted to flows.

Theorem (B.3) (Multiplicative ergodic theorem).

Let (T'),> ¢ be a measurable cocycle with values in ML, (the real m X m matrices) such that
the functions @y, ¢y defined by (B.1), (B.2) are in L'(M, o).

There is T'CM suck that T CT for all t>o0, and the following properties hold
if xel™

a) lim (T&THY2 = A

t—> o0 *

exisis.

b) Let exp AV<...<expN® be the eigenvalues of A, (where s=s(x), the N are
real, and NV may be — o), and U, ..., U the corresponding eigenspaces. Let m" = dim U,
The functions x>\, m!) are (x')-invariant. Writing V¥ ={o} and VO =UL 4 ... + U,
we have

.1
lim EIOgHT;uI[ =" when  ueVI\VI—Y
- o

Jor r=1, ..., s

AprEnDIx C. Local fields.

The multiplicative ergodic theorem extends to local fields (), as noticed by Margulis.
If R is replaced by G, matrix transposition has to be replaced by Hermitean
conjugation in Theorem (1.6). In general, replacing mxm complex matrices by

. I
om X 2m real matrices reduces the complex case to the real case. (Let IH( 1)’

o)

We shall not discuss ultrametric local fields, for which see Raghunathan [15].

ArpEnDIX D. Continuous maps.

Let M be a metrizable compact space, v: M—>M a continuous map, =: E->M
a continuous m-dimensional vector bundle over M, and T:E—E a continuous vector
bundle map over t.

(*) For definitions, see WEIL [22].
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Proposition (D.x). — There is a Borel se¢ TCM such that ~I'CT, and o(T)=1
Sfor every t-invariant probability measure 6 on M.  Furthermore, for each xel', there is a v-ergodic
probability measure o, such that

(D.x) lim © 3 () = py(e)

n>0Nk=1

Jor all continuous ¢ : MR, and
.1 .1 o1
Jim, log [|(T2)"0]| = i * [1og ||(T3)" 1l e.(d5) = inf . [1og|I(T3)" . (6)
Jor q=1, ...,m, where we have written Th="T(7""'x).---.T(x).
Let T, consist of those xeM such that

F(x)= lim 1log [1(TH"|

'n—>oon

exists, and
(D.2) F4(x) = F4(x)

for g=1,...,m. Then I'; is a Borel set and o(I'))=1 for every invariant probability
measure ¢ by Theorem (1.1). We write "= Q "I,
n>0

Let T', be the set of all xeM for which there is a t-ergodic probability measure p,
such that

. 1 n—1
vague lim - kgo Oky = Pg-

n-—> 0

Then T, is a Borel set, t[,CTI'y, and o(I'y)=1 for every r-invariant probability
measure 6. This follows from the Bogoliubov-Krylov theory (see Jacobs [7]). Further-
more, if ¢ is a t-invariant probability measure we have, by (D.2), for s-almost
all xel"'NT,,

(D.3) Fi(x)= [F1(3)p.(d)-
We define continuous functions Fj, by
F},(x) =max{log ||(T5)"*||, —¢}.

From Theorem (1.1) we get:

O = lim [ 1og [|(T)"1 ()

n—>wo >0

— lim lim % fFMx) e.(dy)

AT i S b=t
= lim lim lim _ | = 2 F9 (x).

n—»w{—»ooN-»oon Nrk=o0

Therefore the set I of those xeI'NT', for which (D.3) holds isBorel, tI'CT, o(I')=1,
and Proposition (D.1) holds.
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Remarks (D.2). — a) The proof of the proposition gives tI'=T" when T(x) is
invertible for all x.

b) Since E can be trivialized by a finite Borel partition of M, a multiplicative
ergodic theorem follows from Proposition (D. 1) and Proposition (1.3). The arbitrariness
in the choice of norm on E is without consequence for the definition of the spectrum
of (r, T) at xeI', and the associated filtration of E(x). '
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