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Abstract 

A new method for rigorously computing orbits of discrete dynamical systems is introduced. High 
order zonotope enclosures of the orbit are computed, using only matrix algebra. The wrapping effect 
can be made arbitrarily small by choosing the order high enough. The method is easy to implement 
and especially suited for parallel computing. It is compared to other well known strategies, and 
several examples arc given. 
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1. Introduction 

For given initial set J20 in R d and m a p s  f n : R  d-'-) R d, consider the discrete 
dynamical system 

& =L(&-,) (1) 

for stages n = 1,2 . . . .  Systems of this kind are frequently studied in many 
branches of mathematics. One example is the time discretization of ordinary 
differential equations. There, f ,  is the time-hn map with fn(x)= @(x,h,), 
where 4~(x,. ) is the solution for the initial value problem u' = g(u) and u(0) = x, 
and {hn} is a sequence of stepsizes. 

The goal is to construct supersets (enclosures) for the orbit of (1) in such a way 
that the overestimation is kept small. System (1) is not immediately suitable for 
iteration on a computer, and it will be unavoidable to overestimate the range 
fn(~,_~)  at every stage n by wrapping it into a superset both feasible to 
construct and to represent on a computer. Because the overestimation of a 
wrapped set is proportional to its radius, a spurious growth of the enclosures can 
result if the composition of wrapping and mapping is now iterated. This 
wrapping effect can be completely unrelated to the stability properties of the 
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system, and even stable systems are shown to exhibit exponentially fast growing 
enclosures (see below). Such over pessimistic enclosures, although rigorous, are 
useless for practical purposes. 

There is an extensive literature on the wrapping effect, mostly in relation with 
validated numerical solutions for the initial value problem of ODEs. A nice 
review on this topic is given in [13], and two bibliographies are contained in [2] 
and [3]. The wrapping effect was first observed with the advent of interval 
methods in the early 1960s. Subsequently, interval methods gained a stigma of 
exponential overestimation in conjunction with dynamical systems. 

A successful algorithm for computing enclosures of (1) has to address several 
issues. It should avoid exponential overestimation altogether in systems which 
are sufficiently stable, and a guaranteed (under mild assumptions) bound of 
subexponential order on the overestimation is certainly desirable. However, a 
good practical algorithm is not determined by a good asymptotic bound but by a 
convincing performance on average problems. Even a mere linear overestima- 
tion in n can be unacceptable, for example in the long term integration of 
hamiltonian systems. One can therefore wish to have a "variable precision" 
algorithm, with the understanding that higher precision implies higher complex- 
ity (storage and computational requirements). 

A common strategy to construct enclosures is to replace (1) by a dynamical 
system suitable for iteration on a computer (marching method). A collection of 
sets representable on a computer (polytopes, ellipsoids, etc.) and maps F n 
operating on this collection are chosen such that fn(O) ~ F,,(O). Such maps are 
also called extensions of f ,  over the particular collection. The iterates of the 
dynamical system 

0 n = F n ( O n _ l )  , (2) 

are then indeed enclosures for the orbit of (1), provided that 12o _c 0 0. 

Let us illustrate how the wrapping effect can effect the marching strategy. 
Consider the collection of all balls B r with respect to a fixed norm I1-11, and 
define extensions on this collection "Fn(Br) is the smallest ball containing 
f,,(Br)". If we assume that the maps f~ = T are linear, then, by definition, 
rad(Fn(Br)) = [[Tllr (the radius rad12 of a compact set 12 is the radius of the 
smallest ball containing 12). Therefore, if O 0 = 120 = Bro, then 

radO, = rad(F,  . . . . .  F~(Br0)) = [[T[[nr0, 

whereas the subsets 12n obey the much better estimate 

r a d o  n < IlT(~)llr0 . 

The factor by which the radii of the enclosures O h exceed the radii of 12, is 
IlZll"/llZ~")ll, and this factor can grow exponentially. As a simple example, let I1" II 
be the maximum norm and T = R45o be the rotation by 45 degree about the 
origin, in which case radon = v~ TM rad12 n. The balls with respect to weighted 
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maximum norms, boxes whose sides are parallel to the coordinate axis, play a 
dominant role in enclosure methods and are called interval vectors. 

Surprisingly, the wrapping effect persisted all previous attempts to find marching 
methods which replace the simple interval vectors by better and more complex 
enclosures. In fact, this work was prompted by the discovery of a simple example 
(see Sections 4 and 9) for which the popular QR-method in [9] fails exponen- 
tially. The QR-method, which can be viewed as a preconditioned interval vector 
method, computes parallelotope enclosures. It is very effective for pure rota- 
tions, but yields linear overestimations for average problems. The main potential 
of the QR-method is that it can easily be combined with other marching 
methods to filter out the effect of rotations. 

Besides parallelotope enclosures also polytopes [4] and ellipsoids [6], [12] are 
used in the literature. The construction of these enclosures is an intrinsic 
geometrical problem that is rather involved and hard to attack. For example, the 
Simplex Method is used in [4]. 

We present a marching method (subsequently called the cascade reduction) 
which beats the wrapping effect effectively and efficiently by constructing high 
order zonotope enclosures of the orbit. A zonotope is the Minowski sum of 
straight line segments. In this paper, the number of line segments is always a 
multiple m of d, the dimension of the space. The integer m is a measure for the 
geometrical complexity of the zonotopes. It can be chosen freely and is a 
performance parameter for the method. Zonotopes are relevant in such diverse 
areas as measure theory, computational geometry and convexity, but to the best 
of our knowledge, zonotopes have not yet been employed in numerical analysis. 
A brief introduction is therefore given in Section 2. 

Some highlighted properties of the cascade reduction are 

• approximations overestimate only sub-exponentially in the stage index n by an 
order of exp(cnl/m); 

• the computation time needed for each stage is proportional to m on a single 
processor computer; 

• the computation time needed for each stage is proportional to c 1 + log2 m on 
a computer with more than m processors; 

• the required storage is proportional to m; 
• rn can be chosen freely in order to balance between desired precision on one 

hand and execution time on the other; 3 < m < 15 is typical; 
• the relevant computations consist of simple matrix operations like products 

and row sums. 

A Java implementation of the cascade reduction that runs in any applet-enabled 
browser is available at http://www.zib.de/kuehn. 
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The only non-marching method known to the author [5] uses the fact that the 
overestimation introduced by evaluating an interval matrix chain product using 
logarithmic multiplication (pair ordering) is polynomial in n for asymptotically 
small matrix width. The algorithm works for nonlinear systems, but it is not clear 
how the polynomial bound applies to the general case. It uses a stack of log2(n) 
interval matrices and can thus not be described as a finite dimensional system. 
Contrary to marching methods, and somewhat counterintuitive, it cannot be 
viewed as successively mapping forward a set in time n. Logarithmic mulitplica- 
tion generally gives good results for small enclosure radii, for which it compares 
to the cascade reduction with m --- logz(n). However, systems with medium or 
large enclosure radii (>  10 -7) are not handled well, which is probably due to 
the interval matrix multiplication used, Section 11. 

Also, logarithmic multiplication behaves like a high order bandpass filter, 
favoring overestimation for rotations in small bands centered at 30 ° or dyadic 
multiples thereof, Section 10. This artifact can potentially hinder the use of 
logarithmic multiplication in adaptive discretization where the error radius is 
taken as a measure for the discretization error (and should therefore not 
correlate to the angle of rotation). 

Let us conclude the introduction with two notes. First, we have to specify a 
measure for the overestimation between two sets. Probably the truest measure 
in our context, and used in this paper, is the Hausdorff distance. For compact 
sets O _ ~9 it is defined by 

d i s t (O ,~9 )=  min { 2 r a d B : ~ g c O + B } .  
all balls B 

Volume measures seem to be too indiscriminating with respect to slivers, which 
can have big radii but arbitrarily small volume. The second note concerns the 
nature of the maps fn in (1). The only restriction shall be that these are 
approximated well by linear maps in the sense that the range fn(12) is close to 
an affine image of S2. In particular, if fn is C 1, then our analysis is essentially 
local in nature (see [1] for a non-local treatment). 

2. Zonotopes and their Representation 

Zonotopes are a special class of polytopes. 

Definition 1 Let A be a d × k matrix with column vectors Aj. Then the set 

~ A  : =  sjAj:lsjl < 1 (3) 
J 

is called a k-zonotope, or a zonotope of order k. Let Z k be the collection of all 
k-zonotopes. The collection Z = U~=IZk of all k-zonotopes is the set of all 
zonotopes. 
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In the literature, "d-zonotope" is used to refer to any zonotope in d-space. In 
this paper, however, the number preceding "zonotope" always refers to the 
number of summands in (3). A review on zonotopes can be found in [15]. See 
[16] for an up-to-date treatment. The columns of A are not required to be 
independent. Geometrically, the zonotope in (3) is the Minkowski sum of the k 
centered straight line segments - A i ,  A r This immediately implies that 0.4  is a 
centered set (recall that a set /2 is centered i f / 2  = - 12). The set a + 0 .4  is the 
translate of OA by a and is centered at point a. 

Graphically, a zonotope is constructed as follows. Sweep the origin along the 
segment - A  1, h i ,  creating a line segment. Then sweep that line segment along 
- A 2 , A  2 to create a parallelepiped. Then sweep this parallelepiped along 
- A 3 ,  Z 3 ,  and so on. An illustration of this process for a (3)-zonotope in R 2 can 
be found in Fig. 1, and Fig. 2 shows a (12)-zonotope in R 3. 

If A and B are identical up to a permutation of their column vectors, then 
0.4 = OB. The unit cube is 0 I ,  where I is the identity matrix. If the d x d 
matrix A is (i) invertible, (ii) orthogonal or (iii) diagonal, then 0.4  is (i) a 
parallelotope, (ii) a cube or (iii) an interval vector in R d. 

We need several preparatory remarks to state the next lemma. For a given d × k 
matrix A,  define the diagonal (row sum) matrix rs(A) by 

k 

( r s (A) ) i i  = ~] IAijl. 
j=l  

Let < be the partial order defined by A < B if and only if Aij <__ Bij for all 
entries (i, j). For the rest of the paper, I1" II always denotes the maximum norm in 
R d or its induced matrix norm. We also use block matrices of the form 
A = [ A  1 . . . . .  Am], where A k is the k-th block. If all A k are square, we say that 
A is an m-block matrix. The radius rad/2 of a compact set /2 is the radius of 
the smallest ball containing /2. 

1 A1 / 
- A 1  

Figure 1. Constructing a 3-zonotope in R 2 
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Figure 2. A typical 12-zonotope in R 3, constructed in Section 12 as a solution enclosure for the 
Lorenz system. It is an optical illusion if the body seems to be non-convex 

L e m m a  2. Let A and B be matrices with d rows and T be a matrix with d columns. 
Then 

(1) O A  __c_ ~ r s ( A ) ;  
(2) T ~ A  = ~(TA) ;  
(3) ~>A + ~ B  = ~ [ A ,  B]; 
(4) if  r s (A)  < rs(B),  then ~ r s ( A )  _ Ors (B) ;  
(5) ~>rs(A) + ~ r s ( B )  = ~ ( r s ( A )  + rs(B));  
(6) <~(A + B)  _c OA + OB;  
(7) r a d O A  = LIA[{. 

Proof." Claims (2)-(6)  are trivial. For  (1) observe  that  if x ~ ©A,  then  x i • EjsiAij 
with Ilsjll -< 1 by Defini t ion 1. The re fo re  [xil < EilAijl,  which implies x ~ Ors (A) .  
Also 

r a d ~ A  = max [[x[I = max [[~siAill = max IIAsll = [IAII, 
x E ~ A  s i ~ [ -  1,1] i Ilsll= 1 

which proves  (7). qed. 

Remarks 3. 

• One  can easily see that  <>rs(A) is the  smallest  centered  interval vector  that  
contains O A  and is called the interval hull of  ~ A .  

• I t ems  (2) and (3) imply that  the collection Z of  all zono topes  is invariant  
under  addit ion and linear maps.  In  fact, it is easy to show that  Z is the 
smallest  (with respect  to inclusion) of  all such invariant  collections. 

The  m a p  A ~ r s (A)  reduces  any matr ix  A to a square  (diagonal)  matrix. More  
general ly we have 
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Definition 4. A map J~ from the space of all d-row matrices into itself is called a 
reduction if ~ A  c ~ A .  

Note that if ~ is a reduction, then so is the map [A,B] ~ [ ~ A , B ] .  In 
particular, the map [A, B] ~ [rs(A), B] is a reduction, and it is the most general 
reduction used in this paper. 

3. Zonotope Extensions 

The following Lemma shows one way to implement the dynamical system (2) on 
the space of all zonotopes by constructing zonotope extensions for the maps fn. 

Lemma 5. Let Yn and T~ be a sequence of vectors and square matrices, respectively. 
For given reduction ~9~ and initial Ao, let A n be the orbit of the dynamical system 

A n =.9~[En,TnAn_l] , (4) 

where E. is a sequence of diagonal matrices such that 

d 

I(E.) . I  >_ I(y. -f .(y.-t))i l  + E ( I f ' . (Y.-1  + ~n-]) - rn)q( ~n-a)jl (5) 
j = l  

for all ~n-1 and ~n-1 in OA._ 1. Then 

f~(Y.-1 + OA.-1)  c_y. + OA n. (6) 

The proof consists of a simple application of the Mean Value Theorem. Note 
that for ~ = I, the enclosure in (6) is a zonotope centered at Yn and of order d 
higher than the zonotope OAn_a: it is the affine image of OA._ 1 plus an 
inflating error term OEn, see Fig. 3. An inspection of (5) suggest to choose 
Y, =f,(Yn-1) and T n =f ' , (Y, -1) .  If (5) is evaluated using an interval matrix 
enclosure for the range of f ' , ,  then a good choice for T~ is probably the 
midpoint of this matrix. Also, instead of using the derivative, one can construct 
slope matrices which yield better approximations and do not need differen- 
tiability, see [11] and Section 11 for an example. 

The issue of this paper is how much the "reduced" orbit ~ A  n in (4) overesti- 
mates the unreduced orbit ~ A .  defined by 

A=[en,roA d, (7) 
i.e., with the identity as reduction. We will not consider the overestimation of 
the original orbit O, in (1) by either ~ A  n or ~ A , .  The reason is that we do not 
assume any control over the error terms E,  (these are determined by the 
nonlinearity, the rounding errors and the linearization procedure as in Lemma 
5), but rather want to study appropriate reductions ~'. It is easy to see that the 
use of a reduction ~/' :~ I is mandatory for practical purposes. Suppose that the 

^ 

initial term A 0 and all error terms E, are square matrices (usually, E n will even 
be diagonal as in Lemma 5). Then A n is an (n + 1)-block matrix, which to 
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~PA A 

T~/A 

r(•A) 

Figure 3. Inflated linear image ©E + T~A  is enclosure of non-linear image f ( ~ A )  

compute amounts to a cost of order n 2 and a storage of order n. This is 
acceptable only for a small number n of stages, and the unreduced system (7) 
has no practical relevance. 

4. Heuristic for a Good Reduction 

Suppose that for fixed integer m, the reduction a~ maps (m + 1)-block matrices 
to m-block matrices. Then the orbit A n in (4) consists of m-block matrices, 
provided the initial matrix A 0 is an m-block matrix. 

First consider the case m = 1, for which a simple reduction is 

~'[ E, TA ] := r s (E)  + rs(TA), (8) 

the reduction to diagonal form. Each iterate therefore represents an interval 
vector. Historically, a lot of effort was expended to find a good preconditioner S 
which yields a better reduction 

~ [ E ,  TA] := S(rs(S-1E) + rs(S 1TA)). 

For example, [10] suggests S = T -1, and [9] sets S equal to the Q-part of the 
QR-decomposition of T, with the columns ordered with respect to decreasing 
Euclidean length. The latter reduction, which we denote by ~OR, is considered 
the best all purpose method. However, all these choices of S yield exponential 
overestimation in simple examples, see [14], [7] and Section 9. 

Now consider the case m -- 2. As stated in the Introduction, we should reduce 
only small blocks. Reducing blocks proportional to the size of A itself results in 
an exponential overestimation, if this is done "too often". 

Naively, the best choice seems to be to reduce always the smallest block, i.e., 

._~[ E, TA1, TA 2 ] := 
[rs([ E, z a  1 ]), ZA 2 ] 

[TA1,rs([E,TA2])] 
for [JTAII[ < IITA211, 

otherwise. 
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This is a greedy reduction that favors local optimality. But since the two blocks 
are treated in a symmetric fashion, both blocks are reduced at every second 
stage on average, resulting in exponential growth. 

The key idea for a better reduction is to make sure there is a small block to 
reduce at most of the stages, with an inevitable but only occasional reduction of 
a large block. We propose 

~c[ E, TA1, TA 2 ] := 

[rs([E, TAt]),TA ] for [[[E, TA1]][ < IITA211, 

[O, rs([ e, rA',rA2l)l otherwise (9) 

For example, suppose T = E = I and A = [0, 0] initially. Then the first 6 stages of 
A ~3c[E ,  TA] are given in Table 1. 

After the first block is set to zero, the dynamical system spends many stages 
reducing the small first block only. Of course, this block grows until it is larger 
than the second block. At this point the whole matrix is reduced, the first block 
is set to zero and the whole procedure starts again. 

5. The Cascade Reduction 

There are many possible ways to generalize the reduction of the last section to 
more than two blocks. We choose 

Definition 6 (Cascade Reduction). Let A = [A1,. . . ,  A m] be an m-block matrix 
and let 

= 

l 
Choose l to be the biggest integer in [2, m] for which 

[ID(I - 1)ll > IITAq[, (10) 

or l = 1 if such an integer does not exist. Then define 

~9~c[E, TA]:= [ ~ , r s ( D ( I ) ) , . T A I + I , _ . . , T A m ] .  (11) 

1-1 m - I  
Example 7. For the m = 3 block case, let us again assume T = E  = I  and 
A =[0,0,0]  initially. Then the first 11 iterates of A ~2c[E ,  TA] are given in 
Table 2. 

Remarks 8. 

1. The order condition (10) has the effect that the m blocks A k have an 
increasing norm in k. Because blocks are constantly "moved" to the right by 
virtue of (11), we can draw an analogy to a cascading waterfall in time 
reverse. 
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2. For rn = 1 and rn = 2, Definition 6 is identical to (8) and (9), respectively. 
3. The case l = rn in Definition 6 corresponds to a complete reduction after 

which only the last block of .9~c[E, TA] is non-zero. Let us make the simple 
but important observation that between two complete reductions we have 
~c[E, TA] = [~c[E, TA1,.. . ,  TAm-l], TAm]. This means that in the cascade 
reduction of rn blocks there are embedded reductions of rn - 1 blocks (self 
similarity), which is also evident by comparing Tables 1 and 2. 

4. The cascade reduction applies to more general situations. The rn blocks A ~ 
need not represent d-zonotopes and the reduction rs(-) need not represent 
the interval hull. For example, each A k may represent an ellipsoid and 
rs(D(l))  in (11) then represents an ellipsoid enclosure for the Minkowski sum 
of 1 -  1 ellipsoids and one interval vector. 

6. The Performance of the Cascade 

Our goal is to show that for rn > 1, ~ A  n overestimates ~An only sub-exponen- 
tially in n, where A n and ~{, are the orbits of (4) and (7), respectively, and 
~ '  =~'c in (4). 

Theorem 9. Suppose }lE, II < 6 and I IT, +kT, +k-1' '"  Znl] ~-~ M for all n, k > 1 and 
some constants 6 and M. Then there exist positive constants c I and c 2 (depending 
only on m)  such that 

dist(~An, ~ A , )  < 6c I exp(ca nl/m).  (12) 

Proof." The proof is by induction in m. Assume M > 1 and ~ = 1. To see that the 
latter is not a loss of generality, observe that ~'c is homogeneous in the sense 
that J2'c AA = A~.~cA. We may also assume that A 0 = A  0 = 0. This can always be 
achieved by^shifting the sequences {E.} and {T n} to the right by one and setting 
E 1 = A  0 = A  0 and T 1 = I .  

Because dist(O, @) _ 2radO for any subset O of O, it is sufficient to prove that 
(12) holds for [[A.[[ = radOA n. We will repeatedly use the identities ll~cAII = 
IIAII and II[A, BIll = IIA[] + IIBI]. Let A n = [A~ . . . .  , A~] be the orbit of (4) and 
note that if n is a complete reduction stage (l = rn in Definition 6), then 
t[Am[[ = {IA,I{. 

For rn = 1, the recursion relation IIA,II = Ilrs(E,) + rs(T, An_l)[[ _< 1 + MIlAn_Ill 
together with A 0 = 0  yields [tAn]l< 1 + M +  " . . + M  ~-1 < M " / ( M -  1). This 
proves the induction start. 

n A 

0 [0, 0] 
1 [0, I] 

Table 1 

n A 

2 [1, I]  
3 [0, 31] 

n A 

4 [I, 311 
5 [21, 31] 
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T a b l e  2 

n A n A n A 

0 [0, 0, 0] 4 [0, 0, 41] 8 [I, 31, 41] 
1 [0, 0, I] 5 [0, I, 411 9 [0, 0, 911 
2 [0, I, I] 6 [I, I, 411 10 [0, I, 91] 
3 [I, I, I] 7 [0, 3I, 41] 11 [I, I 91] 

Now assume that p < q are two successive complete reduction stages and le t  A n 
be the sub-matrix of A n consisting of the first m -  1 blocks, i.e., A n = 
[A~ . . . .  ,A  m-l]  and A n = [ A n ,  Am]. Note that Ap=[O, Ap]. Because A = 0  
and due to the self similarity of the cascade reduction by Remark 8, part (3~, we 

~ q - 1  can apply the induction hypothesis to the sequence {An}n= p to get 

[[¢Z~n[[ < ClC(2n_P)l/(m 1) for all p _< n < q (13) 

and some positive constants c 1 and c2, where we assume w.l.o.g, that c2 > 1. By 
(10), 

[ ] _llrnAn_lll forp<n<q, (14) 
E" 'T~An-1 [[ >[ITnAnm_l[[ f o r n = q ,  

m and Am = Tn'"Tp+ lAp for p < n < q. The last result implies 

[[TnAnm 1[[ <_M[[Ap[[=M[[Ap[[ f o r p  < n  <q .  (15) 

For all p < n _< q, 

IIAnll = tl~c[ En,TnAn-I,TnA m_ 1]11 = I1[ En,TnA,_ 1111 + Llrn A• all. 

Therefore, by (13) and (14), we have for n = q 

IIAqll < 211[ Eq,Tq~4 e_ 111] ~ 2(1 + MIIz4q_ 111) 

<2(1AI -McIC(2q-P-1 ) I / (m-1 ) )<C3c(q -p ) I / (m  1) (16) 

with c 3 = 2(1 + Mq), and for p < n < q, (14) and (15) imply 

m IIAnll_ 2]]rnAn_ a] II-< 2ml]Ap[]. (17) 

Solving (16) for q - p  gives, provided that [[Aq[I > c 3, 

[ [[Aq[[ ~m-1 

q-p>_dl~ln--~-3 ) w i t h d l = ( l n c 2 )  1-m (18) 

(note that d 1 > 0). Furthermore, [[Aq[[ = [[[Eq, TqAq_l]l[ <<_ 1 +M2M[[Ap[I, which 
implies, provided HAp[[ > 1, 

IlAqll < 7llApll with y = 3M 2. (19) 

Let us now assume that the sequence {llAnll}~= 0 is unbounded, for otherwise 
there is nothing to prove. We claim that there is a strictly increasing sequence of 
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complete reduction stages n~, k = 1, 2, . . .  such that 

HAnk[[ > c 3 for k > 1 (20) 

and 

"yk-l[[Anxll<_llAnkll<'ykllAnll[ for k > 2 .  (21) 

If n I is chosen big enough such that (20) holds, then (20) also holds for all k > 2 
by (21) (note that 3' > 3). To show (21), assume that for some k >_ 2 no complete 
reduction stage n~ can be found for which (21) holds. Then there must be two 
successive complete reduction stages p < q which skip (lie on opposite sides of) 
the interval [[An,[l[yk-l, Tk], see Fig. 4. But then [[Apll<'y~c-lllAn,[[ and 
Tk[[Anl][ < [[Aq[] imply [[Aq[[ > T[[Ap[[, contradicting (19). 

Now suppose n _> n: (the initial transient phase n < n2 is insignificant) and let 
r>_2 be such that n ~ [nr nr+l]. Then 

r-1 
n>--nr-nl = E (nk+l- - t /k)  

k=l 

by (18)and (20)r-1 >--_ , .  ~ l d l  ([[Znk+l[[) m-lln C3 

by(21) r- l ( ln[lAnl[[>- k=lE dl \ c3 + k ln7 )m-1 

by (20) r-  1 
> dl(ln,y) m-1 ~ k m-1 

k=l 

> dl(ln,y)m-lfor-lxm-ldx 

da(1 n y)m- 1 
- -  ( r - - l )  m ' 

m 
or, solved for r, 

mn ) 1/m 
dl(lny)m- 1 + 1 >_r. 

Because of (17) and (21), 

IIAnll -< 2MIIAn,II -< 2M3'rllAn,I], 

which completes the proof. Note that neither d I nor nl depend on n. qed. 

I 1 I [ 

F i g u r e  4 
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7. The Cascade Reduction for Finite Precision 

The sum and the matrix products in Definition 6 cannot be computed with a 
finite precision arithmetic without committing rounding errors. The following 
lernma takes care of this by using quantities that are computable with finite 
precision. 

Lemma 10. Let  A and I be as in Definition 6. Suppose - R  j < TA j - C j < R j with 
R j > 0 for  j = 1 , . . . ,  l and rs(TA j) < r s (M0 for  j = I + 1 , . . . ,  m.  I f  N is chosen 
such that 

1 
r s (E )  + • rs(MJ) + ~ r s (R ~) < r s ( N )  (22) 

j= l  j = l + l  

holds, then ~ ~c[  E, TA ] c_ ~ [ 0 , . . . , 0  rs( N ) ,  C t+ ~ . . . .  , c m  ]. 

Proof." First note that rs(TA j - C j) ___ rs(R0.  Then by Lemma 2 parts (2)-(5), 

©~q~c[E, TA] = ~ r s (E )  + Y'. r s ( T A J ) , T A I + I , . . . , T A  m 
j=l  

rs(E) + E rs(MO + E r s ( R O , C " a , . . . , C  m 
j = l  j = / + l  

_c ~ [ r s ( N ) , C  l+ 1,...,cm]. 
qed. 

One way to find the matrices R j, C j and M j in the lemma is to compute the 
interval matrix product of T and A j. This gives bounds on each entry e of TA g 
in the form e ~ [e, ~]. Then set c = ½(~ - _e) and r = max{~ - c, c - _e} to get the 
corresponding entries in C j and RJ. As entries for M j use m = max(l_el, I~1}. See 
[10] or [11] for details. It is not known whether the result of Theorem 9 applies 
to the finite precision version in Lemma 10. 

8. Parallel Computing and Sparse Maps 

The most expensive computation in Lemma 10 is the estimation of the products 
TAJ for j = 1 . . . . .  m, which is done by the interval matrix product. The sum in 
(22), which is the sum of 1 + d m  vectors, is inexpensive. If the cost for the sum 
of two vectors is c 1 and the cost for the product of two matrices in c 2, then the 
total cost for Lemma 10 is (1 + drn)c 1 + mc  2 on a single processor machine. On 
a machine with more than rn processors, all products can be performed in 
parallel with a cost of c 2. Also, each row sum in (22) can be performed in 
parallel with a cost of dc 1. To compute the sum of rs(E) and these m row sums, 
another log2(m + 1) additions are necessary, using (m + 1) /2  processors. The 
total cost for a parallel computer is therefore (d + log2(m + 1))c 1 + c 2. Con- 
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sidering that c 1 << c2, this is almost independent of m. Numerical examples 
show that m typically ranges between m = 3 and m = 15. These are also typical 
values for the number of processors of multi-processor computers. The cascade 
reduction has not yet been tested on a parallel computer. 

9. Example: A Periodic Sequence of Linear Maps 

This section gives an example for which the QR-reduction of [9] (cf. Section 4) 
fails exponentially. In the x - y  plane, consider the shear along the x-axis by 
one unit, the dilation along the x-axis by two units, and the shear along the 
y-axis by one unit: 

1 2 Sx=(0 and 0 1) 
Define the periodic sequence of maps (with period 6) 

{Z.n}n=l  ~ ={Sx,Sx l ,D,Sy ,Sy l ,  o-1  . . . .  }. 

Note that this sequence satisfies the assumption of Theorem 9 because the 
composition of the first six elements of {T n} is the identity. 

Figure 5 shows the norms of the first 1000 stages for the iterated system 
A n =~2'c[E,,TnAn_ 1] with different values for m in the cascade reduction ~c  
and A 0 = E  n = 10-1°I (recall that OI  is the centered square of radius 1). Note 
the jumps of the radii, most visible for m = 3 at stages n = 400, 550 and 800. At 
these stages, the biggest block A3n is reduced. Also note that the lower envelope 
for m = 10 is the graph of a linear function with slope 10 -l°. Because an 
inflating term of radius 10-10 is added in each stage, this enclosure cannot be 
improved. The zonotope enclosures for m = 10 therefore do not overestimate 
the orbit beyond graphical resolution. 

To demonstrate how the cascade reduction operates on the individual blocks, we 
have also plotted in Fig. 6 the values of ItA~II and IIA:nll for m = 2 through the 
first 100 stages. 

The geometrical meaning of the QR-reduction 2OR in the planar case is as 
follows: if A is a 2 × 2 matrix then ~,9~QnA is the smallest rectangle containing 
~ A  that has one of its longest edges aligned with one of ~A's  longest edges. 
Figure 7 shows the first 6 iterates of A n =,~QRTnAn_ 1 and A 0 = I  (no error 

terms here). Because the unreduced sequence An = TnA n_ 1 is periodic with 
A 6 ~ A  0 ~ I ,  the set ~ A  6 overestimates ~ A  6 by a factor of 2. Therefore, the 
radii of the enclosures produced by the "~QR reduction grows exponentially like 
2 n/6 in the number n of stages. For n = 1000, this corresponds to an increase in 
radius by a factor of 105°, and the ,9~QR reduction fails dramatically. 
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Figure 5. Norms of A. (radii of enclosure) for different values of m 
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Figure 7. Exponential overestimation of the ~QR reduction. The unit square doubles after the first 
six iterates for the periodic sequence of maps in Section 9 

10. Example: a Rotation by 30 ° 

The filter characteristic of the logarithmic multiplication is nicely shown for the 
linear system yn =AnYn_ 1 with A n ~[0.97,0.98]R 0. Although the system is 
stable, logarithmic multiplication fails to pick up the exponential decay for 
0 = 30 °. The results of 5000 iterations with initial value of Y0 = (1,0) and for 
angles 27 ° , 30 ° and 33 ° are shown in Fig. 8. We also compute the radii after 5000 
iterations for angles between 1 ° and 44 °, Fig. 9. 

The cascade reduction has a much more uniform frequency response, whereas 
logarithmic multiplication behaves seemingly erratic. The reason for this pecu- 
liar response is that power of 2 multiples of 30 are far from integer multiples of 
90 (hint: 1 /3  = 0 . ~  has the binary expansion of smallest period), and similar 
arguments hold for angles near 15 and 7.5 degrees. 

If the wider matrix A n ~ [0.96,0.98]R30o is chosen, then even a strong error 
amplification is observed for logarithmic multiplication while cascade reduction 
still performs adequately. 

11. Example: the H(~non Map 

The H~non Map is defined as 

f( x) 
~x1 ] 

It is area conserving ]fl] = 1. We compute enclosures for the orbit S2 n =f(S2 n_ 1). 
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Figure 8, Filter characteristic of logarithmic multiplication (topmost three graphs). Errors are least 
suppressed for rotations through angles near 30 ° 
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Let J2= r/+ E with Z c O( al 0 a 2 0)  "Then 

( 10t ( -2a'r/1 ( x -  ~) + - a ( x l -  r/1 
f(x) =f(*/) + fl 0 
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implies 

the right hand side being an inflated linear enclosure of f ( ~ 2 ) - f ( ~ ) .  Note the 
quadratic dependence of the inflating term on the radius of ~ due to the 
non-linearity of f.  

The map is iterated 500 times with parameters a = 2.4 and /3 = - 1, and ~20 is 
the ball centered at (0 .4 , -0 .4)  with radius 10 -6 . Enclosures in the form of 
(2m)-zonotopes for the set ~2s00 =fs°°( /~  o) are shown in Fig. 10. Note that the 
enclosures are not monotone, i.e., the enclosure for m -- 6 does not contain the 
enclosure for m = 7. 

Figure 11 compares the enclosure radius of both the cascade reduction and 
logarithmic multiplication. The same parameters as in the previous figure are 
used, but this time we have fixed m = 10 and set the initial radius to 10 -14. 
Similar results are obtained for n < 5000 with both strategies, although 
logarithmic multiplication generally yields a much larger variance in the radius. 
Logarithmic multiplication is outperformed at radii exceeding 10 -7 . Note that 
m = 10 is approximately logz(1000) , the number of interval matrices which are 
allocated through the first 1000 stages of logarithmic multiplication. For m = 15, 
the cascade reduction is able to execute more than 33000 iterations. 

12. Example: The Lorenz System 

Consider the time-continuous Lorenz system 

u ' l  = 6 ( - u t  + u 2 ) ,  

u'a = Ul( - u  3 + 28) - us, and u(0) = u o. 

U '  3 = U l U  2 - -  8/3U 3. 

In [8] it is showed how to find inflated linear enclosures for the range of the 
time-h map 

u o ~ c l ) (uo ,h  ) (23) 

mentioned in the Introduction. To test the cascade reduction, (23) is iterated 
933 times with a stepsize of h = 0.03, corresponding to an integration over the 
time interval [0, 20]. The initial set g20 is a ball of diameter 10 -6, centered at the 
point (6.8311,3.222,27.0) in phase space. This ball intersects a periodic solution 
of period T -- 0.6899 as shown in [8]. 

Figure 12 shows the radii of zonotope enclosures constructed for different 
values of m. Higher values of m do not improve the result. Note that the radius, 
even in the limit m ~ % has to increase, because the periodic solution is 
unstable. 
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13. Concluding Remarks and Outlook 

The cascade reduction is efficient and effective. One of its striking features is 
the performance parameter m. By simply tuning this parameter, we produce 
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Figure 11. Enclosure radii for the H6non Map with respect to (I) logarithmic multiplication and (II) 
the cascade reduction m = 10 
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Figure 12. Radii of zonotope enclosures for the Lorenz system for different values of m 

either very tight or very inexpensive approximations. Future research should be 
directed towards an adaptive m-control, in which m is changed during the 
iteration. It is clear that a too small m may yield too big overestimations. On the 
other hand, the quality of the approximations does not improve significantly 
after m is increased beyond a certain threshold. Therefore, an adaptive cascade 
reduction has to find this threshold and has to balance between cost and quality. 
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