
Computing 58, 173-185 (1997) ~ 1 . ~

© Spfinger-Verlag 1997
Printed in Austria

Multirate Extrapolation Methods for Differential Equations
with Different Time Scales

Ch. Engstler and Ch. Lubich, Tfibingen

Received October 30, 1995; revised July 26, 1996

Abstract - - Zusammenfassung

Multirate Extrapolation Methods for Differential Equations with Different Time Scales. A multirate
extrapolation method is developed for the integration of differential equations whose components
evolve at different time scales. Numerical work is focused on fast components. The partitioning into
different levels of slow to fast components is obtained automatically during the extrapolation
process. The method has been implemented in the Fortran code MURX.

AMS Subject Classification: 65L05.

Key words: Ordinary differential equations, multirate methods, multiple time stepping, extrapolation.

Extrapolation mit komponentenweise verschiedenen Ordnungen fiir Differentialgleichungen mit
unterschiedlichen Zeitskalen. Fiir die numerische Integration yon Differentialgleichungen, deren
Komponenten sich unterschiedlich rasch ver~indern, wird ein Extrapolationsverfahren vorgeschlagen,
das verschiedene Ordnungen f-fir verschiedene Komponenten adaptiv w~ihlt. Der Rechenaufwand fiir
langsame Lrsungskomponenten wird dabei erheblich herabgesetzt. Die Aufteilung in verschiedene
Stufen langsamer und schneller Komponenten ergibt sich ohne weiteres Zutun w~ihrend des
Extrapolationsvorganges. Das Verfahren wurde im Fortran-Programm MURX implementiert.

1. Introduction

When integrating systems of differential equations whose components evolve
and persist at different time scales, one would like to use numerical methods
that do not expend unnecessary numerical work on slowly changing solution
components. This paper concerns problems where a small number of fast
changing components restricts the stepsize of numerical integrators and, unlike
stiff problems, both fast and slow components are present throughout the
integration interval. The partition into fast and slow components may vary with
time (e.g., in steep moving wavefronts) and need not be sharp so that various
scales from slow to fast components exist.

The first article to treat problems of this type appears to be a paper by Rice [10],
who proposes 'split' Runge-Kutta methods (which would nowadays be called
'multirate' Runge-Kutta methods) that use different time steps to integrate fast
and slow solution components. Such an approach has been developed further by
Gear and Wells [3], Giinther and Rentrop [4], and Skelboe and Andersen [11].

174 Ch. Engstler and Ch. Lubich

In a closely related approach, known as 'multiple time stepping', see Biesiadecki
and Skeel [1], one does not split solution components, but instead the right-hand
side function as a sum of fast and slowly changing functions which are then
evaluated with different rates.

A difficulty with the existing multirate techniques is that they assume a clear-cut
partition of the system into fast and slow components, which has to be known
before performing a macro-step. A 'slowest first' or 'fastest first' strategy [3] has
to be employed, and the potential of such an approach depends on the coupling
between components.

In the present paper, we propose a multirate method based on Richardson
extrapolation. The basic idea is to stop building up the extrapolation tableau for
components that have been recognized to be already sufficiently accurate. Since
local error estimates are available at all extrapolation levels, this provides an
inexpensive strategy for dynamic partitioning into several classes of slow to fast
components. In contrast to previous multirate methods, slow and fast compo-
nents are integrated simultaneously over a macro-step. However, slow compo-
nents are inactivated at early extrapolation levels, and the refinement of the
solution by high-order Richardson extrapolation is restricted to the faster
components. The method proposed here has been implemented in MURX, a
multirate extrapolation code written in Fortran.

In Section 2 we begin by recalling classical Richardson extrapolation. Multirat-
ing for the extrapolated Euler scheme is described in Sections 3 and 4, and a
defect control mechanism to verify the inactivation strategy in Section 5. A
simple extension of the techniques to the situation of 'multiple time stepping'
for split right-hand sides is given in Section 6. Finally, we present in Section 7
numerical results of MURX applied to an example from astrophysics.

2. Classical Extrapolation

When the initial value problem

y' = f (t , y) , y(to) =Y0

is discretized by the explicit Euler method with step size h, this gives at
tn ÷ 1 = tn + h a first-order approximation to y(tn ÷ 1) by

y n + l = Y n + h f (t , , y n) , n > O ,

which we denote

y(t, h) = Yn for t = t o + nh.

The error has an asymptotic h-expansion [5, Ch. II.8]

y(t , h) - y (t) = hel(t) + h2e2(t) + . . . +hNeN(t) + O(h N+ 1),

Multirate Extrapolation Methods for Differential Equations 175

with ej(t o) = 0 for all j. The error terms are successively eliminated by Richard-
son extrapolation. Given a macro-step size H, one constructs Euler approxima-
tions to y(t o + H) with step sizes hj = H/nj, where {nj} is the step number
sequence, e.g., {nj} = {1, 2, 3, 4, 5, 6, 8, 10,12,16, 20, 24,. . . }. The formulas

Tj, l=y(to+H,h~)

T j ' k + l ~- Tj'k + (n j / /Y l j_k) -- 1 for k + 1 < j

define the extrapolation tableau

Tll
T21 T22

r31

The error of T/k is of the form

Tjk-y (to + n) ='(k)e'.jk k t tto + h) Hk +. . . +,,(N),,~jk ~N tt to + H)HN + O(HN+ I)

where the coefficients ,,(t) depend only on the step number sequence. An ~'jk
important property of the extrapolation tableau is that numerical error estima-
tors are available at all levels: The subdiagonal difference Tk, k - T~, k- 1 is taken
as an approximation to the error at level k. This is used for step size and order
selection [2,5]. Another very useful option of extrapolation methods is their
continuous solution approximation: Here, the idea is to first compute accurate
approximations to solution derivatives of sufficiently high order at both end-
points of the interval [to, t o + H] by extrapolation of divided differences of Euler
approximations, and then to construct a polynomial

Pk(t) --~y(t)

having these endpoint values and derivatives. Approximation properties of this
approach have been studied in [6].

3. Multirate Extrapolation: Strategies at the Second Level

We will see that multirating is easy and natural within extrapolation methods.
Let us assume that we have already computed the entries /'11, T21, Tz2 of the
extrapolation tableau.

We use the following simple strategy: If the ith component of the error
estimator is below the given tolerance,

ITS2 - T~ll < 0.1 .tol, (3.1)

then we accept T~2 as solution approximation,

T~2 "~yi(t 0 + H) ,

176 Ch. Engstler and Ch. LuNch

and make component i inactive, meaning that we are not willing to make any
further evaluations of fi, the ith component of the right-hand side function.

Remark. The safety factor 0.1 in (3.1) is more or less arbitrary. In the actual
implementation, (3.1) would use a scaled norm: For

e r r / = ITS2 - Z~ll/W i with w i = rtol. max(lYol,lZ~2]) + atol'

one requires err i < 0.1. To reduce the risk of accidental cancellation of error
terms in T~2 - T~, one might check (3.1) for small groups of components rather
than single components, e.g., for pairs of odd/even components or physically
reasonable groups such as the coordinates of a mass point.

At the next level of extrapolation, we then have to compute T31 for the
remaining (= active) components. We split the solution vector and the function
into their active and inactive components,

Y = (Y ~) , f = (f f J) ,

where f i is not to be evaluated any more. To compute T~, we would have to
perform Euler steps with h = H/3:

y~ =yo a + hfA(to,Yo)

y2A =Yl A + hfA(tl, yla,y~) (3.2)

A I T A = y A = y A +hfA(tE,Y2 ,Y+).

At this stage we have the problem of how to obtain the values y(and y2/. There
are at least two possibilities.

First strategy: Approximation to the exact solution at intermediate steps.

Here, one takes as y / a n d y~ the values obtained from the continuous solution
approximation of the extrapolation method at t o + h and t o + 2h:

eJ(to+h)=y~, e'~(to+2h)=y~,
where PZ(t) is the quadratic polynomial with P~(to)=y ~, (d/dt)PZ(to) =
fl(to, Yo), P~(to + H) = T]z. Then, we have the error bound

tP~(t) -y t (t) l<CZ'H3 for tE[to , to+H] ,
where the constant C z depends on d3yI/dt3 and the error of T212 which is small
provided that (3.1) was a reasonable error estimate. Since the error of T]2
depends itself mainly on d3yI/dt 3, we can expect that in generic situations (that
is, unless some cancellations of error terms have occurred in (3.1)) the error
P~(t)-yt(t) is of the same size as the error of T]2, and therefore sufficiently
small. Instead of giving a more detailed analysis, we refer to the error bounds in
[6]. For the computation of the active components T~, T~, etc., in the higher
extrapolation levels, one would again use P~(t) to approximate the required

Multirate Extrapolation Methods for Differential Equations 177

values of the inactive solution components. There is, however, a difficulty. Since
this approach amounts to building up the extrapolation tableau for the differen-
tial equation

d
__~yA =fA(t , yA ,p l (t))

from the third level onwards, we must not use the previously computed values
TzA1, T A for extrapolation, since they have a different asymptotic expansion that
corresponds to the original differential equation y' =f(t, y). A remedy would be
to recompute T A and T A for the modified differential equation, which necessi-
tates however re-evaluation of fA. The situation aggravates at higher levels,
where one would have to recompute the whole extrapolation tableau up to the
current level. This is avoided in the second approach.

Favoured strategy: Approximation to the Euler steps.

In (3.2), the correct underscored values would be Euler approximations, which
we now try to approximate without, however, using the inactivated function
components fl. We start from the asymptotic expansion

y'(t,h) =y/(t) +he (t) +

We have already an accurate approximation pl(t) to yZ(t). To approximate
e~(t), we note that up to terms of size Ct .H 3 with a constant C t of the same
type as previously, we have for h = H / 2 and t = t o + H

TI1 "~ TI2 + n /2 . e l (t o + H),

and for h = H / 2 and t = t o + H /2

yt(t o + n / 2 , n / 2) = P](t o + n / 2) + n/2"eI(to + H/2) .

We now replace e((t) by the quadratic polynomial q~(t) which vanishes at t o
and for which the above two relations become an equality:

ql(t o + on) = (4a - b) 0 + (2b - 4a) 0 2 -- eI(to + OH),

where a = 2/H. (yI(t o + H/Z, H/Z) - P](t o + H/Z)) and b = 2/H. (Til - T2~2).
By construction we have

Iq~(t) - e((t) [< CI.H 3,

where C 1 is nearly a constant of the previously encountered type, except that it
now depends also on derivatives of eI(t). (Again, only the inactive - - or slow - -
components enter into CI.) This gives us the approximate Euler steps

P12(t) + hql(t) -~yI(t, h), (3.3)

which are to be used with h = H/3 and t - t o = H/3, 2H/3 in (3.2), and with
h = H/4, H /5 at higher levels of the extrapolation tableau. Provided that
(3.3) is sufficiently accurate, we work with the correct asymptotic expansions in
continuing the extrapolation tableau.

178 Ch. Engstler and Ch. Lubich

4. Multirate Extrapolation at the First and Higher Levels

From the second step onwards, we can inactivate slow components already at
the first level: A component is made inactive if the difference between the first
Euler step and the linear extrapolation of two successive solution values is below
the required tolerance. We then take the linear interpolation

PI(t) =Y0 + (t - to)f (to, Yo) =y(t,h)
of the inactive components to obtain the required Euter steps at higher
extrapolation levels.

We now turn to inactivation at higher levels: A component i is inactivated at
level k, if it is still active at level k - 1 and if

ITS, k - Z~,k_ l] < 0.i tol. (4.1)

We denote by ytkl the vector of all y-components that are inactivated at level k.
For these components we approximate the Euler steps at levels higher than k by

p~kl(/) + hq~kl(t) + ... +hk-lq~kl(t) =ytkl(t ,h) , (4.2)

where P~kl(t)=ytkl(t) is the continuous solution approximation of [6], and
q~l(t) = e~ j+ l(t) are polynomials of degree j that are determined as follows:
For t = to, we set qS.kl(t o) = eEk~j+ l(t0) = 0. For t = t o + H, we obtain

•k-j+ l : = q}kl(to + H)
by requiring that

T/!{]= r~k,2 + hie 1 + ... +h/k- tek_ 1

for i = 2 K, which gives a Vandermonde system for the E i. One could
instead use a similar system where the kth row instead of the first column of the
extrapolation tableau is used, which is advantageous for the implementation. We
now consider the values q~kl(t 0 + ihj) for j = 2 , . . . , k and i = 1, . . . , j - 1 as the
remaining unknowns for the determination of aS kJ(t). These are obtained by
requiring equality in (4.2) for t = t o + ihj (j = 2,. . . , k and i = 1, . . . , j - 1) which
are the time steps where the Euler steps have already been computed. This gives
a linear system of (k - 1)k/2 equations in as many unknowns. For k = 3 and
k = 4 we have solved this system. (We did not try for k = 5, because there the
expense of computing the polynomials would be offset only by very expensive
function evaluations.)

with

For k = 3 a calculation yields

H q 3 (t o + H / 3)) (6 3 - 3 2 / 9 / [

Hq3(t o + 2 H / 3) = 3 6 3 2 / 9]

H 2 qz(to + / / / 2) - 8 1 / 8 - 8 1 / 8 12)

61 + H e l /32

82 + H2 ~2/81

83 - 2H2 E2/81

61 = y (t 0 + H/3 , H / 3) - P3(t0 + H/3)
62 = y (t 0 + 2H/3 , H /3) -Pa(to + 2/-//3)

t53 = y (t 0 + 1-1/2,1-1/2) - P3(/0 + 11/2).

Multirate Extrapolation Methods for Differential Equations 179

For ease of notation, we have omitted the omnipresent superscript [k]. With this
construction, we get via (4.2) an approximation to y~k~(t, h). Its error is O(H k+ 1)
when the Euler steps up to level k have been computed exactly. It has been
observed numerically that errors in the Euler steps, due to previously inactive
components, are propagated in a harmless way. For improved accuracy, the
degree j of qi(t) is one higher than absolutely necessary.

At levels higher than k, the required Euler step components ylkl(t,h) are
replaced by the polynomials of (4.2). These are inexpensive to evaluate, at least
for small k. Moreover, all the required values at all levels can be computed in
parallel.

5. Failure of the Inactivation Strategy, Defect Control

In some contrived situations, the inactivation strategy (4.1) can fail spectacularly.
Consider the linear example with a shift matrix

y ' = y, Y(0) =

1 i/
When only one or two Euler steps are applied to this system, then all compo-
nents except the first three are still 0, independently of the step size. Conse-
quently, T~2 - T~l : 0 for i > 3, and hence components 4, 5 are inactivated.
The wrong values T~2 = 0 are accepted.

To prevent the program from delivering wrong results without ringing alarm, the
remedy is to build in a defect control which can be obtained at negligible
additional cost. Here, one compares the function evaluated at the endpoint of
the step (which would anyway be computed for the next step) with the extra-
polated backward differences of the Euler steps (which are anyway computed
for the continuous solution approximation). If these two values differ intolera-
bly, then the step is rejected and the incriminated components are locked for
the inactivation strategy.

We remark, however, that in our numerical experiments we encountered a
failure of the inactivation strategy only once for a special choice of initial values.

6. Splitting the Function

A technique that has come up in molecular dynamics is to split the right-hand
side function of the differential equation

y' =f l (t , y) +f2(t,y)

180 Ch. Engstler and Ch. Lubich

where, for example, fl is cheap to evaluate and rapidly varying, whereas f2 is
expensive but fortunately slowly changing, so that it is tempting to evaluate f2
less often than fv The previously described approach extends to this situation in
a very simple way. We introduce zi=fi(t,y) and rewrite the equation as a
differential-algebraic system

y' = z l + z 2

Zl =f l (t ,y)

z2 =fz(t ,y)

with 'fast' components z 1 and 'slow' components z 2, or in more general terms,

y' =F(t , y , z) (6.1)
z = G (t , y) .

Euler's scheme extends straightforwardly to such a system,

Y.+ a =Y. + hF(t~, y., z~)

z,+l=G(tn+l,Yn+l).

Multirate extrapolation can be done on this scheme (in both y and z) in the
same way as above. Again, the partitioning into slow and fast and various shades
of intermediate components is obtained automatically, controlled by the given
error tolerance.

7. Numerical Experiments

We have implemented the multirate method in a Fortran code MURX (MUlti-
Rate eXtrapolation). The code MURX together with the subroutines for the
example described below is available via anonymous ftp at na.uni-tuebingen.de
in the directory/pub/codes. The order and step-size selection strategies were
adapted from the code ELEX of [6], which implements the classical extrapolated
Euler method. In the multirate code, only the active components at each level
affect the order and step size control. The code MURX has been written to be
applicable to problems of the form (6.1). The calling sequence of MURX is like
that of a standard ODE integrator:

subroutine murx(n, m, fen, gcn, t, y, tend, h, rtol, atol, itol,...)

where the given arguments have their usual meaning, and the dots stand for
additional control and workspace parameters. The integers n and m are the
dimensions of the vectors y and z in (6.1). fen and gcn are user-supplied
subroutines (external) required in the following format:

subroutine fen(n, m, t, y, z, f, activey)

subroutine gcn(n, m, t,y, g, activez,...)

These subroutines should return in f and g those components of F(t, y, z) and
G(t, y), respectively, that are declared active by the logical arrays activey and

Multirate Extrapolation Methods for Differential Equations 181

activez. The arguments indicated by dots communicate workspace and problem
parameters. The choice m = 0 for an unsplit right-hand side is possible, in which
case gcn should be included as a dummy subroutine.

We have performed numerical experiments with a problem that originates in
astrophysics, in the computation of the mass distribution in accretion disks [8].
Such a disk forms around a primary star which attracts mass from a secondary
star. Motion is described by the Navier-Stokes equations which here are dis-
cretized in space by the smoothed particle hydrodynamics (SPH) method [7],
leading to a large system of ordinary differential equations whose components
represent positions and velocities of "smoothed particles". These move around
the star in a Kepler-like motion which is perturbed by viscosity effects. Particles
near the center move much faster than distant ones.

The equations of motion of a two-dimensional model problem [8] take the form

dxi.
dt - Dia

dvia
d--7 - G M r 7 3/2Xia q- Zia

where the viscosity terms zi~ are given as

2

j P i P i ~ = I

Here a = 1,2, and i runs through all particles. Further, Xi=(Xil, Xi2) is the
position of the ith particle, r i = Ixil = ~X~l +x22 is its distance to the center, and
v i = (v i i , Viz) is its velocity. The mass of a particle is denoted by m, and M is the
mass of the central star. G is the constant of gravity, and v is a viscosity
coefficient. Further, we have the densities

Pi = m E W q with W/j = W (I x i - x j]) ,
J

where W is the smoothing kernel of the SPH method. This is a cubic spline
which vanishes outside the smoothing length l and whose integral satisfies a
normalization condition [7, 8]. We have set

?
Wij . = - - W (Ix i - x j l) = W ' (r i j) • (x i . - xm) / r i j

' o~Xi a

with rq = I x i - x f l . Finally, the viscosity term depends on

. . . . 2 E [Ok, -- Uig]Wiik, , , = Ek ok [ok. v, ol k, + .,e]w,k.. g a o , = 1

where a,,~ is Kronecker's delta. In the above formulas, the sums over j and k
extend over all particles within the smoothing length from particle i.

182 Ch. Engstler and Ch. Lubich

Our numerical experiments used data from [8]. As starting values we used a
configuration with 20000 particles as shown in the first picture in Fig. 1, which
evolved from a dissolving initial annulus. The problem data and initial values are
available as Fortran subroutines together with MURX.

2

.?: ~i*

2

0i
-1

-2
-2 0 2 -2 0

2 2

1 1

0 ~ 0 ,.

- 1 - 1

-2 -2
-2 0 2 -2 0

Figure 1. Active particles at different extrapolation levels, tol = 1 0 - 4

We applied MURX to this problem in two different ways: The first variant uses
the differential equation directly without a splitting of the right-hand side, so
that no z-variables are present. In the second variant, we used the viscosity
terms zi~ as the z-variables of (6.1). Here, we also prevented the code from
inactivating y-variables, because F(t,y, z) is very cheap to evaluate for this
problem. In the following we refer to the first version as MURX(y), and to the
split version as MURX(y, z).

Figures 1 and 2 show how MURX(y) works at this problem for two different
local error tolerances. The pictures show the active particles at the first, second,
third and fourth extrapolation level. Here, a particle is considered as active if at
least one of its velocity components is active. Figure 1 shows the typical
behaviour for a moderate tolerance (rtol --- atol = 10-4), where a large portion
of components is inactivated already at early extrapolation levels. For more
stringent tolerances (rtol = atol = 10 -8 in Fig. 2) the inactivation is shifted to
higher levels.

Multirate Extrapolation Methods for Differential Equations 183

2 2
• . t z 1 " . ' , ; n > . . , .

0 " ~,a 1

-2 ;- --22

@

oi

-1

-2
-2

2 2

@
0 2

1

0

-1

- 2

@

0 2

Figure 2. Active particles at different extrapolation levels, tol = 10 -8

In Figs. 3 and 4 we show the numbers of function evaluations and computing
times versus the attained accuracy, measured in the Euclidean norm scaled by
the square root of the dimension, at the end of an integration interval of length
200. We compare the results for the two types of MURX, for ELEX, the
extrapolated Euler method as implemented by Hairer and Ostermann [6], and
for the Runge-Kutta code DOP853 from [5], which is based on the eighth-order
method of Dormand and Prince [9]. The code DOP853 is known to perform very
efficiently for all tolerances, see the numerical comparisons in Section II.10 of
[5], and has therefore been included as a reference general-purpose code. The
codes were used with tolerances atol = rtol = 10-3,.. . , 10 -1°. For MURX, we
give the number of weighted function evaluations, where the percentage of
active components is counted in each function evaluation. In MURX(y) we
count the numbers of weighted f-evaluations, whereas for the split version
MURX(y, z) we count only the weighted G-evaluations, which are much more
expensive that the F-evaluations. Figure 3 shows a clear advantage of MURX at
all tolerances. However, due to the relatively high cost of interpolations at
higher levels as compared to the cost of function evaluations in this problem,
the situation looks different for the comparison of computing times given in Fig.
4. MURX(y,z) is still advantageous, but MURX(y) is less efficient than
DOP853 for accuracies less than 10 -4 . The behaviour is partly explained by the
inactivation at later extrapolation levels, as shown in Fig. 2 as compared to Fig.
1. The cross-over point of MURX and DOP853 depends strongly on the relative
costs of function evaluations and interpolation. For the limit of very expensive

184 Ch. Engstler and Ch. Lubich

1 0 ~

o

- ~ 1 0 2

-.,= 1 0 z
==

• " " " * . . . ' E L E X " "

o ... DOP853
\ x . . .

1 0 ~
e r r o r

101
1 0 - 1 ° 1 0 ° 1 0 °

1 O 4 •

• . . . ELEX
x ... M U R X (y)
o . . . D O P 8 5 3
+ . . . M U R X (y , z)

10 2

, , , , | , , , ,

1 0 - * ° 1 0 -s
e r r o r

Fig 3. Function evaluations Fig 4. Computing times

function evaluations, Fig. 3 shows the potential of gains in computing time by
MURX.

Acknowledgements

We are grateful to F. Ott for providing data and helpful information concerning the accretion disk
example. We thank J. Butcher for pointing out reference [10].

References

[1] Biesiadecki, J. J., Skeel, R. D.: Dangers of multiple time step methods. J. Comp. Phys. 109,
318-328 (1993).

[2] Deuflhard P.: Order and stepsize control in extrapolation methods. Numer. Math. 41,399-422
(1983).

[3] Gear, C. W., Wells, R. R.: Multirate linear multistep methods. BIT 24, 484-502 (1984).
[4] Giinther, M., Rentrop, P.: Multirate ROW-methods and latency of electric circuits. Appl.

Numer. Math. 13, 83-102 (1993).
[5] Hairer, E., NCrsett, S. P., Wanner, G.: Solving ordinary differential equations I. Nonstiff

problems, 2nd revised ed. Springer Series in Computational Mathematics 8, Berlin Heidelberg
New York Tokyo: Springer, 1993.

[6] Hairer, E., Ostermann, A.: Dense output for extrapolation methods. Numer. Math. 58,
419-439 (1990).

[7] Monaghan, J. J.: Smoothed particle hydrodynamcis. Ann. Rev. Astron. Astrophys. 30, 543-574
(1992).

[8] Ott, F.: Smoothed particle hydrodynamics. Grundlagen und Tests eines speziellen Ansatzes fiir
viskose Wechselwirkungen. Diploma thesis, Inst. f. Astronomie und Astrophysik, Univ.
Tiibingen 1995.

[9] Prince, P. J., Dormand, J. R.: Practical Runge-Kutta processes. SIAM J. Sci. Stat. Comput. 10,
977-989 (1989).

Multirate Extrapolation Methods for Differential Equations 185

[10] Rice, R. C.: Split Runge-Kutta methods for simultaneous equations. J. Res. Natl. Bur.
Standards. 64B, 151-170 (1960).

[11] Skelboe, S., Andersen, P. U.: Stability properties of backward Euler multirate formulas. SIAM
J. Sci. Star. Comp. 10, 1000-1009 (1989).

Ch. Engstler, Ch. Lubich
Mathematisches Institut
Universit~it Tiibingen
Auf der Morgenstelle 10
D-72076 Tiibingen
Germany
engstler@na.uni-tuebingen.de
lubich@na.uni-tuebingen.de

