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Abstract 

We present a multilevel approach for the solution of partial differential equations. It is based on a 
multiscale basis which is constructed from a one-dimensional multiscale basis by the tensor product 
approach. Together with the use of hash tables as data structure, this allows in a simple way for 
adaptive refinement and is, due to the tensor product approach, well suited for higher dimensional 
problems. Also, the adaptive treatment of partial differential equations, the discretization (involving 
finite differences) and the solution (here by preconditioned BiCG) can be programmed easily. We 
describe the basic features of the method, discuss the discretization, the solution and the refinement 
procedures and report on the results of different numerical experiments. 

AMS Subject Classifications." 65N06, 65N50, 68Y99, 68P05. 
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1. Introduction 

In  this paper,  we present  an adaptive multilevel approach  for the solution of  
partial differential equations. It is based on a multiscale basis which is con- 
structed f rom a one-dimensional  hierarchical basis by the tensor  product  ap- 
proach.  Then,  a cont inuous function u can be represented with respect  to this 
basis as an infinite series. Also any approximation to the function with a 
prescribed error  tolerance e can be represented by a t runcat ion of  the infinite 
series to a finite one. Here,  the size of  the coefficients give a direct guideline 
and provide a reasonable error  indicator. 

Based on this finite dimensional  representat ion of  a discrete function, s tandard 
operat ions on functions can be implemented  straightforwardly. Addi t ion  or 
subtraction of  two functions can be implemented by just the addit ion or  
subtraction of  their coefficient values. In  the same way, scalar multiplication can 
be realized. The  multiplication of  two functions is achieved in a point-wise 
fashion. To  this end, the coefficients of  the two functions are t ransformed to 
their nodal  values in the 'active' grid points, then, for all points, their nodal  
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values are multiplied and finally, the result is transformed back to the hierarchi- 
cal basis representation, e.g. after some further compression with respect to the 
threshold e. Division of two functions can be obtained analogously. In this way 
we set up an algebra of operations with truncated functions. 

Furthermore, employing the transformation to the nodal values in a special way, 
differential operators acting on e-truncated functions can be implemented 
straightforwardly using finite difference stencils. Here, first order derivatives can 
be discretized either by local central differences leading to a second order 
consistent discrete derivative or, by using local upwind stencils, leading to first 
order but stable discrete operators. Analogously, second derivatives can be 
programmed easily resulting in a consistency order of two. Additionally, in the 
adaptive case, basically the complexity, i.e. work count versus accuracy, of the 
regular sparse grid case can be obtained but this involves some further modifi- 
cations of the stencils in the discretization. 

For the treatment of partial differential equations, first a discretization must be 
set up (in general adaptively), and second, the discretized problem must be 
solved e.g. by an iterative method. In basically any iterative method, the action 
of the discrete differential operator onto a vector must be computed. This can 
be achieved in a simple way by putting this action of the discrete operator on a 
solution iterate together from the derivatives, the multiplications (with the 
(truncated) coefficient functions of the differential operator), the subtractions 
and the summations of our function algebra. Furthermore, multigrid methods 
and multilevel preconditioners based on prewavelets can be implemented 
straightforwardly. 

Together with a simple refinement and coarsening of the truncated function 
representation on the basis of the coefficient values as error indicators, we have 
all ingredients for an adaptive multilevel method at hand: error indication, local 
refinement and coarsening, discretization and solution of the resulting linear 
system. 

As an underlying data structure for the adaptively resolved data and solution 
approximations we decided to use a hash table approach. Hash tables are well 
known in computer science to store and retrieve data with minimal storage 
overhead and nearly direct access properties (in a statistical sense). However up 
to now, they were not yet used for the adaptive multilevel treatment of PDEs. 
There, tree-like data structures are the state of the art. But especially in the 3D 
and higher dimensional case such an approach is complicated, programming is 
very difficult and a large storage overhead is involved. These disadvantages are 
avoided by using hash tables. Furthermore, due to its inherent tensor product 
approach, the method is perfectly suited for higher-dimensional PDEs. 

Our approach is closely related to the sparse grid method [9, 10,16,21,42] and 
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can be seen as an efficient implementation of it using finite difference stencils. 
Let N = 2 n, where n denotes the level of discretization. In case of piecewise 
d-linear hierarchical basis functions it can be shown [9, 20, 42] that the number 
of degrees of freedom and, using a multigrid method, thus the amount of 
operations to solve an elliptic PDE is proportional to N.(log N) d-1 whereas 
the achieved accuracy is O(N-2.(log N) d-l)  with respect to the L 2- and 
L~-norm and O(N -1) with respect to the energy norm. This holds under the 
assumption that the solution fulfills a specific smoothness requirement, i.e. that 
its 2d-th mixed derivative is bounded. In case that this prerequisite is not 
fulfilled, i.e. in case of singularities or strong variations in the solution, adaptive 
refinement helps and allows to maintain the complexity advantage of sparse 
grids also in these cases. 

Note finally that the sparse grid approach (without adaptive refinement) is 
closely related to the technique of hyperbolic crosses [2], boolean methods [13] 
and discrete blending [6,15, 28]. It can even be tracked back to Smolyak [38], see 
also [39]. 

The outline of this paper is as follows: In Section 2 we give the subspace 
splitting representation of a function based on the tensor product approach and, 
beside some notation, we introduce finite dimensional approximations to the 
function by truncating the infinite series associated to the multiscale representa- 
tion. This leads to a finite set of active level and index number pairs with 
associated hierarchical coefficients. This information can be stored in a hash 
table data structure on top of which multiscale algorithms can work easily. 

Section 3 discusses how a whole algebra of operations and operators on such 
truncated function representations can be realized. This is in a similar spirit as 
round off error analysis for floating point numbers. We consider here the 
addition, subtraction and multiplication of two function representations and 
introduce also methods to implement discrete differential operators for first and 
second derivatives which are based on finite differences. 

In Section 4 we use these operations and operators to discretize (elliptic) partial 
differential equations. There, the right hand side and the coefficient functions of 
the differential operator must be resolved up to a prescribed accuracy. Then, for 
running an iterative method, the residual and thus the action of the differential 
operator on the actual iterate must be computed. This is done by means of the 
operations and operators of the previous section. As basic iterative method we 
use the BiCG approach. Besides, multilevel preconditioners and multilevel 
solvers can also be constructed. The existing algorithms can be combined easily 
to an overall adaptive refinement and solution procedure. Section 6 presents the 
results of numerical experiments with our sparse grid finite difference method. 
Finally we give some concluding remarks. 
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2. Multilevel Representation of Functions 

2.1. Multilevel Subspace Splitting and Tensor Product Basis 

Let ~ := [0,1] d be the d-dimensional unit cube and let us consider the family of 
grids 

on O with mesh size h t := (h i , . . . ,  h a) := (2- l , , . . . ,  2-ta), i.e. with in general 
different mesh sizes in the different coordinate directions, but equidistant mesh 
size with respect to one coordinate direction. The grid points contained in a grid 
O 1 are the points 

X I ,  i : =  (XI,,i ~ . . . . .  Xlcl,ia) 

with xt i := i ' h t  = i  "2-*~, i =0 ,  ,2 lj For reasons of simplicity, we restrict 
j, ] 1 - j ~ . . . .  

ourselves in the {ollowing to functions on 12 that vanish on the boundary. We 
consider on each of these grids the space of piecewise d-linear functions 

V l := span{ ~b,,i, ij = 1 , . . . ,  2 lj -- 1, j = 1 . . . . .  d} 

which is spanned by the usual d-dimensional hat functions 

d 

:= F I  
j = l  

where x := (x  1 . . . .  , xd). Here ,  the 1D-funct ions ~tj, i j (xj) can be created f rom a 
unique one-dimensional mother function 

= [ 1 - 1 x J l  i f x e ( - 1 , 1 ) ,  4,(x j) 
t 0 otherwise, 

by dilation and translation, i.e. 

q~l:,i~( xj) = f~( x j - i j ' h j  ) ~---1( 

Here and in the following, 1 = (l~ . . . . .  ld ) ~ ~d, lj > 0, is a multi-index which 
indicates the number of a level of a grid or sparce, and i = (i~,... ,  i d) ~ f~d, 
ij = 1 . . . .  ,2li - 1, is a multi-index which indicates the location of an interior grid 
point x u and the corresponding center of the basis function 6u(x). 

We now can define the difference spaces 

d 

w,== v,e E v,_o  
j = l  

where ej denotes the j-th unit vector. To complete this defintion we formally set 

V l_ ,j = 0 if l i = 0. 
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We then have the following multilevel splitting of the Hilbert space 
o o  o o  

v = E . . E w ( , 1  ..... (1) 
l l = l  la= 1 1>_>_1 

which is up to completion the underlying Sobolev space, i.e. P = H 1. Here and in 
the following, let 1 := (1 . . . . .  1), let > denote elementwise comparison and let 
I11o~ := max]=~ lj denote the discrete Lo~-norm. Note that the splitting is into a 
direct sum by definition. 

Note also that with the discrete spaces 

• 
I>_ l , l l l~<n 

the limit 

w, 

lim V~ ~) = lim (D W1 
n--+~ n--+~ I> 1,11tl <n 

exists because V, (°~) c V,(~) 1 and O~=l V~ (~) is dense in H~(~) .  Since 

W 1 = span{~b,,i(x), ij = 1 , . . . ,  2lJ - 1, ij odd, j = 1 , . . . ,  d), (2) 

the family of functions 

{~bl,i(x ), i i = 1 , . . . ,  2tJ - 1, ij odd, j = 1 . . . . .  d}t>_ l (3) 

is just a hierarchical basis [14,40,41] of H~([0,1] d) which generalizes the 
one-dimensional hierarchical basis of [14] to the d-dimensional case by means of 
a tensor product approach. Note here that the supports of all basis functions 
~bl, i(x) are mutually disjoint which span W t. Furthermore, note similarities with 
the construction in [26]. 

Now, any function of u ~ V can be split accordingly by 

u = E ut(x) = Y'. E u, , i '6, , i(x) where ut(x) ~ W, (4) 
1>1 I>1 i ~ I  l 

and 

u,(x) = E u,,C6l,i(x) (s) 

where ut, i ~ ~ are the coefficient values of the hierarchical basis representation 
and I t denotes the set of indices 

I t :=  {( i l , . . - ,  i d ) ~ N d ,  i j =  1 . . . . .  2t~ - 1, ij odd, j =  1 . . . . .  d}. 

Note that since (3) forms a basis of V, the coefficient values are determined 
uniquely. 

Now we consider the coefficient values u,,i in more detail. They can be 



156 M. Griebel 

computed from the function values u(x~, i) in the following way: 

where 
1 I % , ; t j : = [ -  ½ 1 -~]%,,vtj 0 < i j < 2  t' (7) 

This is due to the definition of the spaces W~ and their basis functions (2). Here, 
as usual in multigrid terminology, I x ~ denotes a d-dimensional stencil which • l,i, 
gives the coefficients for a linear combination of nodal values of u, see also [24], 
p. 48 (4.2.12). 

As described in more detail in [11,42], two partial integration steps for each 
coordinate direction lead us from (6) to the following representation in terms of 
an integral transformation. 

Lemma 1. Let  ~Jl/,ij = -2-(IF1) '~bt  i(Xi), and let 61i(x):= F I/d=10 t i(Xi). Fur- . . 1 '  I J ' . J  

thermore, let u be such that tts denvatwe 32au/YI~=l Ox~ extsts an[t'be~longs to 
C°( ~) .  For any coefficient value Ul, i in the representation (4) there holds: 

o2du(x) 
HI, i = f o t~l,i(X ) " MI=I 6~X2 d n .  (8) 

For functions not vanishing on the boundary, similar formulas exist for the 
coefficients which belong to points situated on the boundary of the domain. 
Depending on the dimension of the boundary manifold these formulas involve 
less derivatives and some Dirac functions in the product definition of 0~,i. Note 
that if the considered function u is not smooth enough, i.e. not sufficiently 
differentiable, then a more general formula exists. It involves the 2d-th variation 
of a function instead of the 2d-th derivative and the whole definition boils down 
to that of the variation in the sense of Hardy and Krause, see [33], pp. 19-20. 
Note furthermore that the computation of the hierarchical coefficients can be 
performed by d successive applications of the one-dimensional transformation 
due to the tensor product construction of the hierarchical basis• 

The size of the coefficients u~,i reflects the smoothness of the function u. For 
sufficiently smooth functions, Ul, i is proportional to 2 -<r J>, with ( r , l ) =  EJ=I 
rj-I h r = (r I . . . .  , re) , and rj > 0 depending on the degree of smoothness with 
respect to the j-th coordinate direction. But also for non-smooth functions, 
singularities are indicated by the size and behavior of the coefficients similar to 
wavelets [29, 30]. This is not a surprise since our hierarchical basis can be seen 
as some sort of wavelet in a weak distributional sense. Successive partial 
integration of (8) results in 

O2agh,i(x ) 
u , , i  = [ -u d/-2 =: f to,,,(x)-u d a  

VI]=I Oxy " 1 2  
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with w,,i(x) equal to a linear combination of Dirac pulses with similar oscillating 
structure as certain wavelets. 

2.2. Finite Dimensional Subspaces, Truncation 

We now turn to finite dimensional subspaces and the corresponding interpolants 
of a function. The usual case is that of a uniform grid, i.e. 

un = E E Ul,i "~], i  
II[~_<n i 

where n ~ N is a given number which denotes the level of discretization and 
[1[~ = maxj lj. The associated interpolation error estimates are well known and 
thus not repeated here. 

Besides, our tensor product approach also allows for the following approach, 
which is known under the name sparse grid, see also [9, 10, 11, 16,17, 20, 21]. Let 
]1]1 := ES=I lj and consider 

un'S = E E U,,i" &,,i" (9) 
[111<n+d-1 i 

The dimension of the underlying sparse grid space is only O(n d-1 "2 n) in 
comparison to 0(2  d") of that of the regular full grid space. However the 
accuracy of the sparse grid interpolant u n's is nearly that of the full grid 
interpolant u", i.e. it is of the order O(n d-1 "2 -2n) with respect to the L 2- and 
L~-norm and it is even 0(2  -n) with respect to the energy norm provided that 
the function u is sufficiently smooth. For the above estimates, basically the 
oza/I-IS= 1-th derivative of u must be bounded. 

If this is not fulfilled, i.e. especially in case of singularities or steep boundary 
layers etc., we have to use sufficiently refined sparse grids instead. To this end, 
let e ~ E be a given threshold. Now we switch from the infinite representation 
(4) to the (hopefully) finite dimensional approximation 

u~'ll"l(x) = E u,, i • ~b,,i(x ) (10) 
I,i 

U I i'¢~l,i (x) __~ £ 

i.e. we simply omit all basis functions and coefficients whose values with respect 
to a given ILl[ are smaller than the threshold e. Here, depending on the chosen 
norm or semi-norm, different approaches can be obtained. We have the error 
indicators 

[[Ul,i'~bl,i(x)H =[u , , i [ "  ~1 i (x)  =:  [Ul,i[" ]/l (11) 

where 
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1 

2 -d.  2-Ill, 

71 = (2/3)d/2.2-11h/2 

(2. (2/3td-1.2-,,,1. zj= 12,,,) 1'2 

for  LI.II = II.IIL~, 

fo r  I1.1I = Ir.ll<, 

for  11.11 = lI.IIL2, 

fo r  II.ll = I1.11<. 

I 

At the bo un da~  of ~ ,  the necessary modifications are obvious. Note that (in 
the interior of ~2) the value 7, is indepenent of the index i but depends only on 
the level number 1. This is due to the construction of the basis functions by 
dilatation and translation. 

The most local choice is surely the maximum-norm. Then the thresholding boils 
down to simply taking the absolute value of the respective hierarchical coeffi- 
cient. However for practical purposes, this norm can be too sharp and may 
result in non-terminating algorithms. This can be seen easily from the following 
simple one-dimensional example: Let 

= l 0  0_<x<  1/2 ,  u(x) 
1 1 / 2 < x <  1. 

A short calculation shows that the hierarchical coefficients ut, i with i = 2 t- 1 _ 1, 
l = 2, 3 , . . . ,  w possess the value 1 /2  whereas all other interior coefficients are 
zero (except ul, 1 = 1/2).  For the boundary coefficients we have u0, 0 = 0 and 
u0,1 = 1. Thus, a local but infinite tail of coefficients with value 1 / 2  appears next 
to the jump. However, for the other norms, additional damping values come in. 
Consequently also for the values with index i = 2 l- 1 1, l = 2, 3 . . . .  ,0o the 
threshold criterion lut, i • Yt < e gets fulfilled for a sufficient large level number l. 
Then, we obtain a finite set of active indices also for non-differentiable func- 
tions. In practical applications often a combination of the maximum-norm and 
an other norm gives good results. 

Furthermore, from a practical point of view, there is an other difficulty. We can 
not first compute the infinite table of coefficients ut, i and then omit the 
respective entries by means of the truncation criterion in a bottom up approach. 
Instead, we should proceed in a top down approach recursively level by level 
starting from the coarsest one. This is demonstrated by the following simple 
recursive bisection procedure for the one-dimensional case: 

adapt(l, i, 6 ) 
hv := u(xt, i) - (u(xt,i_ 0 + u(xl, i+ l))/2; 
if [hvl.llebl, i(x)lq < e then skip; 
else ul, i := hv; 

adapt(l + 1, 2i - 1, e); 
adapt(l + 1, 2i + 1, e); 

endif 
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For a given one-dimensional continuous function u, this procedure builds up the 
interior coefficient values ut, i of the truncated hierarchical representation. The 
representation is complete with u0, 0 = U(Xo, o), uo,1 = u(xo, 1). The modification 
for the d-dimensional case is obvious, the parts of the function u living on the 
boundaries must also be resolved adaptively. 

Then, it may happen that such a procedure terminates too early and does not 
resolve and compute large coefficients on very fine levels. An extreme example 
is the simple one-dimensional function u ( x ) =  sin(x) on [0,2~r]. Here we have 
Ul, 1 = (sin(0) + sin(2rr))/2 - sin(~) = 0 and the above procedure terminates 
immediately. Of course, this problem can be circumvented by a more clever 
error indicator which, for example, also takes the values of the hierarchical 
neighbors into account or involves more sophisticated area weighted norms. But 
in principle such modifications of the truncation criterion are useless: Give me 
your error indicator and I give you a function for which the recursive resolution 
procedure will fail. The same problem appears if the function u is just a small 
spike on a very fine level, for example u(x)  = 4~20,35. There is no hope to detect 
it by a recursive bisection approach and to resolve such a function properly. 

Furthermore, for practical purposes, the descriptive notation (10) should not 
allow for 'holes' in the table of the uu-coefficient values. We therefore restrict 
our notation (10) to 

uC'll"(x) = E u,, i • ~b,,i(x ) (12) 
(I, i) eat(u, s, II.ll) 

where sd(u, e, LI.II) denotes the set of 'active' indices, i.e. 

' ( l ' i ) : i  ~ II'  IlUl i" th' i (x) l l  > g V 

~(U,  e, II.ll) : = ::l(k,J) :k ; l, IJUk,j " ~bk,j(X)lJ >-- t:, ~. (13) 

supp(~bk,j) C~ supp(4q,i) ~ 0 )  

Here, supp(4~)= {x:4~(x)> 0} is the open support of 4~. 

For the following assume that we have constructed a finite table of active 
hierarchical coefficients ul, j which are associated to the active index set 

~ ( u ,  e, LI.II). Of course, by definition, these coefficients are not equivalent (except 
of the corner points of our d-dimensional cube) to the values the function u 
possesses in the associated points xi, i. Now the question arises how these nodal 
values u(xl, i) can be reconstructed from the hierarchical coefficients u~, i of our 
finite table. To this end, consider again the simple one-dimensional case: 

El(l, i, ua, ub) 
if :lut, i then 

nt, i := (ua + u b ) / 2  + ut, i 
Ea(l + 1,2i - 1, ua, nt, i) 
E~(l + 1,2i + 1, nt, i, ub) 

else skip; 
endif 

Hi(l, i, ua, ub) 
if 3nt, i then 

ut, i := nl, i - (ua + u b ) / 2  
H i ( l +  1 , 2 i -  1, ua, nz, i) 
Hl(l  + 1,2i + 1, nl, i, ub) 

else skip; 
endif 
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With the procedure E 1, the nodal values are reconstructed and stored in nt, i. 

We start with E1(1,1, u(0), u(1)). Analogously, the computation of the hierarchi- 
cal coefficients ut, ~ from a finite table of given nodal values nt, ~ is performed by 
the procedure H v We start with Hi(l, 1, u(0), u(1)). Note that these transforma- 
tions are closely related to the prolongation procedure in classical multigrid and 
the pyramid scheme and the refinement equation for the wavelet transforma- 
tion. We see that, in both cases, we proceed level by level due to the recursion. 
From this it gets clear why we don't want to allow for 'holes' in the table of 
active coefficients. 

The procedures E 1 and H1 implement the matrix vector multiplications 

h ' =E l~  f f=Hl f f  

where ff and ff contains the active hierarchical and nodal values respectively. 
For reasons of simplicity we denote the associated matrices with the same letters 
as the algorithms. 

The generalization of the transformations Hx and E~ to the d-dimensional case 
is straightforward: All we have to do is to call the procedures of the one-dimen- 
sional case successively for all dimensions d under consideration on all d -  1- 
dimensional manifolds, see also [10] for more details on that dimension-recur- 
sive process. To this end we define the d-dimensional operators Y/and ~ where 
the transformations take place in the j-th coordinate direction by 

® +Hi, 
i=l,i+j ] 

= ® Ii ®C. 
i~ l , i~ j  ] 

Here, / / j  and Ej correspond to the one-dimensional transformations H 1 and E 1 
(now used for the j-th coordinate) and Ij denotes the one-dimensional identity 
for the j-th coordinate. Then, we obtain with 

, ~ = ~ 1  ° . . .  o ~  d =:  C)J :  la~j 

~ = ~ 1  "-- ~a =: a o o Oj:,  

the transformations involving all coordinate directions. 

Note that the number of operations involved in Y and g~ is proportional to the 
number of active indices. 

Analogously to adapt ,  a procedure compress can be written easily which deletes 
in a bottom up way the active coefficients u~, i with criterion llul,~" ~bl,ill < e. Here 
again, 'holes' in the resulting table of active indices must be avoided. The 
generalization to the d-dimensional case is straightforward. 
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2.3. Hash Table Storage as Data Structure for Multiscale Methods 

Now we are in the following situation: We (hopefully) resolved a continuous 
function by a top down approach up to a prescribed accuracy using the threshold 
e. In other words we computed a finite set of active indices and the correspond- 
ing coefficient values. We now have to find a data structure which allows to 
store, to retrieve and to access these data efficiently. 

A first approach might be a binary tree structure. Tree data structures are quite 
common in many adaptive codes for the multilevel solution of PDEs [4, 5, 32, 
36]. There, different trees represent the hierarchies of nodes, edges and ele- 
ments, while entities on one level of a tree represent one grid. Refining the 
finest grid means adding new leaves to the tree. However, in order to adminis- 
trate the nodes (unknowns), edges (stiffness matrix) and elements (grid), the 
leaves of the trees have to be linked. This results in a number of pointers, both 
for the tree and for the links between the trees. Many software packages need a 
value of 400 and more bytes of memory per unknown for a scalar problem. In 
three dimensions, numbers can be even higher. Thus, there is more memory 
required for the administration of the data than for the numerical data itself. 
But note the very economical data structure BASIS3 [27] which only uses about 
80 bytes additional memory per unknown in two and three-dimensions. 

The tree approach for our sparse grid method is inspired by the recursive 
bisection algorithm to build the table of active coefficients. For the higher 
dimensional case, we could use the tensor product structure, i.e. we could work 
recursively in the number of dimensions and would obtain a binary tree (d-th 
dimension) with nodes that have pointers to binary trees (d - 1-th dimension), 
and so on. To understand this better, consider the two-dimensional case. Every 
row in the adaptive sparse grid is a one-dimensional adaptive grid which can be 
represented by a binary tree containing the corresponding grid points. The set of 
all existing rows in the grid can be represented as a binary tree with pointers in 
each node to the row grid lines. The modification for the boundaries is obvious. 
Besides, also graph like data structures can be used. For more details, see [3]. 

Now, performing numerical operations on one grid often requires a complete 
tree traversal. In addition to the computational operations, a number of index- 
ing and administration operations have to be performed with degrades overall 
performance. Of course it is possible to eliminate some of the tree traversals by 
establishing additional data structures like linked lists or sparse matrices at the 
expense of additional memory, but this results in more storage requirements and 
complicates programming. 

Therefore, we decided to use a hash table concept [31] instead. It is quite well 
known in computer science for many years but, as far as we know, it was never 
applied for adaptive multiscale methods. Thus, in the following, we discard the 
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tree approach and consider directly our plain data. There, the structure informa- 
tion is simply the finite set of active indices (1, i ) ~ C ( u ,  e, ILl[). 

The idea of hash table storage is to map each entity (in our case the index pair 
(i,i) ~ t~ 2a) to a hash-key which is used as an address in the hash table. The 
entity and its associated data are stored and can be retrieved at that address in 
the hash table which is implemented as a linear array of cells (buckets). The 
reaping is done by a (deterministic) hash function. Since there are many more 
possible different entities than different hash keys, the hash function is not 
injective. Algorithms to resolve collisions are needed. It may also happen that 
some entries in the hash table are left empty, because no present entity is 
mapped to that key. 

To deal with the collision case, basically two approaches are commonly used. 
The first is the double hashing technique. Here, in case of a collision we 
compute a new address by adding (modulo size of the hash table) to the present 
address the result of the evaluation of a second hash funciton. This step is 
iterated until, for example in the insertion case, a free cell in the hash table is 
found. (Of course if the hash table is full, it must be sufficiently enlarged.) The 
other technique, which we will use in the following, resolves the collision case by 
the so-called chaining approach. Here, instead of only one data entry per hash 
table address, a whole list of entries is dynamically stored. In case of a collision, 
this list is searched and eventually enlarged. For an example of insertion of new 
data in case of a collision see Fig. 1. The analogous approach is used in retrieve 
and delete operations. For further details on hash tables, collision treatment and 
optimal strategies see [31]. 

Hash tables allow to deal with locally adapted or compressed data in a simple 
way. They give more or less direct access to the stored data (if the hash function 
scatters the entries broad enough and there are enough different cells in the 
hash table), i.e. they are proven to have a O(1) complexity with a low constant if 
a statistical setting is assumed. Furthermore, they need no additional storage 
overhead for logical connectivities, like tree-type data structures which are 
usually used in adaptive finite element codes, see [5] and the references cited 
therein. Finally, they are easy to program and to handle and they allow a 
straightforward implementation of multilevel algorithms on top of them. Mean- 
while we applied the hash storage technique also successfully for a conventional 
adaptive multigrid method, see [22, 23]. Besides a hand-written code, we presently 
use the hash table implementation of an extended version of the C+ + standard 
template library (STL) [35], which uses chaining, i.e. linked lists, for the resolu- 
tion of collisions and which provides automatic resizing. So the number of cells 
will be kept proportional to the number of entries and we will only have to 
bother with a well suited hash function. 

We developed different hash functions and tested them for adaptively refined 
sparse grids in the case of smooth and singular functions (point- and line 
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i nser t  

P,q 

Figure 1. Collision treatment by chaining for the case of insertion of data 

singularities) for two-, three- and higher-dimensional cases. We used the hash 
function 

h(l,i,d) = ( ~ (2~J.ij).P(j).P(p-j)) mod m (14) 
j = l  

with p = 43-(d - 2). 10, where P(k) is the k-th prime number and m denotes 
the size of the hash table. The form of this hash function is gained by a 
straightforward generalization of the well known principles for hash functions to 
the d-dimensional case. The specific choice of the above prime numbers was 
determined by exhaustive numerical experiments. Here, we considered various 
types of lower-dimensional singular functions (point-, line-, surface-type singu- 
larities, etc.) as well as smooth functions with up to nine dimensions. It turned 
out that in all considered cases (smooth and singular, low and high-dimensional) 
the hash function scatters the data quite well and distributes them more or less 
equally over the hash-table. Examples are given in Figs. 2-4. 

There, we show the function (upper left) and the grid obtained by adaptive 
refinement of the function with a given tolerance e (upper right). Furthermore, 
we give the distribution of the points in the hash table (lower left). The x-axis 
denotes the address in the hash table, the y-axis gives the number of data to be 
stored under this location by chaining, i.e. it gives the length of the respective 
chain. Finally, we show a diagram illustrating the number of chains with the 
same length (lower right). The x-axis denotes the length of the chain, the y-axis 
counts the number of chains with length x. For both, the smooth function and 
the functions with point singularity and line singularity where strong adaptive 
refinement takes place, we clearly see that the hash function works well: The 
data get equally distributed over the hash table, the hash table is equally filled 
and the involved chains are not degenerated. 

The costs of a hash table access consist of the evaluation of the hash function 
and the collision treatment. The evaluation of (14) involves 4d integer opera- 



164 M. Griebel 

0.6 

0.4 

(1,( 

' • ' i ' ,  , , i ' ' ' i , , , i • , , 

: ; i :  •i •: • i 
" " : " : ' "  i ' ' ' :  • . : . !  . ! . : 

:-:L:'21"i:':[:.;.:.i.:i.:.l:i.:.l:.i • i. : i.. 

. . : . . ~ . : . J . . : . @ : . . L - : - : . . . I . . . :  . . . . . .  : . . . L . . :  ~ . . .  : 
• i.~+l+i+ : ! . ~ . i .  - i . i : .  ! • i 

• . . ; . [ . : 

• ! . ! 

• : ! • i • : • 

0.0 0.2 0.4 0,6 0,8 

21~0 

0 1.0x10 4 2,0x10 4 3.OxlO 4 0 2 A, ~ 8 'iO 12 
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size of the hash table is 3.10 4 

tions if we precompute and store the values P( j ) .P (p - j ) .  The collision 
t reatment  involves q comparisons of level and index number  pairs (2 d integer 
comparisons) where q denotes the respective chain length. Altogether, the costs 
of a hash table access are bounded by 

(4 + q . 2 ) . d  (15) 

integer operations with ~ denoting the maximal chain length. If we use a hash 
table implementation with automatic resizing like that of the C+  + standard 
template library, we can control the maximal chain length explicity. 

Using such a hash table approach, programming of algorithms that work with 
finite dimensional approximations of functions is easy. We address the data and 
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work with them simply by means of the multi-indices 1 and i. All code can be 
written just using these indices as (abstract) data structures and the nasty details 
where and how the data are stored are completely hidden in the hash table 
module. 

3. Operations and Operators 

Up to now we are able to represent and store finite dimensional approximations 
to functions properly. Now, we turn to standard operations like addition, 
subtraction, multiplication, etc., working with such e-truncated functions. Fur- 
thermore, we consider differential operators on such functions. 
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size of the hash table is 11.264 

3.1. An Algebra of Function Operations 

Using the r ep re sen t a t i on  (4) o f  a cont inuous  funct ion,  it is d i rect ly  clear  how the 
add i t ion  or  subt rac t ion  of  two funct ions  can  be  pe r fo rmed :  Al l  we have to  do  is 
to add  or  subt rac t  thei r  coefficients to ob ta in  the  resul t  with respec t  to the  
r ep re sen t a t i on  (4), i.e. 

u + o = E r a , , -  + , , , (x )  + E o , , , .  + , , i (x )  = E (u, , i  _+ v , ,0  • + , , , (x ) .  
l , i  l , i  l ,i  

In the  same  way, we can p roceed  in the  finite d imens iona l  case. D u e  to the  finite 
n u m b e r  of  active coefficients,  the  summat ion  process  of  the  coefficients is finite. 
Of  course,  the  summat ion  must  be  ex tended  to the  un ion  of  the  two index sets 
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induced by u and v and e.g. different truncation values el and ~'2, i.e. 

ugx'[['ll-~- Vg2'[l'll = E (Ul,i -[- Vl,i) • ~ l , i (x) ,  
(I, i) ~.~¢( u, e l ,  I1.11) o .~(  v, e2, I1.11) 

with missing coefficients taken to be zero. 

The accuracy of the result can be controlled using the following theorem. 

T h e o r e m  1. Let u~,' II.ll (x) and u~ 2' II.ll (x) be truncated functions o f  u I (X) and u 2 (X) 
with active index sets ~1 and ~¢2 in the sense of  (13) with the thresholds e I and s 2 
and error bounds 

lul(x)  < lu2(x) < 

Then, the error bound for u~' (x) + u~=(x) is el + ~2 on the index set a¢ 3 which is 
obtained by the union of  the two index sets x¢ 1 and ae 2. 

Proof: 

[(ul(x ) + u2(x)) - (u~,,llll(x) + u~2,11"(x))[ (16) 

= i(ul(X) - , ( x ) )  + (u2(x)  - u 2,H(x))i 

< lUx(X ) - U~x,ll.ll(x)[ + lU2(X ) -- U~2,11.11(x)l 

-~< ~1 -Jr- ~2 
[] 

Note that the truncation parameters gl, ~2 and the accuracies ax, ~2 are in 
general different but closely related. Provided that the solution is sufficiently 
smooth, they are proportional to each other with a proportionality constant 
depending on the norm used in the adaptive refinement process. Otherwise 
things are more complicated, but here the hierarchical basis theory [14] and the 
wavelet theory [29, 30] give further insight, see also [12]. 

However, when we consider the multiplication of two functions u and v in 
hierarchical representation, things are not so simple any more. Now the point- 
wise multiplication of pairs of basis functions is involved, i.e. 

U'U : Eul , i ' ( / ) l , i (X )  " EU,,i ' ( /)I , i(X) : E E(Ul , i 'Vk , j ) ' t~ l , i (X) ' t /~k j (X)  
l,i I,i l,i kj 

but this results in general not more directly in a representation of the type (4). 
We could try to express each product of two basis functions (which can be 
locally a quadratic function) by means of the hierarchical representation in a 
infinite series, i.e. 

I,i,k,j 
= :  E Wm,, 

m,r 

but the computation of the coefficients Wm,'l'i'k'Jr and their reordering and summa- 
tion is complicated and expensive. Furthermore, in the finite dimensional case, 
this still would require an infinte series representation for the result. 



168 M. Griebel 

Therefore, we proceed as follows: We evaluate the multiplication pointwise in 
the set of points {xl, i: (l,i)~s¢(u, ea, ll.ll)u~(v, e2,1H[)}. To this end, for u 81'11"11 
and v ~z,lllt, we compute recursively by means of g" the nodal values in the points 
with indices that belong to the union of the two active index sets. Then, for each 
point, we multiply the associated values. This gives us (pointwise) the result of 
the multiplication of the two approximate functions. Now, the problem remains 
to span a continuous function again. To this end, we use the values in the points 
to compute the hierarchical representation of the result by means of Z.  Finally, 
to get rid of resulting very small coefficients, we can make use of the compress 
procedure. 

Note that, in the intermediate step, we have no longer a basis representation. 
Furthermore, between grid points we introduced a slight error, which however 
can be shown to be of the size of the approximation order only. Thus, our 
approach uses the multiplied nodal values to reconstruct by linear interpolation 
the result of the function multiplication. This is in the same spirit as [1, 25]. 

The relative accuracy of the result can be controlled using the following 
theorem. 

Theorem 2. Let u~ 1' H(x) and u~ 2' llll(x) be truncated functions o f  ul(x) and uz(x) 
with active index sets sg 1 and d 2 in the sense o f  (13) with the thresholds e 1 and e 2 
and the error bounds 

]Ul(X) -- U~I'II'II(X)] < g l '  ]U2(X) -- U~2'II'II(X) ] < g2" 

Then, error bounds for u(  1" H(x). u~ 2, H(x) are 

[ut(x)[" k2 + kl "[u~2'H(x)[ and kl "[Uz(X)[ + lu;l'H(x)[ • k2, 

respectively, and a symmetric, but weaker error bound for uf~' H(x)-u~2' IIU(x) is 

max(;u2(x)  ;, lu~2,H N(x)l). ~1 + max( lul (x) l ,  lu;1," ~(x)l) .  ~2 

on the set ~'3 =sgl Use2. 

Proof: 

l u l (x)  .u~(x)  - u~,, ~ ~ (x)  . u ? ,  ~-~(x) l 
=o 

= lUx(X) • u~(x)  - u;~,lHl(x) -u?,"l l (x)  + u~(x) .u~2,H(x)  - Ul(X) .~? ," l l (x)  I 

= lUl(X) • ( u 2 ( x )  -- u~2,11-]](x)) --[- (Ul (X)  -- u;1,]l .]](x)).u~Z'[[ '[[(x)[ 

_< lUl(X)l. ~ + ~-lu~-H(x)l  

Analogously, we obtain 

lug(x) • u~(x)  - u~,IHL(x), u~,L~-u(,01 _< ~1.1u~(x)l + lu~'~~(x)l. ~ .  
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Summation and division by 2 gives finally 

[Ul(X ) .u2(x ) - u~" I1.11 (x) .u~ 2' I1.11 (x))] 

< x((lu2(x l 4-  14- (tul(x l 4- ) 

< max(luz(X)l , ]u~2,11ll(x)[) • ~ + max([u~(x)[, ]u;a'llll(x)])" ~2 [] 

An analogous result (with obvious modifications and restrictions, division by 
zero) can be shown for the division of two functions. 

3. 2. Differential Operators and Finite Differences 

In this section we want to develop finite difference operators for second order 
elliptic partial differential operators L of the type 

d d 0 0 d 0 
Z = E E a i j ( x ) - -  - -  4- E bi(x) + c(x) (17) 

i=l j=l ~X i aXj i=l ~Xi 

in d dimensions. The application of the operator L to u involves summations 
and multiplications of functions and first and second order derivatives. In the 
previous subsection, we described how to implement the summation and multi- 
plication of discrete functions. What is left is the realization of the derivatives. 

We consider the differentiation of a functions u in hierarchical representation. 
Now the differentiation of the basis functions is required, i.e. 

0U • O(~l,i(X ) 
~Xj ~Xj Eul ' i ' (~l ' i (X)  = E u l ' i  - - '  

l,i l,i ~Xj 

but this results, except for the constant function case, not in a representation of 
the type (4) with basis functions ~b~, i. For the respective coordinate direction, we 
could switch to the Haar system instead or we could try to express each 
differentiated basis function (which is, for the respective coordinate direction, 
locally a constant function involving jumps) by means of the hierarchical 
representation in an infinite series, i.e. 

= E 
cgXj m, r 

but the computation of the coefficients W~')r and their reordering and summa- 
tion is costly and complicated. Furthermore, in the finite dimensional case, this 
again would require an infinite series representation for the result due to the 
jumps. 

Therefore, we proceed as follows: For a derivative in the j-th coordinate 
direction, we apply ~ to the hierarchical coefficients, i.e. we perform a transfor- 
mation to nodal representation but only with respect to the j-th coordinate 
direction. Then, for every interior grid point, we apply a standard 1D difference 
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stencil. It is chosen as the narrowest stencil (in the j-th coordinate direction) 
available on the sparse grid. Finally we use X~j to obtain the representation of 
the result in hierarchical basis. For regular sparse grids, compare (9), the 
well-known second order finite difference stencil for the first derivative (centered 
difference) 

1 
2.2_,max;[-1 0 1]x,~.ij.lrnaxj (18) 

or the both first order stencils (backward or forward difference) 
1 1 

2_,max j [ - 1  10]x~j.,j,lmaxj, 2_l.,axj [0 --1 1]%,j,lmaxj (19) 

a , jl/. For the approximation can be applied where lrnaxy := n + d -  1 - E / = I , j .  
of a second derivative we consider the usual stencil 

1 
2_2.tmax ' [1 --2 1]x,,,i,,lfnax '. (20) 

These stencils belong for each interior grid point to an equidistant grid (in the 
j-th coordinate direction) with local mesh size 2 - lmaxj. 

In the adaptive refinement case, we have in general no longer an equidistant 
grid. Then, the stencil for each node is still chosen as the narrowest finite 
difference stencil (in the j-th coordinate direction) available on the adaptive 
sparse grid. Its entries are now the coefficients known from finite differences on 
non-uniform grids. 

We obtain the operator 

3 2 
S ~jj  

for the second derivative in direction j and the operators 

t~+,-,0 

Oxj 

for the first derivative in direction j, respectively. Here, in the regular sparse 
grid case, ~ i  represents the application of the one-dimensional stencil (20) for 
coordinate direction j in each interior grid point and ~0.+,- represents the 
application of the one-dimensional stencils (18) and (19), respectively, for 
coordinate direction j in each interior grid point. In the adaptive case, their 
non-uniform analogues are taken. 

For example, the costs of an application of the d-dimensional Laplacian Ed= 1 
~ s  consist of the costs of the operators Xj, ~y,  ~ and the costs of the 
summation over d. To be precise, we have 

d.(cost(~) + cost(.q~jj) + cost(~)) + ( d -  1).cost( + ). 
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Let M denote the total amount of sparse grid points. Since cost (~)  = cos t (~)  = 
3M, cos t (~7)  = 4M (or 6M in the adaptive case, respectively) and cost(+) = M 
(neglecting boundary effects), we obtain altogether a work count of 

work = (11 .d - 1) .M 

or ( 1 3 . d -  1).M floating point operations, respectively. Additionally, besides 
(2M + 2 M ) . d  simple integer in-/decrements (get neighboring points in ~ and 
g,-, j = 1 . . . . .  d) and a few integer operations plus some tricky bit mask opera- 
tions (get nearest neighboring points in ~,cji, j = 1 . . . . .  d), the integer operation 
overhead according to (15) for a total of approximately l O d . M  hash table 
accesses must be taken into account. In the general case of adaptively refined 
sparse grids, finding the index pairs of the nearest neighboring points in ~ j  is 
more involved. Here, an alternative implementation possibility is to store and 
update these indices explicitly and thus to trade work against storage. Note that 
the overall work count still compares favorable with many other existing adap- 
tive implementations for two- and three-dimensional problems. 

We also can switch from the hierarchical representation to the representation in 
terms of pure nodal values in each grid point via an equivalency transformation 
go o ~+,- ,0~ oZ. We obtain 

~ s  := g o~T~j o ..~jj o ~ o X = g .  jo ~jj oZ.  j (21) 

for the second derivative in direction j and 

:= go g+,- ,0 o g o x =  go+ j o g+,- ,0 o &  j 

for the first derivatives in direction j, respectively. Here, X~ j : = ~  o go denotes 
the transformation from nodal representation to hierarchical representation (in 
the product sense) for all directions except the j-th coordinate direction, and 
g .  j : = ~  oj~denotes the analogue for the inverse transformation. Note that the 
spectral properties of both representations are the same due to g =~,~1. 

At least for the case of the regular sparse grid, using Taylor series expansion for 
the difference stencil, the transformation and its inverse, plugging these into 
each other and performing a lengthy and technical computation, the consistency 
order of our hierarchical difference operators can be proven, see [37] for details. 

Theorem 3. The operator ~ s  is a second order consistent discretization for the 
second derivative on the regular sparse grid of  level n, 1 <_ j <_ d, i.e. 

ii~jSgSu _ ~s  Aull~ ___ c-h2llul[c3+a-l.l(~) (22) 

for all u ~ c 3 + d - l ' l ( ~ ) .  Here, h = 2 -n and R s and A s denote pomtwise restric- 
tion mappings to the sparse grid points of  level n. 

The operator ~ s ,  o is a second order consistent discretization for the first derivative 
on the regular sparse grid of  level n, and the operators ~s,+,- are first order 
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consistent discretizations for the first derivative on the regular sparse grid of level n, 

l<_j<_d. 

Proof. See [37]. 

Now, as an example, we consider the discretization ~ s  +!~s2 of the Laplacian 
in two dimensions on a regular sparse grid. Note first that the eigenvalues of the 
corresponding matrix are real numbers despite the non-symmetry of the matrix. 
The resulting largest and smallest eigenvalues are given in Table 1. 

We see that l~mi n converges clearly to 2.7r 2= 19.739209, i.e. to the smallest 
eigenvalue of the continuous operator. Furthermore we see from Table 1 that 
the condition number is proportional to 22n like that of the 5 point stencil 
matrix on a regular uniform grid. From this and Theorem 3 (consistency), we 
can infer that our discretization is stable for regular sparse grids. 

Mixed derivatives which are put together from second order discretizations ~s,0 
for the first derivatives in different coordinate directions possess also consisten- 
cies of second order. 

In the case of adaptively refined sparse grids, in general, we encounter non- 
equidistant lgrid spacing when we want to apply our one-dimensional stencils 
within the ~S-operators. Then, due to lack of symmetry, an order of consistency 
is lost (lower order terms in the Taylor series). To cope with this problem the 
associated finite difference 3-point stencils for non-equidistant mesh sizes must 
be locally modified in the same way as it is common for standard finite 
difference discretizations on non-equidistant grids. This is in the same spirit as 
the Shortley-Weller trick, see [24], pp. 78f. Also switching locally to a one-di- 
mensional 5-point stencil helps to maintain the second order, if wanted. 

4. Adaptive Solution of Elliptic Partial Differential Equations 

Now we are able to assemble the discrete version of our differential operator 
(17). It involves the summation and multiplication (by sufficiently resolved 
coefficient functions) and the necessary difference operators. Written in matrix 

Table 1. Eigenvalues hm~ ~ and hrnax and condition number  J< of the  discretized 
s s Laplacian -~n  +222,  regular sparse grid case 

level n I~mi n )trnax K factor 

1 18.387503 69.61 3.79 - -  
2 19.273832 263.39 13.66 3.61 
3 19.587081 1031.81 52.67 3.86 
4 19.691734 4103.95 208.43 3.96 
5 19.724926 16391.99 831.24 3.99 
6 19.735029 65543.99 3320.36 3.99 
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notation, this would result in a linear system of equations to be solved. However, 
in our approach, we never assemble the system matrix. For most iterative 
solution methods this is not necessary anyway. Instead, only the action of the 
system matrix onto the vector of an actual iterate is needed. 

The corresponding matrix .9 ~s is in general non-symmmetric, even if we restrict 
ourselves to a symmetric, selfadjoint continuous operator (17). Therefore, we 
use as basic iterative scheme the BiCGstab iteration. This iteration is conver- 
gent in any case. However its convergence is quite slow. To speed it up, we can 
apply techniques known from multigrid. Here, the BiCGstab iteration over an 
(adaptively refined) sparse grid serves as a smoother. To this end, similar to (21), 
we switch from the hierarchical representation of our operator by the equiva- 
lency transformation ~ o .~s  o y to the nodal representation S ~s. The right 
hand side is transformed accordingly. It is this transformed system to which we 
apply the BiCGstab method if we use it as a smoother within a multigrid 
method. 

The coarser grids can be obtained by applying successively one step of the 
compress operator globally, i.e. without any threshold. Now switching from 
coarse grids to finer grids involve basically the application of the hierarchical 
basis interpolation, which is trivially obtained by setting the hierarchical values 
on finer levels to zero. This implements the prolongation operator. The imple- 
mentation of the restriction operator is obvious. Altogether we have now all 
ingredients to set up a (multiplicative) multigrid iteration [8, 25]. On this method 
and its convergence properties will be reported elsewhere, especially in the case 
of adaptively refined sparse grids. 

Besides, also additive multilevel preconditioners have been developed. They are 
either in the spirit of Bramble, Pasciak and Xu [7, 34] with necessary modifica- 
tions [18, 19] to cope with problems posed by the tensor product construction of 
our hierarchical basis. Alternatively, we developed a multilevel preconditioner 
based on the prewavelet approach [19]. Note that, in all cases of multilevel 
iterative solvers, good convergence rates independent on the number of un- 
knowns can be obtained. However, the convergence rates are not independent 
of the coefficient functions of the operator. Singular perturbed problems exhibit 
a slowing down of the multilevel solver. Thus, as for conventional multigrid 
methods, the problem of robustness is not yet solved. 

These solvers or a few iterates of them can now be used within a cycle to adapt 
the grid to the solution without a priori knowledge where to refine. Solving the 
problem on one grid and employing an error indicator gives information, where 
a finer grid is needed to resolve the solution. We start with a very coarse grid 
and iterate the procedure, always adding new nodes. If a final error tolerance is 
matched, we have a solution on a fine adapted grid. The technique is the same 
as for other adaptive refinement methods [4, 5, 32, 36] and can be applied 
straightforwardly also in our case. The difference is, however, in the refinement 
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process. We work node-oriented not element-oriented. If a node index (1, i) has 
been flagged for refinement then the nodes of the next 'level', which lie in its 
influence cone, i.e. the set of nodes with indices {(1 + e j, i + (ij + 1). e j), j = 1, ..d} 
are set active. As an indicator of the local error we use the criterions due to (11) 
to flag a node for future refinement. 

5. Numerical Experiments 

In the following, we present the results of numerical experiments obtained with 
our new sparse grid method. 

First we consider the case of regular, i.e. non-adapted sparse grids. 

Problem 1. We first consider the Poisson equation - A u  = f  in J2 = (0, 1) 2 with 
Dirichlet boundary conditions and the exact solution u(x, y ) =  sinh(~r(1-x))  
sin(¢ry)/sinh(~). The results for different levels of discretization are given in 
Table 2. Here and in the following, we show the number of points involved in 
the sparse grid finite difference discretization, the resulting approximation error 
with respect to the L z- and L=-norms and the point-wise error in the point 
(1/Tr, 1/Tr) and give furthermore their quotients on two successive levels. To 
some extent, this reveals the order of approximation. We dearly see that the 
accuracy behaves like 0 (2-2" ) .  This is in contrast to the sparse grid Galerkin 
method, see [9, 10]. There, only an accuracy of order O(n. 2 -2n)  is achieved in 
two dimensions. Note that this additional n-term is due to inherent interpola- 
tion by means of the hierarchical basis, i.e. due to the Galerkin integration of 
the (interpolated) right hand side. 

Problem 2. Nowwe consider the Helmholz equation - Au + cu = f  in J2 = (0, 1) 2, 
c(x, y ) = y / ( x  + 0.1), with Dirichlet boundary conditions and the exact solution 
u(x, y )=  eX+L Table 3 summarizes the results. We see that the approximation 
order is even better than for Problem 1. This is due to the term c.u. In contrast 
to the sparse grid Galerkin method, for the discretization of the Helmhotz term 
no mass matrix is necessary. Thus no interpolation occurs and the approxima- 
tion gets better with rising value of c. 

Table 2, Error for Problem 1, regular sparse grid 

level n points L~-error quotient Lz-error quotient pointwise quotient 

2 49 3.15_ 3 - -  1.75_ 3 - -  2.74_ 3 - -  
3 113 7.95_ 4 3.96 4.34_ 4 4.03 7.11_ 4 3.85 
4 257 2.00_ 4 3.97 1.08 _ 4 4.02 1.80 _ ~ 3.95 
5 577 5.03_ 5 3.98 2.69_ s 4.01 4,48_ 5 4.02 
6 1281 1.26_ 5 4.00 6.71_6 4.01 1 . 1 2  5 4.00 
7 2817 3.15_6 4.00 1.67_ 6 4.01 2.80_ 6 4.01) 
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level n points L®-error quotient L2-error quotient pointwise quotient 

2 49 4.56_ 4 - -  2.55_ 4 - -  2.81_ 4 - -  
3 113 1.10_ 4 4.15 6.16_ 5 4.14 6.93_ 5 4.05 
4 257 2.59_ 5 4.25 1.45_ 5 4.25 1.63_ 5 4.25 
5 577 6.05_6 4.28 3 . 3 6  6 4.32 3.78_ 6 4.31 
6 1281 1.39_ 6 4.39 7.70_ 7 4.36 8.65_ 7 4.37 
7 2817 3.16_ 7 4.40 1.75_ 7 4.40 1.96_ 7 4.41 

Problem 3. Next we have a look at the convection-diffusion equation - zlu +/3 .  
Vu + cu = f  in O = (0,1) 2, /3= (1,1), c = 1, with Dirichlet boundary conditions 
and the exact solution u(x, y) = 4 sin(zrx) sin (Try). Note that, for the discretiza- 
tion of the V-term, we used the central difference approach here. The results are 
given in Table 4. We only see an approximation order of O(n" 2 -2n) or less. The 
convection term reduces the accuracy somewhat, even if a central difference 
stencil is used. Of course for larger convection strength, we would run into 
trouble with this discretization (due to stability reasons) just like for a standard 
full grid discretization. 

Problem 4. Therefore we consider a second convection diffusion equation 
/ft. = --Au+ Vu+cu=fin O = ( 0 , 1 )  2, f l l  1 + X 2  + x Y ,  [32=ex+Y--eY+sin(xy ), 

c(x, y) = sin(x) sin(y), with Dirichlet boundary conditions and the exact solution 
u(x, y ) =  4sin (~rx) sin(zry). Now, we used the upwind approach for the dis- 
cretization of the convection terms. Then, as can be seen from Table 5, the 
accuracy deteriorates to first order, i.e. to about O(n-2-n) .  We conducted 

Table 4. Error for Problem 3, regular sparse grid 

level n points L=-error quotient L2-error quotient pointwise quotient 

2 49 2.59_ 1 - -  1.42_ 1 - -  1.79 1 - -  
3 113 8.73_ 2 2.97 4.65_ z 3.05 6.64_ 2 2.70 
4 257 2.87_ 2 3.04 1 . 4 9  2 3.12 2 . 2 4  2 2.96 
5 577 9.09_ 3 3.16 4.64_ 3 3.21 7.06 3 3.17 
6 1281 2 . 7 4  3 3.31 1.39_ 3 3.34 2.13_ 3 3.31 
7 2817 8.05_ 4 3.40 4.08_ 4 3.41 6.26_ 4 3.40 

Table 5. Error for Problem 4, regular sparse grid 

level points L=-error quotient L2-error quotient pointwise quotient 

2 49 3.15_ a - -  1.59_ 1 - -  1.36_ 1 - -  
3 113 1.92_ 1 1.64 9.78_ ~ 1.63 9.03_ 2 1.51 
4 257 1.12_ l 1.71 5.52_ 2 1.77 5.26_ 2 1.72 
5 577 5.99_ 2 1.87 2.96_ 2 1.86 2.86_ 2 1.84 
6 1281 3.12_ 2 1.92 1 . 5 4  2 1.92 1.50_ 2 1.91 
7 2817 1.59_ 2 1.96 7 . 8 5  3 1.96 7.71_ 3 1.95 
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Table 6. Error for Problem 1, adaptively refined sparse grid 

e points L~-error quotient L2-error quotient pointwise quotient 

0.1 12 4.23_ 1 - -  2.24_ 1 - -  2.42_ 1 - -  
0.0125 38 1.21_ 2 34.95 4.49_ 3 49.88 8.95_ 3 27.40 
0 . 2 5  2 105 2.33_ 3 5.19 8.06_ 4 5.57 2.14_ 4 41.82 
0.3 -3 354 3.83 _ 4 6.08 1.78 _ 4 4.53 1.76 _ 5 12.16 
0.35_ 4 1207 9 . 0 9  5 4.21 4.80_ 5 3.71 3.84_ 5 0.458 
0.35_ 5 4448 1.53_ 5 5.94 8.13_ 6 5.90 5.17_ 6 7.43 

further experiments for other model problems with large convection terms using 
upwind discretizations. There, the same order of approximation was observed. 
The results remained stable independent of the convection strength. 

Now we turn to the case of adaptively refined grids. 

Problem 1, adaptive case. First we reconsider Problem 1 but solve it on 
adaptively refined grids. Here, the solution is adapted successively using the 
criterion luul. 1 ___ e, i.e using the maximum-norm approach. Of course, the 
solution of Problem 1 is quite smooth. Therefore, no substantial difference to 
the case of the regular sparse grid can be expected. From Table 6 we see that, 
due to the adaptivity, even slightly more grid points are needed to reach the 
same absolute error size as for the regular sparse grid case of Table 2. With 
respect to the ratio relative error reduction versus number of grid points they 
are comparable. 

Problem 5. Finally we consider a convection-diffusion problem with non-con- 
stant convection coefficients which involves boundary ~yers. These must be 
resolved adaptively. We deal with the equation - A u  + ft. Vu + cu = f  in O = 
(0, 1) 2, / ~ =  (e 3xy, sin(Tr(x +y))), c = 1, with Dirichlet boundary conditions and 
the exact solution u ( x , y ) = x 3 . e  3"5~'y. Figure 5 shows the solution of this 
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Figure 5. Solution (left), and adaptively refined grid (right), e = 0.03052 
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Table 7. Error for Problem 5, adaptively refined sparse grid, upwind difference approach 

6 points L~-error quotient Le-error quotient pointwise quotient 

500 47 1.87+3 - -  4.67+2 --  2.65+2 --  
125 106 1.84+2 10.16 7.78+1 6.00 1.06+2 2.50 
31.25 233 8.86+1 2.08 2.39+ l 3.26 1.51+1 7.02 
7.813 516 3.06+ 1 2.90 1.73+ 1 1.38 2.82+ 1 0.54 
1.953 1135 1.38+1 2.22 6.69+0 2.59 1.11+1 2.54 
0.488 2475 6.98+0 1.98 3.33+0 2.01 5.60+0 1.98 

problem and also an example of  a sparse grid poduced by adaptive refinement. 
Here, again, we used the simple error indicator which is based on the maximum 
norm. It seems to work reasonable also in case of  convection-diffusion. The 
results are summarized in Table 7. For the discretization, we used the upwind 
approach to be on the safe side. In comparison to the results of Table 5 (also 
upwind discretization and moderate convection but on a regular sparse grid 
without any adaptivity), now, a much better relative accuracy of the solution is 
obtained with less grid points, i.e. adaptivity pays off and helps to approximately 
regain the convergence order (i.e. error versus number of grid points) of a 
smooth solution case. Note that in further experiments a local convex linear 
combination of the upwind and central difference operator similar to the flux 
difference splitting approach gave also good results with a better approximation 
order. 

6. Concluding Remarks 

In this paper, we discussed the basic features of a simple adaptive method to 
solve elliptic PDEs on sparse grids using a finite difference approach. We 
developed an algebra of operations and we implemented differential operators 
for finite dimensional function representations. These representations are stored 
and manipulated using a hash table technique. Due to the tensor product 
approach, the method can be easily generalized to the higher-dimensional case. 
Although we gave only results for two-dimensional problems, the method works 
also fine for three- and even higher-dimensional PDEs. We recently treated 
9-dimensional problems. 

Surely, the rectangular domain is a restriction of the method. Note however that 
this disadvantage can be partly avoided by adaptively resolving complicated 
domains according to their characteristic functions or by the transformation 
technique as suggested in [10]. 

Note finally, that the interplay between the threshold ~ used in the error 
indicators (11) and the achieved error accuracy is not fully clear for singular 
solutions. Here,  more work is necessary for the construction of global error 
estimators from the local indicators we use in our sparse grid discretizations up 
to now. 
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