
Comput ing 61, 151-179 (1998) ~ l ' ~

© Springer-Verlag 1998
Printed in Austria

Adaptive Sparse Grid Multilevel Methods for Elliptic PDEs
Based on Finite Differences

M. Griebel, Bonn

Received November 28, 1997; revised April 30, 1998

Abstract

We present a multilevel approach for the solution of partial differential equations. It is based on a
multiscale basis which is constructed from a one-dimensional multiscale basis by the tensor product
approach. Together with the use of hash tables as data structure, this allows in a simple way for
adaptive refinement and is, due to the tensor product approach, well suited for higher dimensional
problems. Also, the adaptive treatment of partial differential equations, the discretization (involving
finite differences) and the solution (here by preconditioned BiCG) can be programmed easily. We
describe the basic features of the method, discuss the discretization, the solution and the refinement
procedures and report on the results of different numerical experiments.

AMS Subject Classifications." 65N06, 65N50, 68Y99, 68P05.

Key words: Sparse grids, finite difference, multiscale method, hash tables.

1. Introduction

In this paper, we present an adaptive multilevel approach for the solution of
partial differential equations. It is based on a multiscale basis which is con-
structed f rom a one-dimensional hierarchical basis by the tensor product ap-
proach. Then, a cont inuous function u can be represented with respect to this
basis as an infinite series. Also any approximation to the function with a
prescribed error tolerance e can be represented by a t runcat ion of the infinite
series to a finite one. Here, the size of the coefficients give a direct guideline
and provide a reasonable error indicator.

Based on this finite dimensional representat ion of a discrete function, s tandard
operat ions on functions can be implemented straightforwardly. Addi t ion or
subtraction of two functions can be implemented by just the addit ion or
subtraction of their coefficient values. In the same way, scalar multiplication can
be realized. The multiplication of two functions is achieved in a point-wise
fashion. To this end, the coefficients of the two functions are t ransformed to
their nodal values in the 'active' grid points, then, for all points, their nodal

152 M. Griebel

values are multiplied and finally, the result is transformed back to the hierarchi-
cal basis representation, e.g. after some further compression with respect to the
threshold e. Division of two functions can be obtained analogously. In this way
we set up an algebra of operations with truncated functions.

Furthermore, employing the transformation to the nodal values in a special way,
differential operators acting on e-truncated functions can be implemented
straightforwardly using finite difference stencils. Here, first order derivatives can
be discretized either by local central differences leading to a second order
consistent discrete derivative or, by using local upwind stencils, leading to first
order but stable discrete operators. Analogously, second derivatives can be
programmed easily resulting in a consistency order of two. Additionally, in the
adaptive case, basically the complexity, i.e. work count versus accuracy, of the
regular sparse grid case can be obtained but this involves some further modifi-
cations of the stencils in the discretization.

For the treatment of partial differential equations, first a discretization must be
set up (in general adaptively), and second, the discretized problem must be
solved e.g. by an iterative method. In basically any iterative method, the action
of the discrete differential operator onto a vector must be computed. This can
be achieved in a simple way by putting this action of the discrete operator on a
solution iterate together from the derivatives, the multiplications (with the
(truncated) coefficient functions of the differential operator), the subtractions
and the summations of our function algebra. Furthermore, multigrid methods
and multilevel preconditioners based on prewavelets can be implemented
straightforwardly.

Together with a simple refinement and coarsening of the truncated function
representation on the basis of the coefficient values as error indicators, we have
all ingredients for an adaptive multilevel method at hand: error indication, local
refinement and coarsening, discretization and solution of the resulting linear
system.

As an underlying data structure for the adaptively resolved data and solution
approximations we decided to use a hash table approach. Hash tables are well
known in computer science to store and retrieve data with minimal storage
overhead and nearly direct access properties (in a statistical sense). However up
to now, they were not yet used for the adaptive multilevel treatment of PDEs.
There, tree-like data structures are the state of the art. But especially in the 3D
and higher dimensional case such an approach is complicated, programming is
very difficult and a large storage overhead is involved. These disadvantages are
avoided by using hash tables. Furthermore, due to its inherent tensor product
approach, the method is perfectly suited for higher-dimensional PDEs.

Our approach is closely related to the sparse grid method [9, 10,16,21,42] and

Adaptive Sparse Grid Multilevel Methods for Elliptic PDEs 153

can be seen as an efficient implementation of it using finite difference stencils.
Let N = 2 n, where n denotes the level of discretization. In case of piecewise
d-linear hierarchical basis functions it can be shown [9, 20, 42] that the number
of degrees of freedom and, using a multigrid method, thus the amount of
operations to solve an elliptic PDE is proportional to N.(log N) d-1 whereas
the achieved accuracy is O(N-2.(log N) d-l) with respect to the L 2- and
L~-norm and O(N -1) with respect to the energy norm. This holds under the
assumption that the solution fulfills a specific smoothness requirement, i.e. that
its 2d-th mixed derivative is bounded. In case that this prerequisite is not
fulfilled, i.e. in case of singularities or strong variations in the solution, adaptive
refinement helps and allows to maintain the complexity advantage of sparse
grids also in these cases.

Note finally that the sparse grid approach (without adaptive refinement) is
closely related to the technique of hyperbolic crosses [2], boolean methods [13]
and discrete blending [6,15, 28]. It can even be tracked back to Smolyak [38], see
also [39].

The outline of this paper is as follows: In Section 2 we give the subspace
splitting representation of a function based on the tensor product approach and,
beside some notation, we introduce finite dimensional approximations to the
function by truncating the infinite series associated to the multiscale representa-
tion. This leads to a finite set of active level and index number pairs with
associated hierarchical coefficients. This information can be stored in a hash
table data structure on top of which multiscale algorithms can work easily.

Section 3 discusses how a whole algebra of operations and operators on such
truncated function representations can be realized. This is in a similar spirit as
round off error analysis for floating point numbers. We consider here the
addition, subtraction and multiplication of two function representations and
introduce also methods to implement discrete differential operators for first and
second derivatives which are based on finite differences.

In Section 4 we use these operations and operators to discretize (elliptic) partial
differential equations. There, the right hand side and the coefficient functions of
the differential operator must be resolved up to a prescribed accuracy. Then, for
running an iterative method, the residual and thus the action of the differential
operator on the actual iterate must be computed. This is done by means of the
operations and operators of the previous section. As basic iterative method we
use the BiCG approach. Besides, multilevel preconditioners and multilevel
solvers can also be constructed. The existing algorithms can be combined easily
to an overall adaptive refinement and solution procedure. Section 6 presents the
results of numerical experiments with our sparse grid finite difference method.
Finally we give some concluding remarks.

1 5 4 M . G r i e b e l

2. Multilevel Representation of Functions

2.1. Multilevel Subspace Splitting and Tensor Product Basis

Let ~ := [0,1] d be the d-dimensional unit cube and let us consider the family of
grids

on O with mesh size h t := (h i , . . . , h a) := (2- l , , . . . , 2-ta), i.e. with in general
different mesh sizes in the different coordinate directions, but equidistant mesh
size with respect to one coordinate direction. The grid points contained in a grid
O 1 are the points

X I , i : = (XI,,i ~ Xlcl,ia)

with xt i := i ' h t = i "2-*~, i =0 , ,2 lj For reasons of simplicity, we restrict
j,] 1 - j ~

ourselves in the {ollowing to functions on 12 that vanish on the boundary. We
consider on each of these grids the space of piecewise d-linear functions

V l := span{ ~b,,i, ij = 1 , . . . , 2 lj -- 1, j = 1 d}

which is spanned by the usual d-dimensional hat functions

d

:= F I
j = l

where x := (x 1 , xd). Here , the 1D-funct ions ~tj, i j (xj) can be created f rom a
unique one-dimensional mother function

= [1 - 1 x J l i f x e (- 1 , 1) , 4,(x j)
t 0 otherwise,

by dilation and translation, i.e.

q~l:,i~(xj) = f~(x j - i j ' h j) ~---1(

Here and in the following, 1 = (l~ ld) ~ ~d, lj > 0, is a multi-index which
indicates the number of a level of a grid or sparce, and i = (i~,... , i d) ~ f~d,
ij = 1 ,2li - 1, is a multi-index which indicates the location of an interior grid
point x u and the corresponding center of the basis function 6u(x).

We now can define the difference spaces

d

w,== v,e E v,_o
j = l

where ej denotes the j-th unit vector. To complete this defintion we formally set

V l_ ,j = 0 if l i = 0.

Adaptive Sparse Grid Multilevel Methods for Elliptic PDEs 155

We then have the following multilevel splitting of the Hilbert space
o o o o

v = E . . E w (, 1 (1)
l l = l la= 1 1>_>_1

which is up to completion the underlying Sobolev space, i.e. P = H 1. Here and in
the following, let 1 := (1 1), let > denote elementwise comparison and let
I11o~ := max]=~ lj denote the discrete Lo~-norm. Note that the splitting is into a
direct sum by definition.

Note also that with the discrete spaces

•
I>_ l , l l l~<n

the limit

w,

lim V~ ~) = lim (D W1
n--+~ n--+~ I> 1,11tl <n

exists because V, (°~) c V,(~) 1 and O~=l V~ (~) is dense in H~(~) . Since

W 1 = span{~b,,i(x), ij = 1 , . . . , 2lJ - 1, ij odd, j = 1 , . . . , d), (2)

the family of functions

{~bl,i(x), i i = 1 , . . . , 2tJ - 1, ij odd, j = 1 d}t>_ l (3)

is just a hierarchical basis [14,40,41] of H~([0,1] d) which generalizes the
one-dimensional hierarchical basis of [14] to the d-dimensional case by means of
a tensor product approach. Note here that the supports of all basis functions
~bl, i(x) are mutually disjoint which span W t. Furthermore, note similarities with
the construction in [26].

Now, any function of u ~ V can be split accordingly by

u = E ut(x) = Y'. E u, , i '6, , i(x) where ut(x) ~ W, (4)
1>1 I>1 i ~ I l

and

u,(x) = E u,,C6l,i(x) (s)

where ut, i ~ ~ are the coefficient values of the hierarchical basis representation
and I t denotes the set of indices

I t := {(i l , . . - , i d) ~ N d , i j = 1 2t~ - 1, ij odd, j = 1 d}.

Note that since (3) forms a basis of V, the coefficient values are determined
uniquely.

Now we consider the coefficient values u,,i in more detail. They can be

156 M. Griebel

computed from the function values u(x~, i) in the following way:

where
1 I % , ; t j : = [- ½ 1 -~]%,,vtj 0 < i j < 2 t' (7)

This is due to the definition of the spaces W~ and their basis functions (2). Here,
as usual in multigrid terminology, I x ~ denotes a d-dimensional stencil which • l,i,
gives the coefficients for a linear combination of nodal values of u, see also [24],
p. 48 (4.2.12).

As described in more detail in [11,42], two partial integration steps for each
coordinate direction lead us from (6) to the following representation in terms of
an integral transformation.

Lemma 1. Let ~Jl/,ij = -2-(IF1) '~bt i(Xi), and let 61i(x):= F I/d=10 t i(Xi). Fur- . . 1 ' I J ' . J

thermore, let u be such that tts denvatwe 32au/YI~=l Ox~ extsts an[t'be~longs to
C°(~) . For any coefficient value Ul, i in the representation (4) there holds:

o2du(x)
HI, i = f o t~l,i(X) " MI=I 6~X2 d n . (8)

For functions not vanishing on the boundary, similar formulas exist for the
coefficients which belong to points situated on the boundary of the domain.
Depending on the dimension of the boundary manifold these formulas involve
less derivatives and some Dirac functions in the product definition of 0~,i. Note
that if the considered function u is not smooth enough, i.e. not sufficiently
differentiable, then a more general formula exists. It involves the 2d-th variation
of a function instead of the 2d-th derivative and the whole definition boils down
to that of the variation in the sense of Hardy and Krause, see [33], pp. 19-20.
Note furthermore that the computation of the hierarchical coefficients can be
performed by d successive applications of the one-dimensional transformation
due to the tensor product construction of the hierarchical basis•

The size of the coefficients u~,i reflects the smoothness of the function u. For
sufficiently smooth functions, Ul, i is proportional to 2 -<r J>, with (r , l) = EJ=I
rj-I h r = (r I , re) , and rj > 0 depending on the degree of smoothness with
respect to the j-th coordinate direction. But also for non-smooth functions,
singularities are indicated by the size and behavior of the coefficients similar to
wavelets [29, 30]. This is not a surprise since our hierarchical basis can be seen
as some sort of wavelet in a weak distributional sense. Successive partial
integration of (8) results in

O2agh,i(x)
u , , i = [-u d/-2 =: f to,,,(x)-u d a

VI]=I Oxy " 1 2

Adaptive Sparse Grid Multilevel Methods for Elliptic PDEs 157

with w,,i(x) equal to a linear combination of Dirac pulses with similar oscillating
structure as certain wavelets.

2.2. Finite Dimensional Subspaces, Truncation

We now turn to finite dimensional subspaces and the corresponding interpolants
of a function. The usual case is that of a uniform grid, i.e.

un = E E Ul,i "~], i
II[~_<n i

where n ~ N is a given number which denotes the level of discretization and
[1[~ = maxj lj. The associated interpolation error estimates are well known and
thus not repeated here.

Besides, our tensor product approach also allows for the following approach,
which is known under the name sparse grid, see also [9, 10, 11, 16,17, 20, 21]. Let
]1]1 := ES=I lj and consider

un'S = E E U,,i" &,,i" (9)
[111<n+d-1 i

The dimension of the underlying sparse grid space is only O(n d-1 "2 n) in
comparison to 0(2 d") of that of the regular full grid space. However the
accuracy of the sparse grid interpolant u n's is nearly that of the full grid
interpolant u", i.e. it is of the order O(n d-1 "2 -2n) with respect to the L 2- and
L~-norm and it is even 0(2 -n) with respect to the energy norm provided that
the function u is sufficiently smooth. For the above estimates, basically the
oza/I-IS= 1-th derivative of u must be bounded.

If this is not fulfilled, i.e. especially in case of singularities or steep boundary
layers etc., we have to use sufficiently refined sparse grids instead. To this end,
let e ~ E be a given threshold. Now we switch from the infinite representation
(4) to the (hopefully) finite dimensional approximation

u~'ll"l(x) = E u,, i • ~b,,i(x) (10)
I,i

U I i'¢~l,i (x) __~ £

i.e. we simply omit all basis functions and coefficients whose values with respect
to a given ILl[are smaller than the threshold e. Here, depending on the chosen
norm or semi-norm, different approaches can be obtained. We have the error
indicators

[[Ul,i'~bl,i(x)H =[u , , i [" ~1 i (x) =: [Ul,i["]/l (11)

where

158 M. Griebel

1

2 -d. 2-Ill,

71 = (2/3)d/2.2-11h/2

(2. (2/3td-1.2-,,,1. zj= 12,,,) 1'2

for LI.II = II.IIL~,

fo r I1.1I = Ir.ll<,

for 11.11 = lI.IIL2,

fo r II.ll = I1.11<.

I

At the bo un da~ of ~ , the necessary modifications are obvious. Note that (in
the interior of ~2) the value 7, is indepenent of the index i but depends only on
the level number 1. This is due to the construction of the basis functions by
dilatation and translation.

The most local choice is surely the maximum-norm. Then the thresholding boils
down to simply taking the absolute value of the respective hierarchical coeffi-
cient. However for practical purposes, this norm can be too sharp and may
result in non-terminating algorithms. This can be seen easily from the following
simple one-dimensional example: Let

= l 0 0_<x< 1/2 , u(x)
1 1 / 2 < x < 1.

A short calculation shows that the hierarchical coefficients ut, i with i = 2 t- 1 _ 1,
l = 2, 3 , . . . , w possess the value 1 /2 whereas all other interior coefficients are
zero (except ul, 1 = 1/2). For the boundary coefficients we have u0, 0 = 0 and
u0,1 = 1. Thus, a local but infinite tail of coefficients with value 1 / 2 appears next
to the jump. However, for the other norms, additional damping values come in.
Consequently also for the values with index i = 2 l- 1 1, l = 2, 3 ,0o the
threshold criterion lut, i • Yt < e gets fulfilled for a sufficient large level number l.
Then, we obtain a finite set of active indices also for non-differentiable func-
tions. In practical applications often a combination of the maximum-norm and
an other norm gives good results.

Furthermore, from a practical point of view, there is an other difficulty. We can
not first compute the infinite table of coefficients ut, i and then omit the
respective entries by means of the truncation criterion in a bottom up approach.
Instead, we should proceed in a top down approach recursively level by level
starting from the coarsest one. This is demonstrated by the following simple
recursive bisection procedure for the one-dimensional case:

adapt(l, i, 6)
hv := u(xt, i) - (u(xt,i_ 0 + u(xl, i+ l))/2;
if [hvl.llebl, i(x)lq < e then skip;
else ul, i := hv;

adapt(l + 1, 2i - 1, e);
adapt(l + 1, 2i + 1, e);

endif

Adaptive Sparse Grid Multilevel Methods for Elliptic PDEs 159

For a given one-dimensional continuous function u, this procedure builds up the
interior coefficient values ut, i of the truncated hierarchical representation. The
representation is complete with u0, 0 = U(Xo, o), uo,1 = u(xo, 1). The modification
for the d-dimensional case is obvious, the parts of the function u living on the
boundaries must also be resolved adaptively.

Then, it may happen that such a procedure terminates too early and does not
resolve and compute large coefficients on very fine levels. An extreme example
is the simple one-dimensional function u (x) = sin(x) on [0,2~r]. Here we have
Ul, 1 = (sin(0) + sin(2rr))/2 - sin(~) = 0 and the above procedure terminates
immediately. Of course, this problem can be circumvented by a more clever
error indicator which, for example, also takes the values of the hierarchical
neighbors into account or involves more sophisticated area weighted norms. But
in principle such modifications of the truncation criterion are useless: Give me
your error indicator and I give you a function for which the recursive resolution
procedure will fail. The same problem appears if the function u is just a small
spike on a very fine level, for example u(x) = 4~20,35. There is no hope to detect
it by a recursive bisection approach and to resolve such a function properly.

Furthermore, for practical purposes, the descriptive notation (10) should not
allow for 'holes' in the table of the uu-coefficient values. We therefore restrict
our notation (10) to

uC'll"(x) = E u,, i • ~b,,i(x) (12)
(I, i) eat(u, s, II.ll)

where sd(u, e, LI.II) denotes the set of 'active' indices, i.e.

' (l ' i) : i ~ II' IlUl i" th' i (x) l l > g V

~(U, e, II.ll) : = ::l(k,J) :k ; l, IJUk,j " ~bk,j(X)lJ >-- t:, ~. (13)

supp(~bk,j) C~ supp(4q,i) ~ 0)

Here, supp(4~)= {x:4~(x)> 0} is the open support of 4~.

For the following assume that we have constructed a finite table of active
hierarchical coefficients ul, j which are associated to the active index set

~ (u , e, LI.II). Of course, by definition, these coefficients are not equivalent (except
of the corner points of our d-dimensional cube) to the values the function u
possesses in the associated points xi, i. Now the question arises how these nodal
values u(xl, i) can be reconstructed from the hierarchical coefficients u~, i of our
finite table. To this end, consider again the simple one-dimensional case:

El(l, i, ua, ub)
if :lut, i then

nt, i := (ua + u b) / 2 + ut, i
Ea(l + 1,2i - 1, ua, nt, i)
E~(l + 1,2i + 1, nt, i, ub)

else skip;
endif

Hi(l, i, ua, ub)
if 3nt, i then

ut, i := nl, i - (ua + u b) / 2
H i (l + 1 , 2 i - 1, ua, nz, i)
Hl(l + 1,2i + 1, nl, i, ub)

else skip;
endif

160 M. Griebel

With the procedure E 1, the nodal values are reconstructed and stored in nt, i.

We start with E1(1,1, u(0), u(1)). Analogously, the computation of the hierarchi-
cal coefficients ut, ~ from a finite table of given nodal values nt, ~ is performed by
the procedure H v We start with Hi(l, 1, u(0), u(1)). Note that these transforma-
tions are closely related to the prolongation procedure in classical multigrid and
the pyramid scheme and the refinement equation for the wavelet transforma-
tion. We see that, in both cases, we proceed level by level due to the recursion.
From this it gets clear why we don't want to allow for 'holes' in the table of
active coefficients.

The procedures E 1 and H1 implement the matrix vector multiplications

h ' =E l~ f f=Hl f f

where ff and ff contains the active hierarchical and nodal values respectively.
For reasons of simplicity we denote the associated matrices with the same letters
as the algorithms.

The generalization of the transformations Hx and E~ to the d-dimensional case
is straightforward: All we have to do is to call the procedures of the one-dimen-
sional case successively for all dimensions d under consideration on all d - 1-
dimensional manifolds, see also [10] for more details on that dimension-recur-
sive process. To this end we define the d-dimensional operators Y/and ~ where
the transformations take place in the j-th coordinate direction by

® +Hi,
i=l,i+j]

= ® Ii ®C.
i~ l , i~ j]

Here, / / j and Ej correspond to the one-dimensional transformations H 1 and E 1
(now used for the j-th coordinate) and Ij denotes the one-dimensional identity
for the j-th coordinate. Then, we obtain with

, ~ = ~ 1 ° . . . o ~ d =: C)J : la~j

~ = ~ 1 "-- ~a =: a o o Oj:,

the transformations involving all coordinate directions.

Note that the number of operations involved in Y and g~ is proportional to the
number of active indices.

Analogously to adapt , a procedure compress can be written easily which deletes
in a bottom up way the active coefficients u~, i with criterion llul,~" ~bl,ill < e. Here
again, 'holes' in the resulting table of active indices must be avoided. The
generalization to the d-dimensional case is straightforward.

Adaptive Sparse Grid Multilevel Methods for Elliptic PDEs 161

2.3. Hash Table Storage as Data Structure for Multiscale Methods

Now we are in the following situation: We (hopefully) resolved a continuous
function by a top down approach up to a prescribed accuracy using the threshold
e. In other words we computed a finite set of active indices and the correspond-
ing coefficient values. We now have to find a data structure which allows to
store, to retrieve and to access these data efficiently.

A first approach might be a binary tree structure. Tree data structures are quite
common in many adaptive codes for the multilevel solution of PDEs [4, 5, 32,
36]. There, different trees represent the hierarchies of nodes, edges and ele-
ments, while entities on one level of a tree represent one grid. Refining the
finest grid means adding new leaves to the tree. However, in order to adminis-
trate the nodes (unknowns), edges (stiffness matrix) and elements (grid), the
leaves of the trees have to be linked. This results in a number of pointers, both
for the tree and for the links between the trees. Many software packages need a
value of 400 and more bytes of memory per unknown for a scalar problem. In
three dimensions, numbers can be even higher. Thus, there is more memory
required for the administration of the data than for the numerical data itself.
But note the very economical data structure BASIS3 [27] which only uses about
80 bytes additional memory per unknown in two and three-dimensions.

The tree approach for our sparse grid method is inspired by the recursive
bisection algorithm to build the table of active coefficients. For the higher
dimensional case, we could use the tensor product structure, i.e. we could work
recursively in the number of dimensions and would obtain a binary tree (d-th
dimension) with nodes that have pointers to binary trees (d - 1-th dimension),
and so on. To understand this better, consider the two-dimensional case. Every
row in the adaptive sparse grid is a one-dimensional adaptive grid which can be
represented by a binary tree containing the corresponding grid points. The set of
all existing rows in the grid can be represented as a binary tree with pointers in
each node to the row grid lines. The modification for the boundaries is obvious.
Besides, also graph like data structures can be used. For more details, see [3].

Now, performing numerical operations on one grid often requires a complete
tree traversal. In addition to the computational operations, a number of index-
ing and administration operations have to be performed with degrades overall
performance. Of course it is possible to eliminate some of the tree traversals by
establishing additional data structures like linked lists or sparse matrices at the
expense of additional memory, but this results in more storage requirements and
complicates programming.

Therefore, we decided to use a hash table concept [31] instead. It is quite well
known in computer science for many years but, as far as we know, it was never
applied for adaptive multiscale methods. Thus, in the following, we discard the

162 M. Griebel

tree approach and consider directly our plain data. There, the structure informa-
tion is simply the finite set of active indices (1, i) ~ C (u , e, ILl[).

The idea of hash table storage is to map each entity (in our case the index pair
(i,i) ~ t~ 2a) to a hash-key which is used as an address in the hash table. The
entity and its associated data are stored and can be retrieved at that address in
the hash table which is implemented as a linear array of cells (buckets). The
reaping is done by a (deterministic) hash function. Since there are many more
possible different entities than different hash keys, the hash function is not
injective. Algorithms to resolve collisions are needed. It may also happen that
some entries in the hash table are left empty, because no present entity is
mapped to that key.

To deal with the collision case, basically two approaches are commonly used.
The first is the double hashing technique. Here, in case of a collision we
compute a new address by adding (modulo size of the hash table) to the present
address the result of the evaluation of a second hash funciton. This step is
iterated until, for example in the insertion case, a free cell in the hash table is
found. (Of course if the hash table is full, it must be sufficiently enlarged.) The
other technique, which we will use in the following, resolves the collision case by
the so-called chaining approach. Here, instead of only one data entry per hash
table address, a whole list of entries is dynamically stored. In case of a collision,
this list is searched and eventually enlarged. For an example of insertion of new
data in case of a collision see Fig. 1. The analogous approach is used in retrieve
and delete operations. For further details on hash tables, collision treatment and
optimal strategies see [31].

Hash tables allow to deal with locally adapted or compressed data in a simple
way. They give more or less direct access to the stored data (if the hash function
scatters the entries broad enough and there are enough different cells in the
hash table), i.e. they are proven to have a O(1) complexity with a low constant if
a statistical setting is assumed. Furthermore, they need no additional storage
overhead for logical connectivities, like tree-type data structures which are
usually used in adaptive finite element codes, see [5] and the references cited
therein. Finally, they are easy to program and to handle and they allow a
straightforward implementation of multilevel algorithms on top of them. Mean-
while we applied the hash storage technique also successfully for a conventional
adaptive multigrid method, see [22, 23]. Besides a hand-written code, we presently
use the hash table implementation of an extended version of the C+ + standard
template library (STL) [35], which uses chaining, i.e. linked lists, for the resolu-
tion of collisions and which provides automatic resizing. So the number of cells
will be kept proportional to the number of entries and we will only have to
bother with a well suited hash function.

We developed different hash functions and tested them for adaptively refined
sparse grids in the case of smooth and singular functions (point- and line

Adaptive Sparse Grid Multilevel Methods for Elliptic PDEs 163

i nser t

P,q

Figure 1. Collision treatment by chaining for the case of insertion of data

singularities) for two-, three- and higher-dimensional cases. We used the hash
function

h(l,i,d) = (~ (2~J.ij).P(j).P(p-j)) mod m (14)
j = l

with p = 43-(d - 2). 10, where P(k) is the k-th prime number and m denotes
the size of the hash table. The form of this hash function is gained by a
straightforward generalization of the well known principles for hash functions to
the d-dimensional case. The specific choice of the above prime numbers was
determined by exhaustive numerical experiments. Here, we considered various
types of lower-dimensional singular functions (point-, line-, surface-type singu-
larities, etc.) as well as smooth functions with up to nine dimensions. It turned
out that in all considered cases (smooth and singular, low and high-dimensional)
the hash function scatters the data quite well and distributes them more or less
equally over the hash-table. Examples are given in Figs. 2-4.

There, we show the function (upper left) and the grid obtained by adaptive
refinement of the function with a given tolerance e (upper right). Furthermore,
we give the distribution of the points in the hash table (lower left). The x-axis
denotes the address in the hash table, the y-axis gives the number of data to be
stored under this location by chaining, i.e. it gives the length of the respective
chain. Finally, we show a diagram illustrating the number of chains with the
same length (lower right). The x-axis denotes the length of the chain, the y-axis
counts the number of chains with length x. For both, the smooth function and
the functions with point singularity and line singularity where strong adaptive
refinement takes place, we clearly see that the hash function works well: The
data get equally distributed over the hash table, the hash table is equally filled
and the involved chains are not degenerated.

The costs of a hash table access consist of the evaluation of the hash function
and the collision treatment. The evaluation of (14) involves 4d integer opera-

164 M. Griebel

0.6

0.4

(1,(

' • ' i ' , , , i ' ' ' i , , , i • , ,

: ; i : •i •: • i
" " : " : ' " i ' ' ' : • . : . ! . ! . :

:-:L:'21"i:':[:.;.:.i.:i.:.l:i.:.l:.i • i. : i..

. . : . . ~ . : . J . . : . @ : . . L - : - : . . . I . . . : : . . . L . . : ~ . . . :
• i.~+l+i+ : ! . ~ . i . - i . i : . ! • i

• . . ; . [. :

• ! . !

• : ! • i • : •

0.0 0.2 0.4 0,6 0,8

21~0

0 1.0x10 4 2,0x10 4 3.OxlO 4 0 2 A, ~ 8 'iO 12

Figure 2. Smooth function, u(x, y) = sinh(Tr(1 - x))sin0ry)/sinh(Tr), ~ = 1.9.10 - 6 , • = [0 , 1] 2 , the
size of the hash table is 3.10 4

tions if we precompute and store the values P(j) .P (p - j) . The collision
t reatment involves q comparisons of level and index number pairs (2 d integer
comparisons) where q denotes the respective chain length. Altogether, the costs
of a hash table access are bounded by

(4 + q . 2) . d (15)

integer operations with ~ denoting the maximal chain length. If we use a hash
table implementation with automatic resizing like that of the C+ + standard
template library, we can control the maximal chain length explicity.

Using such a hash table approach, programming of algorithms that work with
finite dimensional approximations of functions is easy. We address the data and

Adaptive Sparse Grid Multilevel Methods for Elliptic P D E s 165

I I ~ i I

1 . (.

! " ~" " i ' " ; - :

0.0 E..,... -[~ ~[" '..../

: " : ' ' ' i ' ' ' : ' :

- 0 . 5 ,

- L 0
I I I , , 1 , I I

- I . 0 - 0 . 5 0 ,0 0.5 1.0

8x104 ' ' ' I • ' ' I ' ' ' i ' ' ' i ' , • i ' ' ' i '

~ x lO 4

4x104

2x104 [-

O I . , , I , , , I , , , [, L , I , , , I , , ,

0 I .O x105 2-Qx105 ,3.0X105 4.0 x l o5 5 .0x lO 5 0 14

I , ~ I , , , I , , . [, L

2 4 6 8 10 12

Figure 3. Regularized point singularity, u(x , y) = 1 / (/10 -3 - x 2 - y 2 1 + 6) , 6 = 10 -3 , c = 10 - z , l~ =
[- 1,1] 2, t h e s ize of the hash table is 540 .672

work with them simply by means of the multi-indices 1 and i. All code can be
written just using these indices as (abstract) data structures and the nasty details
where and how the data are stored are completely hidden in the hash table
module.

3. Operations and Operators

Up to now we are able to represent and store finite dimensional approximations
to functions properly. Now, we turn to standard operations like addition,
subtraction, multiplication, etc., working with such e-truncated functions. Fur-
thermore, we consider differential operators on such functions.

166 M. Griebel

i , . , [• , , [, , , i , , , i • , ,

. i

: . ~ :.,:-,~

0,0

i:H'i'i'r ' !

, . i : . !LL- . ,
, , I o i , I , J , I

0 . 2 Q A Q . g ~ . g 1.0

2,~0~ i I I , ' ,

200C

tOiX

50C

, I , i , , I

o 200o ,,ooo moo moo 1oo00 ~ io is 2o

Figure 4. Regularized line singularity, u(x, y) = 1/(10.3 - x 2 _y21 + 6), 6 = 10-1, e = 5.10- 5, the
size of the hash table is 11.264

3.1. An Algebra of Function Operations

Using the r ep re sen t a t i on (4) o f a cont inuous funct ion, it is d i rect ly clear how the
add i t ion or subt rac t ion of two funct ions can be pe r fo rmed : Al l we have to do is
to add or subt rac t thei r coefficients to ob ta in the resul t with respec t to the
r ep re sen t a t i on (4), i.e.

u + o = E r a , , - + , , , (x) + E o , , , . + , , i (x) = E (u, , i _+ v , ,0 • + , , , (x) .
l , i l , i l ,i

In the same way, we can p roceed in the finite d imens iona l case. D u e to the finite
n u m b e r of active coefficients, the summat ion process of the coefficients is finite.
Of course, the summat ion must be ex tended to the un ion of the two index sets

Adaptive Sparse Grid Multilevel Methods for Elliptic PDEs 167

induced by u and v and e.g. different truncation values el and ~'2, i.e.

ugx'[['ll-~- Vg2'[l'll = E (Ul,i -[- Vl,i) • ~ l , i (x) ,
(I, i) ~.~¢(u, e l , I1.11) o .~(v, e2, I1.11)

with missing coefficients taken to be zero.

The accuracy of the result can be controlled using the following theorem.

T h e o r e m 1. Let u~,' II.ll (x) and u~ 2' II.ll (x) be truncated functions o f u I (X) and u 2 (X)
with active index sets ~1 and ~¢2 in the sense of (13) with the thresholds e I and s 2
and error bounds

lul(x) < lu2(x) <

Then, the error bound for u~' (x) + u~=(x) is el + ~2 on the index set a¢ 3 which is
obtained by the union of the two index sets x¢ 1 and ae 2.

Proof:

[(ul(x) + u2(x)) - (u~,,llll(x) + u~2,11"(x))[(16)

= i(ul(X) - , (x)) + (u2(x) - u 2,H(x))i

< lUx(X) - U~x,ll.ll(x)[+ lU2(X) -- U~2,11.11(x)l

-~< ~1 -Jr- ~2
[]

Note that the truncation parameters gl, ~2 and the accuracies ax, ~2 are in
general different but closely related. Provided that the solution is sufficiently
smooth, they are proportional to each other with a proportionality constant
depending on the norm used in the adaptive refinement process. Otherwise
things are more complicated, but here the hierarchical basis theory [14] and the
wavelet theory [29, 30] give further insight, see also [12].

However, when we consider the multiplication of two functions u and v in
hierarchical representation, things are not so simple any more. Now the point-
wise multiplication of pairs of basis functions is involved, i.e.

U'U : Eul , i ' (/) l , i (X) " EU,,i ' (/)I , i(X) : E E(Ul , i 'Vk , j) ' t~ l , i (X) ' t /~k j (X)
l,i I,i l,i kj

but this results in general not more directly in a representation of the type (4).
We could try to express each product of two basis functions (which can be
locally a quadratic function) by means of the hierarchical representation in a
infinite series, i.e.

I,i,k,j
= : E Wm,,

m,r

but the computation of the coefficients Wm,'l'i'k'Jr and their reordering and summa-
tion is complicated and expensive. Furthermore, in the finite dimensional case,
this still would require an infinte series representation for the result.

168 M. Griebel

Therefore, we proceed as follows: We evaluate the multiplication pointwise in
the set of points {xl, i: (l,i)~s¢(u, ea, ll.ll)u~(v, e2,1H[)}. To this end, for u 81'11"11
and v ~z,lllt, we compute recursively by means of g" the nodal values in the points
with indices that belong to the union of the two active index sets. Then, for each
point, we multiply the associated values. This gives us (pointwise) the result of
the multiplication of the two approximate functions. Now, the problem remains
to span a continuous function again. To this end, we use the values in the points
to compute the hierarchical representation of the result by means of Z. Finally,
to get rid of resulting very small coefficients, we can make use of the compress
procedure.

Note that, in the intermediate step, we have no longer a basis representation.
Furthermore, between grid points we introduced a slight error, which however
can be shown to be of the size of the approximation order only. Thus, our
approach uses the multiplied nodal values to reconstruct by linear interpolation
the result of the function multiplication. This is in the same spirit as [1, 25].

The relative accuracy of the result can be controlled using the following
theorem.

Theorem 2. Let u~ 1' H(x) and u~ 2' llll(x) be truncated functions o f ul(x) and uz(x)
with active index sets sg 1 and d 2 in the sense o f (13) with the thresholds e 1 and e 2
and the error bounds

]Ul(X) -- U~I'II'II(X)] < g l ']U2(X) -- U~2'II'II(X)] < g2"

Then, error bounds for u(1" H(x). u~ 2, H(x) are

[ut(x)[" k2 + kl "[u~2'H(x)[and kl "[Uz(X)[+ lu;l'H(x)[• k2,

respectively, and a symmetric, but weaker error bound for uf~' H(x)-u~2' IIU(x) is

max(;u2(x) ;, lu~2,H N(x)l). ~1 + max(lul (x) l , lu;1," ~(x)l) . ~2

on the set ~'3 =sgl Use2.

Proof:

l u l (x) .u~(x) - u~,, ~ ~ (x) . u ? , ~-~(x) l
=o

= lUx(X) • u~(x) - u;~,lHl(x) -u?,"l l (x) + u~(x) .u~2,H(x) - Ul(X) .~? ," l l (x) I

= lUl(X) • (u 2 (x) -- u~2,11-]](x)) --[- (Ul (X) -- u;1,]l .]](x)).u~Z'[['[[(x)[

_< lUl(X)l. ~ + ~-lu~-H(x)l

Analogously, we obtain

lug(x) • u~(x) - u~,IHL(x), u~,L~-u(,01 _< ~1.1u~(x)l + lu~'~~(x)l. ~ .

Adaptive Sparse Grid Multilevel Methods for Elliptic PDEs 169

Summation and division by 2 gives finally

[Ul(X) .u2(x) - u~" I1.11 (x) .u~ 2' I1.11 (x))]

< x((lu2(x l 4- 14- (tul(x l 4-)

< max(luz(X)l ,]u~2,11ll(x)[) • ~ + max([u~(x)[,]u;a'llll(x)])" ~2 []

An analogous result (with obvious modifications and restrictions, division by
zero) can be shown for the division of two functions.

3. 2. Differential Operators and Finite Differences

In this section we want to develop finite difference operators for second order
elliptic partial differential operators L of the type

d d 0 0 d 0
Z = E E a i j (x) - - - - 4- E bi(x) + c(x) (17)

i=l j=l ~X i aXj i=l ~Xi

in d dimensions. The application of the operator L to u involves summations
and multiplications of functions and first and second order derivatives. In the
previous subsection, we described how to implement the summation and multi-
plication of discrete functions. What is left is the realization of the derivatives.

We consider the differentiation of a functions u in hierarchical representation.
Now the differentiation of the basis functions is required, i.e.

0U • O(~l,i(X)
~Xj ~Xj Eul ' i ' (~l ' i (X) = E u l ' i - - '

l,i l,i ~Xj

but this results, except for the constant function case, not in a representation of
the type (4) with basis functions ~b~, i. For the respective coordinate direction, we
could switch to the Haar system instead or we could try to express each
differentiated basis function (which is, for the respective coordinate direction,
locally a constant function involving jumps) by means of the hierarchical
representation in an infinite series, i.e.

= E
cgXj m, r

but the computation of the coefficients W~')r and their reordering and summa-
tion is costly and complicated. Furthermore, in the finite dimensional case, this
again would require an infinite series representation for the result due to the
jumps.

Therefore, we proceed as follows: For a derivative in the j-th coordinate
direction, we apply ~ to the hierarchical coefficients, i.e. we perform a transfor-
mation to nodal representation but only with respect to the j-th coordinate
direction. Then, for every interior grid point, we apply a standard 1D difference

170 M. Griebel

stencil. It is chosen as the narrowest stencil (in the j-th coordinate direction)
available on the sparse grid. Finally we use X~j to obtain the representation of
the result in hierarchical basis. For regular sparse grids, compare (9), the
well-known second order finite difference stencil for the first derivative (centered
difference)

1
2.2_,max;[-1 0 1]x,~.ij.lrnaxj (18)

or the both first order stencils (backward or forward difference)
1 1

2_,max j [- 1 10]x~j.,j,lmaxj, 2_l.,axj [0 --1 1]%,j,lmaxj (19)

a , jl/. For the approximation can be applied where lrnaxy := n + d - 1 - E / = I , j .
of a second derivative we consider the usual stencil

1
2_2.tmax ' [1 --2 1]x,,,i,,lfnax '. (20)

These stencils belong for each interior grid point to an equidistant grid (in the
j-th coordinate direction) with local mesh size 2 - lmaxj.

In the adaptive refinement case, we have in general no longer an equidistant
grid. Then, the stencil for each node is still chosen as the narrowest finite
difference stencil (in the j-th coordinate direction) available on the adaptive
sparse grid. Its entries are now the coefficients known from finite differences on
non-uniform grids.

We obtain the operator

3 2
S ~jj

for the second derivative in direction j and the operators

t~+,-,0

Oxj

for the first derivative in direction j, respectively. Here, in the regular sparse
grid case, ~ i represents the application of the one-dimensional stencil (20) for
coordinate direction j in each interior grid point and ~0.+,- represents the
application of the one-dimensional stencils (18) and (19), respectively, for
coordinate direction j in each interior grid point. In the adaptive case, their
non-uniform analogues are taken.

For example, the costs of an application of the d-dimensional Laplacian Ed= 1
~ s consist of the costs of the operators Xj, ~y, ~ and the costs of the
summation over d. To be precise, we have

d.(cost(~) + cost(.q~jj) + cost(~)) + (d - 1).cost(+).

Adaptive Sparse Grid Multilevel Methods for Elliptic PDEs 17l

Let M denote the total amount of sparse grid points. Since cost (~) = cos t (~) =
3M, cos t (~7) = 4M (or 6M in the adaptive case, respectively) and cost(+) = M
(neglecting boundary effects), we obtain altogether a work count of

work = (11 .d - 1) .M

or (1 3 . d - 1).M floating point operations, respectively. Additionally, besides
(2M + 2 M) . d simple integer in-/decrements (get neighboring points in ~ and
g,-, j = 1 d) and a few integer operations plus some tricky bit mask opera-
tions (get nearest neighboring points in ~,cji, j = 1 d), the integer operation
overhead according to (15) for a total of approximately l O d . M hash table
accesses must be taken into account. In the general case of adaptively refined
sparse grids, finding the index pairs of the nearest neighboring points in ~ j is
more involved. Here, an alternative implementation possibility is to store and
update these indices explicitly and thus to trade work against storage. Note that
the overall work count still compares favorable with many other existing adap-
tive implementations for two- and three-dimensional problems.

We also can switch from the hierarchical representation to the representation in
terms of pure nodal values in each grid point via an equivalency transformation
go o ~+,- ,0~ oZ. We obtain

~ s := g o~T~j o ..~jj o ~ o X = g . jo ~jj oZ. j (21)

for the second derivative in direction j and

:= go g+,- ,0 o g o x = go+ j o g+,- ,0 o & j

for the first derivatives in direction j, respectively. Here, X~ j : = ~ o go denotes
the transformation from nodal representation to hierarchical representation (in
the product sense) for all directions except the j-th coordinate direction, and
g . j : = ~ oj~denotes the analogue for the inverse transformation. Note that the
spectral properties of both representations are the same due to g =~,~1.

At least for the case of the regular sparse grid, using Taylor series expansion for
the difference stencil, the transformation and its inverse, plugging these into
each other and performing a lengthy and technical computation, the consistency
order of our hierarchical difference operators can be proven, see [37] for details.

Theorem 3. The operator ~ s is a second order consistent discretization for the
second derivative on the regular sparse grid of level n, 1 <_ j <_ d, i.e.

ii~jSgSu _ ~s Aull~ ___ c-h2llul[c3+a-l.l(~) (22)

for all u ~ c 3 + d - l ' l (~) . Here, h = 2 -n and R s and A s denote pomtwise restric-
tion mappings to the sparse grid points of level n.

The operator ~ s , o is a second order consistent discretization for the first derivative
on the regular sparse grid of level n, and the operators ~s,+,- are first order

172 M. Griebel

consistent discretizations for the first derivative on the regular sparse grid of level n,

l<_j<_d.

Proof. See [37].

Now, as an example, we consider the discretization ~ s +!~s2 of the Laplacian
in two dimensions on a regular sparse grid. Note first that the eigenvalues of the
corresponding matrix are real numbers despite the non-symmetry of the matrix.
The resulting largest and smallest eigenvalues are given in Table 1.

We see that l~mi n converges clearly to 2.7r 2= 19.739209, i.e. to the smallest
eigenvalue of the continuous operator. Furthermore we see from Table 1 that
the condition number is proportional to 22n like that of the 5 point stencil
matrix on a regular uniform grid. From this and Theorem 3 (consistency), we
can infer that our discretization is stable for regular sparse grids.

Mixed derivatives which are put together from second order discretizations ~s,0
for the first derivatives in different coordinate directions possess also consisten-
cies of second order.

In the case of adaptively refined sparse grids, in general, we encounter non-
equidistant lgrid spacing when we want to apply our one-dimensional stencils
within the ~S-operators. Then, due to lack of symmetry, an order of consistency
is lost (lower order terms in the Taylor series). To cope with this problem the
associated finite difference 3-point stencils for non-equidistant mesh sizes must
be locally modified in the same way as it is common for standard finite
difference discretizations on non-equidistant grids. This is in the same spirit as
the Shortley-Weller trick, see [24], pp. 78f. Also switching locally to a one-di-
mensional 5-point stencil helps to maintain the second order, if wanted.

4. Adaptive Solution of Elliptic Partial Differential Equations

Now we are able to assemble the discrete version of our differential operator
(17). It involves the summation and multiplication (by sufficiently resolved
coefficient functions) and the necessary difference operators. Written in matrix

Table 1. Eigenvalues hm~ ~ and hrnax and condition number J< of the discretized
s s Laplacian -~n +222, regular sparse grid case

level n I~mi n)trnax K factor

1 18.387503 69.61 3.79 - -
2 19.273832 263.39 13.66 3.61
3 19.587081 1031.81 52.67 3.86
4 19.691734 4103.95 208.43 3.96
5 19.724926 16391.99 831.24 3.99
6 19.735029 65543.99 3320.36 3.99

Adaptive Sparse Grid Multilevel Methods for Elliptic PDEs 173

notation, this would result in a linear system of equations to be solved. However,
in our approach, we never assemble the system matrix. For most iterative
solution methods this is not necessary anyway. Instead, only the action of the
system matrix onto the vector of an actual iterate is needed.

The corresponding matrix .9 ~s is in general non-symmmetric, even if we restrict
ourselves to a symmetric, selfadjoint continuous operator (17). Therefore, we
use as basic iterative scheme the BiCGstab iteration. This iteration is conver-
gent in any case. However its convergence is quite slow. To speed it up, we can
apply techniques known from multigrid. Here, the BiCGstab iteration over an
(adaptively refined) sparse grid serves as a smoother. To this end, similar to (21),
we switch from the hierarchical representation of our operator by the equiva-
lency transformation ~ o .~s o y to the nodal representation S ~s. The right
hand side is transformed accordingly. It is this transformed system to which we
apply the BiCGstab method if we use it as a smoother within a multigrid
method.

The coarser grids can be obtained by applying successively one step of the
compress operator globally, i.e. without any threshold. Now switching from
coarse grids to finer grids involve basically the application of the hierarchical
basis interpolation, which is trivially obtained by setting the hierarchical values
on finer levels to zero. This implements the prolongation operator. The imple-
mentation of the restriction operator is obvious. Altogether we have now all
ingredients to set up a (multiplicative) multigrid iteration [8, 25]. On this method
and its convergence properties will be reported elsewhere, especially in the case
of adaptively refined sparse grids.

Besides, also additive multilevel preconditioners have been developed. They are
either in the spirit of Bramble, Pasciak and Xu [7, 34] with necessary modifica-
tions [18, 19] to cope with problems posed by the tensor product construction of
our hierarchical basis. Alternatively, we developed a multilevel preconditioner
based on the prewavelet approach [19]. Note that, in all cases of multilevel
iterative solvers, good convergence rates independent on the number of un-
knowns can be obtained. However, the convergence rates are not independent
of the coefficient functions of the operator. Singular perturbed problems exhibit
a slowing down of the multilevel solver. Thus, as for conventional multigrid
methods, the problem of robustness is not yet solved.

These solvers or a few iterates of them can now be used within a cycle to adapt
the grid to the solution without a priori knowledge where to refine. Solving the
problem on one grid and employing an error indicator gives information, where
a finer grid is needed to resolve the solution. We start with a very coarse grid
and iterate the procedure, always adding new nodes. If a final error tolerance is
matched, we have a solution on a fine adapted grid. The technique is the same
as for other adaptive refinement methods [4, 5, 32, 36] and can be applied
straightforwardly also in our case. The difference is, however, in the refinement

174 M. Griebel

process. We work node-oriented not element-oriented. If a node index (1, i) has
been flagged for refinement then the nodes of the next 'level', which lie in its
influence cone, i.e. the set of nodes with indices {(1 + e j, i + (ij + 1). e j), j = 1, ..d}
are set active. As an indicator of the local error we use the criterions due to (11)
to flag a node for future refinement.

5. Numerical Experiments

In the following, we present the results of numerical experiments obtained with
our new sparse grid method.

First we consider the case of regular, i.e. non-adapted sparse grids.

Problem 1. We first consider the Poisson equation - A u = f in J2 = (0, 1) 2 with
Dirichlet boundary conditions and the exact solution u(x, y) = sinh(~r(1-x))
sin(¢ry)/sinh(~). The results for different levels of discretization are given in
Table 2. Here and in the following, we show the number of points involved in
the sparse grid finite difference discretization, the resulting approximation error
with respect to the L z- and L=-norms and the point-wise error in the point
(1/Tr, 1/Tr) and give furthermore their quotients on two successive levels. To
some extent, this reveals the order of approximation. We dearly see that the
accuracy behaves like 0 (2-2") . This is in contrast to the sparse grid Galerkin
method, see [9, 10]. There, only an accuracy of order O(n. 2 -2n) is achieved in
two dimensions. Note that this additional n-term is due to inherent interpola-
tion by means of the hierarchical basis, i.e. due to the Galerkin integration of
the (interpolated) right hand side.

Problem 2. Nowwe consider the Helmholz equation - Au + cu = f in J2 = (0, 1) 2,
c(x, y) = y / (x + 0.1), with Dirichlet boundary conditions and the exact solution
u(x, y)= eX+L Table 3 summarizes the results. We see that the approximation
order is even better than for Problem 1. This is due to the term c.u. In contrast
to the sparse grid Galerkin method, for the discretization of the Helmhotz term
no mass matrix is necessary. Thus no interpolation occurs and the approxima-
tion gets better with rising value of c.

Table 2, Error for Problem 1, regular sparse grid

level n points L~-error quotient Lz-error quotient pointwise quotient

2 49 3.15_ 3 - - 1.75_ 3 - - 2.74_ 3 - -
3 113 7.95_ 4 3.96 4.34_ 4 4.03 7.11_ 4 3.85
4 257 2.00_ 4 3.97 1.08 _ 4 4.02 1.80 _ ~ 3.95
5 577 5.03_ 5 3.98 2.69_ s 4.01 4,48_ 5 4.02
6 1281 1.26_ 5 4.00 6.71_6 4.01 1 . 1 2 5 4.00
7 2817 3.15_6 4.00 1.67_ 6 4.01 2.80_ 6 4.01)

Adaptive Sparse Grid Multilevel Methods for Elliptic PDEs

Table 3. Error for Problem 2, regular sparse grid

175

level n points L®-error quotient L2-error quotient pointwise quotient

2 49 4.56_ 4 - - 2.55_ 4 - - 2.81_ 4 - -
3 113 1.10_ 4 4.15 6.16_ 5 4.14 6.93_ 5 4.05
4 257 2.59_ 5 4.25 1.45_ 5 4.25 1.63_ 5 4.25
5 577 6.05_6 4.28 3 . 3 6 6 4.32 3.78_ 6 4.31
6 1281 1.39_ 6 4.39 7.70_ 7 4.36 8.65_ 7 4.37
7 2817 3.16_ 7 4.40 1.75_ 7 4.40 1.96_ 7 4.41

Problem 3. Next we have a look at the convection-diffusion equation - zlu +/3 .
Vu + cu = f in O = (0,1) 2, /3= (1,1), c = 1, with Dirichlet boundary conditions
and the exact solution u(x, y) = 4 sin(zrx) sin (Try). Note that, for the discretiza-
tion of the V-term, we used the central difference approach here. The results are
given in Table 4. We only see an approximation order of O(n" 2 -2n) or less. The
convection term reduces the accuracy somewhat, even if a central difference
stencil is used. Of course for larger convection strength, we would run into
trouble with this discretization (due to stability reasons) just like for a standard
full grid discretization.

Problem 4. Therefore we consider a second convection diffusion equation
/ft. = --Au+ Vu+cu=fin O = (0 , 1) 2, f l l 1 + X 2 + x Y , [32=ex+Y--eY+sin(xy),

c(x, y) = sin(x) sin(y), with Dirichlet boundary conditions and the exact solution
u(x, y) = 4sin (~rx) sin(zry). Now, we used the upwind approach for the dis-
cretization of the convection terms. Then, as can be seen from Table 5, the
accuracy deteriorates to first order, i.e. to about O(n-2-n) . We conducted

Table 4. Error for Problem 3, regular sparse grid

level n points L=-error quotient L2-error quotient pointwise quotient

2 49 2.59_ 1 - - 1.42_ 1 - - 1.79 1 - -
3 113 8.73_ 2 2.97 4.65_ z 3.05 6.64_ 2 2.70
4 257 2.87_ 2 3.04 1 . 4 9 2 3.12 2 . 2 4 2 2.96
5 577 9.09_ 3 3.16 4.64_ 3 3.21 7.06 3 3.17
6 1281 2 . 7 4 3 3.31 1.39_ 3 3.34 2.13_ 3 3.31
7 2817 8.05_ 4 3.40 4.08_ 4 3.41 6.26_ 4 3.40

Table 5. Error for Problem 4, regular sparse grid

level points L=-error quotient L2-error quotient pointwise quotient

2 49 3.15_ a - - 1.59_ 1 - - 1.36_ 1 - -
3 113 1.92_ 1 1.64 9.78_ ~ 1.63 9.03_ 2 1.51
4 257 1.12_ l 1.71 5.52_ 2 1.77 5.26_ 2 1.72
5 577 5.99_ 2 1.87 2.96_ 2 1.86 2.86_ 2 1.84
6 1281 3.12_ 2 1.92 1 . 5 4 2 1.92 1.50_ 2 1.91
7 2817 1.59_ 2 1.96 7 . 8 5 3 1.96 7.71_ 3 1.95

176 M. Griebel

Table 6. Error for Problem 1, adaptively refined sparse grid

e points L~-error quotient L2-error quotient pointwise quotient

0.1 12 4.23_ 1 - - 2.24_ 1 - - 2.42_ 1 - -
0.0125 38 1.21_ 2 34.95 4.49_ 3 49.88 8.95_ 3 27.40
0 . 2 5 2 105 2.33_ 3 5.19 8.06_ 4 5.57 2.14_ 4 41.82
0.3 -3 354 3.83 _ 4 6.08 1.78 _ 4 4.53 1.76 _ 5 12.16
0.35_ 4 1207 9 . 0 9 5 4.21 4.80_ 5 3.71 3.84_ 5 0.458
0.35_ 5 4448 1.53_ 5 5.94 8.13_ 6 5.90 5.17_ 6 7.43

further experiments for other model problems with large convection terms using
upwind discretizations. There, the same order of approximation was observed.
The results remained stable independent of the convection strength.

Now we turn to the case of adaptively refined grids.

Problem 1, adaptive case. First we reconsider Problem 1 but solve it on
adaptively refined grids. Here, the solution is adapted successively using the
criterion luul. 1 ___ e, i.e using the maximum-norm approach. Of course, the
solution of Problem 1 is quite smooth. Therefore, no substantial difference to
the case of the regular sparse grid can be expected. From Table 6 we see that,
due to the adaptivity, even slightly more grid points are needed to reach the
same absolute error size as for the regular sparse grid case of Table 2. With
respect to the ratio relative error reduction versus number of grid points they
are comparable.

Problem 5. Finally we consider a convection-diffusion problem with non-con-
stant convection coefficients which involves boundary ~yers. These must be
resolved adaptively. We deal with the equation - A u + ft. Vu + cu = f in O =
(0, 1) 2, / ~ = (e 3xy, sin(Tr(x +y))), c = 1, with Dirichlet boundary conditions and
the exact solution u (x , y) = x 3 . e 3"5~'y. Figure 5 shows the solution of this

0.8

' ' ' i ' ' ' i ' ' ' i , , , i • • ' i

-~:q+.+++..+.. :.,.t,+: .+.,+ !~
: ~LLLL;J.-]:71+++ .',-:1-++ -;--t+ ~+-? i÷ ~.+ 7~ "+" +++ I:.~:+

• I ' t ' 1 " / " : " : " " i ' / ' i " • ' ' i " " ' ; * L L I ' I " "

~ 1 i :.- :.!.,...,,~+, .!., .--r: :.. :?1..:~
• ; ;.. L L ;.[;;:I;I:[,:.E.{-? .LL;.I+LI.; LIAI:.:." .-;+-l.;:-" 1-5 '-"-.L" ~-

• " i " " i . : / : : . . + t . . , : ' "

i • ~ : I ' : ' i ' i i : - +

I

+ ? : i i

0 " 0 ~ " . •

I , • , i , . . j , , , i , , , i , , , I

0.0 0.2 0.4 0.6 0.8 L O

Figure 5. Solution (left), and adaptively refined grid (right), e = 0.03052

Adaptive Sparse Grid Multilevel Methods for Elliptic PDEs 177

Table 7. Error for Problem 5, adaptively refined sparse grid, upwind difference approach

6 points L~-error quotient Le-error quotient pointwise quotient

500 47 1.87+3 - - 4.67+2 -- 2.65+2 --
125 106 1.84+2 10.16 7.78+1 6.00 1.06+2 2.50
31.25 233 8.86+1 2.08 2.39+ l 3.26 1.51+1 7.02
7.813 516 3.06+ 1 2.90 1.73+ 1 1.38 2.82+ 1 0.54
1.953 1135 1.38+1 2.22 6.69+0 2.59 1.11+1 2.54
0.488 2475 6.98+0 1.98 3.33+0 2.01 5.60+0 1.98

problem and also an example of a sparse grid poduced by adaptive refinement.
Here, again, we used the simple error indicator which is based on the maximum
norm. It seems to work reasonable also in case of convection-diffusion. The
results are summarized in Table 7. For the discretization, we used the upwind
approach to be on the safe side. In comparison to the results of Table 5 (also
upwind discretization and moderate convection but on a regular sparse grid
without any adaptivity), now, a much better relative accuracy of the solution is
obtained with less grid points, i.e. adaptivity pays off and helps to approximately
regain the convergence order (i.e. error versus number of grid points) of a
smooth solution case. Note that in further experiments a local convex linear
combination of the upwind and central difference operator similar to the flux
difference splitting approach gave also good results with a better approximation
order.

6. Concluding Remarks

In this paper, we discussed the basic features of a simple adaptive method to
solve elliptic PDEs on sparse grids using a finite difference approach. We
developed an algebra of operations and we implemented differential operators
for finite dimensional function representations. These representations are stored
and manipulated using a hash table technique. Due to the tensor product
approach, the method can be easily generalized to the higher-dimensional case.
Although we gave only results for two-dimensional problems, the method works
also fine for three- and even higher-dimensional PDEs. We recently treated
9-dimensional problems.

Surely, the rectangular domain is a restriction of the method. Note however that
this disadvantage can be partly avoided by adaptively resolving complicated
domains according to their characteristic functions or by the transformation
technique as suggested in [10].

Note finally, that the interplay between the threshold ~ used in the error
indicators (11) and the achieved error accuracy is not fully clear for singular
solutions. Here, more work is necessary for the construction of global error
estimators from the local indicators we use in our sparse grid discretizations up
to now.

178 M. Griebel

Acknowledgement

I would like to thank Thomas Schiekofer very much for programming the new approach and
providing the data of the numerical experiments.

References

[1] Arandiga, F., Donat, R., Harten, A.: Multiresolution based on weighted averages of the hat
function: linear reconstruction. CAM Report 96-25, Dept. of Mathematics, UCLA, 1996.

[2] Babenko, K. I.: Approximation by trigonometric polynomials in a certain class of periodic
functions of several variables. Dokl. Akad. Nauk SSSR, 132, 982-985, (Russian); 672-765
(English translation), 1960.

[3] Balder, R.: Adaptive Verfahren fiir elliptische und parabolische Differentialgleichungen auf
diinnen Gittern. Dissertation, TU Miinchen, 1994.

[4] Bank, R.E., Dupont, T. F.: An optimal order process for solving elliptic finite element
equations. Math. Comp. 36, 967-975 (1981).

[5] Bastian, P.: Parallelle adaptive Mehrgitterverfahren. Stuttgart: B.G. Teubner 1996.
[6] Baszenski, G., Delvos, F. J., Jester, S.: Blending approximation with sine functions. In:

Numerical methods of approximation 9 (Braess, B., Schumaker, L. L., eds.). Int. Ser. Num.
Math. 105, 1-19 (1992).

[7] Bramble, J., Pasciak, J. P., Xu, J.: Parallel multilevel preconditioners. Math. Comp. 31,
333-390 (1990).

[8] Brandt, A.: Guide to multigrid development. In: Multigrid methods (Hackbusch, W., Trotten-
berg, U., eds.). Lecture Notes in Mathematics 960. Berlin, Heidelberg, New York: Springer,
1982.

[9] Bungartz, H. J.: Diinne Gitter und deren Anwendung bei der adaptiven I.~sung dcr dreidimen-
sionalen Poisson-Gleichung. Dissertation, Institut fiir Informatik, TU Miinchen, 1992.

[10] Bungartz, H. J., Dornseiffer, T.: Sparse grids: Recent developments for elliptic partial
differential equations. Rep. TUM-I9702, Institut fiir Informatik, TU Miinchen, 1997, submit-
ted to Proc 5th Europ. Conf. on Multigrid Methods, Stuttgart, 1996.

[111 Bungartz, H., Griebel, M.: A note on the complexity of the Poisson equation and related
elliptic equations for spaces of bounded mixed derivative. Report SFB256 No 524, University
of Bonn, 1997, submitted to J. Complexity.

[12] Dahlke, S.: Besov regularity for Dirichlet problems for divergence form operators in Lipschitz
domains. Report 138, Institut fiir Geometrie und Praktischc Mathematik, RWTH-Aachen,
1997.

[13] Delvos, F. J.: d-Variate Boolean Interpolation, J. Approx. Theory 34, 99-114 (1982).
[14] Faber, G.: Uber stetige Funktionen. Math. Anal. 66, 81-94 (1909).
[15] Gordon, W. J.: Distributive lattices and the approximation of multivariate functions. In:

Approximation with special emphasis on spline functions (Schoenberg, I. J., ed.), pp. 223-277.
New York: Academic Press, 1969.

[16] Griebel, M.: A parallelizable and vectorizable multi-level algorithm on sparse grids. In:
Parallel algorithms for partial differential equations. Proceedings of the Sixth GAMM-Semi-
nar (Hackbusch, W., ed.), pp. 94-199. Braunschweig: Vieweg 1991. (Notes on Numerical Fluid
Mechanics Vol. 31).

[17] Griebel, M.: Multilevelmethoden als Iterationsverfahrcn iiber Erzeugendensystemen. Teubncr
Skripten zur Numerik. Stuttgart: Teubner 1994.

[18] Griebel, M., Oswald, P.: On additive Schwarz preconditioners for sparse grid discretization.
Numer. Math. 66, 449-464 (1994).

[19] Griebel, M., Oswald, P.: Tensor-product-type subspace splittings and multilevel iterative
methods for anisotropic problems. Adv. Comput. Math. 4, 171-206 (1995).

[20] Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse
grid problems. In: iterative methods in linear algebra. (De Groen, P., Beauwens, R., eds.), pp.
263-281. North-Holland: Elsevier, 1992.

[21] Griebel, M., Zimmer, S., Zenger, C.: Multilevel Gauss-Seidel-algorithms for full and sparse
grid problems. Computing 49, 127-148 (1993).

[22] Griebel, M., Zumbusch, G.: Hash-storage techniques for adaptive multilevel solvers and their
domain decomposition parallelization. Proceedings of the Tenth International Conference on
Domain Decomposition Methods Boulder, Colorado, USA, August 10-14, 1997.

Adaptive Sparse Grid Multilevel Methods for Elliptic PDEs 179

[23] Griebel, M., Zumbusch, G.: Parallel multigrid in an adaptive PDE solver based on hashing.
Proceedings ParCo'97, Bonn, September 1997.

[24] Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner
Studienbiicher Mathematik. Stuttgart: Teubner 1986.

[25] Hackbusch, W.: Multigrid methods and applications. Berlin, Heidelberg, New York: Springer
1985.

[25] Harten, A.: Multiresolution representation and numerical algorithms: A brief review. NASA
ICASE report No 94-59, 1994.

[26] Hemker, P., Pflaum, C.: Approximation on partially ordered sets of regular grids. Appl. Num.
Anal. 25, 55-87 (1997).

[27] Hemker, P., de Zeeuw, P.: BASIS3: A data structure for 3-dimensional sparse grids. Technical
Report NM-R9321, CWI Amsterdam, The Netherlands, 1993.

[28] Hennart, J. P., Mund, E. M.: On the h- and p-versions of the extrapolated Gordon's projector
with applications to elliptic equations. SIAM J. Sci. Stat. Comput. 9, 773-791 (1988).

[29] Holschneider, M.: Localization properties of wavelet transforms. J. Math. Phys. 34, 3227-3244
(1993).

[30] Holschneider, M., Tchamitchian, P.: Pointwise regularity of Riemann's 'nowhere differen-
tiable' function. Invent. Math. 15, 157-175 (1991).

[31] Knuth, D. E.: The art of computer programming, vol 3, chapter 6.4. Reading: Addison-Wesley,
1975.

[32] Mitchell, W. F.: A comparison of adaptive refinement techniques for elliptic problems. ACM
Trans. Math. Software 15, 326-347 (1989).

[33] Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. CBMS-NFS
Regional Conference Series in Applied Mathematics, 63. Philadelphia: SIAM, 1992.

[34] Oswald, P.: Multilevel finite element approximation: theory and applications. Teubner Skripten
zur Numerik. Stuttgart: Teubner 1994.

[35] Plauger, P. J., Stepanov, A., Lee, M., Musser, D.: The standard template library. Englewood
Cliffs: Prentice-Hall, 1996.

[36] Rivara, M. C.: Algorithms for refining triangular grids suitable for adaptive and multigrid
techniques. Int. J. Numer. Methods Eng. 20, 745-756 (1984).

[37] Schiekofer, T.: Die Methode der Finiten Differenzen auf Diinnen Gittern zur adaptiven
Multilevel-Lrsung partieller Differentialgleichungen, Dissertation Universit~it Bonn. Institut
fiir Angewandte Mathematik, 1998.

[38] Smolyak, S. A.: Quadrature and interpolation formulas for tensor products of certain classes of
functions. Dokl. Akad. Nauk SSSR, 148, 1042-1045 (in Russian), 240-243 (English transla-
tion), 1963.

[39] Wasilkowsi, G. W., Wozniakowski, H.: Explicit cost hounds of algorithms for multivariate
tensor product probems. J. Complex. 11, 1-56 (1995).

[40] Yserentant, H.: On the multi-level splitting of finite element spaces. Numer. Math. 49,
379-412 (1986).

[41] Yserentant, H.: Hierarchical bases. In: Proc. ICIAM91, Washington (O'Malley, R. E., et al.,
eds.). Philadelphia: SLAM, 1992.

[42] Zenger, C.: Sparse grids. In: Parallel algorithms for partial differential equations. Proceedings
of the Sixth GAMM-Seminar, Kiel, 1990 (Hackbuseh, W., ed.), pp. 241-251. Notes on
Numerical Fluid Mechanics, Vol. 31. Braunschweig: Vieweg, 1991.

Michael Griebel
Institut fiir Angewandte Mathematik
Universit~it Bonn
D-53115 Bonn
Wegelerstr. 6
Federal Republic of Germany
e-mail: griebel@iam.uni-bonn.de

