GENERIC ONE-PARAMETER FAMILIES OF VECTOR FIELDS
ON TWO-DIMENSIONAL MANIFOLDS

by J. SOTOMAYOR

INTRODUCTION

In this paper we present a study on the theory of the topological variation of the
phase space of one-parameter families of vector fields (differential equations, flows).
This theory, also called bifurcation theory, has been developed since H. Poincaré from
several points of view; see, for example, [1, 2, 3, 4]. Here, we will be mainly interested
in a collection of one-parameter families of vector fields which has the following properties:
a) it is large with respect to all the families, and 4) its elements exhibit a topological
variation which is amenable to simple description.

Collections with properties ¢) and &) are currently called * generic ”’; they were
introduced in the global qualitative analysis of differential equations by M. Pcixoto [7],
S. Smale [g] and I. Kupka [12]. See¢ S. Smalc [10] for a thorough survey on this topic.

In this work we restrict ourselves to the case of two-dimensional compact manifolds,
where a very complete characterization of the set Z of structurally stable vector fields
has been given by M. Peixoto [8]. The way X is imbedded in the space X of all vector
fields and the study of ¢ generic ” one-parameter families of vector fields are closely
related. A vector field is structurally stable if its phase space does not change topologically
under small perturbations; a one-parameter family of vector fields exhibits the simpler
phase space topological variation the larger the intersection it has with %, or equivalently,
the smaller the intersection it has with its complement X—2X.

In this paper, in Part I, we define a set X, densely contained in X¥—X. We
prove that %, is an immersed Banach submanifold of codimension one in the Banach
manifold X. Also, we describe the variation of the phase space of vector fields in a
neighborhood of ;. In Part II, we prove that the * generic ” one-parameter families
of vector ficlds meet Z; transversally at points where they are not vector fields of Kupka-
Smale [12, 11]. See Theorems 1 (5, Part I) and 2 (1, Part IT) for a precise and complete
statement of these results.

Whether or not X, coincides with the “ regular (differentiable, or even Holder)

part > of codimension one of ¥—2Z immersed in ¥, remains an important non-trivial
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6 J. SOTOMAYOR

problem, related to delicate questions of “ closing lemma *’ type [8, 20], involving the
innermost structure of recurent trajectories.

The conception of the submanifold X, was motivated by [14], where we treated
the concept of first order structural stability, introduced by Andronov and Leontovich [13].
Part I extends the results of [14].

In section 6 of Part I we comment on first order structural stability and relate it
to Z;. Inscction g of Part IT we define the concept of structural stability for parametrized
families of vector fields and formulate some rclated conjectures.

In a forthcoming paper some of the methods, results and concepts of the present
paper are pursued to manifolds of higher dimension.

The main results of this work answer questions raised by M. Peixoto. We arc most
grateful to him, to S. Smale and to I. Kupka for fruitful conversations and manifold aid.

An announcement of the results in this work appeared in BAMS., 1968, Vol. 74, No. 4.

Pictures and references appear at the end of the paper.



I. — THE SUBMANIFOLD Zj

1. Preliminaries

Let X be a Banach manifold of class G* defined as in [15, p. 16}, i.c., X is locally
homeomorphic to an open set of some Banach space, the changes of coordinates being
G® functions.

Definition {x.1). — A subset ScX is said to be an imbedded Banach sub-
manifold of class C* and codimension & of X if every peS has a neighborhood N where
a C'-function f: N-—>RF is defined so that:

a) Df, : X,—>R¥, the derivative of f at p, is onto, and
b) f~'(0)=NnS.

Definition (x.2). — ScX is said to be an immersed Banach submanifold of class C*
and codimension % of X if there is a sequence {S,-}, i=1, 2, ..., of imbedded Banach

]

submanifolds of class C* and codimension % of X such that S;cS;,; and S =._l_JIS¢.

It follows from the Implicit Function Theorem [15, p. 15] that a submanifold S,
as defined in (1.1), has an atlas of class C* which makes the inclusion S—X an imbedding
in the usual sense [15, p. 20]. Also, if S is an immersed submanifold in the sense of (1.2),
the union of the atlases of S; defines on S an atlas, which makes it a manifold and makes
the inclusion S—>X a onc-to-one immersion in the usual sense [15, p. 19]. In this work
the Banach submanifolds will be defined through (1.1) and (1.2).

Let M? be a compact two-dimensional C* differentiable manifold. Denote by X'
the space of tangent vector fields of class C” defined on M?, endowed with the C'-topology.
X'’ is a Banach manifold in the sense of [15]; its atlas is given by the collection of identity
mappings of ¥” Banached by the C'-norms associated to finite coverings of M? by compact
coordinate neighborhoods.

If XeX', oy : M*XR—>M? will denote the flow generated by X; ¢4 is charac-

) 7
terized by —ox(p, 1) =X(ox(p, 1)), (£, 1)eM'XR and ox(p, 0)=p. ex(p, ) :R->M’

is the orbit of X passing through p; the image of an orbit, oriented but with no distin-
guished parametrization, is a trajectory of X.

Definition (1.3). — X and YeX' are said to be topologically equivalent if there is a
homeomorphism of M? onto itself mapping trajectories of X onto trajectories of Y. If
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X has a neighborhood N in X" such that X is topologically equivalent to every YeN,
then it is called structurally stable.

The set of structurally stable vector fields will be denoted by X7; its complement
in X" will be denoted by X]. It has been shown by M. Peixoto [8] that X" coincides
with the collection of vector fields X such that

a) X has all its singular points and periodic trajectories generic;

b) X does not have saddle connections; and

¢) the « and -limit sets of every trajectory of X are singular points or periodic
trajectories.

The collection of vector fields X satisfying a) and &) have been studied by
I.Kupka [12] and S. Smale [11] in a more general context; it will be denoted by [K-S]".
For future reference we recall some definitions of [5].

Definition (1.4). — a) A trajectory of X is called ordinary if it has a neighborhood N

in M? such that X|N is topologically equivalent to the horizontal field % in R®%, A
1
connected component of the (open) set of ordinary trajectories of X is called a canonical
region of X.
b) A critical region of X is a neighborhood N of a generic critical element (i.e. singular
point or periodic trajectory of X) 84, such that for Y close to X, Y has only one critical
element 3y in N and 3y is generic and of the same type of 8. See [5, p. 144].

2. Periodic trajectories

Since the evaluation map (X, p)—X(p) is of class C" on X' xXM? [16, p. 25],
it follows from [15, p. 94], taking X as paramecter, that ¢ : X’ X M®XR—->M? defined
by (x,p,t) >ox(p, t) is of class C'.

Preliminary definitions (2.x). — Let U and S be CG® arcs transversal to XeX";
i.e., U=u(l), S=s(I), where u, s are C° imbeddings of I=[—1, 1] into M? such
that (%) and X(u(x)), (resp. s’(x) and X(s(x))) arec lincarly independent. Assume that
u(0)=p, s(o)=g¢q and ¢.{p, v)=4¢. Let (x, x,) be a system of coordinates around g¢;
2
assume that x,(q)=x,(¢)=o0, 6—=X, xp05=Id, and x;05=0. By continuity, x,(¢oy(x,?))
*1
is defined in a neighborhood of (X, p, 1)e¥" X UxR; also, x;(px(p,<))=0 and:

2 wox(b, ) =1.

By the Implicit Function Theorem, there is a unique function T :ByxXUy;—R such
that T(X, p)=< and x,(py(z, t))=o0 for (Y,u)eByxU, only if ¢=T(Y, ). Define
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GENERIC ONE-PARAMETER FAMILIES OF VECTOR FIELDS 9

7w :ByXUy—>S by =n(Y, u)=oy(y, T(U,u)); thus, = as well as my==(Y, ) :Uy,—>S
are of class G'. If y is a periodic trajectory of period = of XeX', p=gey, and U=S,
wy : Upy—>U s called the Poincaré transformation associated to Uy, U, p, y. v is called
generic if | wg(0) [+ 1; if ni(0)==1 and =@(0)#o0, orif wi(0)=—1 and (7%)¥(0)+o0,
v is called quasi-generic. The derivatives of my are computed in g-coordinates of U. It
is easy to verify that the above definitions do not depend cither on # or pey. Also,
v is two sided (i.e. has a trivial normal bundle) if and only if =% (0)>o.

Proposition (2.2). — Denote by Q , the set of vector fiellds XeX', r>9 such that:

1) X has one quasi-generic periodic trajectory as unique non-generic periodic trajectory.
2) X has only generic singular points and does not have saddle connections.
3) The o and o-limit sets of any trajectory of X are singular points or periodic trajectories.

Then, Q , is an immersed Banach submanifold of class CT~* and codimension one of X'
Sfurthermore, every XeQ, has a neighborhood By in Q , so that every YeB,; is topologically
equivalent to X.

For the sake of reference, the concepts of generic singular points and saddle
conncction involved in the statement of (2.2), are reviewed in (3.1) and (3.4). The
proof of (2.2) depends on several lemmas.

Lemma (2.3). — Let v be a quasi-generic periodic trajectory of X. Then y has a fundamental
system of closed neighborhoods {Ng}, where © is a small real number. If y is one-sided (resp.
two-sided) ONg is a closed curve (resp. the union of two closed curves) transversal to X.

Proof. — If v is two sided, it has a tubular neighborhood diffeomorphic to a plane
annulus N. Therefore X may be assumed to be a (plane) vector ficld on N. The
conditions my(0)=1, w§(0)+o0 imply that v is orbitally semi-stable, i.c. v is the «-limit
sct of the trajectories on one of its sides and the w-limit set of trajectories on the other
side. By properly rotating X in N by a angle O, two periodic trajectories of the rotated
vector field are obtained. These trajectories are obviously transversal to X and bound
a neighborhood Ng of y. This follows from [1, p. 18].

If v is one sided, it has a tubular neighborhood diffeomorphic to a Moebius band N,
with orientable double covering P :N—N, where N is a plane ring. Call ¥ and X
the liftings of y and X; v as well as¥ are orbitally stable or unstable depending on (%)% (o)
being negative or positive. In either case, by rotating X of an angle ©, a periodic tra-
jectory of the rotated vector field is obtained [1]. This trajectory and ¥ bound an open

set N o- The Ng= Int(_P_(N—@)) give the desired system of neighborhoods. dNj is trans-
versal to X by construction.

Lemma (2.4). — Let XeX', r>2, have a quasi-generic periodic trajectory vy of period ©(X)
such that wy(o)=1 and =¥(0)#o.
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Let € and T be given positive numbers.  Then there are neighborhoods B of X and N of v,
and a G~ function f:B—>R such that

1) ON is union of two closed curves Gy and C,, transversal to every YeB.

2) YeB has one periodic trajectory which is quasi-generic, contained in N if and only if f(Y)=o;
if f(Y)<o, Y has two periodic trajectories, both generic, contained in N3 if f(Y)>o0, Y has
no periodic trajectory in N. Furthermore, f(X)=o0 and dfx+o.

3) The period of any periodic trajectory of YeB contained in N is within e of ©(X). Also,
every trajectory of YeB meeting N spends there a time greater than T.

Proof. — Define G, :ByxUy,—R by G(Y, u)=n(Y, u)—u, where =, By and U,
oG &
arc defined in (2.1). —6——1(X, 0)=n%(0)—1=o0 and 72—1 (X, 0) == (0) +0; therefore,
u u
by the Implicit Function Theorem, there is a neighborhood B of X, BcB,, and a

oG
unique " ~! function G, : B—>Uc U, suchthat G,(X)=0 and a—l(Y, u)=ny(u)—1=0
for YeB, only if u=G,(Y). *
For definiteness assume =l(0)>0; the case =i (0)<<o is similar. By continuity,

it is possible to assume that B and U, satisfy 8%(;:_3 (Y, u)>o, for (Y,u)eBxU,, and
G,(Y, x)>o0, for xedU;,.

Furthermore, U; may be taken so that U;=UynN where N=N, (see (2.3))
for some small ©; B may be taken so that every YeB is transversal to oN.

Define f(Y)=G(Y, G,(Y)); from the construction above, it follows that f(Y)
is the minimum of =y (u)—u, uzeU;; also, ny(x)<1 for x<Gy(Y) and =y(x)>1 for
x> G,(Y). Thus, my has one fixed point, G,(Y), only if f(Y)=o; if f(Y)>o, it has
no fixed point; if f(Y)<o, by the Intcrmediate Value Theorem, it has two fixed points,
both generic, one on each side of G,(Y).

Obviously f(X)=o0; we prove that dfy+o.

or o oG, oG,
V)= 22 (X, 0)+ (X, 0) T2 (0 T )

on . or
= (X, 0), since o (X, 0)=1.

0 . . . .
For V= 8o where (x,, x,) is the coordinate system in (2.1) and g is a bump function
Xo

with support in |%|<3, dfy(V)=]" g(x,0)dr+0. In fact,

or d < v d o
(X, 0) = m(X 4 AV, )y = () 0= B (o),

d.
where B(A) is the solution of di:=Xg(x1,x2) passing through x,=—38, x,=o0; the
1

expression for dfy(V)=p'(o) follows from a known formula for the derivative of solutions
of differential equations depending on paramcters [15, p. 94].
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SiY) <o S(¥)=o SY)>o

Fie. 2. 1. — Quasi generic periodic orbit

This proves (1) and (2), since the fixed points of 7y and the periodic trajectories
of Y contained in N are in one-to-one correspondence; (3) is immediate by continuity,
since it is satisfled for Y=X. See Fig. {2.1) for a graphical illustration.

Remarks (2.4.1). — a) Assume YeB points inward (resp. outward) N on C,
(resp. Cy). Thusfor f(Y)>o0 when Y has no periodic trajectory, ¢y defines a C’-mapping
3y : G;—Cy; (3) implies that the arc of trajectory of Y joining m to 3y (m), meCy, spends
in N a time greater than T,. See Fig. (2.1).

b) If f{Y)<o, the  (resp. a)-limit set of every trajectory of Y passing through C,
(resp. C,), is a periodic trajectory of Y contained in N. This is obvious by the Poincaré-
Bendixon Theorem.

¢) If M? is endowed with a Riemannian metric and L,>o0 is given, B of (2.4)
may be taken so that the length of every arc of trajectory of Y, f(Y)>o joining m to 8y(m),
meC,, is greater than L,. This is obvious since the length of Y(p) is bounded away

from zero in N, say greater than K>o, and the length of the trajectory is greater
than T,K.

Lemma (2.5). — Gall Q,(n) the set of XeQ, (notation of (2.2), (2.3)) suck that
its quasi-generic periodic trajectory, vy, 1s two-sided and has period ~(X)<n.

Q o(n) is an imbedded Banach submanifold of class G’ " and codimension one of X'. Also,
every XeQ ,(n) has a neighborhood B, in Q ,(n) such that every YeB, is topologically equi-
valent to X.

Proof. — Assume the notation in (2.4). Take e<n—=z(X) and T,>n. Call M}
the manifold with boundary M?—Int N. For Ye¥’, call Y,=Y|M;. X, is trans-
versal to dM:=20N, has only generic periodic trajectories, and satisfics conditions (2)
and (3) of (2.2). Since these conditions arc open and characterize X" in M2, B may
be taken so that Y;, YeB, is topologically equivalent to X, ; denote by £,(Y) the homo-
morphism of M? onto itself mapping trajectories of X, onto those of Yy; £,(Y) can be
arbitrarily close to the identity of M? by properly reducing B. The above assertions
follow from [s5, 8].

Thus if f(Y)<o, from (2.4) and the characterization of X it follows that YeX’.
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If f(Y)>o cvery periodic trajectory of Y (if any) which mects N has, by (2.4), period
greater than Ty>n. Thercfore, f~1(0)=BnQ,(n). If YeBnQ,(n)=B,, £(Y) can
be extended to M? mapping trajectories of X onto trajectories of Y.

This is done below, following [5, p.- 153]. Call #,eC,, ¢=1, 2, the points of
intersection of 8N and U. Call p,=#h,(Y)(p,); let U be a Q! arc close to U joining py
to p,. U is transversal to oN and Y, for Y close to X, since then B, is close to ;.

To extend £,(Y) to £(Y) defined in Int N, map the trajectory of X through n,eGC;
(resp. G,) onto the trajectory of Y through 7y=£,(Y)(n,) in the following way. ¢y (n,,?)
and o@y(7,, t) meet, for £>0 (resp. ¢<o0), Int U and Int U respectively in monotonic

sequences n; and 7%;, i=1,2, ..., tending respectively to p=v5;nU and p=vyynU.
Map the arc mm, , (resp. m;_;m;) onto %;7;,, (resp. #;_, ;) by ratio of arc length, i.e., n is

-
[CRCES

Ly I3 o
|=I|mn /|77 1| where the bars indicate arc length of the
corresponding arc, measured in the positive sense from the left extreme of the arc.  Finally,

~
mapped to 7 if |nn]/|

map yy= [:; onto szﬁ' by ratio of arc length. Since every point of N belongs to
one trajectory, £(Y) is a one-to-one mapping of N onto itself, sending trajectorics of X
onto those of Y. A(Y) is a homeomorphism; it is continuous outside of vy by standard
continuity of trajectorics on initial data, it is continuous on yy as in [5, p. 153] by a
lemma in [5, p. 153] (this lemma will be used several times in this work, for the sake
of reference it is stated in (3.9.1 4)). This ends the proof of (2.5).

Lemma (2.6). — Let XeX', r>g, have a quasi-generic periodic trajectory vy of period ©(X)
such that % (0)=—1 and (7%)®(0)*0. Then, given >0, there are neighborhoods B of X
and N of vx and a C' =1 function f:B—R such that:

1) &N is a curve transversal to every YeB.

2) YeB has one periodic trajectory, which is quasi-generic and one-sided, contained in N
if and only if f(X)=o0; if f(X}>o0, Y has two periodic trajectories both generic, only one being
one-sided, contained in N; if f(Y)<o, YeB has one one-sided periodic trajectory, which is generic,
contained in N. Furthermore, f(X)=o0 and dfyxo.

3) A periodic trajectory of YeB contained in N has period within € of =(X) if it is one-sided,
and within e of 2t(X) if it is two-sided.

Proof. — Assume that (n%)®(0)<o; the case (n%)®(0)>0 is similar. Let
G, : ByxU,—R be defined, as in (2.4), by Gy(Y, u)=n(Y, u)—u. G,(X,0)=0 and
oG
7}—} (X, 0) =mwy(0)—1=—2. Therefore, by the Implicit Function Theorem, therc is a
u
neighborhood B of X, BcB,, and a C' function % :B—U,cU, such that k(X)=o0
and Gy(Y, 2(Y)) ==y (k(Y))—k(Y)=o0, for YeB. Thus k(Y) is the unique fixed point
of my contained in U,.
By continuity, B and U, can be taken so that ='(x)<o and (7%)®(Y)<o for

YeB and ueU,, and 7%(U,)cU,. The last choice of U, is possible since ny=-—1

12



GENERIC ONE-PARAMETER FAMILIES OF VECTOR FIELDS 13

implies (7%)®(0)=o0, and =% and = arc (topologically) contractions since (n%)®(0)<o.

U, can be taken so that U,=NnU,, where N=N, for some small @ (sce (2.3)).

Define A(Y)—=ny(R(Y))+1. If f(Y)>o0, my and n5 have £(Y) as unique fixed
point; £(Y) is a generic fixed point of =y only if f(X)>o0. If f(Y)<o, =% has three
fixed points: &(Y), £,(X) and £,(Y)=n,({;(Y)), all generic. The negation of any of
these assertions is not compatible with (r%)®<o.

8x o2 2

For VeX', dfy (V)= - (X, 0) 4~ (V).dkg(V). Let V=g(xy, 1)1, %, Where
u 2

(%1, x,) is the coordinate system of (2.1) and g is a bump function with support |x;[<3.

A straightforward computation similar to that in (2.4) shows that dk(V)=o0 and:
*r

oudv

8
(X, 0)=—[  glx, o) o.
-8

Thus dfy(V)=*o.
The last assertion of (2.6) is immediate, by continuity of T defined in (2.1).

Lemma (2.7). — Call Q'y(n) the set of XeQ, (Prop. (2.2)) such that its quasi-generic
periodic trajectory, vy, is one-sided, with period ~(X)<n.

Q. (n) is an imbedded Banach submanifold of class C'~" and codimension one of X'.

Furthermore, Qy(n) is open in X and every XeQYy(n) has a neighborhood B, in Qy(n)
such that every YeB, is topologically equivalent to X.

Progf. — Similar to the proof of (2.5), using (2.6) in this case. The construction
of the topological equivalence is formally that of (2.5), but in the present case N =C
and the trajectory through n,eC meets Int U in a sequence {n;} such that {n,} is
decreasing and {n,; .,} is increasing, both converging monotonically to p=y,nU. The

same holds for Y, f(Y)=o0, and its corresponding sequence {7;} in U; the map of Mgifg; 11

onto @i“ and yy onto yy by ratio of arc length produces the desired topological
cquivalence in N. The openness of Q ,(n) follows from the fact that every Y close to X,
f(Y)*#o0, is in 37, since Y is so in M2 and N, N being an attractive region (sink).
Proof of Proposition (2.2). — Take S;=Q,({)uQ,(i) for i=1,2,...; by (2.4)
Remark a), (2.5), and (2.%), S;is an imbedded submanifold of class C"~! and codimension

one of ¥'. Since Q2=,l__JlS,., (2.2) follows (sce (1.2)).

Remarks (2.8). — a) Since each Q),(7) is open in X, Q,g(o):lEJQ_'z(i) is an
imbedded submanifold of class C"~! and codimension one of ¥’, open in X.

b) Call Q, the subsct of Q,, of fields X which satisfy the additional following
axiom:

4) The quasi-generic periodic trajectory of X is not both « and w-limit set of
cither saddle separatrices or of any trajectory different from itself.

13



14 J. SOTOMAYOR

Obviously, N
Q.(0)cQ.. -

Proposition (2.2) holds for Qz, changing immersed by imbedded. Furthermore, Q, is
open in X7.

This follows from the openness of each Qz(n)zﬁian’z(n), and the openness
of Q,(0). In fact, if XeQ,(n) and vy is, say, the w-limit set of saddle separatrices,
which a fortiori mect C,, then all the trajectories through C, have the same «-limit
set, a generic singular point or periodic trajectory Ly contained in a critical region N,
with oN' transversal to X (sce [5], or (1.4) for the definition of critical region). We
can assume in this case that C, is part of dN*. Thercfore, when f(Y)>o, 3;:C,—>C,
is dcfined and Ly, the generic singular point or periodic trajectory of Y in NY, is the
w-limit set of all trajectories through NuN'=N? which works as a critical region
for Ly. Thus, since Yisin X', in M?—Int N* (X is so), it is in £ in M?; the decom-
position of M? in critical and canonical regions of Y is the same as that for Y in M?—Int N?
plus the critical region NZ.

When f(Y)<o, YeX', also when XeQ,(n). This follows from a similar analysis
using N?*=N and taking into account (2.4) and Remark 4) in (2.4.1). This shows
that BnX;=BnQ,(n)=f""(0); hence the assertion above is proved.

¢) If v is both the a and w-limit of saddle separatrices it can be shown that there
is Y, f{(Y)>o, arbitrarily close to X, which has saddle connections meecting N which,
by Remark ¢) after (2.4) have length arbitrarily large.

d) If there is a trajectory n of X which has vy as a and c-limit set, either all
trajcctories of X have this property and M?=T? or K? or X has saddle scparatrices
which have vy as « and o-limit sct.  This is shown by looking at the canonical region R
of X which contains 7; R is either a cylinder with boundary G,uC, whecre the flow
is parallel, or is a region bounded by arcs of C; and G, and saddle separatrices meeting
G, and G,.

In the first case, it can be shown that there is Y, f(Y)>o, arbitrarily closc to X,
which has non-generic periodic trajectorics mceting N.  When M?=T? Y can be
found with irrational rotation number, thus exhibiting rccurrent orbits dense in T2
This is shown by considering the rotation number py of Y relative to GC,, which is defined
when f(Y)>o, and showing that py—oco when Y—X, thus passing through irrational
values and also through rational values for Y at the boundary of 37, and the assertion
follows for M?=T?% TFor M?=K?2 the assertion, left as an opcn question in [14],
has a more dclicate proof communicated to us by I. Kupka (unpublished work).

e¢) We summarize 4). Q4,=Q,—Q, is open in Q, and its intrinsic topology
is finer (has more open sets) than its ambient topology.

The fact that for XE(NI2 and e>o0 small f~'((—¢, 0))c®, while f~*((o, €))
is not completely contained in 27, can be cxpressed by asserting that Z"u le is a submani-
fold of X* with boundary Q‘?.

14



GENERIC ONE-PARAMETER FAMILIES OF VECTOR FIELDS 15

3. Singular Points.

Preliminary Definitions (3.1). — [V, X] stands for the Lie bracket of V and X.
Let peM? be a singular point of XeX’, r>1. For any VeX', [V, X](p) depends
only on V(p), as follows from a straightforward computation taking into account that
X(p)=o0. Thus, it is possible to define an endomorphism DX, of the tangent space T,
of M? at p; DX (v)=[V, X](p), where V(p)=0. The determinant and trace of DX,
will be denoted respectively by A(X, p) and (X, p).

A singular point p of X is called simple if DX, is an isomorphism, i.c. if A(X, p) #o.
It is called generic if DX has cigenvalues with nonvanishing real parts. If the eigenvalues
are real and have opposite sign, p is called a saddle; if they have equal sign, p is called
a node. If the eigenvalues of DX are complex conjugate, p is called a focus.

Assume r>2. Call A and A, the eigenvalues of DX,. Let A, =o0 and A+o.
Denote by T; and T, the eigenspaces of DX, associated respectively to A; and 3,. Gall
m, : T,—>T, the projection of T, onto T, parallel to T,. For 2eT;, v+o0, define
A(X, p,0) by = [V, [V, X]1(p)=A(X, p, v)v, where VeX is an cxtension of v.

A,(X, p, v) does not depend on V, as it is easy to show. Also,

Ay(X, p, ko) =kA1(X’ b, Z)),

for any k+o0. If A(X, p, v)+0 for some (and for all) v+o0, piscalled a saddle-node of X.

Assume the notation above. Denote by u# the covector on T, such that =;=wu;
denote by X, #* and u;, respectively, the components of X, » and #, with respect to a
system of coordinates, (¥, ¥,), around p. Then:

A, gy )=V, [V, XT ()= B 2%

1,5, % 3xj 0x,

(0)0 ;.

In particular, A, does not depend on V. This follows from a straightforward
computation.

Lemma (3.2). — Let p be a saddle-node of XeX", r>2. Then there is a neighborhood B
of X, a neighborhood N of p, and a C'~! function f:B—R such that:

1) YeB has a saddle-node as unique singular point in N if and only if f(Y)=o0; if
f(Y)<o, Y has two singular points, both generic, one saddle and one node, in Nj if f(Y)>o,
Y khas no singular point in N. See Fig. (3.1).

2) f(X)=o0 and dfy+o.

Proof. — Let (x5, x,) be a system of coordinates around p; assume that:
o x%,(p) = %,(p) =0
and -— (p)eT, (notation of (3.1)). In these coordinates the components of X, X!

x.
t X! oxt )
and X2, satisfy a—i (0, 0) :% (0, 0) =0, -;—x(: (0, 0)=0(X, p), and:
#X!

o (0, 0)=4, (X, l’,—a% (l’))-

15



16 J. SOTOMAYOR

sy (Y) 5,(Y)
Y Y
u(Y) u(Y) -
\ A
Sz(YJ 52{\(‘)
Sf(¥)<o S(Y)=o0 S(Y)>o0

Fic. 3. 1. — Saddle-node

In other terms:

(3-2.1) X (xy, %)= A x5+ bx, %+ oxg + M (%, x,)
X%y, %) =o0%+ oy +Bx, %, + x5+ M?(x,, %),
where: Mi(x,, x,) = o(} + 23).

0
Assume for definiteness that (X, $)<o and A1<X, p,;— (p))>0. Let Ny and B,
x

1

vy O
be ncighborhoods of p and X such that for Y=2Y* —eB; the following relations are

verified in N,. %
Y?
a) -—<o;
e FY Y3\t oy
Y . oY\~ ! &
b) AY, vy) = %}k 6_9%8;; vy uf >o0; here, =1, H=— (Er;) o

, oY\ ? aY? oY!) ! oY' [oY?) ! aYH\ "2 [oYH\A\ !
w =14+ (- — -—] >0, and @ =——|—- i+ [— ;
0%, 0x, 0x, Oxy \ 0x, 0x, 0x,
finally, ,
oY
¢) o(Y)=2-—<o.

i oOx;

The existence of the neighborhoods N, and B, for which the above relations

are satisfied follows from continuity, since they are satisfied for X at p.
- — 1
Take vyzxv’lf-a—, wy = 2w -d—, and u¥=2Zuldx,. Here w{,:(alz) la—Y—,

i Ox; i ox; i 0x, 0%,

w?=1. If ¢geN, is a singular point of Y and A(Y, ¢)=o0, then vy(gq) is an eigenvector
associated to the zero cigenvalue of DY, ; wy is an eigenvector associated to o(Y, ¢) +0;
also, u¥(g) is the covector in (3.1) (u¥(vy)=1, u*(wy)=0). These asscrtions follow
from a straightforward computation. Thus, by 4) and ¢), any non-gencric singular

16



GENERIC ONE-PARAMETER FAMILIES OF VECTOR FIELDS 17

point ¢eNy of YeBy is such that o(Y, ¢)<o and A(Y, g, vy)>0, i.c. ¢ is a saddle-
node of Y.
Define F :B,xN,—>R by F(Y;x, %)=Y(x, x,). F is of class C" since it is

oF oY?
an evaluation map [16]; also, F(X;0,0)=0 and T (X;0, o)z—a— (0, 0)=0(X, p)<o.
% X,
By the Implicit Function Theorem, there are neighborhoods B, xI, of (X, 0) and I,
of 0 and a unique & function F, :B,x1;—-1,, such that:

F,(X,0)=0 and F(Y;zx, %))=Y, x)=0
for (Y, x,)eB, and x,el, only if x=F (Y, x,). Define:
F, : B;xL >R by F(Y, x)=Y"(x, F,(x, Y)).
A straight forward computation shows that:

I

_3xl _6x2

&F, 1
e) - é;: = ()7 A (Y, vy} >0l
oF, &*F.
Since -af is of class "7, 3712 (X, 0)=o0, and '_55'; (X, 0)+o0, there is a neigh-
borhood B of X, BcB,, and a unique C" ' function F,:B—1, such that F(X)=o

oF
and 3 2 (Y, x,) =0 for YeB, x€l only if x,=F,(Y). This follows from the Implicit
431
Function Theorem.

Define f:B—R by f(Y)=F(Y, F(Y))=Y'(F,(Y), F (Y, F;(Y))). From the
definition of F,, i=1, 2,3, YeB has a singular point (x, x,)eN=I;xI, if and only
if x,=F,(Y,x) and F,=(Y, x,)=o0. Since A;>0 and ¢<o, 4) and ¢) imply that
f(Y) is the minimum of F,(Y, %), x,€l,. Thus, if f(Y)>o0, Y has no singular point
in N; if f(Y)=o0, Y has a saddle-node as unique singular point in N. If f(Y)<o,
the Intermediate Value Theorem implics that Fo(Y, x,) has two zeros 7(Y) and ¢(Y),

oF
r(Y)<F,(Y)<g(Y); by d), the first corresponds to a node A(Y)>o (-—3——2<o), and the

x
oF !
second corresponds to a saddle, A(Y)<o (§2>0). This holds because A(Y)(x,) is
1
. . ¥, . . : 0 )
decreasing since 2 B increasing, by ¢), and 8—<0’ by a). This proves 1). A
%, X,
.0
straightforward computation shows that dfy(Z) =Z%o, 0), for Z=XZ'— and 2)
1 X,
follows. i

Lemma (3.3). — Let p be a saddle-node of XeX', r>2. Assume that o(X, p)<o
(the case o(X, p)>o is similar). The neighborhoods N and B of (3.2) can be chosen so that
for YeB with f(Y)<o the following assertions hold.

17



18 J. SOTOMAYOR

1) There is a unique point u(Y)€dN such that oy(u(Y), t)eN for t<o; the set s(Y)
of points gedN such that ¢y(q,t)eN for t>o0 is an arc whose extremes we call 5,(Y), 5,(Y).

2) N is a differentiable curve, transversal to every YeB at points of neighborhoods U
of u(X) and S of s(X).
3) u(Y), 5,(Y) and 5,(Y) depend continuously on Y.

Proof. — From (g.2.1), the coordinate expression for X in (g.2), and [17, p. 319],
it follows that X has one separatrix, y, whose «-limit set is p, and is tangent to T, at p;
also X has two separatrices §;, 8, whose w-limit set is p and are tangent to T, at p.
See Fig. (3.1). Take N,={(x, x,); 8] + x5 <r}; &N, isgiven by x,=rcos 8, x,==7sin 6,
8e[—m, x]. Since T;, T, are transversal to &N, so arc the separatrices, provided r is
small; y meets 0N at a point we call #(X); §;, 3, mect N at points we call s,(X), 5,(X).
The existence and continuity of 4 follows from the continuity on Y of neighboring tra-
jectories, as for the case of saddle points [35, p. 147]; the continuity of s follows [16, p. 137],
where the trajectory tangent to the eigenspace of smallest (negative) eigenvalue is given
by an integral cquation which depends continuously on the field.

On ¢N,:
(a2 + &2 in 6
1 (%5 1+ %) =78 Alcos30+551—n~—+(b+a) sin 0 cos® 0 + (¢ +-8) cos 0 sin® B
2 00X r
s M‘cosB—}—MzsinG)
+ v sin® 6 -+ — > .
r

1
Since for 6 == the expression in brackets is equal to —A;-+—-, therc are v and p
r

A
so that if 7<p and |6—=|<v, itislessthan ——,;. For m—v>|6|>x/4, the expression
r
. : L sin® § :
in brackets is negative sincc ¢<o and -— - is unbounded for these valucs of 8, while
r

all the other terms arc bounded. Thus, for  small, X is transversal to N and points
inward N on |6|>n/4. The arc joining s5,(X) to s,(X), contained in |0|>r/4 is defined
to be s(X). This shows the existence of s(X); the existence of U, S, s(Y) follows by
continuity.

Remark, — If p is a saddle-node of X with o(X, p) <o, the stable manifold of p is
a two-dimensional manifold with boundary tangent to T, at . The unstable manifold
is one-dimensional with boundary p, tangent to T, at p. If o(X, p)>o0, the remark
holds with the obvious change of stable for unstable.

Definition (3.4). — A saddle connection is a trajectory whose « and «-limit sets are
saddle or saddle-note singular points and is not interior to the two-dimensional invariant
manifold of the saddle-node.

18



GENERIC ONE-PARAMETER FAMILIES OF VECTOR FIELDS 19

In terms of transversality, a saddle connection is a trajectory along which the
invariant manifolds of saddle and saddle-node singular points fail to meet transversally.
Now we state one of the main results of this section.

Proposition (3.5). — Denote by QY the collection of XeX', r>2, such that:

1) X has a saddle-node as unique non-generic singular point.

2) X has only generic periodic trajectories.

3) The a and w-limit sets of any trajectory of X are singular points or periodic trajectories.
4) X has no saddle connections.

Then:
a) QY is open in XJ.
b) It is an imbedded Banach submanifold of class C'~* and codimension one of X'; and

c) Every XeQl has a neighborhood B, in QY such that every YeB, is topologically
equivalent to X.

The proof of (3.5) depends on some lemmas.

Lemma (3.6). — Assume the hypothesis and notation in (3.2), (3.3). Let UycU be
a neighborhood of u(X). Then, S and B can be chosen so that for YeB with f(Y)>o0, oy
defines a C7 mapping hy : S—>Uy; hy(q) is the point where oy(t, q), t>o0, meets Uy for the
Sirst time.  Moreover, if Sy is a closed arc contained in Int s(X), given >0, B can be chosen
so that |hy(q)|<e for geS; and YeB.

Proof. — Let S be an arc so that s(X)cIntS and the trajectories of X through
S—s(X) meet U;. This choice of S is possible by a continuity property at 5(X) on
hyperbolic sectors [19, p. 167]. The first assertion of (3.6) follows from continuity
on Y of the trajectorics passing through the cxtremes of S; for Y with f(Y)>o0, no
trajectory through S remains in N, since this would imply the existence of a singular
point in N, by the Poincaré-Bendixon theorem. Thus for ¢eS there is a #(Y) such
that oy(g,t)eN for o<t<t(Y) and oy(g, £(Y))eU;. hy(g) is defined to be
oy(g, £,(Y)); by (2.1) Ay is of class C'.

A known formula in differential equations [17, p. 204] implies that:

' tg(Y)
Belg) =L (Y) exp([* o(¥, oy(g, 1)) ).
L(Y) only depends on the angles between Y and N at ¢ and Ay(g) :
| sin o |/[sin ap|=L,(Y),

where a,=angle (Y(q), dN), a;,=angle (Y(Ay(q)), ON). Since s=0¢(X, p)<o, we may
assume that the integrand in the expression for Ay is less than o/2<<o in N for every

YeB; also, we may assume that for ¢e§; and Y, f(Y)>o, ¢(Y) >kzzlog (IE.) where
c
| Ly(Y)|<L.

19



20 J. SOTOMAYOR

The last inequality for £,(Y) is justified as follows. For ¢eS; there are neigh-
borhoods I, of g and B, of X such that ¢y(7, {)elnt N for o<t<k, rel , YeB,. This
follows by continuity since it is obvious for Y=X on S,. Compacity of S, ends the
argument. A straight forward computation, replacing ¢ (Y)>% into the integrand
above, shows that |Ay(q)|<e.

Lemma (3.7). — Assume the hypothesis and notation in (3.3) and call Ly the o-limit
set of vy, the unstable separatrix of p (yx=oxu(X),t), |t|<oo). If Ly*p, let Ly be
contained in a neighborhood N’ whose boundary is transversal to X, X pointing inward N'; if
Ly=p, let vy be interior to the stable manifold of p. Then vy has a neighborhood N* which
contains Ly, whose boundary is transversal to X.

Proof. — Take Uy, of (3.6), small so that every trajectory of X passing through it
meets N’ transversally at points of an arc Aj if Ly=p, A is assumed to be contained
in Int s(X). Qall p,edN, the extremes of S (3.6), and call A, the arc of trajectories
of X joining p, to ¢,€A. S together with A; and éN’ (when Ly#p), bound a neigh-
borhood of vy whose boundary is transversal to X except on A;. Replacing A; by
arcs A], Gl-close to them, joining p; to A, and smoothing corners at the extremes of A;,
the desired neighborhood N? is obtained. The change of A; by the arcs A] is possible
since X is parallel, in suitable local coordinates, in a neighborhood of A,.

Lemma (3.8). — Assume that in (3.7) Ly is:

a) a generic singular point or periodic trajectory; or
b) a saddle-node Ly=p.

In case a), assume that N is a critical region associated to Ly (sce (1.4), 8)).

Then B of (3.2) can be taken so that for f(X)+o0, Y is structurally stable in N*, Y being
transversal to ON:. If f(Y)>o, for case a), Ly, the only generic singular point or periodic
trajectory of Y in N corresponding to Ly, is the w-limit set of every trajectory of Y passing through N?;
for case b), there is in N? one periodic trajectory of Y, generic and orbitally stable which is the w-limit
set of every trajectory of Y meeting N?.

If f(Y)<o (resp. f(Y)=o0), call 7(Y) and ¢(Y) (resp. p(Y)) the nodal and saddle
points (resp. the saddle-node) of Y in N (3.2). In case a) r(Y) (resp. p(Y)) is the w-limit
set of every trajectory of Y meeting Int s(Y) and of one unstable separatrix of ¢q(Y) (resp. of all
trajectories of Y meeting s(Y)); Ly is the w-limit set of every trajectory of Y meeting oN*—s(Y)
and the unstable separatrix of q(Y) (vesp. of p(Y)) passing through u(Y) (3.2). ¢q(Y) is the
w-limit set of its stable separatrices passing through s,(Y), 5,(Y). In case b), r(Y) (resp. p(Y))
is the o-limit set of every trajectory meeting N* except q(Y) and its stable separatrices through s,(Y),
5o(Y) (resp. of every trajectory meeting N?).

Proof. — For Y close to X, the mapping my: U;=UnN?-S,cA (notation,
Proof of (3.1)), is defined. For case a), f(Y)>o, every trajectory through oN*—S
meets N', for Y near X (since they do so for X), and the trajectorics through S define
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GENERIC ONE-PARAMETER FAMILIES OF VECTOR FIELDS 21

the map myohy : S—S,cAcdN', by (3.6); therefore, every trajectory through oN' must
have Ly as w-limitset. Forcased), f(Y)>o, S;cAcInt s(X), and gy=mnyohy : U;>U,;
is defined.

Taking B so that |ny|<k in U, and |lz’Y|<1k_1, by (3.6), gy is a contraction
2

having in U one fixed point, generic and orbitally stable. Since every trajectory through
N? meets U,, its w-limit must be the generic periodic trajectory through the fixed point
of gy.

For f(Y)<o, a) and 6) follow directly from continuity of x(Y), 5(Y), 5,(Y), and
standard continuity of trajectories with respect to Y and initial data.

Lemma (3.9). — Assume the notation in (3.2). Then, given >0, B and N may be

chosen so that every arc of trajectory of Y contained in N has length less than e, provided f(Y)=o.

Proof. — In the coordinate expression (3.2.1) for X, in Proof of (3.2), a and A,

are taken so that %<é; this is obtained by changing coordinates x; to px;, ¥, to x,,
1

where p satisfies p.%<i. Call P(Y)=(x,(Y), #,(Y)) the saddle-node of Y in N,
1 2
call (1, ») the components of vy, the eigenvector associated to the zero eigenvalue of

DY at P(Y).
Denoting x—x,(Y) by &, i=1,2, Y can be written:
Y'(x,, x,) =a(§,—0&,) + Zﬁﬁ +521E2 +c&
Y2(x,, %) =0 (E,—0E,) +aki +8E & +YE,

where A;—A;, 6—o, v, x(Y) tend to zero as Y tends to X; b, ¢, 3, ¥ are functions
uniformly bounded on N.
Divide N into two regions:

N1:{|A1§§IZIE(£2’*”E1)} and sz{lﬁlaﬂﬁla(az_vgx)l}-
On N, the trajectories of Y satisfy the following equation:
gxz — o (&, —k,) JALES 4o |A +BEJAE, t{%/‘&&

dx,  a(E,—0E) A B2 41+ BE, A E, +-E3/A, B2

Since in Ny, |&]|/|&]=|E—vE +v& /| EJS‘%‘[EII-}—IUI by making N and B small,

the numerator of | dx,/dx;| can be made less than 2 and the denominator greater than 1 /2.
Thus, |dx,/dx|<4.
On N, the trajectories of Y satisfy:

d_xl _ @[5 + 8,8 o (Ey—08) + 08, [0 (Ea—08)) + 0550 (Ep—1E)) )
de, 1+ (@fB) (B, E o (§—E,) +BE Eafo (Ba—oky) + YER[G (B —0Ey)
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22 J. SOTOMAYOR

Since on Ny, |&|/|8,—08,| <1+|o]|Eal/|Ea—vEsl, | Eabal/|Ea—2Ei| <[Ed| + 0]l ]/| Ayl

and 811,51 <|5] +[ol|8]+|oP[5]/1A,], by making N and B small, |%"
2

be made less than 4, making its numerator less than 2 and its denominator greater
than 1/2, in absolute value. The lemma follows immediately from the expression for

can

the arc length of a curve, taking account that the interval of integration does not exceed
the diameter of N.

Remark (3.9.1). — a) Lemma (g.9) is similar to [5, Lemma 7, p. 143], proved
for the gencric saddle singular points. (3.9), and the next result 4) also due to [5],
are important tools for the construction of topological equivalences in canonical regions
which contain saddles, saddle-nodes, or periodic trajectories in their closure.

/N ~
b) [5, p- 150]. Let A By be an arc and A;B;, ¢=1,2, ... be a sequence of arcs
AN N N
converging uniformly to AyB, in such a way that |A;B;|—>|ABy|, when i—c. Then:
P TN TN
1) A point M;eA;B; with ratio of arc length z=|A;M,|/|A;B;| converges to

a point MyeA,B, if and only if 2z —zy=|A;M,|/| AeBo|-
o AN ) V)
2) Considering A;B; and A,B, parametrized by ratio of arc length, A;B; converges

Y .
uniformly to A,B, when 7->oco0.

Proof of (3.5). — Take XeQ and assume the notation in (3.8). Call:
M; =M?—Int N?,

and take B such that Y,=Y|M:, YeB, belongs to " in M3, and no saddle separatrices
of Y, meet 5,(Y), 5,(Y)edN?. This choice of B is possible since the conditions imposed
are open and hold for Y=X. Hence, by (3.8) and (3.2), YeZX' in M?if and only
if f(Y)+o0, and therefore ¥;nB=Q nB=f""(0). This proves @) and ) of (3.5).

To prove ¢), a topological equivalence between X and YeB;=Bn Q) must be
constructed. Obviously a topological equivalence 4;=#,(Y) between X, and Y, can
be constructed; here, care is taken so that 4| dN? maps 5(X) to 5(Y), i=1,2. We
proceed to show how to cxtend &, to £=#A(Y) defined on M

For case a), (3.8), N? is divided into two canonical regions R,(Y) and R,(Y)
of Y and one critical region Nj which contains Ly. See Fig. (3.2).

The construction of £ from R,(X) onto R,(Y) is performed in [5, p. 152] for the
case where p is a saddle point; such construction is carricd mutatis mutandis for the present
case, by (3.9). See Remark (3.9.1). The construction of % from Nj onto itself is
donc in [5, p. 154]. We proceed to define # from R;(X) onto R,(Y): Map the arc of

Y N
trajectory of X, mp, passing through mes(X), onto the arc of trajectory of Y, mipy passing
through % =#k,(m)es(Y), by ratio of arc length (sec proof of (2.5)). Since every point
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Sy (X)

of R;(X) belongs to a unique trajectory, this defines a one-to-one map of R,(X) onto
)

R,(Y), which by (3.9.1) is a homeomorphism. In fact (3.9) implies that |m,p| is

close to |myp| and |7, py| is close to |m,py | provided m, p is uniformly close to m,p and

T\ ™

i, py is uniformly close to i, py; in our case this holds when m, is close to m,, by continuity
of A, and standard continuity of trajectories on initial data. That is, the hypothesis
of (3.9.1, b)) is satisfied for these arcs. This implies continuity of £ and 4%, since they
preserve ratio of arc length and uniform convergence on arcs of trajectories, which
by (3.9.1, 4)) amounts to preservation of convergence. Finally, we remark that the
definition of £ on R,(X) mentioned above coincides with our construction on the common

AN TN
boundary, s5;(X)pu s,(X)p, with R;(X), since there it is performed by ratio of arc length.

For case 5) and YeB,;, N is divided into two canonical regions R,(Y), Ry(Y)
of the same type. Sce Fig. (3.3), where (7, j) is (1, 2) or (2, 1), according to yyxu {p}
being a two-sided or one-sided curve.

s m Si a
my cx
= ~ _—_-H""x
p - p
* ) }

Sy Sj as SZ:SJ' @

Fi1e. 3.3

N W™ Y

We proceed to define 4 from R, (X) onto Ry (Y). Map (X)p, 5,(X)p and vx=pp
i T

respectively onto §,(Y)py, s:(Y)py and yy =pypy, by ratio of arc length, Let n be a

- . 0 . . /_\
continuous monotonic increasing function from s (X)s;(X) onto [o, 1]; let:

R T
a(Y)=|s:(V)py |/(Is:(V)py |+ vy -
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A
We define a closed curve Cy in Ry(Y) from py to py as follows: take melnt 5,(Y)s(Y)

and take the point m; on the arc of trajectory through m such that
TN Ty » .
|mm, |[|mpy| = (1—n (k7 (Y) (m)))a(Y) +n(h (Y} (m)).
Cy is the curve which assigns m, to m, and p, to s(Y) and 5(Y); it is continuous,
~— A
on Int 5;(Y)s5;(Y) by continuity of trajectories on initial data and at s5,(Y), 5(Y)
by (3.9). Cy divides R,(Y) into two regions R}(Y) and R2(Y). Map the arc of

A
trajectory of X through melnt 5;(X)s5(X) onto the arc of trajectory of Y through
A ™ N N T
m =hy(Y)(m)elnt 5;(Y)s5;,(Y), as follows: map mm, onto mm, and m;p onto m,py, res-

pectively, by ratio of arc length. This defines a one-to-one map of Ri(X) onto Ri{(Y),
1=1, 2, which by (3.9) is a topological equivalence, as follows from an analysis similar
to that performed in case ). An identical construction works for Ry(X). This ends

the proof of (3.5).

The composed focus (3.10). — Let p be a singular point of Xe¥’; assume that the
cigenvalues of DX have non vanishing imaginary parts (i.e., (o(X, p))*—4A(X, p)<o).
Let (x,, x5) be a coordinate system on a neighborhood U of p; assume that x,(p) =x,(p)=o0.

Define G : ¥ xU—>R? by G(Y, ¢9)=(Y'(q), Y*(q)), Y=2Yi»a—

X

G is of class 7
since it is an evaluation mapping [16, p. 25]; also G(x, p)=(0,0) and e (X, p)=DX{(v).
v

Since det DX=A(X, p)+o0, there is a unique ¢’ U-valued function P defined on a
neighborhood B of X such that P(X)=p and G(Y, ¢)=(o0, o) for YeB onlyif ¢=P(Y).
This follows from the Implicit Function Theorem.

aY* oY? _ B
Definc f:B—>R by f{Y)=0(Y, P()))=--(P(»))+-. (P(y)): fisofclass C"*
and: N 0%,
2SS s 02>
dfx(z)zd(’ax—l+a—xz)p.dPx(Z)+a—xl(p)+,a;; (9),

as follows from a straightforward computation; in particular, if o(Z, p)+0 and
Z(P)=o0, dPy(Z)=o0 and dfy(Z)=c(Z, p)=*o.
Let P(Y)=(P,(Y), Py(Y)), and take polar coordinates p, 6: x,—P,(Y)=p cos 6,
x,—Py(Y)=psin 0. The orbits of Y satisfy the following equations:
d6
Pt
where Y'=Y!P,(Y)+p cos 6, P,(Y)+psin 6) and Oy(p, 8) arc of class C" in BXIXR,
where I=[—g, a], a small; also, they arc periodic of period 2= in 6. The hypothesis

d
E‘; =Y'cos 6 4-Y?sin 6 =Ry(p, 0) and =Y?cos 6—Y*'sin § = Oy (p, 0),

0
o—4A<o implics that 3—;(0, 0) %0, for all 0. By continuity we may assume that
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00«
dp

_ L 190 _
(p, )0 in BXIXR. Define Oy by BOy(p, 6)=f —a—Y(ps, 8)ds. O is of class C' 1
o p
and B(p, 6)=_0(p, 0), for p+o0; also:
P

Oy(—p, 0+7)=0y(p,0) and Ry(—p, 84+m)=—Ry(p, 0).

This implies that (Ry, Oy), for YeB, is a vector ficld in IXR, invariant under the
mapping w : (p, 8)—>(—p, 0+x). Since Ry(o,8)=0, p=0 is a trajectory of (Ry, ®y).

Let u(x)=(x,0), U=1Ix{o}, and s(x)=(x, 2m), S=Ix{2n}. Call py: Uy—>S
the mapping associated to u, s and t=2n defined by the flow (Ry, ®y) as in (2.1).
(Y, x)irpy(x) 1s of class C"~' in BxU,. Also, as a straightforward computation

shows, py(o)==1 if and only if (Y, P(Y))=o0.

Definition (3.11). — Assume that XeX’, r>4, has a singular point p with
o(X, p)=0 and A(X, p)>o. If, with the notation above, (px)®(0)#0, p is called a
composed focus.

Proposition (3.12). — Denote by Q% the set of vector fields XeX', r>4 such that:

1) X has a composed focus as unique non-generic singular point.

2) X has only generic periodic trajectories.

3) The a and w-limit sets of any trajectory of X are singular points or periodic trajectories.
4) X has no saddle connections.

Then:

a) Q3 is open in XJ.

b) It is an imbedded Banach submanifold of class C’' ' and codimension one of X'; and

c) Every XeQ¥ has a neighborhood B, in Q¥ so that it is topologically equivalent to
every YeB,.

The proof of (3.11) depends on the following

Lemma (3.32). — Let XeX', r>4, have a composed focus p.  Assume that (px)®(0)<o.
Then there is a neighborhood B of X, a neighborhood N of p and a O~ function f:B—->R
such that:

1) ON is a closed curve transversal to every YeB.

2) YeB has one singular point P(Y)eN. P(Y) is generic if and only if f(Y)+o,
it is asymptotically stable (resp. unstable) if f(Y)<o (resp. f(Y)>o0).

3) Y has one periodic trajectory, generic and orbitally stable, in N only when f(Y)>o.
See Fig. (3.4).

Proof. — Assume the notation of (3.10). QCall N, the quotient manifold:

(IXR)/u—~R/u;

N, is a Moebius band. Call u the quotient mapping IxR—>N,.

Let Y=Dp(Ry, ®y) and let u=pos=gou. py: U,—U is equal to the square
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@

JY)>o S(Y)=o SY) <o

F1a. 3. 4. — Composed focus

of the Poincaré transformation associated to the periodic trajectory yy=p{{o} xR} of
period = of Y. Now, the proof is reduced to (2.6), with f(Y)=o(Y, P(Y)) and N
the ncighborhood of ¢ bounded by C={x;=p(0) cos8, x,=p(0)sin8; Oe[o, 2n]}
where o =p(0) is so that {p(6), 6} is the lifting to IXR of the boundary of the ncigh-
borhood N of vy given in (2.6).

Proof of (3.12). — Similar to (2.5). Assume the notation of (3.12). Call M}
the manifold with boundary M?—IntN. X,=X|M} is structurally stable, and B
can be taken so that every YeB is such that Y,=Y|M;] is topologically equivalent
to X;; (), the homeomorphism of M} mapping trajectories of X, onto those of Y,
can be made arbitrarily close to the identity of M; by properly reducing B.

By opcnness of X' in M%, when f(Y)#0, YcZ' in M? by (3.12). Thus
S (0)=Q%nB. For YeB,=Q%nB, %, (Y) can be extcnded to a topological equivalence
between X and Y. This is done as for the case of generic focus [5, p. 153]. This
proves (3.12).

Remark (3.13). — By (3.5) and (3.12), Q,=Q% U Q% is an imbedded submanifold,
open in X[.

Calling the saddle-node and composed focus quasi-generic singular points, (3.3)
and (4.12) can be stated in one Proposition changing in condition 1), in either one,
saddle-node or composed focus by quasi-gencric singular point.

4. Saddle Connections.

Definition (4.1). — A saddle connection y of X (see (3.4)) whose « and -limit
sets coincide with a saddle point p is called a loop; it is called a simple loop if o(X, p) +o.

Proposition (4.2). — Let Q 5 denote the set of vector fields XeX', r>2 such that:

1) X has one saddle connection, which in case of being a loop is a simple loop.

2) X has only generic singular points and generic periodic trajectories.

3) The a and w-limit sets of every trajectory of X are singular points, periodic trajectories,
or loops.
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Then Q4 is a Banach submanifold of class C' = and codimension one immersed in X',
Sfurthermore, every XeQ 4 has a neighborkood By in Q3 such that every YeBy is topologically
equivalent to X.

The proof of this proposition depends on several preliminary lemmas.

Lemma (4.3). — Let p be a saddle point of XeX', r>1. There is a neighborhood B
of X and a neighborhood N of p such that:

1) YeB fhas one singular point p(Y), whick is a saddle point, in N; N is a differentiable
curve.

2) The stable (resp. unstable) separatrices of p(Y) for Y| N meet 0N in two points 5,(Y),
s5(Y) (resp. u(Y), up(Y)) so that the functions s5; : BN (resp. u; : B->N) are of class G,
Also, there are closed ares S; (resp. U,), which contain s,(B) (resp. u,(B)), on which YeB is
transversal to oN.

Progf. — 1) Follows as in (3.10) from the fact that A(X, p)+o0, by the Implicit
Function Theorem. If N is small, 2) is valid for X, since the stable and unstable
manifolds are tangent, at p, to the cigenspaces of DX, (sce (3.1)), which are transversal
to oN; the continuity of 5,(Y) (resp. #(Y)) is proved in [5, p. 147]; differentiability
relative to a parameter is shown in [16, p. 151]; 2) follows taking Y as parameter; the
existence of S;, U, follow from continuity.

A construction {4.4). — Assume the notation and hypothesis in (4.3).

a) The point 5(Y) divides S; into two closed arcs S}(Y) and S}(Y), which have
5;(Y) as unique common point. See Fig. (4.1). S;is taken small so that every trajectory
of YeB which enters N through xeS{(Y)—{s,(Y)}, leaves N through a point A{(x)eUs;.
This follows as in the first part of Proof (3.6), by continuity. Furthermore, the map-
ping A4 : S{(Y)>U;, defined above for x+5(Y) and equal #(Y) for 5(Y) is continuous.
This follows from the continuity property on hyperbolic sectors [19, p. 167].

b) The mapping k% is differentiable of class C" in  S{(Y)—{s5(Y)}, and if
o(X, p)<o, for any given £>o0, N, S; and B may be taken so small that l»Tj(x)i<a

s?Z s sh
L ] -

u,(Y)

L 1
83 s, 8}
Fic. 4.1
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This follows from a well-known formula for the derivative in terms of o, in the same
way as in (3.6).

T
¢) Finally, the length of the arc x£¥(x) contained in N tends to the sum of the

Y T
arc lengths of separatrices in N, py(X) and 5(X)p, as Y—->X and x—s5(X).

See [5, p. 149] for a proof of this fact.

Let p, and p, be two saddle points of X (the case p;=p, is not excluded). Let
m>o0 be less than the lengths of the saddle separatrices leaving or approaching p, and p,.
Denote by B, N, Uj, S, #(Y), sj(Y), j=r1, 2, the objects associated to p=p;, i=1, 2,
by (4.3). Let X have a saddle connection vy joining #;(X) to s}(X), with length ¢>o.
For YeB,nB,, call ny==(Y, ):Uj—S}, the map defined by the flow of Y (see (2.1)).
Define f(Y)==(Y, 4 (Y))—s7(Y).

Lemma (4.5). — Assume the notation above. Given 0<e<m, Y has a saddle connection vy
Joining u;(Y) and s}(Y), with length within € of ¢, if and only if f(Y)=o0; otherwise any saddle
separatrix passing through any of these points has length greater than ¢ +m, for YeB=B,nB,
small.  Furthermore, dfy+o.

Proof. — The first part follows from continuity (on Y) of the length of arcs of
trajectorics far from singularities, and from the continuity property (4.4) ¢) in N;, N,.
If V is defined as in the proof of (2.4) in a small neighborhood of s,(X), dfix(V)=+o,
as follows similarly to (2.4).

Remark (4.5.1). — Trajectorics of Y passing near uj(Y) or s7(Y) which do not
connect them also have length grecater than /+4-m by the same arguments as in the
first part of proof of (4.5).

On simple loops (4.6). — Assume the notation in (4.4) and (4.5) and supposec
that vy is a loop of XeX', r>1, py=p,=p. Let o(X, p)<o and take N;=N,=N,
u(X)=u}(X), s(X)=s/(X), and BcB,nB, small so that for YeB, |ny|<K in U=T,.
Also, take e=(1/2)K™' in (4.4, b)), so that ky=kYy satisfies |k, [<(1/2)K™' in
S(Y)=S}(Y)cS,=S.

Take some oricntation in oN, say, counterclockwise in Fig. (4.1); thus, ky
reverses orientation. Define py=myoky : S(Y)—S.

There are two cases: a) my reverses orientation, and &) my preserves orientation.

Assume first case a), where py preserves orientation. If f(Y)=o0, Y has one
loop vy joining #(Y) to s(Y), which is the w-limit set of all trajectories of Y meeting
S(Y)—{u(Y)}. This follows from the fact that py is a contraction, i.e.:

lex () —px ) [<(1/2)[5—2], % yeS(Y).

If f{Y)<o, obviously py(S(Y))cIntS(Y), and py has one fixed point, P(Y),
generic and orbitally stable; thus, through P(Y) passes a periodic trajectory, I'y, which
is the w-limit set of all trajectories of Y meeting S(Y)--{«(Y)} and of the saddle separ-
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atrices through »(Y). Moreover, |P(Y)—u(Y)|<2f(Y), as follows from the evaluation
of P(Y) as the limit of iterates of py.

The separatrix through s(Y) meets Int UX(Y) in s*(Y)=n3'(s(Y)), and the closed

AT
arc 5;(Y)u(Y) is mapped into S(Y) by my; thus I'y is also the w-limit set of trajectories
Y

of Y passing through the arc s(Y)u(Y), open at s(Y).

If f(Y)>o, py has no periodic point; in this case, the scparatrix through u(Y)
meets Int S;(Y) at «'(Y)=my(u(Y)), the separatrix through s(Y) meets successively Uj(Y)

Pl
and S(Y) at points s}(Y) ==y (s(Y)) and s*(Y):-=p7'(s(Y)). The closed arc $*(Y)s(Y)
T
is mapped by ¢y onto s(Y)u'(Y). Sec Fig. (4.5) for a graphical illustration of casc a).
Consider now case b), where py reverses orientation. If f(Y)=o:
ey : S(Y) - Si(Y),
has s(Y) as unique fixed point, and k¥opy : S(Y) — Uy(Y) is defined. Call vy the
one-sided loop through s(Y).
R T T .
If fIY)<o, py(my(u(Y))s(Y)) cmy(u(Y))s(Y) since:
py(s(Y)) =myoky(s(Y)) = {u(Y)),

and hence [ py(ry (4(Y)))— m(u(Y)) | = |oy(my(6(Y)))—p(s(¥))[<(1/2) [rey (e(¥))—5(Y)].

Therefore, since py is a contraction, it has a unique fixed point P(Y)eInt wy(u(X))s(Y),
since |P(Y)—s(Y)|<A(Y). The scparatrix through s(Y) meets successively U(Y), S(Y),
and U¥(Y) at points s}(Y) =73 '(s(Y)), s2(Y)=p3 (%(Y)), and s*(Y)==n""(s*(Y)). The

SRS T
arc s(Y)s'(Y) is mapped by =y onto s*(Y)s(Y) which is mapped by py onto
T .
7wy (u(Y))s(Y). Thus the periodic trajectory I'y of Y, passing through P(Y), which

Y
obviously is generic and one-sided, is the w-limit set of all trajectories through s*(Y)s'(Y).
If f(Y)>o0, py(S(Y))cIntSi(Y), and py has no periodic points. The separ-
atrices through s(Y) and u(Y) meet U¥Y) and S}(Y) at points s'(Y)=ny(s(Y)) and

/‘\ /_\
u,(Y)=my(2(Y)) respectively. py maps s'(Y)u(Y) onto s(Y)u«'(Y); S(Y) is mapped
into Int U¥(Y) by =3'. Sce Fig. (4.6).

Canonical Regions for fields in Q. (4.7) — Take XeQg. In casc a) of (4.6),
yyu{p}, which is a two-sided loop, has on its (orbitally) stablc region a differentiable
closed curve C, arbitrarily close to the loop, transversal to X, which together with
vyU {py}, when f(Y)=o, bound a rcgion N(Y) homeomorphic to a cylinder. C meets
S=8(X) transversally in a point m,, which we regard as the lower extreme of S. Further-
more, yyU{py} is the w-limit set of trajectories of Y meeting Int N(Y). See Fig. (4.2) I".

For X, these assertions follow from [1], taking C=T,;, where Z is a vector field
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Fic. 4.2. — Canonical Regions in Q4

obtained from X by a small rotation (in a neighborhood of yxu{p} diffeomorphic to
a plane region). For Y close to X, they follow from continuity and results in (4.6),
case a). Obviously m, is taken to be P(Z).

For future reference we will distinguish two cases.

A) All the trajectorics of X mecting G have the same a-limit, which a fortiori must
be a generic singular point of nodal or focal type, or a generic periodic trajectory.

B) There is some saddle separatrix of X which meets C.
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A) and B) are the unique, and mutually exclusive possibilities; in cither case,
N(X) will be regarded as a critical region associated to the loop yxu {p}.

The other canonical regions that contain yyuU{#} on their closure and are possible
for XeQ, are shown in Fig. (4.2).

This follows from making all the compatible identifications of edges and/or vertices
in the fundamental polygons in Fig. (4.3).

For instance, I1 is obtained from a), identifying p, and p,; III is obtained from a),
identifying 6, and 8§, and p, and ¢; IV is obtained from a) identifying 3; with 6;, :=1, 2.

a, -_l\\] q
0, 0,
o w
dy 3,
.
P Y P
(b) (¢)
Fi6. 4.3

V is obtained from &) identifying & and v; VI and VII are obtained from ¢) making
the identifications indicated in Fig. (4.2).

Consider the decomposition of M? into canonical and critical regions of X. vy
belongs to the common boundary of two such regions, except in cases V, VI, VII,
Fig. (4.2), where it belongs to only one; call M(X) the union of the (closed) regions
which contain y,. QCall M(X) the union of M(X) and the critical regions of X which
intersect saddle separatrices on the boundary of M(X).

The complement of Int M(X), denoted N(X), is the union of a finitc number of
critical and canonical regions of X; these regions are of structurally stable type and
such that, for Y close to X, to each canonical region of X corresponds one of Y of the
same type; the critical regions of Y are the same as those of X. Call N(Y) the union
of such canonical regions of Y. Following [5], each canonical region of N(X) is mapped
by a topological equivalence onto its corresponding canonical region of lf\vI(Y); gluing
these partial mappings, a topological equivalence results, defined from the complement
of all critical regions of N (X) onto the complement of all critical regions of N(Y); this
topological equivalence is defined on the boundary of all critical regions, except on
that of those contained in M(X), where it is defined only on the boundary of M(X).
Below we show that when f(Y)=o, a topological equivalence can be defined from
M(X) onto M(Y)=M:—IntN(Y), extending the above mentioned equivalence,
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which thus becomes defined on the boundary of all critical regions of X. This topological
equivalence is extended to the interior of the critical regions by the method of [5].
We proceed to show how define a topological equivalence between M(X) and
M(Y). In Fig. (4.4), M(X) is made up of one region of type I and one of type III,
Fig. (4.2); M(X) is the union of M(X) and the critical regions of sources o, «y and
sinks ©,, o, of gencric type.

I o
For region I, map by means of a homeomorphism #;, %,¢, onto k,¢,; also map by

N N X ~ ~ )
ratio of arc length 8, =2k p,, y=p1ps, Sa=psks, ©1=F1q, Oy=¢¢, onto their corre-

spondents in T, 3,3, 8,, ®,; it should be remarked that this definition coincides with
the above mentioned topological equivalence, which, following [5], takes saddle separ-
atrices onto saddle separatrices by ratio of arc length. Divide every arc of trajectory

~~ X ~ )
of X (resp. Y) joining melnt &,¢; (resp. m =h,(m)elnt kif|) to nekyt, (resp. nekyf,)

V" ™ Ve

~ ~

) - TN ~ N
into three arcs 3,(m)=mm,, y(m)=mymy, Sy(m)=myn (resp. 8,(m)=mmy, ¥(

fY)>o0 flY)<o

fX)=o0
f¥)=o

FiG. 4.4. — Saddle connection
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~ X
dy(M)="miyn ), in the following way. Take a continuous monotonic increasing function v
o)

N -
from &,¢, onto [o, 1] (resp. F=noh " : kyf; >0, 1]); call a;=|8,[(|8;|+|v]+]8:])7%
b1=l®1l(|®1|+l®2!)~1: ‘12=|Yl(|'¥l+!821)—1, by=1 (resp. call zxaszaa’zsfbvz=1a the

~ N "y
obvious analogous for I). Take m; such that |mm,|(|mn|)~'=a,(1—n(m))-+ byn(m)

and take m, such that l@l(]mln|)—1=a1(1—n(m))~{—b2v;(m) (resp. take m, and mi,
in the analogous way). Map 8,(m), y(m) and 8,(m), respectively onto (%), ¥(#%) and
§2(ﬁ), by ratio of arc length. Thus we have defined a one-to-one map from I to T which,
by (3.9.1) and the same arguments in the proof of (3.5), is a topological equivalence

between X|I and Y[T that can be made arbitrarlly close to the identity for Y close
to X [5], and extends to I the above mentioned topological equivalence. Of course
this construction works for regions II, ITI, and IV, obtained from I by proper identi-
fications. Also, when region I is modified to having three saddle points p,, p,, ps joined
by saddle separatrices vy, vs, Or two saddle points ¢, ¢, joined by a saddle separatrix &,
which, respectively, are the cases of VI and VII, and V, it is clear how to construct
the topological equivalence.

The extension of this map, now defined in ¢I', to Int I' is done in a similar way as in
the case of the stable part of a periodic trajectory (2.5). (Here, G;=C, yx=vxv{p},

T
and U=8(X)=mys(X).) See Fig. (4.5).

For f(Y)+o0, YeX' except in case B), when yyu{p} is the w-limit set of saddle
separatrices: for the case where yx is not a loop, this follows by continuity of saddle
separatrices and maps &% in (4.4); in this case M(Y) has three canonical regions respect-
ively joining «; to g, @, to w,, and «; to w;, (4,j)=(1,2) or (2, 1) according to the
sign of f(Y). See Fig. (4.4) (of course in the case of region V, a=u«,, a; and o=e;, w,).

For the case of two-sided loops, following (4.6) a), we have that when f(Y)>o,
M(Y) has a region of type Ry(Y), Fig. (3.2), with the sense on the trajectories reversed;
the separatrix through s(Y) meets G at a point $(Y). The other region is bounded

Fic. 4.5. — Two sided loop
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by the separatrices through s5,(Y) and #(Y) of py and the separatrices entering and
leaving ¢y (the correspondent of ¢). See Fig. (4.5). When f(Y)<o, Iy (sec (4.6))
is contained in a critical region bounded by C and C'=T,,, where Z’ is a rotated ficld
likc the one used to construct C; the canonical regions of M(Y) are similar to those
for the case f(Y)>o, with the sense of the trajectories reversed, replacing C by C'.
Sec Fig. (4.5).

Thus in case A), f(Y)=+o0, and in case B), f(Y)<o, Y is in X' as follows from
the above assertions and arguments similar to those in (2.8). For the case B), f(Y)>o,

q, u? s d; S=my (L) . q]/ S\FI_‘::,;//QZ :S:T[YfU)
»a Ty / 9
P
© Y
% |
////1. u - -U
q, st u q, q, s3 u sl ay
f(¥)>o0 JS¥) <o

F16. 4.6. — One sided loop after perturbation

F(Y) winds around C when Y-—>X and mcets infinitely many times, for fields Y arbi-
trarily close to X, all the unstable separatrices which (by hypothesis) intersect C.

For the case of one-sided loops following (4.6) &), we have the canonical and
critical regions on M(Y) as shown in Fig. (4.6).

Remark (4.7.1). — Given any number L>o (resp. T>o0), B can be taken so
that any trajectory of Y mecting C has length (resp. spends a time) greater than L (resp.
T before closing, if it closes at all). This assertion is obvious by continuity arguments
since it holds for X.

We summarize {4.7) in the following lemma.

Lemma (4.8). — Call Q4(n) the set of XeQg of Proposition (4.2) whose saddle
connection vy has length less than n. Then:

a) Qg(n) is a submanifold of class C'=* and codimension one imbedded in X', and
b) every XeQ 4(n) has a neighborhood By in Q g(n) such that every YeB is topologically
equivalent to X.
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Proof. — Take L>n in (4.8.1) and e<n—|yyx| in (4.5). Take B as in (4.8),
(4.8.1) and (4.5); a) follows from (4.8.1) since f~*(0)=Q 4(n) nB=B,, for all saddle
connections, if any, of Y, f(Y)>o, must have length greater than L>n; ) is proved
in {(4.7).

Proof of Proposition (4.2). — Immediate by (4.8) since Qanga(n) and
Qs(n) €Qg(n+1).

Remarks (4.8.1). — Call Q) ; the subset of Q , consisting of fields X which present
case A) defined in (4.7). The following is proved in (4.7).

a) Proposition (2.2) holds for Q. q, changing immersed by imbedded. Furthermore Qs is
open in X7.

b) (jfng_a— Q:, is open in Q 4 and its intrinsic topology it finer than its ambient
topology.

¢) The fact that for Xe(ail3 and >0 small, f~'((—¢, 0))cX’, while f~*((o, ¢))
is not completely contained in X7, can be cxpressed by asserting that X"u Q‘a is a subma-
nifold of ¥ with boundary QL.

d) From (2.4.1) and {4.7.1) it follows that Q,(n)uQ,(r)uQ4(n) is an
imbedded submanifold of X".

5. The Manifold Xi.

We define S;=Q,uQ,(7)uQ,(7)uQ,(i). By (3.13) and (4.8.1) d), S, is an
imbedded submanifold of X". Hence, Z{:l:JS,- is an immersed submanifold of X'.

Theorem 1. — a) X! defined above is an immersed Banach submanifold of class C'~1 and
codimension one of X', r>4.

b) Zi is dense in Xi.

c) Every XeZl has a Zi-neighborhood By, i.e., a neighborhood in the intrinsic topology
of 27, such that X is topologically equivalent to every YeB,.

Progf. — Part a) follows from definition of %7; part ¢) follows from Propositions (2. 2),
(3.13), (4.8.1) d). Part §) follows from a sequence of approximations similar to those
used in [8] to get density of X; the steps leading to 4) arc more suitably stated in Part IT,
Remarks (2.1.1), (2.2.3), (2.3.1).

6. On First Order Structural Stability.

A field XeX] is said to be first order structurally stable if there is a neighborhood N
of X in the subspace X] with the induced C’-topology, such that every YeN is topo-
logically equivalent to X.

This concept is due to A. Andronov and E. Leontovich, see [12]. We will denote
by 3" the sct of first order structurally stable vector fields.
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After (2.8), (3.13), (4.8.1) it follows that Q,, Q,, Q, are contained in 2,
and since each one is open in X}, Q,u Q,uQ,cSr. By suitable C'-approximations,
it is not hard to show [14] that no field of ¥], outside Q,uQ,uQ,, can be in &I.
That is, E;:Qlu Q,u Qa Thus, since cach Q; is also an imbedded submanifold,
i{ is an imbedded Banach submanifold of class C7~* and codimension one of X', r> 4, openin XJ.

It is obvious how to define the set i; of n-th order structurally stable vector fields
as well as 27 {an n-dimensional version of X7); the characterization of these sets scems
most important for a generic theory of families of vector fields depending on # parameters.

II. — GENERIC ONE-PARAMETER FAMILIES OF VECTOR FIELDS

1. Preliminaries.

Let J=[a, b] be a closed interval. Denote by @ the space of C!' mappings
£:J—>¥. Under the C! topology, @ is a Banach manifold; its elements will be called
one-parameler families of vector fields. A,€] 1is called an ordinary value of Ee®” if there is
a neighborhood N of A, such that £(2) is topologically equivalent to £(2,) for every AeN;
if A, is not an ordinary value of E, it is called a bifurcation value of £. Obviously, if
E(xp)€Z", 1y 1is an ordinary value of §; equivalently, if A, is a bifurcation value of §, then

E(h) €X].

Examples (x.1). — a) Let E0)=(1,2) in M*=T*=R’/Z’. Every Ae[a, d] is
a bifurcation value of £. This follows from the fact that the rotation number of £(}),
which in this case is A itself, is a topological invariant of £(3).

b) Let £ be transversal to 2. Every aeE™'(Z]) is a bifurcation valuc of £  This
follows from the results in Part II, where the topological change of the phase space
of Y=E(A) is described in a neighborhood of X=£E(a;), according to the sign of f(Y)
defined there; the transversality condition implies that fof is monotonic on any neigh-
borhood of A,, on which, thercfore, we find A’s for which £() is not topologically equivalent

to E(2)-

Two preliminary lemmas (x1.2). — The following lemmas have a straightforward
verification. We recall that, since J is manifold with boundary, {a, b}, £ is transversal to Q.
if it is so when restricted to (a, 4) and also when restricted to {a, b} (i.e., &(a), £(8)¢Q,,
if Q has codimension>>o).

Lemma a). — Let Q be an imbedded Banach submanifold of X'. Call ®(Q) the collection
of Ee®" such that:

1) E(]) and 9Q ={(Clos Q)—Q are disjoint, and

2) & is transversal to Q.

Then ©(Q) is open in O,
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Lemma b). — Call ) the space of C'+' mappings &, : JXME—T(M?) such that
n(E (A, p))=p for all A, p; w stands for the projection of T(M?) onto MP. @7 is endowed with
the C't' topology. For E,e®] define E(N)=E(A, ) : ME>T(M?). Then, Ec®, and
E, & 15 a continuous linear mapping whose image is dense in @7,

Theorem 2. — Assume r>4. Call 17 the set of one-parameter families of vector fields &
such that:

1) £(J) c[K-ST Uz

2) £ is transversal to Z7.

3) The set of ordinary values of & is open and dense in J and coincides with £ 1(Z7).

Then T contains a Baire subset of 7, in particular, T" is dense in @,

2. Proof of Theorem 2.

The proof of Theorem 2 depends on several propositions.

Proposition (2.1). — Denote by ©(Q ) the set of Ec® such that:

1) E(J) and 2Q ,={Clos Q,)—Q, are disjoint and
2) E is transversal to Q ;.

Then ®(Q ) s open and dense in D",

Proof. — The openness of ®(Q,) follows from (1.2) a). Let £e®"; we will
show that it can be approximated by 7ne®(Q,); this will prove the density of ®(Q ,).
By (1.2) b), we may assume that E(A)(x)=E;(A, x) for &;e€®]. By density of trans-
versality and density of ', we may assume that £ is transversal to Mj, the zero section
of T(M?), and that£(a), £(6)eX". £ '(M2)=S(§,) isaone-dimensional C"*' submanifold
of JxM?, which depends continuously on £, (in the G"*! sense); S(§,) is transversal
to {A}xM? at (, p,)€S(E,) if and only if p, is a simple singular point of E(y); since
E(a), E(b)eX", S(&,) is transversal to {a}xM? and {b} X M.

Let p, be a singular point of §();), call £&(), x,, %,), =1, 2, the components of &
in a coordinate system (x,, x,) around p,.

g, is transversal to M2 at (A, p,) if and only if the Jacobian matrix of &(%, x,, x,)
has rank 2 at (A, p,). When p, is not a simple singular point of £(a;), the coordi-
nates (¥, ¥,) may be taken such that x;(p,)=x,(p,)=0 and the Jacobian matrix of
Ei(7, x;, %) has onc of the following forms:

¢¢ O O
I

6 ¢ o0

(2.x.1)
¢ O O
In either case there is a neighborhood Ny={{A—2,|<3,|x|<3} such that

dx d
S(E,) nN; isgiven by A=2xr(x,), x;=x,(x,) for |x,|<8, with —— (0)=i1(0)=0. Thus,
Xy

d dx,
it may be assumed that |A(xy)—2|, | #1(%s) | <8y for |x,|<3, §,<3.
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Let € be a regular valuc of A'(%,); let ¢ be a bump function: ¢=1, for |x,|<8;
p=0, for |x,|>38;; 8,<3,<<8. Define »(x,) by A (x;)=x(x2) —z0(x;)x,; by Sard’s
Theorem, ¢ can be taken so small that |A(x,)—2y|<3 for |x,|<<3. Definc Ee®;
by EV(, xy, %) =& (A +ep(x,)x,, %, %,). For e small, £ is C'*! close to &;; also, in

Clos N,,, S(&l) is given by A=17(%,), x=2x(%), %H==x; outside Ny, &'=E; thus,
dx d*x
if [%,/<8, and - —(x)=0, then —-!(x)+o0, by construction of &,. Therefore, in

dx, did
Clos N, S(§{") has only a finitc number of non-simple singular points, one corresponding
to each critical point of A;. Since these critical points are non-degencrate, this situation
is not changed by small perturbations of E{.

The set of non-simple singular points of &, is compact and can be covered by a
finitc number of ncighborhoods Ng;, Nz, ..., Ngt with Ns‘i)CNsi CcN;, i=1,2,...,k
As indicated above, we approximate £, by £ on Nyi; then with the same criterion,
we approximate £ by £P on Ng, without destroying the non-degeneracy conditions
(which are open) already obtained in Clos Ny; next we approximate £ by £ on N
without destroying what was already obtained in Clos {NgU Ny}, and so on. In this
way we obtain E¥ with only a finitc number of non-simple singular points (A, ,),
(Agy pa)s ---5 (A, p,), corresponding to the critical (non-degeneratc) points of the pro-
jection of S(E¥) onto J. By further modification, if nccessary, we get:

<N <0< . . <0, <b.

Next we modify £¥ to make p; a saddle-node of £¥(3;) ; this is done by a small perturbation
on the lincar and quadratic terms of £¥ around p;. Call 7] the family thus obtained;
2(N), ¢=1,2,...,n has the saddle-node p;, as uniquc non-simple singular point.
We approximate v} by 7{ which, at A, satisfies condition (1) of Prop. (3.6), Part I;
the other conditions, 2), 3), 4), of this proposition are obtained for »"(3;) by the approxi-
mation techniques introduced by M. Peixoto [8] to obtain the same conditions.
Thus, 7V())eQ}; furthcrmore, at the saddle-nodes p; of %%/(%,), the transversality
of 7" to M2 at (;, p,) is equivalent to the transversality of %) to the local submanifold
associated to p; and %V()) defined in (g.2), Part I; actually, ¢, of the first expression
in (2.1.1) (which corresponds to saddle-nodes), is such that dfyx(V)=¢,%0, for
" 3.,‘(1)
X =009, V=1
Obviously, Ve®(Q!). In fact, 7"(2)edQ}, A+x, implies that in every
ncighborhood of #'(X) there arc ficlds of Q [, which is not possible since for A%x;, 7%(A)
has only simple singular points (and this holds for fields in a neighborhood of 7"(3)).
Now we show how to approximate 0!’ by 7e®(Q32).

(»;) where f is the function defined in (3.2), Part 1.

Let p, be a simple singular point of n%(3;) as in (3.10), Part I. Let K bec a
neighborhood of A, such that %"(K)cB. Let P(\)=P(x"(})), (scc (3.10), Part I)
and let o(7")(A) =o(y"(1)); obviously, S(#")n(KxU)={(» P(2));reK}.
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Take neighborhoods KicK,cK of 2, and UycU,cU of p, such that:
ClosKjcInt K;, ClosK,cIntK, Clos UjcInt U,
Clos U,cInt U, P(K,)cU;j.

Take bump functions v, 0 :v=1 on K}, v=0 outside K;; ¢=1 on Uj and ¢ =0
outside U,. Take coordinates (x;, x,) in U and define:

3(A) (15 %y) =—c(¥1—P1(A)) @ (1, %2)v(R),

where P,(}) is the first coordinate of P(1), and ¢ is a regular value of o(7V). For ¢
small, 7% =743 is close to %¥; also 7P =7 outside K,xU,, S{y#)=S{n"),
and o(n®)(\)=c(n")(»)-—e for reClos K}.

Thus, when o(7®)(2) =0, then o(#®)'(2) %0, and % has only a finitc number of
non-gencric singular points on S(7%) n ((Clos K§)x U); %%|Clos Kj is transversal to the
local submanifold f==o0 defined in (3.10), Part 1.

The set of simple non-generic singular points of %" is compact and ¢an be covered
by a finite number of ncighborhoods Kj}(i) x Uj(é), i:=1, 2, ..., m, with the properties
of KixU} above; obviously K(7), i=:1, 2, ..., m, is disjoint from (v")"*(Q]). We
approximate 7' by n®, as above, on Clos Ki(1) X Ug(1); ncxt, in the same fashion,
we approximate n® by %™ in Clos K§(2) x Ug(2) without breaking the transversality
conditions (which are open) obtained in Kj(1) X Uj(1); we repeat this process on
Ki(3) x Us(3), ..., Ki(m) x Up(m) and obtain %™*! with finitely many non-generic
simple singular points (A, £;), (Mg, f2), - - -5 (A, £2), 1™ 7Y being transversal to the local
submanifolds f=o associated to p=4p, and X=»""Y()) of (3.10), Part I. After
a further small modification, we may assume that a<i<A;<...<)<b. Now we
approximate x™¥¥ by v which at A has g, as a composed-focus; this is done by a small
change in the coefficients of the terms of second, third, and fourth order at p; (see [21]
for a coordinate expression of p¥(0) defined in (3.11), Part I). Further modification
leads to 7n(x)eQ?; this is done as indicated above for the case of saddle-nodes, using
the approximation techniques in [8] to obtain conditions 2), 3), and 4) of (3.12), Part 1
(condition 1) is alrcady satisfied) for %()). As in the case of Q, it follows that
7e®(QA) N ®(QYL)=D(Q v Q%)=®(Q,). This ends the proof of (2.1).

Remark (2.x.1). — Call QY the set of vector fields in X7, which have non-generic
singular points. Then Q, is densc in Q.

For instance, if p, is a non-generic singular point of XeQ%, we can find X,
Cr-closc to X; which has a quasi-generic singular point at p, as unique non-generic
singular point; if p, is a saddle-node (resp. composed-focus) of X, , there is an X,, C'-closc
to X,, which belongs to QY (resp. Q%). This follows from arguments similar to those
in the proof of (2.1), using [8].

Remark (2.1.2). — If Ee®(Q,), £71(Q,) has a finitc number of points A, ..., A;
we may assume that A; has a neighborhood K; such that &£(K,)cB;, a neighborhood
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of X;=E(») which, by (3.13), Part I, can be taken disjoint with X[—Q,. Thus,
£ has a neighborhood #c®(Q,) such that every ned is such that »(K,)cB,, and
hence 7|K;e®(Q,(n))n®(Q\(n))n®(Q4(n)), for every n=1,2... Therefore, to
approximate £ by 1e®(Q,y(n))nP(Q,(n)) n®(Q,(n)), it is sufficient to do so on
J— l:.l K;Cljjjj, where J; arc closed intervals whose extremities are g, b, or the extremities

of K;. By continuity, every ned can be assumed to have only generic singular points
on J; and to be structurally stable on the extremities of J;.

Remark (2.1.3). — a) Let @ be an open set of X” such that cvery Ye0 has only
generic singular points.  Gall ©(Y) the minimum of the periods of all periodic trajectories
of Y; 7(Y)=oo, if Y has no periodic trajectory.

It follows easily that = is a positive lower semicontinuous function; see, for
example, [6, p. 219].

) Under the same hypothesis in ), the minimum of the length of saddle separatrices
(resp. connections) of Ye@, ¢(Y) (resp. £,(Y)), is a positive lower semicontinuous function,
as follows from (4.5), Part I. Here we are assuming that a saddle separatrix whose «
or «-limit set is a generic node or focus has infinite length, and that £(Y) (resp. £,(Y))

is infinite when X has no saddle separatrix (resp. no saddle connection). Obviously,
£ <t

Proposition (2.2). — O(Q,(n)) and ®(Q’y(n)), defined as in (2.1) according to (1.2) a),
are open and dense in @,

The proof of this proposition depends on two preliminary results. Some notation
is introduced first.

Assume that £e®]; let y be a periodic trajectory of period v of X=E(X,) and
let =:ByXxUy—>U be the mapping defined (in (2.1), Part I) in a neighborhood of
{X}x{p}, pey. Supposc that >0, a ncighborhood N of v, and a positive integer n
are given; then By and U, can be taken so that every arc of trajectory of YeB, joining
ueU, to nh(u)eU spends a time within ¢ of 1z and is contained in Int N, Take
neighborhoods N; and N, of y and U,cU: of p, such that Clos NjcIntN,,
Clos NycInt N, N;nU,=U;, and Clos UjcInt UcU,; also take neighborhoods
K,cK,cK of A, such that Clos KjcIntK,, Clos K cInt K, and £(K)cB,. Define
n; : KxUy;—=U by m:(, u) ==(E(), u).

Lemma (2.2.1). — Assume the notation above.
a) If vy is two-sided, w; can be C'+* approximated by w, such that m, ==, outside Kox Uy,
(A, u)—u restricted to Clos K{x Uy has zero as regular value, and when =\, u)=u and

&#
20, w=1, then W?O" u) $0.

b) If vy is one-sided, we may assume that £(X), AeK has only one one-sided periodic trajectory
meeting U, at a(p) (=k(E(N) of (2.6), Part I). w can be C'*' approximated by m, such
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that = (A u)=u only for u=a()), m,=m; outside K,xUZ, and at every reClos K| with
oy

— M uw)=—1 at u=a(}), then

&, Fr,
du 3

3)\311()\’ u)+0 and W()\, w(M u))F0 at u=a(r).

Proof. — Follows from Sard’s Theorem.

Lemma (2.2.2) (Kupka). — In the space of G+ functions from K, xU, to U, with
the G %1 topology, there is a neighborhood V of w, where a continuous @f-valued mapping w—E,
is defined so that =, =mn in Clos K{xUj, m, =m; outside K,xU; and £ =E outside
Ky xNg.

Progf. — Similar to [12, p. 464].

Proof of (2.2). — Given Ee®’, we will approximate it by ne®(Q4(n)) n ®(Qy(n)).
We may assumc that £ has only generic singular points and that £(a), £(6)eX’, by
Remark (2.1.2); also, we may assume that every periodic trajectory of £ has period
greater than 7y>>0, by Remark (2.1.3), ¢). Call P(n) the following set:

{(» p)eJ x M?, such that £()) has a non-generic periodic trajectory y of period <z
through p}.

P(n) is a compact subsct contained in Int JxM?; the subset P (n)cP(n) of
points for which vy is one-sided, is also compact.

First we will approximate £ by ne®(Q,(n)). For MNe], &(A;) has at most a
finite number of one-sided periodic trajectories vy, vs, .., Yi» Lake n=g2, <7,
and N(i) =N(y,) disjoint neighborhoods of v;,, i=1,2, ...,k B, is taken as above
with the additional conditions that every periodic trajectory of YeB; has period ><,
(2.1.3), a), and that, on M?~lle(')(i), YeB, has only either periodic trajectories of

period >n or two-sided periodic trajectories of period <z. K=K(}), K{=K;(n), etc.,
are taken as above. Take a finite covering Ki(d,), Ki(2,), - . ., Ki(a,) of the projection
of P,(n) on J, and take Nj(»)(1), Ng(®)(2), ..., Ng(») (), the corresponding neigh-
borhoods of the one-sided periodic trajectories of E(;). On each Kg(a;) XNy(A,) (@),
i=1,2, ...,k , approximate £ (using (2.2.2)) by %; such that =n; =m; of (2.2.1), 8)
on K, (A)xU(i) and =n,=E outside Ky(x,)x (l;JNoO\l) (1)). Then, with the same
criterion, approximate 7, by 7, on each Ky(h) X No(Ry)(?), =1, 2, ..., k,, without
breaking the regularity conditions (which are open) obtained for =, on Clos Ky(a,).
Iterating this procedure for K,(a,), Ky(d,), ..., Ki(,), we obtain ¥, == which has
finitely many non-generic one-sided periodic trajectories of period <z, which are quasi-
generic; furthermore, if (X)), i=1, 2, ..., &, has one such trajectory ¥', ¥ is transversal
at ¥ to the local manifold f=o0 defined in (2.6), Part I, associated to X =7(») and
Yx =7Y'; thus we may assume (aftcr a small change, if necessary) that ¢ <a'<X*<...<¥*<p
and that %(i) has ¥ as unique quasi-generic periodic trajectory, of period <n. By a
further small change on 7 to (1 -+ @)y, we get period vy*<»; if ®>o0 is small, no
new non-generic one-sided periodic trajectory of period <z is created. Finally, the
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approximation techniques of [7] lead to % satisfying 1), 2), 3) of (2.2), Part I, at X,
i=1,2, ...,k Obviously 7ne®(Q(n)).

It follows from (2.7), Part I, that there arc ncighborhoods J* of »' such that
7|J'e®(Q,(n)); hence it is sufficient to approximate 3 by 7ne®(Q,(z)) on intervals J
contained in the complement of l{JJﬁ where 1 has only generic onc-sided periodic

trajectories of period <n. Take now n>n/ry, and e<ton—n. For Aye], consider a
finite covering N;(y;) of the compact sct of two-sided periodic trajectories of 7(A) of
period <z; the neighborhoods Ny(y;) arc taken as at the beginning of this section.
B, is taken so that YeB, has only periodic trajectories of period >rt, and, through
M?— L’J N;(Y;), Y has only periodic trajectories of period >z or generic one-sided periodic

trajectories of period <n; K,=K(), K;i=Ki(,), etc., are taken as above. Take a
finite covering K (), K'(%,), ..., K{(x,) of the projection of P(z) into J. For K,(3;),
i=1, ..., m, take the corresponding neighborhoods Nj(v,)(z), Ny(v)(2), - - -, No(vx)(2)
which cover the two-sided periodic trajectories of 7(x;) of period <nu. Start with
Ky(2). On Ky(A) XN(y,)(1) approximate v (using (2.2.2)) by 7, such that n, ==,
of (2.2.1), a) on K () X Ui(1), and 7, =7 outside K (&) XxNy(y,)(1); then with the
same criterion, approximate 7; by 7, on K(x;) X Ny(x;)(1), without breaking the
regularity conditions obtained for =, on Clos Kj(A) XNy(v;)(1), and so on for
Ko(A) XNo(v:) (1), =3, 4, ..., ky, and afterwards for K,(2;), K(a3), ..., Ky(7,), thus
obtaining = which has finitely many non-generic periodic trajectories of period <n,
which are two-sided and quasi-generic. This last assertion can be shown as follows.
Every two-sided non-generic periodic trajectory of period <z of % must be contained,
for some 7, in UK{(n) X Nj(y;) (;) (otherwisc it would have period >n) and therefore
corresponds to 2;. fixed point of w, =m; on K(A,) X Ug(j) otherwise, since w; has no
periodic points of period > 1, for it is orientation preserving, it would contain a simple
arc which spends a time greater than:

n.(period y;)—e>nrg—e>n

and hence it would have period greater than n.

Now, further small modifications of % (which is also transversal to the local mani-
folds f=o0 of (2.4), Part I) similar to thosc indicated above for ¥, lead to ne®(Q ,(n))
on J and thereforec on J. Thus 7ne®(Q,(n)) n®(Q%(n)) and approximates &.

Remark (2.2.3). — Gall QY the sct of vector fields XeX] which have non-generic
periodic trajectorics.

Approximation arguments similar to those uscd in the proof of (2.2) show that
Q, (defined in (2.2), Part I) is dense in QY.

If X has onc non-generic periodic trajectory vy, we first make it quasi-generic
for X, C'-close to X, using adequate versions of (2.2.1) and (2.2.2). Then we use the
approximation techniques of [8] to get X,eQ,, C'-close to X, with y as quasi-generic
periodic trajectory.
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Proposition (2.3). -— ®(Q 3(n)), defined as in (2.1) according to (1.2), a), is open and
dense in @,

Proof. — Openness is obvious, by (1.1), a); we prove density. Let £e®’;
by (1.1), ) and Remark (2.1.2) we may assume that £e®] and that all its singular
points are generic. Also we assume that £(a), §(b)eZ’.

Let m>o0 be less than the length of any saddle separatrix of (), AeJ; the
existence of m follows from (2.1.3), &).

Let A(f)={re]J; £(A) has some saddle conncction with length <¢}. A(¢)cInt J
is compact. For MeA(f), let {,} be the saddle connections with length <Zof X =£(},);
for v; consider the neighborhoods Ni, N} and B;, of the saddle points connected by ¥;
and X =E£(3,), so that f¥(Y)=n%(«*(Y))—s"(Y) is defined for YeB; by (4.4), PartI;
% : U'c aNi —>S'c oN;.

Also consider neighborhoods N, Ny, N; of the arcs of y* joining #'(X) to
s*(X); assume that Clos Nj;cInt N, Clos N,;,cN*’, and that the arcs of separ-

— T B

atrices #'(Y)rh(2(Y)) and (=%)7's*(Y)s*(Y) are contained in Int N, for YeB,.
The N;s arc taken disjoint. Take neighborhoods Ki(a,), Ky(&,), K(&) of 2, with
Clos Ko(Ay) cInt Ko(ay) and Clos Kj(A)cInt K(3)) such that E(K(x,))cBc [:] B..
Assume that B is such that all saddle separatrices of YeB, different from those through
#(Y), s'(Y), have length greater than ¢, and also that the saddle separatrices through
s(Y), &(Y) for fi(Y)+o have length greater than ¢,+m, where ¢ =lengthy'.
See (4.5), Part I, and (2.1.3), 4).

The K{(A,)’s form an open covering of A(f); select a finite subcovering Kg()),
Kool - Kol

Call vi, ¥4, -.., Y,’.,- the saddle conncctions of (%), with length <¢/. Take K(n)
and y! and approximate £ by &% such that £§9(K (%)) cB, E¥=£ outside K (A;) X (l} N,
and such that zero is a regular value of f*(EY(2)), for AeClos K{(3,). This is achieved
by a procedure similar to that described in the proof of (2.1), using here a version of
(2.2.2) suited for saddle connections [6, p. 221]. For K(»,) approximate {" by E®
as above, taking care not to destroy the regularity conditions (which are open) obtained
in Clos K/(3,). Do the same for A, ..., A, and obtain £" =1

Start with /=gm/2, then v obtained above has a finitc number of X’s:

a<x<...<3<b,

such that, after a small change on %, %(X) has only one saddle connection y* with
length </; each onec corresponding to a zero of f*(n(A)); hence 7 is transversal at X; to

the local manifolds f*=o0 defincd in 4, Part I. Notice that there may be other saddle
connections y for n(X;) but, by construction of v, they will have length greater than:

m —+ length ¥ >am>¢.

By a further small change, we may assume that 7n(};)eQ 4(¢). This,asan (2.1)and (2.3),
is achieved by the approximation techniques in [8]. Now, all the saddle separatrices
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of n(A), AsN;, have length greater than gm/2. Each A, has a neighborhood J; such
that n(A), for AeJ;, A#A,, has only saddle connections (if any) with length greater
than n, (4.7.1), Part I. Hence, it is sufficient to approximate 7 restricted to the comp-
lement of l.J_],-, where all saddle separatrices have length greater than m; =3gm/2.

Repeat the above procedure for each of the intervals J on the complement
of L‘JJ,-, now for /=gm,/2=(3/2)%m, and so on. Thus after 2- -1 steps we obtain

¢ =(3/2)¥*m>n, for k big enough. It follows asin (2.1) and (2.3) that the one parameter
family thus obtained belongs to ®(Q 5(n)).

Remark (2.3.1). — Call QY the set of vector ficlds XeX; which have saddle
connections or non trivial recurrent orbits and all its singular points and periodic orbits
are generic. The set Q,uQ, (defined in (2.2) and (4.2), Part I) is dense in QY,
as follows from arguments similar to thosc employed to prove (2.3). In fact, if XeQf
has a saddle connection v, it is G-approximated by X,;eQ, that have the same saddle
connection, which is a simple loop in case vy is a loop. This is done by a local pertur-
bation of X around the saddle points. If X has a recurrent orbit, it is approximated
by X,, C'-close to it, which has either a saddle connection, if X has some recurrent
saddle separatrix, or a quasi-generic periodic orbit, if X has none. The first alternative
follows from the “ closing lemma » in [8, p. 114]; the second happens only if M?=T?
(torus) and X has no singular point.

The first case was trcated just above, the second is handled as follows.

There is a cycle S! transversal to every Y in a small ball V centered at X. Let
Y,e2'AV and call o(s) the rotation number of X(s)=sY,+(1—s)X, relative to S’
Notice that p(0) is irrational and p(1) is rational. GCall s; the g.l.b. of:

{selo, 11; o(ls, 1)) =p(1)}.
Clearly o0<s;<I.

Since ¢ is continuous p(s;)=p(1) is rational, and X(s,) has periodic orbits. These
orbits are necessarily non generic, otherwise for all small non negative e, X(s;—¢) will
have generic periodic orbits and p(s;—e) will also be equal to p(1). Contradiction.
Now we approximate X(s,) by X;eVnQ,, according to Remark (2.2.3).

Notice that ¥;=Q%uQ%uQ%. Remarks (2.1.1), (2.2.3), (2.3.1) indicate
how to approximate ficlds in X] by fields in Z]=Q,0Q,uQ,.

Proof of Theorem 2. — Take a countable densc sct of J, {4}, ieN, which contains
the extremes a, b; call ®(q) the set {£e®"; £(q,)eZ’}. ®(a) is open and dense in @;
O(S)=0(Q ) n®(Q,(j)) n®(Q4(j)) is also open and dense in @', by (2.1), (2.2),
(2.3). Thus .@zﬂ_(@(a,-)n(l)(sj)) is a Baire set; we show that ZcI”. In fact, if

EeB, £HE) is op(;n and dense, since it contains {¢;} and & is transversal to Zf; this
proves that £ satisfies 2) and part of 3) of Theorem 2. We show that it satisfics 1); in
fact, if A¢E~1(Z) and E(0)¢[K-S], E&(A) has a non-generic singular point, a non-
generic periodic trajectory, or a saddle conncction and then £(A)eX]. To complete
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the proof that £ satisfies 3), it is sufficient to obscrve that every 3¢5 " (%) is a bifurcation
value; if £(,)eX! this is obvious by (1.1); if E(%)e[K-S]", it has a non trivial
recurrent trajectory and can not be topologically cquivalent to g(g;) for g; close to A.

3. Structural Stability.

In this section we formulate the concept of structural stability for vector fields
depending on a paramecter, and state some related conjectures.

Definition (3.1). — a) &, 1e®" arc said to be topologically equivalent if there is a
homeomorphism % : J -J and a continuous family of homeomorphisms, H : J —Hom M?,
of M2 such that for very A€], H(2) is a topological equivalence between () and %(4(})).

b) Ec® is structurally stable if it has a ncighborhood N such that & is topologically
equivalent to every 7neN.

Obviously this definition makes sense when J is any manifold. When J={a}, a
point, this definition reduces to plain structural stability, (1.3), Part L.

Also we may require that N be such that £ and H be e-close to the identity (of J
and M respectively), for € given beforehand.

Call Z(J) the set of structurally stable elements of @,

It sccms quite possible to show that X(J)cI". Also that IycZ(J), where
N, ={zel"; £(J)czu i}

More delicate questions are the following:

a) Prove that T,nX(J) is open in @ and dense in T, ={EeI"; E(J)cZ u X}

4) Prove {or disprove) that there are clements E£eX(J) such that:

£(J) n{[K-S}— 2} +0.
¢) Characterize Z(J). Is it dense in @77

An answer for ) and ¢) should require a deep undcrstanding of the ¢ generic
type of non trivial recurrent orbits and of the  part of codimension one ” of [K-S]"—2'.
A basic question in this direction is if Q ,, the set of vector ficlds in T? without singularities
and irrational rotation number p, contains an opcn dense manifold of codimension one.
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