
Computing 60, 193-215 (1998) ~ 1 ~

© Springer-Veflag 1998
Printed in Austria

A Linear Algorithm for the Pos / Neg-Weighted 1-Median
Problem on a Cactus*

R. E. Burkard, Graz, and J. Krarup, Copenhagen

Received July 2, 1997; revised September 29, 1997

Abstract

The 1-median problem on a network asks for a vertex minimizing the sum of the weighted shortest
path distances from itself to all other vertices, each associated with a certain positive weight. We
allow for negatiue weights as well and devise an exact algorithm for the resulting 'pos/neg-weighted'
problem defined on a cactus. The algorithm visits every vertex just once and runs thus in linear time.

AMS Subject Classifications: 90B80, 90C35, 90C27.

Key words: Location problems, 1-median problem, obnoxious facilities.

1. Introduction

Single-commodity facility location problems deal typically with the location of
one or more facil i t ies each of which provides the same kind of service to the
users allocated to it. The facilities to be located are normally regarded as
'friendly' in the sense that 'closeness' is viewed as an attractive property.
Location theory, however, does also encompass the counterpart: the location of
so-called obnoxious facilities where one frequently used criterion is the maxi-

m u m distance between a facility and the closest client. For example, disregard-
ing its workers and subcontractors, who else likes an obnoxious power plant in
their backyard? Note that even a friendly facility may well become obnoxious
unless 'closeness' is taken with a grain of salt. Thus, optimal closeness to a noisy
elementary school is rather 'reachable within a few minutes walk' than 'next
door', a feature known as the NIMBY (Not In My Back Yard) syndrome.

The investigation of models with such truly antagonistic criteria capturing both
the friendly and the obnoxious aspect of a locational decision problem have
attracted several researchers, notably in the 90's, and the field is still gaining
further momentum. Our motivation for the present study is a famous problem,
allegedly first formulated in the early 1600's by Fermat, and by the so-called

*This research has been supported by the Spezialforschungsbereich F 003 'Optimierung und
Kontrolle', Projektbereich Diskrete Optimierung.

194 R.E. Burkard and J. Krarup

'Complementary Problem' proposed in [4]. For three given points A, B, C in a
plane, FERMAT asks for a fourth point X such that the sum AX + BX + CX of
its (Euclidean) distances to the three given points is minimized. The 'Comple-
mentary Problem' CP differs from Fermat in that one of the given points, say
point A, is 'obnoxious' which is reflected by the objective function - A X + BX
+ CX; furthermore, /_BAC exceeds 120 °. Both FERMAT and CP can be
viewed as special cases of the Weber Problem with three users if also negative
weights are allowed for. FERMAT represents then the unweighted case or the
case where the weight associated with each of the given points is + 1 whereas
CP has weights - 1, + 1, + 1 for A, B, C respectively.

CP appears to be incorrectly solved by Courant and Robbins. This is remedied
in Krarup [9] who provides the correct geometrical solution for any set of three
given points.

FERMAT and CP are both examples of continuous location problems in the
sense that the optimizing point sought for can be placed anywhere in the plane.
The discrete formulations arise when the set of potential sites for the facilities to
be placed is finite and often represented by the vertices of a network. For a
given graph with positive weights associated with its vertices, Hakimi [6] investi-
gated the so-called 1-median problem which is to find a vertex such that the sum
of the weighted distances to all other vertices becomes as small as possible. The
p-median problem is to identify a subset P of p vertices minimizing the sum of
the weighted shortest path distances from each other vertex in the graph to the
closest vertex in P. Kariv and Hakimi [8] showed that the problem of finding p
medians in a graph is NP-hard.

However, for NP-hard problems defined on a graph, well-soloed special cases may
occur if, for example, the graph possesses certain properties. One such well-
solved special case, namely the 1-median problem in a tree, was first considered
by Hua et al. [7]. Goldman [5] developed for this problem a simple algorithm
which is based on the following observation: If an edge (u, o) is deleted in the
tree, we get two trees T 1 and T 2. Let W~ be the weight of all vertices in tree T~,
i = 1, 2. Then the optimal location lies in the tree with the largest accumulated
weight. This observation makes use of the fact that all weights are nonnegative,
but does not hold if negative vertex weights are allowed. Thus a new approach is
needed in this case. In this paper we shall deal with such an approach which is
applicable also to negative weights (and partly also to negative distances).
Moreover we consider not only trees, but cacti. A cactus is a connected graph
where no two cycles have more than one vertex in common. In 1996, Auletta,
Parente and Persiano considered a dynamic version of the 1- (and 2-) median
problem in trees, where the nonnegative weights of the vertices may change.
They developed for the dynamic version of the 1-median problem an algorithm
which closely resembles what we shall be doing in the following for the tree
structure called graft, and solve the dynamic version in O(log n) time using
preprocessing of O(n) time. Another related work stems from Chen et al. [3]

A Linear Algorithm for the Pos/Neg-Weighted 1-Median Problem on a Cactus 195

and deals with block vertex duality and the 1-median problem. In the case of
nonnegative weights and distances they identify either a vertex of a subtree as
1-median or a block (in our case: a cycle) which contains the 1-median, whereas
we also find the correct vertex within the block (cycle). Their blocking graph
resembles our skeleton. Every vertex of a tree, however, forms a single block,
whereas we comprise subtrees to 'grafts'. Their duality theory cannot be applied
in our case, since we also admit negative distances. In the presence of negative
distances the duality between the so-called weight-centroid problem and the
1-median problem does not longer hold.

Another pertinent reference is Bern et al. [2]. Bern et al. provides a general
methodology for constructing linear time algorithms for problems of finding
optimal subgraphs of graphs defined by certain composition rules (as are trees,
series-parallel graphs, and outerplanar graphs); moreover, these subgraphs must
possess certain properties.

Section 2 provides the necessary concepts and sets the stage for the ensuing
detailed accounts for the data structures employed. In Section 3 we show that a
cactus can be decomposed into blocks (that is, tree structures called grafts, and
cycles) held together by hinges. Accompanied by numerical examples, Sections 4
and 5 describe the computational procedures for grafts and cycles respectively.
The correctness proofs show that the resulting algorithm runs in linear time
since every vertex is visited just once. In Section 6 we embed the procedures for
the two types of blocks considered into the global optimization routine for cacti.

The prime motivation for this study was, as already said, the interest in location
problems with negative weights. As regards realistic applications, however, we
believe that models capable of handling arbitrary weights may well provide
useful decision support, for example, to companies operating in a competitive
environment or to monopolistic companies wishing to increase or decrease the
number of existing facilities.

2. Problem Formulation

Let N = (V, E, w, c) be a given connected network with vertex set V and edge
set E. With each vertex x ~ V we associate a certain weight w(x). Likewise, with
each edge (x, y) ~ E we associate a certain cost or length c(x, y).

A cycle is a sequence (xl , . . . , xk, x~+ 1 = xl) of k distinct vertices supplemented
by xk+ 1 =x 1 such that (xj, xj+Q is an edge, j = 1, . . . ,k , k > 3 .

N is assumed to be a cactus, that is, no two cycles of N have more than one
vertex in common. The weights w(x) can be any real number and likewise for
the lengths c(x, y), the only exception being that the length of edges included in
a cycle must be nonnegative.

196 R.E. Burkard and J. Krarup

The length of a path connecting a pair (x, y) of distinct vertices is the sum of
the lengths of its constituent edges.

Let d(x,y)be the shortest path distance between vertices x and y in N, x 4:y.
For all x ~ V, d(x, x) = O.

The objective function f(x) to be minimized is defined for each vertex x and
expresses the sum of the weighted shortest path distances between x and all
other vertices, that is

f (x) = E w(y)d(x ,y)
y ~ V

The 'pos/neg-weighted' 1-median problem PN1 can now be stated as follows:
For given N = (V, E, w, c) find a vertex a minimizing f(x),

f (a) = m i n f (x) .
x ~ V

Since negative weights are allowed for, smaller values than f (a) of the objective
function can be reached if we relax the requirement that d(x, y) is a shortest
path distance.

For an ordinary 1-median problem on a network where all weights are positive,
the so-called Vertex Optimality Property asserts that the problem has an optimal
solution at a vertex. This property does not apply in the present case. For
example, for the equilateral triangle abc in Fig. 1 we find

f(a) = 0 + 2 + 2 = 4 , f (b) = f (c) = - 2 + 2 = 0 .

m is not a vertex but the midpoint between b and c on the edge (b,c).
f (m) = - 3 + l + l = - l < O . Hence, b and c are optimal vertex solutions
whereas better solutions like m can be found unless vertex solutions are
explicitly requested in the formulation of the problem.

b
=

Figure 1. PN1

~ -- --1

1 m w(c) = 1

does not possess the Vertex Optimality Property

A Linear Algorithm for the Pos /Neg-Weigh ted 1-Median Problem on a Cactus 197

To facilitate the overview of the ensuing algorithm A-PN1 devised for the exact
solution of PN1 in linear time, some additional concepts need to be introduced.
Initially we partition the vertices of N into three different subsets.

A C-vertex is a vertex of degree 2 which is included in exactly one cycle. A
G-vertex is a vertex not included in any cycle. The remaining vertices, if any, will
be referred to as H-vertices or hinges. It follows from the above that an H-vertex
must be included in at least one cycle and be of degree > 3.

A subtree is a tree induced by a subset of G- and H-vertices only. A maximal
subtree is a subtree for which the subset of G- and H-vertices defining it cannot
be extended. A graft is a maximal subtree with no two H-vertices belonging to
the same cycle. Finally, a block is a cycle or a graft.

These notions are all illustrated in Fig. 2 where the dotted curves merely are
meant to emphasize the maximal subtrees called grafts. Roughly speaking, a
cactus does thus consist of blocks which are either cycles or grafts. Note that a
graft may be a tree spanning a subset of H-vertices only.

Without knowing the specific values f (x) and f (y) of the objective function for
a pair of adjacent vertices, we can, as will be shown, in a simple way calculate

~x

CI

C6

C7

Figure 2. A cactus N with 7 cycles C 1 , C7, 3 grafts G 1 G 3 and 7 hinges Hj H 7

198 R.E. Burkard and J. Krarup

the difference Ac(x , y) = f (y) - - f (x) and so to speak exclude nonoptimal ver-
tices from any further consideration. This operation on a pair (x, y) of adjacent
vertices forms the innermost part of A-PN1 and will be referred to as a primary
step.

Primary steps are only executed on pairs of vertices belonging to the same block.
We deal with one block at a time and transfer all information on the block,
needed for further computations, to one of its hinges, if any left at all. Unless
the algorithm terminates with a globally optimal solution, a vertex representing a
locally optimal solution for the block under consideration has thereby been
identified.

The sequence of primary steps needed to eliminate a block constitutes a
secondary step. Two different types are distinguished: CYCLE(.,.) and GRAFT(.,.)
will eliminate a cycle and graft respectively.

In the next section we describe the skeleton of a cactus, a concept which will
enable us to perform the secondary step. In Sections 4 and 5, respectively, we
describe how grafts and cycles can be handled in linear time. Finally, in Section
6 the interplay between the secondary steps and the primary step is described.

Leve l

0

Figure 3. The skeleton S rooted at a block

A Linear Algorithm for the Pos/Neg-Weighted 1-Median Problem on a Cactus 199

3. The Skeleton of a Cactus

To establish the processing order of the blocks, we shall define the skeleton of a
cactus. Let C1, C 2 G1, G 2 , and H 1, H2 . . . be the cycles, the grafts, and
the hinges of N respectively. Each block (cycle or graft) and each hinge is
represented by a vertex in the skeleton S = (V s, E s) of N.

For each block we join the vertex representing the block itself by an edge to
each of its hinges. The graph obtained in this way constitutes the skeleton S of
N, cf. Fig. 3.

Since N is a connected cactus, the skeleton so defined wilt become a tree with
all end vertices or leaves representing blocks.

Two degenerate cases may occur: N itself is either a tree or a single cycle. In
both cases, N will comprise a single block only and the skeleton of N reduces
accordingly to a single vertex.

Without ambiguity, we can conveniently refer to the vertices of S as blocks and
hinges. Since no hinge can be a leaf of S, the degree deg(H) of a hinge H must
be at least 2 whereas the degree of a block in S can be a positive integer or even
zero in the degenerate cases mentioned above.

To make the skeleton ready for use as intended, we shall first represent S as a
rooted tree where the root in principle can be any block. The., level number
associated with each vertex in Fig. 3 is the number of edges along the path
between that vertex and the root.

For a given block B at level l ev (B)= i the successors of B form the subset
suc(B) c V s of vertices X, l ev (X) > i, in the subtree of S rooted at B. Thus, for
example, suc(G 2) = {H2,//5, C1, C6,//1, C2} , suc(G 3) = {H7, C 7} and suc(C 7) = O,
cf. Figure 3.

If it exists, the father of a block is always a hinge-vertex, called its companion
hinge. For example in Fig. 3, the companion hinge of G 2 is H 4.

If [Vs[> 1, the processing order of the blocks is defined as follows. A live block
is a block which has not been processed as yet. Among the live blocks we select
in each secondary step a block B at the highest possible level together with its
companion hinge H. Ties in the selection of B can be resolved if we, for
example, among the live blocks at the highest level choose the rightmost one
(although blocks on the same level can in principle be processed in any order).
The block is then processed via a call of the procedure CYCLE(B, H) if B is a
cycle and GRAFT(B, H) otherwise. In either case we identify a solution which
is locally optimal for the subset {B} U suc(B) of vertices of S. ~dl information
such as the optimizing vertex, the total weight of all vertices in {B} U suc(B),
and the data needed for finding f (a) , the objective function value correspond-

200 R.E. Burkard and J. Krarup

ing to a global optimal solution a, is passed to the companion hinge H. When
no live blocks remain, the last secondary step will process the root itself whereby
we are done. For the example exhibited in Fig. 3, the processing order of the
blocks will thus become: C2, C7, C6, C1, C 5, C 4, G3, G 2 (containing the two
hinges H E and Hs), G 1 and C 3.

4. Optimization on Grafts

In the following we describe the algorithm in the case where the block to be
eliminated is a graft G.

PROCEDURE GRAFt (G, H)

Input: A graft G rooted at its companion hinge H. If G = N itself or the root of
the skeleton, the root of G can be any vertex of G.

Output: GRAFT(G, H) returns vertex /3~ which is a locally optimal solution to
G together with f~ =f6(tic), the corresponding (local) value of the objective
function restricted to the vertices of G, the sum of all weights of vertices in G
and the local function values for all hinge vertices in G.

We shall, for ease of exposition, present GRAFT(G, H) via an illustrative
example concurrently with the general remarks. To avoid a too complicated
notation involving subscripts on subscripts and the like, we designate the
vertices of G by single letters a, b not used for other purposes.

Figure 4 shows a graft as a rooted tree.

To each vertex in G we attach its weight w(x) and unless x is the root of G, the
length c(x, y) of the edge (x, y) between x and the father y. Live vertices are
vertices not processed as yet. The root is not considered to be a live vertex. The
processing order is identical to that of the blocks of a skeleton: In each primary
step we choose the rightmost live vertex among the live vertices at the highest
level. It follows from the processing order thus defined that whenever a vertex x
is selected, we have already processed the subset sue(x) of all vertices at a
higher level than x in the subtree of G rooted at x.

For any vertex x of G, let

w+(x) = ~ w(j) and w - (x) = - w (x) + ~ w(j) .
j ~ sue(x) j ~ sue(x)

By which amount A c (x , y) = f (y) - f (x) does the objective function value
change if we move from vertex x to its father y? Since each pair (u, v) of
vertices in a graft is connected by exactly one path, the shortest path distance
d(u, v) between u and v must equal the length of that path. For any vertex k,
k ~ sue(x), d(k, x) + c(x, y) = d(k, y) and the contribution of vertex k to

A Linear Algori thm for the Pos /Neg-Weigh ted 1-Median Problem on a Cactus 201

7 4

h 1 2 p / i 8 3] 7 [265]

[2151 [1401

[8(} [290]

Figure 4. A graft G rooted at r. Circled numbers are the vertex-weights w(x). The other numbers
are the edge-lengths c(x, y). The numbers in brackets show the value fG(x) for each vertex x

At(x, y) is accordingly w(k)c(x, y). Similarly, any vertex k, k ~ suc(x)t_){x},
will contribute -w(k)c(x, y) to AG(x, y). Finally, the contribution of x itself is
w(x)c(x, y). Hence,

Ac(x ,y) = f (y) - f (x) = (w+(x) +w(x) - w - (x)) c (x , y) (1)

Noting that We, the total weight of G equals w+(x)+ w(x)+ w-(x) for any
vertex x of G, Eq. (1) can be written as

aG(X, y) = [2(w + (x) + w(x)) -- We] c(x, y). (2)

For every vertex x in G we require the following information. (We adopt the
convention that a sum with an empty index set equals 0.)

• S(x): set of sons of x. If x is a leaf, S(x) = ¢.
• w(x): weight of the vertex x.
• w+(x): weight of all successor vertices of x. For w+(x) we have the following

obvious recursion

w+(x)= E [w+(s)+w(s)l.
s ~ S(x)

• c(x, y): length of the edge (x, y) from x to its uniquely determined father y,
provided that x is different from the root r.

• At(x, y): change of the objective value by moving from x to its father y,
provided that x is different from the root r. Aa(x, y) is defined by (2), i.e. by

202 R.E. Burkard and J. Krarup

AG(X, y) = [2(w + (X) + w(x)) -- W~]c(x, y).

• A~(x): difference of the objective function between y, the father of x, and a
vertex z ~ {x} u suc(x) with a minimum objective function value. If x has
only one son s, we have the recursion

a (x) := ac(x,y) + max(0, a~(s)).

If x has multiple sons, we have to be careful: since we only want a vertex with
minimum value, we get

A~(x) := Ao(x,y) + max (0, a ~ (s)) . (3)
s ~ S (x)

If x is the root r, we have

/ t~(r) ..= max (0, A~(s)) . (4)
s E S (r)

• /3G(x): name of a vertex with minimum objective function value in the set
suc(x) u {x}. Obviously, for every leaf e we get ~6(e) = e. Otherwise we have
the recursion

x, if A~(s)<Oforal ls~S(x)
~6(x)= ~G(S*), i f A ~ (s *) = m a x s ~ s (x) { A ~ (s) : A ~ (s) > 0 } (5)

• ~(x): contribution of the subtree rooted at x to the objective function value
in the root of the graft.

:= E + [w+(x) +w(x)Jc(x,y)
s ~ S (x)

where y is the father of x. If x is the root, we have

E
s o S (x)

Let fG(X) be that part of the global objective function value which is induced by
the vertices of G and their weights. We refer to f6(x) as the local objective
function. For the root r of G we have

f6(r) = ~(r).

In order to get the opt imum objective function value for G, we compute

f~ = q~(r) - A~ (r) , (6)

since this amount states the difference between the current and the opt imum
value found so far. This opt imum value is attained in ~G(r). The values fc(hi)
for other hinge vertices h i of G are determined by q~(r) and the changes
AG(X, y) along the uniquely defined path from the hinge vertex h i to the root.
Thus they can easily be determined by the same pass through the vertices of G.

A Linear Algori thm for the Pos /Neg-Weigh ted 1-Median Problem on a Cactus 203

Summarizing we have first to fix the sequence of vertices beginning with the
leaves such that the sons of a vertex x are all processed prior to x. Then we
compute the total weight W G of all vertices of G. Afterwards starting with the
first vertex in our sequence we compute w+(x) , A c (x , y) , A~(x), /3c(x) and
~ (x) until the root is reached. Finally we compute for the root r the optimum
local objective function value according to (6).

For the example shown in Fig. 4 the total weight W c of all vertices is 15. We
furthermore obtain:

t
S

m

h
q

P
g
e

b
Y

S(x)

m

m

t
x
q

m,p
h

b,e,g

w(x)

5
6

- 3
2

- 4
4
2
1

- 3

w+(x) c(x ,y)

5
- 1

2
1
7
3
8
4
6

A ~ (x ,y)

- 25
3

- 4 2
- 1 1
- 9 1

15
- 7 2

4
- 102

At(x)

- 2 5
3

- 4 2
- 11
- 9 1

18
- 7 2

22
- 102

22

~c(x)

t

S

m

h
q
S

g
S

b
S

¢(x)

25
- 6
- 6

2
32
24
56
50

- 4
102

The optimal solution is obtained at vertex s with f~ = ~(a) - A~;(a) = 80.

It follows immediately from the updating scheme that the number of elementary
operations (additions, multiplications, comparisons) needed to lind a (locally)
optimal solution for a graft is proportional to the number of its vertices, since
every vertex is visited just once and the computational amount for fathoming a
vertex is constant. Thus GRAFT(G, H) runs in linear time.

5. Optimization on Cycles

The bookkeeping as regards the shortest paths whenever a vertex is killed is
slightly more complicated for cycles than for grafts. As we shall see, however, it
is possible to devise a data structure such that a cycle can be eliminated in linear
time.

Let C be a cycle with k vertices xl, x 2 , . . . , x k and edges (xi, xi+ 1) of length
c(i , i + 1) for i = 1 ,2 , . . . ,k , where xk+ 1 = x 1. The weights w(i) are positive or
negative reals, whereas the lengths c(i, i + 1) must be nonnegative, ff two or
more vertices are connected by edges of length c(i, i + 1) = 0, vie can replace
them by a single vertex whose weight is the sum of the single weights. Thus we
can assume in the following that all lengths c(i, i + 1) are positiw~.

Let L = E~= lC(i , i + 1) be the total length of C. If C has an edge (x i, xi+ 1) with
t length c(i, i + 1) > ~L, no shortest path between any pair of vertices of C will

204 R.E . Burkard and J. Krarup

include (xi, xi+l). Thus the edge can be deleted and we can apply procedure
GRAFT to the remaining graph (which is just a path). Disregarding ties, the
same applies for edges (xi, xi÷ l) with c(i, i + 1) = 1 5L. Therefore we assume in
the following that c(i, i + 1) < 1L for all edges (xi, Xi+l).

The procedure CYCLE(C, H) investigates the vertices of a cycle C one by one
and transfers all information to its companion hinge H.

PROCEDURE CYCLE (C, X1)

Input: A cycle C, where x 1 is assumed to correspond to the companion hinge of
the cycle in the skeleton S, unless the cactus N comprises only this single cycle
or C is the root of the skeleton.

Output: CYCLE(C, x 1) returns a locally optimal vertex /3 c together with f~ ,
the corresponding value of the objective function restricted to the vertices of C.
Moreover, it returns the sum of all weights of vertices in C and the local
function values for all hinge vertices in C.

The following description of CYCLE will be made concurrently with the
modest-sized data instance as shown in Fig. 5.

The ensuing description of CYCLE will to some extent resemble that of
GRAFT. Computationally, however, there are two significant differences
between these two procedures:

For a graft, the shortest path tree is the graft itself. For a cycle, however, the
shortest path tree may vary from one vertex to another, since we may reach

[9.8]
X l

()
X6

[13]

[25]
372

4

1 2
X5

[8]

[27]
X3

()
3

()
X4

[14]
Figure 5. A cycle C with vertices x 1 , x 6. Circled numbers: weights w(x). Numbers in brackets []:

fc, the corresponding local function values. Other numbers: lengths c(x, y)

A Linear Algorithm for the Pos/Neg-Weighted 1-Median Problem on a Cactus 205

certain vertices either clockwise or counterclockwise. This fact complicates the
updating whenever a vertex is being killed. On the other hand, a cycle has no
junctions, which simplifies the bookkeeping.

In the following we denote the direction given by x1, x2, . . . , Xk, .if I as clockwise,
whereas Xl, xk, . . . , x2, x 1 represents the counterclockwise direction.

In an initialization step we compute the cycle length, the total weight W c of all
vertices of the cycle, the function value fc(Xl) and we determine - - up to t i e s - -
if the shortest path from x I to xj (j = 2, 3 , k) is clockwise or counterclock-
wise. Let D(p) be the length of a clockwise path from x I to xp. Thus D(k + 1)
becomes the total length L of the cycle. We define A := ½D(k + 1). If D(j) < A,
a shortest path from x I to xj is clockwise. If D(j) > A, the shortest path from
x 1 to xj is counterclockwise. Let Xq be the first among the vertices Xz, x 3 , xk
for which D(q) > A holds. Then the shortest path lengths from x 1 to xj are
given by

I D(j) for j < q,

:= (j = 2 , 3 , k) .
d (1 , j) ~ D (k + I) - D (j) f o r j > q

Thus the function value fc(xl) becomes

q - 1 k

f ¢ (x l) = E w (j) D (J) + Y ' ~ w (j) [D (k + I) - D (j)] .
j - 2 j=q

For purposes to become clear a little later, we shall also compute

q - 1

w* := E w(j).
j=2

Summarizing, we perform the following initialization

Procedure I N I T I A L I Z E
p := 1 (xp denotes the actual vertex)
D (P) := 0, w+:= 0, fc := 0, W c : = 0
f o r j : = 2 t o k + l (m o d k) do D (j) : = D (j - 1) + c (j - I , j)
L := D(1), A := ½L (A denotes the half cycle length)
for j := 2 to k do

if D(j) < A
begin

q :=j + 1 (mod k)
W c := w* := w* + w(j)
fc :=fc + w(j)D(j)

end
else fc :=fc + w(j)[O(1) - O(j)], W c := W c + w(j)

w c := Wc + w(1)
/3c :=P, f~ :=fc

206 R.E. Burkard and J. Krarup

Thus the procedure INITIALIZE returns the objective function value fc(Xl) =
f~ with /3 C = 1, the first vertex Xq, for which the length of a clockwise path from
x I to Xq is larger than the length of a counterclockwise path and the weight
sums w* and W c. Note that q 4= 2 always holds, since from the beginning we
have assumed that c(i, i + 1) < h and q = 2 would imply c(1, 2) > h.

Applied to the data instance of Fig. 5 we get

D(2) = 4, D(3) = 6, D(4) = 9, 0 (5) = 11, 0 (6) = 12, D(1) = 17,

h=8.5 , q = 4 , w*= 2, Wc= 5, L =17,

fc(Xl) = 5.4 + (- 3) 6 + (- 1) [1 7 - 9] + 4 1 1 7 - 11] + 2 1 1 7 - 12] = 28.

How does the objective function value change, if we proceed from vertex xp to
vertex Xp+ 1 ?

Let Xq(p) be the first among the vertices Xp+2, X p + 3 , . . . , X I , . . . , Xp_ 1 for which
the length of a clockwise path starting in Xp is greater than h. Obviously, all
vertices Xp+ 2,.-. which lie on a clockwise shortest path starting in Xp will also
lie on a clockwise shortest path starting in xp+ 1. This implies q(p + 1) _> q(p).
Since c(p, p + 1) < h, we get otherwise q(p + 1) < k +p . (Recall that all indices
are to be taken mod k.)

In order to compute ~lc(p, p + 1):=fc(Xp+l)--fc(Xp), we distinguish between
three classes of vertices and their contribution to Ac(p, p + 1), cf. Fig. 6.

First we consider the vertices xj with j = p + 1 , . . . , q (p) - 1. All these vertices
lie on a clockwise path from Xp as well as from Xp + 1. Since the clockwise path
starting in Xp+~ does not contain the edge (p ,p + 1), the objective function
decreases by

q(p)- 1

~_, w (j) c (p , p + 1)
j = p + l

Let us define
q(p)- 1

w* := E w(j) .
j=p+ 1

Thus the contribution to Ac(p, p + 1) is - w * c (p , p + 1).

Next we consider the vertices xj with j = q(p + 1) , p - 1, p. All these
vertices lie on a counterclockwise path with respect to Xp as well as with respect
to Xp+ 1. Thus their contribution to Ac(p, p + 1) is just

P
~,, w (j) c (p , p + 1).

j - q (p + l)

A Linear Algorithm for the Pos/Neg-Weighted 1-Median Problem on a Cactus 207

xq~

Figure 6. Vertices xp, xp + i, Xq(p) and Xq(p + ~) along the cycle

Now we consider the vertices xj with j = q (p) , . . . , q(p + 1) - 1. These vertices
lie on a counterclockwise path with respect to xp, but on a clockwise path with
respect to xp + 1. Therefore any such vertex xj contributes the following amount

~., c(r ,r + l) - w (j) 2 A - c(r ,r + l)
r = p + l

= w (j) c (p , p + l) + 2 ~ c (r , r + l) - 2 A
r = p + l

= w (j) c (p , p + 1) + 2 w (j) [D (j) - D (p + 1) - A].

Therefore their accumulated contribution to Ac(p, p + 1) is

q(p+ 1)- 1 q(p+ 1)- 1

~_. w (j) c (p , p + l) + 2 ~_. w(j)[D(j)-D(p+I)-A].
j=q(p) j=q(p)

k+p " -- W* Summarizing, using that Ej=q<p)W(y) - W c - , we get for Zlc(p, p + 1):

ac(p , p + 1) = c (p , p + 1)(W c - 2 w *)

q(p + 1)- 1

+2 E w (j) [D (j) - D (p + I) - A].
j=q(p)

to Ac(p,p + 1):

w(j)

208 R.E. Burkard and J. Krarup

For example, for p = 1, we get

q(2)- 1
AC(1,2) = c (1 , 2) (W c - z w *) + 2 ~ w (j) [D (j) - D (Z) - A] .

j=q

In our example we get for ac(1, 2) with q(2) = 7 - 1 (m o d 6):

Ac(1,2) = 4 (5 - 2 .2) + 2[(- 1) (9 - - 4 - 8.5) + 4 (1 1 - 4 - - 8 . 5) + 2 (1 2 - 4 - 8.5)]

= 4 + 2 [3 . 5 - 6 - 1] = - 3 .

In order to perform the step from p to p + 1 we can use the following

Procedure FATHOM p
A c := c (p , p + 1) (W c - 2w*)
a : = A + c (p , p + l)
D (p) := D (p) + L
j : = q

while D(j) < A do
begin

q :=j + 1 (mod k)
A c := A c + 2 w (j) [D (j) - A]
w* := w* + w (j)

end

f c := f c + Ac
w* := w* - w (p + 1)
if fc < f~ then
begin

f ~ :=fc
f l c : = p + 1

end

The routine CYCLE consists of the initialization step INITIALIZE and an
application of the procedure F A T H O M p for p = 1, 2 , . . . , k - 1. It returns the
optimal vertex x~c together with the optimal objective function value f~.
Moreover, for all hinge vertices Xp of C we need to store the value fc (Xp) . The
whole routine CYCLE, applied to our data instance shown in Fig. 5 can be
visualized in the following tables:

Given data

j 1 2 3 4 5 6

w(xj) - 2 5 - 3 - 1 4 2
c(j , j + 1) 4 2 3 2 1 5

A Linear Algorithm for the Pos/Neg-Weighted 1-Median Problem on a Cactus

INITIALIZE computes the distances

j 1 2 3 4 5 6

D(j) 17 4 6 9 11 12

and w c = 5, L = 17.

Starting with vertex x 1 (p = 1), we get the following values

INITIALIZE p = 1
FATHOM p: p = 2

p=3
p= 4
p=5
p = 6

h D(p)

8.5 17
12.5 21
14.5 23
17.5 26
19.5 28
20.5 •

q(p)

4

Ac(p - 1,p)

-3
2

-13
-6

5

w*(p) fc(P)

28
25
27
14
8

13

fg(p)

28
25
25
14
8
8

209

t3c

Thus the optimal solution is obtained at vertex x 5 and yields the objective
function value 8.

As regards the time complexity of the routine CYCLE(-,.) we first note that the
initialization procedure runs in O(k) time. It is less apparent that the same
actually applies for the total time of all k - 1 applications of the routine
F A T H O M p. However, a close look to the while-loop reveals that the q(p)
values are ascending since the inequalities 1 < q(1) < q(2) < ... < q(k) < k +
q(1) must hold. Thus the total time for executing all while-loops is O(k). This
shows that the overall time complexity of CYCLE (.,-) is just O(k) as was the
case for GRAFT (.,.).

6. Global Opt imizat ion on a Cactus

In order to find the global optimum of the objective function, we use the
skeleton of the cactus. As already mentioned, we start with processing a block
which is a leaf at the highest level. After processing a block we shall see how the
global objective function changes when we pass to the immediate., predecessing
block in the skeleton. So, let us assume that B is a leaf of the skeleton which is
connected by its companion hinge hB to the predecessing block A (cf. Fig. 7).

Let us evaluate the objective function value f (z) for a vertex z of B. For any
vertex x belonging to neither A nor B, the shortest path between x and z must
have both hinge vertices h A and h B as intermediate vertices. Thus such a vertex
contributes the following amount to f (z) :

w(x) [d(x, hn) + d(h A, hB) + d(h B , z)] (7)

210 R . E . Burkard and J. Krarup

I

a) b)
Figure 7. a shows a part of the skeleton as exemplified in b where A is a cycle and B is a graft

Summing over all such vertices we get for the first summand a constant

K= E w(x)d(x,hA),
x ~ A [3 B

which does not depend on what is done in A or B. If we now replace the given
weight of h A by

w*(hA) := W - ~_, w(y) (8)
y ~ A O B , y ~ h A

where W is the total weight of all vertices of the cactus, and compute the local
objective function value fA(hB) with respect to the updated weight of hinge
vertex hA, we take care of the second summand in (7) and of the contribution of
all vertices except h n in A to f(z). A similar observation shows that by
redefining

w*(h,) := W - E w(y) (9)
y~B,y4=hn

the local objective function value fn(z) with respect to the updated weight of
hinge vertex h n takes care of the third summand in (7), as well as of the
contribution of all other vertices in A or B. Thus f (z) becomes

f (z) = K + fA(hB) + f , (z). (10)

This shows how we can compute a locally optimal solution for block B: We
replace the given weight w(h B) by w*(h B) according to (9) and apply
GRAFT(B,h B) or CYCLE(B, hB) , whatever is applicable. These procedures
yield a locally optimum value

f~ .-= minfB(z) (11)
z ~ B

which is attained in vertex fiB.

A Linear Algorithm for the Pos/Neg-Weighted 1-Median Problem on a Cactus 211

But also a locally optimum solution for block A can now easily be computed.
We replace

w(he) := We, the total weight of all vertices in B

and
w(hA) := w* (hA) according to (8).

Now we apply the procedure GRAPT(A, h A) or CYCLE(A, h A) and obtain a
locally optimum solution value

fJ = minfA(z)
z E A

for the vertices in block A, which is attained in vertex [3A- The corresponding
global objective function values for [3A and /3 B are

f(flA) =K + f~ + fB(hs)

f (~8) =K+f~ +fA(hB)
Thus we define

A(A, B) : = f ([3 A) --f([38) =f3 --f~ +fB(he) --fA(he) (12)

If A(A, B) > 0, then vertex [3e yields a smaller objective function value than
vertex flA" Thus the optimum within the vertices of A and B is reached at fiB.
If A(A, B) < 0, then [3A leads to the better value. Note that for evaluating
A(A,B) only the outcome of the local procedures GRAFT(A, hA) ,
GRAFI-(B, hB) , CYCLE(A, h A) and CYCLE(B, he), respectively, is needed.

Now let us consider a block A in the skeleton which has several successor
blocks B~, B2,. . . , B r with companion hinges hB~, hB2 , her. These companion
hinges may not necessarily be distinct. For example, block C 3 in Fig. 3 has five
successor blocks G1, G2, G3, C 4 and C 5, but only three different hinges. First we
note that all blocks B D B 2 B r are processed prior to A. As soon as block B i
is processed we know f'i, fB,(hs) and we replace W(hB) by WB~, the total weight
of all vertices in B v Thus we take care of all vertices in B i and possible
successor blocks of B i when processing block A. Finally we process block A. If
A has a companion hinge hA, w e define

w*(hA) := W - E w(x).
x c A , x # h A

If A is the root of the skeleton, any vertex of A can be chosen as its companion
hinge. Processing A yields f~ taken in the vertex [3A, as well as fA(hB)
(i = 1, 2 , . . . , r). Thus we can evaluate the differences

zI(A,Bi) =f~ - f ~ +fsi(hs,) --fA(hB~) (i = 1,2 r) .

If all these differences are nonpositive, then the optimal solution among the
vertices of the blocks A, B1, B 2 B~ is obtained in [3A. Otherwise we must
consider

A(A,Bs) = max A(A,B~) > 0
l < i <<_r

and the optimum is attained in fl,.

212 R.E. Burkard and J. Krarup

Let A*(A) be the difference between f(flA) and the locally optimum objective
function value among the successors of the block A. A*(A) can be computed
via the following recursion:

If A is a leaf of the skeleton, define A*(A) = 0.
If A has the blocks B 1, B2, . . . , B r as immediate successors, we define

A*(A) = max (O,A(A,Bi) + A*(B~)) (13)
l < i < r

In order to find the globally optimal vertex we store

[fl~, if A*(A) = 0 ,
o / (Z)

~a(B~), if A * (A) = A (A , B ,) + A * (B ~) .

When A is the root of the skeleton, a(A) shows a globally optimal vertex of
the cactus. In order to compute the globally optimum objective function value
we define a function • on the blocks of the skeleton as follows:

[fB(hB), if B is a leaf of the skeleton,
q)(B)

~fs(hB) + Et/)(B~), B~ are immediate successors of block B, B :# R.

The optimum value f* is attained by

f* = ~ (R) - A*(R),

where R is the root vertex of the skeleton.

Summarizing, we perform the following steps: First we compute W, the total
weight of all vertices of the cactus. Then we process the blocks of the skeleton
according to decreasing level, starting with the (rightmost) leaves of the highest
level.

If block A is processed, where h A is its companion hinge, we define

w*(hA) := W - (W A - w(hA)).

Then we call GRAVI~A, h A) or CYCLE(A, h A) and compute f*(A), a locally
optimum value which is attained at vertex /3A, and fA(hB,) for every hinge vertex
hBi -# h A. We compute for all direct successor blocks B~, i = 1, 2 , . . . , r:

A(A,Bi) :=f~ - f ~ + fB,(hB~)--fA(hB~)

a * (A) :=

:= / o l (A)
a (B ,) ,

max (0, A(A,Bi) + A*(Bi))
l<_i<_r

if A*(A) = O,

if a * (A) = / t (A , Bs) + a* (Bs).

* + r / f ~ E/~q~(Bi) , if A is the root of the skeleton,
q~(A)

~fA(hA) + Y:r=lq~(Bi), otherwise.

If A is not the root, we define w(h A) := W A.

A Linear Algorithm for the Pos/Neg-Weighted 1-Median Problem on a Cactus 213

Finally, if R is the root of the skeleton: a (R) returns an optimal vertex of the
cactus. The optimum objective function value f* is given by

f* := ~ (R) - A * (R) .

A last small example shall illustrate this approach. Let the cactus be given as in
Fig. 8.

The total weight of all vertices of the cactus is 8. We start with the graft G 5 and
process Cs, C4, G6, C z and G 1 in this order. The actual data are shown in Fig. 9
and Table 1.

When processing C 3 we compute

A (C 3 , G s) = - 1 - 6 + 6 - 12 = -13 .

When processing C 2 we compute

A(C2 ,C3) = - 2 + 1 - 1 - 7 7 = -79 ,

A(C2,C4) = - 2 + 34 - 34 - 77 = - 7 9 ,

A(C2,G6) = - 2 - 20 + 20 + 2 = 0.

After obtaining the root G 1 of the skeleton, we see that vertex a is an optimal
solution with value

f * = clg(G~) - A* (Ga) = O.

,,'c 3 "',

2 1
4 " GO

~x~x'~'l 1] / ~ 7 L ~ %

i" "',} 3

' 1 6 ; 9" Eo

Figure 8. A cactus with 3 grafts G1, G5, G 6 and 3 cycles C2, C3, C 4 together with its rooted skeleton

214 R .E . Burkard and J. Krarup

~I c 1 ~ "3 (W~I)

2 1 1 1 ~ " ~
2 2 101 2",4

craft G s Cycle C 3 Cycle C 4

-4
1

"N.2
Graft G 6

2

6 -4

4

\5
Cycle C 2 Craft G I

Figure 9. The local optimization problems for the cactus in Fig. 8

Table 1. The secondary steps for the cactus shown in Fig. 8

B f~ ~B A*(B) a(B) ~(B) w B

G 5 6 c 0 c 6 -3[w(c)]
C 3 - 1 b 0 b 5 - l[w(b)]
C 4 - 34 b 0 b - 34 - 4[w(b)]
G 6 20 d 0 d 20 l[w(d)]
C 2 - 2 a 0 a - 1 1 5[w(a)]
G 1 11 a 0 a 0

Since every block is processed only once and the processing time of a block with
k vertices is O(k), we get an overall time complexity of O(n) for a cactus with n
vertices.

References

[1] Auletta, V., Parente, D., Persiano, G.: Dynamic and static algorithms for optimal placement of
resources in a tree. Theor. Comput. Sci. 165, 441-461 (1996).

[2] Bern, M. W., Lawler, E. L., Wong, A.: Linear-time computation of optimal subgraphs of
decomposable graphs. J. Algorithms 8, 216-235 (1987).

[3] Chen, M.-L., Francis, R. L., Lawrence, J. F., Lowe, T. J., Tufekci, S.: Block-vertex duality and
the one-median problem. Networks 15, 395-412 (1985).

[4] Courant, R., Robbins, H.: What is Mathematics? Oxford: Oxford University Press 1941.
[5] Goldman, A. J.: Optimal center location in simple networks. Transport. Sci. 5, 212-221 (1971).
[6] Hakimi, S. L.: Optimum locations of switching centers and the absolute centers and medians of

a graph. Oper. Res. 12, 450-459 (1964).

A Linear Algorithm for the Pos/Neg-Weighted 1-Median Problem on a Cactus 215

[7] Hua, L. K., et al.: Applications of mathematical models to wheat harvesting. Chin. Math. 2,
77-91 (1962).

[8] Kariv, O., Hakimi, S. L.: An algorithmic approach to network location problems, Part 2: The
p-median. SIAM J. Appl. Math. 37, 539-560 (1979).

[9] Krarup, J.: On 'A Complementary Problem; of Courant and Robbins, Report 96/39, DIKU
(Dept. of Computer Science, University of Copenhagen). To appear in Location Theory.

R. E. Burkard
Technische Universit/it Graz
Institut fiir Mathematik
Steyrergasse 30
A-8010 Graz, Austria
e-mail: burkard@opt.math.tu-graz.ac.at

J. Krarup
University of Copenhagen
Department of Computer Science
Universitetsparken 1
DK-2100 Copenhagen, Denmark
e-mail: krarup@diku.dk

