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o.  I n t r o d u c t i o n .  

(O.  I )  Grothendieck's version of the Riemann-Roch theorem for non-singular pro- 
jective varieties [Borel-Serre] is expressed by saying that the mapping ~ ~ ch(~) --- Td(X) 
from K~ to H ' X  is a natural transformation of covariant functors. Here K~ denotes 

(1) The first and third authors were supported in part  by NSF grant GP 43128. 
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the Grothendieck group of algebraic vector bundles on X, H ' X  is a suitable cohomology 
theory, ch is the Chern character, and Td(X) is the Todd class of the tangent bundle 
to X; K ~ and H ~ are naturally contravariant functors, but for non-singular varieties 
they can be made covariant. 

A Riemann-Roch theorem for singular varieties in terms of K ~ and H ~ can be 
formulated only for those maps f :  X-+Y for which Gysin homomorphisms 

f .  : K~ K~ and f .  : H ' X - > H ' Y  

are available. Such a theorem can be proved when f is a complete intersection mor- 
phism, and the cohomology is 

I) H ' X = G r ' ( X ) Q = t h e  associated graded ring to the k-filtration of K~ 

[SGA 6], or 
2) H ' X = A ' X Q = t h e  Chow cohomology ring (Chapter IV, w 3; [App., w 3]), or  
3) H ' X = H ' ( X ;  Q. )=s ingular  cohomology (Chapter IV, w167 3, 4)- 

With such a theorem, however, one obtains a Hirzebruch Riemann-Roch formula for 
the Euler characteristic of a vector-bundle on X only if X itself is a local complete 
intersection in projective space. 

Our Riemann-Roch theorem for projective varieties (which may be singular) is 
formulated in terms of naturally covariant functors from the category of projective 
varieties to the category of abelian groups. We construct a natural transformation v 
from K 0 to Ho. Here K0X is the Grothendieck group of coherent algebraic sheaves 
on X, and H . X  is a suitable homology group. In  the classical case, when the ground 
field is C, H . X  may be H.(X;  Q. )=s ingular  homology with rational coefficients. For 
varieties over any field we may take H~ X to be the Chow group A~ XQ of cycles modulo 
rational equivalence, with rational coefficients [App., w i]. Each of these homology 
theories has a corresponding cohomology theory H" with a cap product H ' |  
each variety has a fundamental class IX] in H.X.  

Riemann-Roch theorem. - -  There is a unique natural transformation -r : K 0 --> H. such that: 

I) For any X the diagram 

KOX| X | KoX 

Ich~T T 
H ' X |  "-', H . X  

is commutative. 
2) I f  X is non-singular, and Ox is the structure sheaf on X ,  then 

-:((_Ox) = T d ( X ) - - -  [X]. 

102 



R I E M A N N - R O C H  F O R  S I N G U L A R  V A R I E T I E S  xo 3 

For each projective variety X, -~ : K o X - + H . X  is a homomorphism of abelian 
groups. The naturality of -~ means, as usual, that if f :  X~-Y is a morphism, then 
the following diagram commutes: 

KoX " > H . X  

r,[ 4,r, 
KoY ~ ) H .Y 

(If  an element ~ in K0X is represented by a sheaf o ~-, then f .  ~ in K0Y is represented 
by fo~-=~(--I) 'Ri f .o~ 

We call V(0x) the homology Todd dass of X, and denote it -:(X). Let e : H . X ~ Q  
be the map induced by mapping X to a point. Then ~(z(X))---z(X, g)x) is the 
arithmetic genus of X. 

Corollary. - -  I f  E is an algebraic vector bundle on a projective variety X, then 

z(X, E) = ~(ch(E)--- z(X)). 

In particular, for fixed X, z(X, E) depends only on the Chern classes of E. Of 
course, if X is non-singular, the corollary becomes Hirzebruch's formula 

~(X, E) = (ch E --- Td X) [X]. 

The uniqueness assertion in the Riemann-Roch theorem can be strengthened 
considerably (Chapter I I I , w  2): 

Uniqueness theorem. - -  The ,: of  the Riemann-Roch theorem is the only additive natural 
transformation from K 0 to H.  satisfying either of the following conditions: 

z) -~ is compatible with the Chern character, as in z) of the Riemann-Roch theorem, and 
i f  X is a point, "7(~X)=IeO=I~~ 

2) I f  X is a projective space, the top-dimensional cycle in Z(0x) is IX]. 

Neither condition mentions the Todd class of a bundle; condition 2) does not even 
mention Chern classes. This theorem holds over an arbitrary field when H . X  = A. XQ, 
as well as in the classical case when H . X = H . ( X ;  Q.). 

We can also deduce from our Riemann-Roch theorem (Chapter III ,  w z) a result 
known previously only for non-singular varieties [SGA 6; XIV, w 4]- Let Gr .X  be 
the graded group associated to the filtration of K0 X by dimension of support. Assigning 
to each subvariety of X its structure sheaf induces a homomorphism ? : A .X ~ Gr.X.  

Theorem. - -  The mapping ~ is an isomorphism modulo torsion: 

A.XQ ~> Gr.XQ. 
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(o. 2) For morphisms which are complete intersections, our theory lifts to cohomo- 
logy (Chapter IV, w 3)- This allows us to recover the " cohomology Riemann-Roch 
theorem " of [SGA 6], for quasi-projective schemes, with values in A~=~Gr~. 

For a complete intersection morphism f :  X ~ Y  of complex varieties we construct 
Gysin " wrong-way " homomorphisms 

f .  : H ' (X;  Z) ---> H'(Y;  Z) and f*  : H.(Y; Z) ---> H.(X;  Z) 

(Chapter IV, w 4). The problem of constructing such maps was raised by Grothen- 
dieck [SGA 6; XIV].  This allows us to prove a cohomology Riemann-Roch theorem 
without denominators for a local complete intersection X c Y of singular complex 
varieties (Chapter IV, w 5), as well as extend the Riemann-Roch theorem of [SGA 6] 
to the singular cohomology theory. 

When X c Y are smooth, in any characteristic, our methods also give a Riemann- 
Roch theorem without denominators for the Chow theory; this was conjectured by 
Grothendieck, and proved using other methods by Jouanolou [Inventiones Math., I i 

(I97o), PP. 15-26]. 
For morphisms f :  X-->Y which are complete intersections, there are formulas 

relating the Todd classes of X and Y (Chapter IV, w i and w 3). In  particular, if X is a 
local complete intersection in a non-singular variety, its Todd class v(X) ----- td(Tx) --- [X], 
where T x is the virtual tangent bundle (Chapter IV, w I). 

For general singular varieties, however, the Todd class may not be the cap product 
of any cohomology class with the fundamental class (Chapter IV, w 6). One method 
of attack is to find a map r: :X-->X which resolves the singularities of X. Then 
g )x -  rfi g)~ = ~  n~Ov~ in KoX , where the V~ are irreducible subvarieties of the singular 

locus of X. So 
= 

where q~i is the inclusion of Vi in X. I f  one can find X, and calculate Vi and ni, one 
may reduce the problem to a lower-dimensional case. In  this paper we make no use 
of resolution of singularities (except in an unrelated way for surfaces in Chapter II).  

(o. 3) The way the homology Todd class generalizes the arithmetic genus is quite 
analogous to the way the homology Chern class generalizes the topological Euler 
characteristic [M 2]. (In fact our work on Riemann-Roch began with our trying to 
find an analogy with this theory of Chern classes.) However, a basic property of the 
arithmetic genus is that it is constant in a (flat) family of varieties, while the topological 
Euler characteristic can vary, so one cannot expect the sort of relation between them 
as one has in the non-singular case (cf. Chapter IV, w 6). 

We generalize this property of the arithmetic genus as follows (Chapter IV, w 2). 

Theorem. - -  I f  X - +  C is a f la t  family parametrized by a non-singular curve C, then the 
Todd class of  the general fibre specializes to the Todd class of  the special fibre. 
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Similarly the formula giving the arithmetic genus of a Cartesian product X •  
as the arithmetic genus of X times the arithmetic genus of Y generalizes to the fact that 
z(X • = v(X) • z(Y) (Chapter I I I , w  3). 

(o .4)  We give two proofs of the Riemann-Roch theorem. Both proceed by 
imbedding X in a non-singular variety M. Since a coherent sheaf on X can be resolved 
by locally free sheaves on 1Vf, we are led to consider complexes E. of  vector bundles 
on M which are exact off X. 

For such a complex E. its Chern character ~ ( - - i ) ~ c h  E i ~  [M] e H . M  restricts 
i 

to zero in H . ( M - - X ) ,  so it should come from an element in H .X .  From our point 
of  view, an essential step in proving Riemann-Roch is to construct such a " localized 
class " ch ,  E. in H .X.  

Another essential step is to compare an imbedding of  non-singular varieties M c P 
with the imbedding of M as the zero-section of the normal bundle. This problem was 
overcome in [B-S, SGA 6] by blowing up P along M to reduce to the case of a hyper- 
surface, and in [A-H 2] by using a local diffeomorphism (with a suitable complex analytic 
property) between the two imbeddings. Here we use a different approach which we 
believe is simpler. We find a family of imbeddings which deforms the given imbedding 
algebraically into the imbedding as the zero-section of the normal bundle (Chapter I, w 5). 
Our  construction of this deformation uses a simplified form of the " Grassmannian graph 
construction " (cf. w o.7) which is vital to our general proof of Riemann-Roch. 

(0 .5)  Chapter I contains the first proof, valid for complex varieties, with values in 
singular homology with rational coefficients. The class chxME, is constructed using the 
" difference bundle " of Atiyah and Hirzebruch [A-H i], and its basic properties are 
proved in w167 I, 2. More properties are deduced from those in w 3, and w167 4, 5, 6 contain 
the construction of v and the proof  of Riemann-Roch. 

(o. 6) In Chapter II  we construct the localized class ch~ E. in the Chow group A. XQ 
for any closed subvariety (or subscheme) X of a quasi-projective variety M over an 
arbitrary field, and a complex of bundles E. on M, exact off X. This greater generality 
allows us to study local complete intersections, and also extends the Riemann-Roch 
theorem to all quasi-projective varieties and proper morphisms. Once the localized 
class ch~ E. is constructed, the proof  of Riemann-Roch proceeds as in Chapter I, w167 3-6. 

Note that our theorem gives a Riemann-Roch theorem in any homology theory H. 
for which there is a natural transformation A.-->H., where A. is the Chow theory. 
In the classical case this gives another proof for singular homology. 

(0 .7)  We say a few words about the basic Grassmannian graph construction [M I] 

for a vector-bundle map ~ : E-+ F of  bundles on a complex variety M. The graph 

of ~ at each point p ~ M  is a subspace of E~@Fp, so we have a section of a Grassmann 
bundle G=Grasse(E@F) over M, with e=rank  E. For each complex number X, we can 

105 

14 



to6 P A U L  BAUM, W I L L I A M  F U L T O N ,  R O B E R T  M A C P H E R S O N  

apply this to Xq), and get a section s x of  G over M. This family of imbeddings can be 
completed at X = co to get a rational equivalence. The cycle obtained at infinity 
contains a great deal of information about where and how q~ becomes singular. Riemann- 
Roch is only one of the applications of this construction. 

(0 .8)  In the classical case the Riemann-Roch map -r: K o X - + H . ( X ;  O )  factors 
through topological homology K-theory Kto~ with integer coefficients. In  fact the 

construction becomes more natural in this context (cf. [A-H 2] for the non-singular 
case). The Todd class -r(0x)eK~~ becomes an orientation class for X in topological 

K-theory. 
I f  one regards Riemann-Roch as a translation from algebraic geometry to topology, 

the K-theory version is the most natural and precise way to formulate it. On the other 
hand, factoring through the Chow group shows that the Todd class is an algebraic cycle 
which is well-defined up to rational equivalence (over Q ) .  The relations between 
these theories are made clearer by the commutative diagram 

K o > K~ ~ 

A . ,  > H . ( ; Q )  

where the maps out of K 0 are the maps we construct in our Riemann-Roch theorems, 
the right vertical map is the homology Chern character, and the lower horizontal map 
takes an algebraic cycle to its homology class. This should be thought of as " dual " 

to the diagram 

K ~ , K~ 

ch I ~ ch 

A~ > H ' ( ; O )  

where the horizontal maps are the natural maps from algebraic objects to topological ones. 
All four of these pairs of natural transformations are compatible, as in i) of our 

Riemann-Roch theorem. The horizontal maps translate algebraic geometry to topology. 
The top maps are with integer coefficients, and the bottom maps are induced by maps 
with integer coefficients. All the vertical maps become isomorphisms over O (provided 
we take just the even part of the homology and cohomology) (Chapter IV, w I and 

[App., 3.3]).  
We will give the K-theory version of Riemann-Roch in another paper. 

(0 .9)  The methods of this paper extend to give a Lefschetz fixed point theorem for 

singular varieties which specializes to [P. Donovan, The Lefschetz-Riemann-Roch 

106 



RIEMANN-R.OCH FOR SINGULAR VARIETIES Io7 

Formula, Bull. Soc. Math. France, 97 (I969), PP- 257-273] in the non-singular case. We 
also obtain explicit contributions to the Lefschetz number at isolated (possibly singular) 
fixed points. For an automorphism of finite order, this extends the Atiyah-Bott formula 
([M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes, I, 

Annals of Math., 86 (I967), pp. 374-4o7], [M. F. Atiyah and G. B. Segal, The index 
of elliptic operators: II, Annals of Math., 87 (I968), pp. 531-545]) to singular varieties. 
This will be the subject of another paper. 

It  also appears that this Riemann-Roch map is just the zero-th part  of Riemann- 
Roch maps K~X~K~~ where K~X is the higher K-group of Quillen [Higher 
algebraic K-theory, Algebraic K-theory I, Springer Lecture Notes in Mathematics, 341 (1973) ]. 
For non-singular varieties this question is not difficult; for singular varieties we have 
a proposed definition of these maps. We plan to report on this later. 

(o. xo) Notation: 

I f  X is a subspace of Y, and i : X-->Y is the imbedding, and xEH.X,  y s H ' Y ,  
we write y . - - x  instead of i 'y---x, for any of our homology-cohomology theories. 

I f  E is a vector bundle on a space X, we write P(E) for the bundle over X whose 
fibre over a point in X is the set of lines in E over that point, as in [G], not [EGA] ; 
similarly for Grassmann-bundles. We often use the same letter to denote an algebraic 
vector bundle and the associated locally free sheaf, saying " the bundle E ", or " the 

sheaf E " to distinguish the concepts when necessary. We write E for the duat bundle 
(or, sheaf). 

The Todd class of a bundle E is denoted td(E). I f  M is non-singular, we write 

Td(M) = td(TM) 

for the Todd class of its tangent bundle T M. 

(o.xx)  An outline of our Riemann-Roch theorem, using differential-geometric 
methods, appears in [Baum]. The main results were also announced at Arcata iF], 
where a preliminary version of this paper was distributed. 

We are grateful to M. F. Atiyah and A. Landman for helpful comments and 

suggestions. 
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C H A P T E R  I 

R I E M A N N - R O C H  BY DIFFERENCE-BUNDLE 

In this chapter we use singular homology and cohomology with rational coefficients; 
we write H . X  for H.(X;  Q.) and H'(A, B) for H'(A, B; Q.). The Grothendieck group 
of topological vector bundles on a compact space X will be denoted Kt~ When 
X has a base point the reduced group will be denoted by K~ ). 

x. The Local ized Class  chx~E, by Difference-Bundle.  

Let X be a compact complex analytic subspace of a complex manifold M. Define 

K~ M - -  X) = lim K~ < 

where the limit is over all closed subsets C of 1Vi--X. 
Atiyah and Hirzebruch have shown [A-H I] how to construct an element d(E.) 

in K~ M - - X )  from a complex E.: 
dr 

o-+E~--+ E r _ l - + . . .  -+ E0-+ o 

of  topological vector-bundles on M which is exact off X. We recall their construction. 
Let F~=Ker(di) and choose splitting isomorphisms E~=~F~| on M - - X .  

This gives isomorphisms 

E~v = ~E2k~ ~ F ,  

Composing the first with the inverse of the second gives an isomorphism ~ : E~v~Eod d 
on M - - X .  Choose an isomorphism of Eo~| with a trivial bundle ~I~, for a suitable 

bundle F on M. Then 

Eev@ F o~>I EoddGF~ N 

trivializes E~v| on M - - X .  Therefore E0~| defines a compatible collection of 
bundles on M/C, C closed in M - - X ,  and so Ee~|162 s determines the desired 

element d(E.) in the limit group K~ M - - X ) .  
I f  we note that H ' (M,  M--X)=l imH' (1V[ /C) ,  the Chern character gives a < 

mapping 
ch : K~ M - - X )  -+ H'(M, M - - X ) .  
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The Lefschetz duality isomorphism H ' ( M ] C ) : H . ( M - - C )  for C a neighborhood 

retract (cf. [Spanier, Algebraic Topology, McGraw-Hill (i966), p. 297]) passes to the 

limit to give an isomorphism 

L : H' (M, M - - X )  ~> H.X.  

We then have K~ M - - X )  .oh> H'(M, M - - X )  L> I t .X .  

Define chxME. = L(ch(d(E.))). 

2. Basic  Propert ies  o f  ch,  E..  

We list six fundamental properties of this construction. Except for a variation 

in (2.5), X, M and E. will be as in w i. 

Property (2. �9 ) (Localization). 

(a) I f  X c Y c M ,  where Y is another compact analytic subspace of M, and j 

denotes the imbedding of X in Y, then 

j . chIE. - -  E.. 

(b) If  i is the imbedding of X in M, then 

i .ch~n. = c h  E.--- [ M ] =  ~] ( - - I ) ' ch  E,--- [M]. 
i 

Property (2.2) (Additivity). - -  I f  E. is a direct sum of two complexes E: and E:' ,  

then 
ch ,  E . :  M , M ,, chxE. + c h x E . .  

Property (2.3) (Module). - -  I f  F is a vector-bundle on M, then 

chx (F | E.) = ch V--  ch,  E.. 

Property (2.4) (Excision). - -  I f  X c U c M ,  with U open in M, then 

ch ,  E. = chxU(E. [U). 

Property (2.5) (ttomotopy). - -  Let X c M as in w I. Let C be a connected complex 
manifold, D a complex manifold, n : D-->G a smooth (1) mapping, and i : M •  

a closed imbedding so that 

M x C "  ~ ~ D  

(1) In this context "smooth" means a holomorphic mapping such that for each p ~ M the induced map of 
tangent spaces Ti0M --+ Tn(p)C is surjectlve. For general algebraic varieties we refer to [EGA IV, 17-5]. 

109 



ixo P A U L  BAUM, W I L L I A M  F U L T O N ,  R O B E R T  M A C P H E R S O N  

commutes,  where p is the projection. Let E. be a complex of bundles on D, exact off 
X x C .  Then  for each t~C, E. induces a complex E. t on Dt-----n-l(t) exact off  
X t - - - - X •  , and the resulting class chDt(E.t) in H . X  is independent  of t. 

Property (2 .6)  (Pull-back). - -  Let p : P - + M  be a smooth, proper mapping,  and  
let Q = p - l ( X ) ,  q : Q - + X  the restriction to X. Then  p*(E.) is a complex on P exact 
off Q ,  and 

q*(ch~E.)= P * chq(p E.) 

where q* : H . X - +  H . Q  is the homology Gysin map. 
(When H. is singular homology, we define the homology G ysin map 

q* : H . X - +  H . Q ,  

for simplicity, by requiring commutat ivi ty  in the diagram 

H'(M,  M - - X )  ~*> H'(P,  P- -Q. )  

L?? L]t? 

q* 
H . X  > H . Q  

I f  X is non-singular, this agrees with the map  obtained by using Poincar6 duality.) 

The  first four properties are easy consequences of the definition. For the homotopy,  
we may replace C by a compact  disk. Then  by standard techniques of extending c ~  
vector fields, the product  structure on M •  extends to a neighborhood U of M •  
in D, U = U  o x C. Let i t inject U 0 as U 0 • t and let [U0] t be the Borel-Moore homology 
orientation of U 0 given by the complex structure on U o induced by i L. I f  we apply 
the construction ofw I to X x C c D  and E., then ch(d(E.)) maps to chD'(E.t) by the 
composite 

H ' (U,  U - - X •  ,t> H.(U0, U 0 _ X  ) ---[u0~ H.(X).  

But these are equal since the i t are homotopic and the [U0] t are determined by homotopic 
complex structures. 

Property (2.6) follows from the fact that d(p*E.)----p*(d(E.)) in K~ P - - O ) ,  
and the above description of the homology Gysin map. 

3" More Properties of ch, E.. 

We prove several more facts about this construction. Although some of these 
could be proved directly and easily from the defini t ion--the reader is invited to do 
so--we prefer to show how they can be derived from the basic Properties (2.1-2.6).  

110 



RIEMANN-ROCH FOR SINGULAR VARIETIES I I I  

When we construct a localized class algebraically in Chapter I I  which satisfies Proper- 
ties (2.1-2.6), we will then be able to conclude that it satisfies all the other properties 
o f  this section, and that Riemann-Roch is true for the Chow theory. 

t 0C 
Proposition (3. x ). - -  Let o-+ E.-+ E. ~ E:' -+ o be an exact sequence of complexes on M, 

each exact off X.  Then 

chx~E.= ~ '_t_cheV '' chxE . - -  x " .  �9 

Proof. - -  We deform the exact sequence into the split exact sequence. Let 
p : M •  be the projection, and define a surjection of complexes on M •  

h : p*E.@p*E;' -+p*E'.' 

by h(e, e")=~(e)-- te" if e and e" are in fibres over a point (m, t ) e M •  t e e .  Let 
E. be the kernel of h. T h e n E .  i s exac to f f  X •  a n d E .  restricts to E'.| at t = o ,  
and to E. at t = i ,  so the result follows from Properties (2.5) and (2.2). 

Lemma ( 3 . 2 ) .  - -  Let F. be the complex obtained by shifting E. one place to the left: 
F i =  E~_ 1 (with corresponding boundaries). Then 

cheF. = - - c h ,  E.. 

Pro@ - -  Construct the (( algebraic mapping cylinder ~ G., where 

G~ = Fi| = E,_I |  and di(f, e) =(df ,  d e + ( - - I ) i f ) .  

Then  G. is exact on all of M, so chMxG.=o (Property (2.1) for O c X c M ) .  Since 

there is an exact sequence 

o-+ E.-+ G.-+F.-+ o 

we can conclude by Proposition (3-I).  

Proposition (3-3)- - -  Let E. be a complex of bundles on M, exact off X,  and let F. be 
any complex of bundles on M. Then F.|  is exact off X,  and 

ch~(F. | E.) ----- ch(F.) --- ch~ E.. 

Proof. - -  I f  the boundary maps in F. are all zero this follows from the lemma and 
Properties (2.2) and (2.3). For the general case let p : M •  and consider the 
complex F.| E. on M •  where Fi=p*Fi but the boundary maps of F. over a 
point (m, t)e M • C are t times the boundary maps of F.. This gives a homotopy 
between the zero-boundary case and the general case. 

Proposition (3.4). ~ Let E. be a complex of bundles on M exact off X,  and let 7= : N-+ M 
be a vector bundle over M, with M regarded as a subspace of N by the zero-section. Let A'n*~l 

v 

be the Koszul-Thom complex on N (cf. [A-H 2, Prop. (2.5)]). Then A'n*N| is exact 

on N - - X ,  and 

chxN(A" rc*S | E.) = t d (N) - t -  -- chxM(E.). 
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Proof .  - -  The exactness on N - - X  results from the fact that a tensor product of  
complexes is exact where either of  the complexes is exact. 

Imbed N in its projective completion P = P ( N |  I) (ct'. [G, w 5]), let p : P ~ M  
be the projection, and let q : Q = p - X ( x ) = P ( ( N @  I ) l X  )--->X be the restriction over X. 

On P we have an exact sequence 

o--> H-->p*(~I | I) -+  Op(I )  -+O.  

Since p*(~l@i)=p*(~l) |  projection on the second factor gives a homomorphism 
of sheaves 

H ~  0p 

which is surjective off M. Such a homomorphism from a locally free sheaf H to the 
trivial sheaf 01, gives rise to a Koszul complex /VH on P, exact off M. This complex 
restricts to A'~*~T on N. By the excision Property (2.4) 

chx~(A'rc*~,I | n* E . ) =  ch~(A'H| E.). 

Let s :X- - ->Q be the zero section. Then 

h P �9 | * s,(c x(A H p E.) )=ch~(A'H|  

by the localization Property (2. I). But p*E. is exact off Q ,  so by Proposition (3-3) 

ch~(/V H| E.) = ch (/VH) --- ch~(p* E.). 

q chx(E. ) by the pull-back Property (2.6), and q,s .=ident i ty .  Now ch~(p*E.)= * M 

Therefore (cf. [App., w (3. I)]) 

q,(ch(A'H) --- q*ch~E.) =p , (ch(A 'H))  ~ ch ,  E.. 

Putting all this together, we are reduced to proving the formal identity 

p , (chA'H) = td(N) -1 

or, by the projection formula, 

p, (ch/V H--'p* td(N)) = i. 

We use the basic identity [B-S; Lemma i8] 

chA 'H = c, (I:I) td(IrI)-i 

where e = rank H = rank N. From the exact sequence defining H we see that 

p*td(N) = td(p*N~ I) = td(ft)  t d (0 ( - -Q) .  

Therefore ch(/VH).p*td(N)=ce(FI ) . t d ( 0 ( - I ) ) ,  so we are reduced to showing that 

p,(c~(~-I) td(O(--  I))) = I. 

Let z = q ( 0 ( I ) ) .  Since 

o = ce +  (gl �9 = = - 
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and  t d ( O ( - - I ) ) - - I  is a mult iple  of  z, we are reduced  to showing 

p , ( C e  ( ~ ' I ) )  = I �9 

Finally, since 

c(;I)  = p * c ( N ) / c ( r  x)), 

c+((-t)=~=oP*C~(N)z*-i , so p . c e ( H ) = p . : = I .  

4. C o h e r e n t  S h e a v e s .  

Let  X be a project ive variety,  and imbed  X in a non-singular  quasi-projective 

var ie ty  M. I f  ~ is a coherent  sheaf  on X, let E. be a complex of  vector  bundles on M 

that  resolves o~', and define 

chxMo~= c h ,  E. .  

Proposition (4. x ). - -  ch~o~ does not depend on the resolution E. .  

Proof. - -  Since two resolutions are domina ted  by a th i rd  [B-S; L e m m a  I3] , i f  E "  

is ano ther  we may  assume there  is an exact sequence o -+ E'. --> E. -+ Ey  -+ o, where  E: 

is exact  on all of  M. T h e n  c h ,  E. - z ~ , ,  ~ , - ~ , , ,  = cnxr~ . + c h x E  " = cn xr~. by  Proposi t ion (3. x) and 

Proper ty  (2. I).  
Since an exact  sequence of  sheaves can be resolved by  an exact sequence of 

bundles [B-S; P roof  of  L e m m a  I2], we likewise deduce the following fact: 

Proposition (4 .2 ) .  - -  I f  o - ->~'  ~ ' - + ~ " - - - > o  is an exact sequence of sheaves on X ,  then 

c h ~ - =  c h ~ - ' +  chMx ~ ' ' '  . 

There fore  chx M defines a homomorph i sm from K 0 X  to H . X .  We can see f rom 

Proposi t ion (3.4)  how this homomorph i sm depends on the imbedding,  at least in a 

special case. 

5" D e f o r m a t i o n  t o  t h e  N o r m a l  B u n d l e .  

Proposition (5. x ). - -  Let M C P be an imbedding of non-singular quasi-projective varieties, 
and let N be the normal bundle. Then there is a non-singular variety D, an imbedding M • C c D, 
and a smooth morphism = : D--->C which restricts to the projection Mx C-- ->C  on M x C :  

M •  ~ ~ D 

\o/ 
For each t e C  we get an imbedding 

M = M •  }cr~- t ( t )  = D, 
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with the following properties: 

I) For t + o, the imbedding M c D t is isomorphic to the given imbedding of M in P. 
2) For t = o ,  the imbedding M c D  0 is isomorphic to the imbedding of M as the zero- 

section of N. 

Pro((1). _ _  Imbed P as a locally closed subvariety of a projective space pN, and 
choose homogeneous polynomials F1, . . . ,  F, (in N +  I variables), with deg Fi =d~, which 
define 1V[ (scheme-theoretically) in P. Let E be the bundle over P whose sheaf of sections 
is Op(dl)|174 and let s : P - + E  be the section determined by ( F ~ , . . . ,  Fr). 
The fact that F1, . . . ,  F r define M scheme-theoretically means that (Ft, . . . ,  F,) maps 
the sheaf F_,=G. 0(--d~) onto the ideal-sheaf ~" of M in P. Restricting to M gives 

F, I M - + J / J ~ - + o .  This is dual to an imbedding of the bundle N in ElM. 
Throughout the proof we regard M C P C E by means of the zero-section of E; 

thus M = s - I ( P )  as a scheme. 

Let C * = C - - { o } ,  and consider the imbedding 

P•  ~--~ E •  

(i ) by the map (p, t)-+ -is(P), t . Let D be the closure of P •  in E •  n : D - + C  
the projection. 

We first notice that the product imbedding M • 2 1 5  imbeds M •  in D, 

since s is the zero-section on M. 

I f  t:~o, D,---- ts(P)• }, and the imbedding M C t s ( P  ) is isomorphic to the 

imbedding of M in P, proving (i).  

To check (2) and smoothness, we study the situation locally on P. We assume P 
is an affine subvariety of {(x0, . . . ,  xN)~P~[x0:t:o}, so the ideal of IV[ is generated by 
f i=F~( I ,  xl, . . . , x , )  in the coordinate ring of P. Shrinking P if necessary, and 

k 

renumbering the fi ,  we may assume f t ,  . - . ,  fk define M in P, and f~----- ~]laqfj= for 

i > k ;  k is the codimension of M in P, and % are regular functions on P. Since r  
is canonically trivial on { (x0, . . . ,  xs)Ix0 +o},  E is trivial over P; le tyl ,  . . . ,  y,  be fibre 
coordinates for E. We claim that in E • t21 = P • C" • C the equations for D are 

ty, = f ,  i = ~ ,  . . . ,  k 

k 

y i=jZ la~jy  j =  i = k  + I . . . .  , r. 

(1) Note added in proof. S. Kleiman and I. Vainsencher have pointed out that  this construction may be done 
intrinsically, as in [M. Gerstenhaher, On  the deformation of rings and algebras: II ,  Annals of Math,, 84 (~966), 
I-x9]. 

114 



RIEMANN-ROCH FOR SINGULAR VARIETIES 115 

To see this let D' be the subscheme of E •  defined by these equations. The 
Jacobian criterion shows D'-+C is smooth, with fibres of the same dimension as P. 
It is clear that D [ = D  t for t+o .  And D O is defined by the equations 

f ~ = o  i = l , . . . , k  
k 

y~=jZlaOy j =  i = k  + l, . . . ,  r. 

But these equations define the normal bundle N in E lM.  
Since D ' ~ C  is smooth and all the fibres are connected, D' is non-singular and 

irreducible; since D' agrees with D where t~eo, D'-----D. This finishes the proof. 

Remark. - -  Even if P is projective (complete), the variety D is not proper over C. 
I f  one takes the closure D of D in P ( E ~  I)•  C the fibre D0has two components P(N| I) 
and P = P  blown up along M, which meet transversally along P(N) (see Chapter IV, w 3)- 

Lemma (5.2). - -  With M, P, D, M x C c D  as in Proposition (5. I), let p : M X C - + M  
be the projection. Let ~ be a coherent sheaf on M,  and let E. be a resolution of p*o~" by vector 

bundles on D. Then for all t eC,  E. t is a resolution of o~ by vector bundles on D,. 

Proof. - -  Let rr : D - + C  be the projection. The natural resolution of ~)Dt by 
locally free sheaves is 

Since ~ - - t  is not a zero divisor on p*~--~o~|162215 c, tensoring the above sequence 
with p*o~ shows that Torg'(p*o~, ~)v,)=o for i > o .  Since TorgD(p*o ~-, (gD,) is the 
i-th homology of E.t=E.| this proves the lemma. 

Proposition (5-3)- - -  Let X c M ,  M o P  be closed subvarieties, with M and P non- 

singular. Let N be the normal bundle of M in P. Then for any coherent sheaf ~-  on X 

ch:~ .~-= td (N)-  1---- ch~ o~ - . 

Proof. - -  Take M •  as in Proposition (5.1), and a resolution E. o f p * ~  
as in Lemma (5.2). Then the homotopy Property (2.5) reduces it to the case where 
M is embedded as the zero section of N. And this case is covered by Proposition (3.4), 
since if E. resolves ~ on M, A'r:*N| resolves o~ on N. 

6. C o n s t r u c t i o n  o f  x a n d  P r o o f  o f  R i e m ~ n n - R o c h .  

Fix a projective variety X. For any imbedding of X in a non-singular quasi- 

projective variety M, and sheaf o~ on X, define 

v~(o ~') = T d ( M )  --- ch~(oq~') 
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where Td(M) is the Todd class of the tangent bundle to M. By Proposition (4.2), 
v M defines a homomorphism from K 0 X to H.X.  We will show that -~ =-:~ is independent 
of the imbedding and satisfies the conditions of the Riemann-Roch theorem (w o. I). 
We do this in several small steps. 

(i) I f  X c Y c M, and j is the imbedding of X in Y, the diagram 

KoX " >  H . X  

l J* i J* 
+ 

K0Y " ~  H.Y 

commutes. This follows from Property (2. I). 
(2) I f  X C M C P, with M and P non-singular, then vM = vP. 

Proposition (5-3) and the identity 

Td(P) --- t d (N) - t  = T d ( M )  in H" M. 

(3) I f  p : P ~ p t .  

This follows from 

maps a projective space to a point, then the diagram 

TP 
KoP ~ H.P  

g0(pt.) ~pt.> H.(pt.) 

commutes. This is an easy formal calculation, since K0P is generated by powers of 
the hyperplane bundle [B-S; Prop. 20]. 

(4) I f  F is an algebraic vector-bundle on M, and o~- is a sheaf on X, X c M as 
above, then 

vM(F| ~') ----ch F--- v~(o~-). 

This follows from the module property (2.3), since if E. resolves ~176 on M, then F|  
resolves F |  ~-. 

(5) I f  X c M as above, and P is a projective space, then the diagram 

KoX| P 

K0(X • P) 

~e~ H.X| 

%-MxP 

~- H.(X x P) 
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commutes, where the vertical arrows are Ktinneth maps. For K o P =  K~ is generated 

by vector bundles, so by (4) we are reduced to showing 

"r g • P(q* o q~) = "r M o ~- X (Td P --- [P] ) 

where o ~ is a sheaf on X, and q : X X P--~ X is the projection. But this follows from 
the pull-back property (2.6) applied to p : M x P ~ M ,  and the fact that 

T d ( M  • P) -~Td M •  P. 

(6) I f  X c M, and P is a projective space, so X x P c M x P by the product, then 

the diagram 
,~M x p  

K o ( X •  ) > H . ( X  • P) 

KoX > H . X  

commutes. Here p is the projection. 
square, whose top square is 

We can see this by fitting a " cube " 

K o X |  + H . X |  

1 |  l |  

J, 

KoX| ,~| H .X |  

over this 

and the maps to the bot tom square are all Kfinneth maps. The top commutes by (3), 
two sides commute by (5), and the other two commute by natural properties of the 

Ktinneth maps. Since K o X |  -~ K0(X • P) is surjective [B-S; Prop. 9], the bottom 

square must commute. 

(7) Let X c P ,  Y c Q .  be imbeddings of varieties X and Y in projective spaces P 

and Q.. Let f : X - + Y  be a morphism, and regard 

X c X • 2 1 5  

by means of the mapping x ~ ( x , f ( x ) ) .  

�9 I~P • Q 

KoX , H . X  

r ~,f* 
K0Y > H . Y  

Then the diagram 
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commutes. For this diagram is obtained by fitting together the diagrams 

~pxQ 

KoX > H . X  

l l 
K o ( P •  ) "• H . (P •  

IP* + 
'vQ 

K0Y - ~ H.Y 

and the top of this commutes by (I), and the bottom by (6). 
(8) The mapping -r =-r  M is independent of the imbedding. For by (2) we need 

only consider imbeddings in projective spaces. And if X c P, X C Q were two such 
imbeddings, apply (7) to the identity map on X to conclude that "rv• Q, and by 
symmetry -r v = "r v • q = "r q .  

(9) The mapping -r is natural. For if f :  X-+Y is an imbedding, just imbed 
Y in a non-singular M and use (i). I f f i s  a projection P •  it follows from (7)- 
A general f is a composite of two such mappings, as in (7). 

(i o) The mapping -r gives the right formula on a non-singular variety X. This 
follows from (2) above, with X-----McP. 

(I I) The module property follows from (4) and the fact that a vector-bundle 
on any quasi-projective variety is the restriction of an algebraic vector-bundle on some 

non-singular M containing X [App., w (3.2)]. 

R e m a r k .  - -  I f  one assumes all the results of [A-H 2], this proof of Riemann-Roch 
may be shortened considerably. The construction of z and proof of naturality is as 
given in this section, but using only imbeddings in projective spaces. The fact that  
x gives the right answer for non-singular varieties is the content of [A-H 2; w 3]- 
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R I E M A N N - R O C H  BY G R A S S M A N N I A N - G R A P H  

In this chapter we work in the category of quasi-projective schemes over an 
algebraically closed field k of  arbitrary characteristic. In fact k need not be algebraically 
closed. We leave to the reader interested in that case the verification that all the cycles 
constructed are rational over the ground-field. The reader in the opposite camp may 
read " variety " wherever we write " scheme " 

For such a scheme X, we let A . X  be the Chow group of cycles modulo rational 
equivalence, graded according to  dimension. This " Chow homology theory " is 
discussed in the appendix [App.], where a " cohomology " theory A ~ is constructed 
to go with this, with the usual formal propert ies--cap products, projection formulae, 
Poincar~ duality for non-singular varieties, Gysin homomorphisms, Chern classes, etc. 

Write H . X = A . X Q = A . X |  H ' X = A ' X Q .  There is the Chern character 

ch : K~ [App., w (3-3)]- We will prove: 

Theorem. - -  There is a unique natural transformation v : K0~+H. of covariantfunctors 
from the category of quasi-projective schemes and proper mappings to the category of abelian groups 

sat fying: 

( E ) For any X the diagram 

K ~ 1 7 4  | KoX 

H'X| "7 H.X 

h commutative. 

(~) I f  X is non-singular 

V(r = T d ( X ) ~  {X]. 
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(3) I f  U is an open subscheme of X,  the diagram 

KoX ~ ~ H . X  

K0U " > H . U  

is commutative, where the vertical maps are restrictions [App., w (i-9)]- (Chapters I I I  and IV 
contain more properties of the map -:.) 

To prove this we will construct localized classes satisfying properties analogous to 
(and more general than) those in Chapter I, w 2. (The construction gives an alternate 
approach to the case with singular homology; for non-compact varieties Borel-Moore 

homology [Michigan Math. l . ,  7 (~96~ PP" ~37-x59] should be used.) 
In this chapter /k n and P" denote affine and projective space over k. 

x. The Localized class ch,  E. by Grassmannlan  Graph. 

Let X be a closed subscheme of an irreducible variety M. It is not necessary to 
assume M is smooth over k, but  the smooth case will suffice for the Riemann-Roch 
theorem and most applications. (In fact the construction goes through with little change 
even if M is not irreducible or reduced, but for simplicity here we take M to be a variety.) 

For each complex E. of bundles on M, exact off X, we will construct a class chz~E . 
in H . X  by using the Grassmannian graph construction. The notation of this section 
will be used throughout the rest of Chapter II.  

Suppose our complex is 

o > Er dr> Er-1 e,_~ ... el> E0 do> E_l=O. 

Let e~ be the rank of E~, and let Gi=Grassei(E~@E~_l) be the Grassmann bundle 

(over M) of ei-dimensional planes in El|  I. Let ~i be the tautological bundle 
on Gi; it is the subbundle of Ei| 1 (pulled back to Gi) whose fibre over a point 
in Gi is the subspace represented by that point. 

Let G = G , • 2 1 5 2 1 5  r: : G-->M the projection. The bundles ~i pull 
back to bundles on G, still denoted ~i, and we take 

to be the " virtual tautological bundle " on G. 

Any bundle map q~ : E~-+E~_ 1 determines a section s(qo) of G~ over M; the value 

of s(~?) at m~M is the graph of 9 in the fibre over m. Thus 

s(9)(m)----{(v, q~(v)) [ ve(E,)m}eG ,. 

For each Xek we obtain a section s x : M - + G  by taking the section s(Xdi) in the 

factor G~, where di : E~-+ F~._l is the boundary map in the complex E.. 
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Regard A l c P  1 by X ~ ( I  :X) as usual, so P l=Alu{oo} ,  O0=(O:I). The 
mapping (m, X) ~ (sx(m), (I : X)) gives an imbedding 

M •  1 -~ G x P  t 

Let n be the dimcnsion of M. L c t W b c t h c  closurc of M •  1 in G •  undcr this 
imbedding. Let Z~ be thc n-cycle cut out by W at ~ ;  i.e. let ~ : W - + P  ~ bc the 
projection, and let Z~•  ] (IS; V], [App., w 2]). I f  M is non- 
singular, Z~o• is the intersection-cycle of W and Gx{oo}. 

Lemma (I .Z) .  - -  The cycle Zo~ has a unique decomposition Z o ~ = Z + [ M . ] ,  where 

(I) M. /s an irreducible variety. 
(2) ~ maps M. birationally onto M, isomorphically off X .  
(3) ~ maps the cycle Z into X,  

Proof. - -  Since the construction of Z~o restricts naturally to open subsets of M, 
we may reduce to the case where E. is exact on all of M. We show in this case how 
to extend the imbedding M x A t - - > G x P  t to an imbedding M •  l, from 

which it will follow that Z~o= [M.] ~ [M]. 
Now Ker(dl) is a subbundle of El. We imbed M x P  1 in G •  1 by assigning 

to a point (m, (X 0 : Xl) ) in M •  1 the point (H, (X 0 :Xt)) where H is the subspace 
of (Ei),,@(Ker di_l) m defined by the equations 

k0zi_ 1 ----- kldie i 

where z i_ le(Ker  di_l)r,, ei~(N),,. If  X04:o , this gives the same subspace of 

) a s  S d~ , 

but if Xo=O we get the subspace (Ker d~)m@(Ker d~_l),~ , still of the right dimension. 
One checks that this imbeds M x p1 in G • p1, and so concludes the proof. 

The cycle Z determines a class in H. (~- IX) ,  which may also be denoted Z. Then 
c h ~ - - - Z e H . ( r c - l X ) ,  and we define 

ch ,  E. = ~ . ( c h  ~---Z) in H .X.  

In  Chapter IV, w 3 all these cycles and classes are determined explicitly in the case 
where X is a local complete intersection in M and E. resolves a locally free sheaf on X. 

2. Basic Propert ies  o f  ch,  E.. 

We prove stronger versions of the properties stated in Chapter I. 

Property (2 . I )  ( L o c a l i z a t i o n ) . -  (a) I f  X a Y c M ,  

of M, and j denotes the imbedding of X in Y, then 

j .  E .  = n .  . 

where Y is another subscheme 
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(b) I f  i is the imbedding of X in M, then 

i, chx M E. ~-- ch E. --- [M]. 

Proof. - -  (a) is clear from the construction. We prove (b). Let Zx=sx(M ) cG.  
Then W gives a rational equivalence between Z o and Z~o. So ch ~'Zoo-----ch ~ ' - 'Z0 
in H .G.  When Z = o ,  Xd~ is the zero map, so ~ restricts to Y~(--I)iEi on Z o T [ M  ]. 

i 

So ~ , ( c h ~ - - Z ~ o ) = c h E . - - - [ M ]  in H . M .  
To finish the proof we must show that =,(ch ~ - " - [M, ] )=o .  In fact we will show 

that ~ restricts to zero on M, .  
Let k~ be the rank of Ker(d~) on M - - X ,  where it is a bundle. Define 

G, = Grassk, E, •  • Grassk0 E0. 

There is a closed imbedding G, c G of bundles over M which assigns to the collection 
of  subspaces Si of F~. the collection of subspaces Si@SI_ t of  EI@E~_ 1. Then the 

virtual tautological bundle ~ restricts to zero on G,.  
There is a section 

s : M - - X - + G .  

which assigns to a point m in M - - X  the collection of subspaces (Ker d~),, of (E~),.. 
I f  we look at the proof of Lemma (I.  I), and consider how G. is imbedded in G, we 
see that s ( M - - X )  agrees with M. over M - - X .  Since G. is closed in G, M. (being 
the closure of s ( M - - X ) )  must be contained in G., so ~]lV[.=o,  as desired. 

Remark. - -  Although the construction of  ch ,  E. is rather delicate, the above proof 
shows one fortunate way in which it is not. With Zoo as in w I, we may take any cycle 

' G M.C , such that Z~ and M. agree over M - - X .  Then if we set Z ' = Z ~ - - M ' . ,  
ch ,  E. = rc,(ch ~---Z').  This fact will be crucial in the proof of the homotopy property. 

Property (2 .2 )  (Additivity). - -  I f  E. is a direct sum of two complexes E: and E " ,  then 
M M t M H chxE . = chxE . + c h x E . .  

Proof. - -  We denote by one or two primes the spaces, bundles, cycles, and mappings 
constructed for E: and E:' as in w I. The natural imbedding G~'xMG~'cG ~ gives a 
closed imbedding G' xMG" C G under which ~ restricts to ~'(9 ~", where ~'  is the pull- 
back of~ '  to G'•  , and similarly for ~". Since the imbedding of M •  1 in G •  1 
maps it into G ' x M G " •  1, we may regard W as a cycle on G,•215  Let 
p' : G ' x ~ G " x P t - + G ' x P  1 be the projection. Since p' is the identity on M •  t, 
p', [W] = [W'] as cycles. Since the push-forward of  a rational equivalence is a rational 
equivalence [App., w ~.8], p 'Z~--=Z~. Also p ' . [M, ]=[M:] ,  since M, -+M' . -+M is 
birational. So p" Z -= Z', and likewise p," Z = Z". Therefore 

ch ,  E. = v',, " , ,  rc,(ch(g ( 9 ~ ) , - - Z )  
----- rc,(ch ~ --- Z) + ~,(ch ~ Z) 

. . . . .  "~' "-- Z . . . . .  (ch'~" = ~.p. lcn ~ ) + ~. p, --- Z) 
= r((eh ~'-'-- Z') + ~."(ch ~"--- Z) 

3I  t ~ M ' r ~  t t = chxE . + Cnxr~.. 
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Property (2.3) (Module). - -  I f  F is a vector-bundle on M,  then 

chx~(r| = c h  V ~ ch ,  E.. 

Proof. - -  Let f =  rank F, and let 

Gi=Grasst~i((FQEi) |174 ), G = G~ x ~ . . .  •  

There is a natural imbedding of G in G which maps a subspace S~ of ~ . O E i _  1 to the 
subspace F| of (F| The virtual tautological bundle'~ on G restricts 
to ~*F| on G. In  the imbedding of M x A  t in GXP1 used in constructing 

ch~(F| we see that 

M x A I c G x P I ~ x P  1. 

It follows that the cyclej.Z is the same as the corresponding cycle constructed for F| E~ so 

chx~(F | E.) = ~. (ch'~ ---j. Z) 
= r~,((ch r :*F~ ch ~)---Z) 
=- ch F --- ~.(ch ~ ~- Z) 
---= ch F--- ch ,  E.. 

Property (2.4) (Excision). - -  Let M 0 be an open subscheme of M, X0=  X n  M o. Then 

chx~E, restricts to ch~(E.  I Mo) under the restriction H.X-.--t-I.X 0. 

Proof. - -  This follows from the fact that the entire construction restricts to M 0. 
It  is also a special case of property (2.6) below. 

Property (2.5) (Homotopy). - -  Let C be a smooth (geometrically) connected curve over k. 

Suppose X is a closed subscheme of M, and f :  M-+C is a f la t  morphism whose restriction g 

to X is also f lat .  Let E. be a complex qf bundles on M,  exact off X .  For each t s C  we get 

on itabedding of the fibres X t c M~, and a complex E. L on M t exact off  X t. I f  i~ : X~---~ X 

is the inclusion, then 

ch~ t, E., = i~ ch~ E. 

where i~ : H . X  ~ H.X,  is the Gysin homomorphism [App., w 4]. 

Remark. - -  In the language of specialization [App., w 4.4], this implies that the 
localized class ch~ttE, t for the general fibre X t specializes to the localized class ch~E.s  
for the special fibre X 8. 

Corollary. - -  I f  X = Y  • C in the above, g is the projection to C, and C is a ratwnal 

curve, then all the classes ch~tE.t are equal in t-t.Y. 

Proofs. - -  The corollary follows since all the maps 

i~ : H . (Y•  C) -+ H . ( Y •  

are the same if G is rational [App., w 4.3]. 
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To prove the homotopy property, let 7: : G--~M, 4, W c G x  P1 be as constructed 
in w I for E. on M. Examples show that the projection W - + C x P  1 m a y n o t  be equi- 
dimensional (i.e. some fibres may have bigger dimension than the generic fibre), so 
W does not determine a family of cycles parametrized by C x P~. We will overcome 
this difficulty by blowing up G x p1 so that W becomes equidimensional (of. claim below). 

Let p : V - + C  x p1 be a birational, proper morphism from a non-singular surface V 
onto C x p1 which is an isomorphism over C x A 1. For such V, and any subvariety S 
of  V, and any scheme T over C, we denote by 

T s = T x c S  
P 

the fibre product,  where S maps to C by the composite S c V ~ C •  A similar 
subscript is used for morphisms between schemes over C. Note that if a point v~V 
maps to a point teC,  then T o = T  t is the fibre o f t  over teC.  The following diagram 
may clarify the situation. 

Gs > Gv >, G •  t .  > G 

1 q \  l l 
M s > 1~[ ;  > M •  1 > M 

S > V > C x P  t > C 
P 

I f  S = V ,  then G v maps birationally onto G • p1, under which an open subscheme 
of Gvbecomes identified with G •  1. Thus for example the imbedding M • 2 1 5  1 
of  the Grassmannian-graph construction may be regarded as an imbedding M • A 1 c G  v. 

Claim.  - -  There is a proper birational p : V-+  G • ]p1 from a non-singular surface V 
onto C x pt which is an isomorphism over G • A l, so that if X~ r is the closure of  M • A 1 

t~J 

in Gv, then the morphism q~ : W ~ V  induced by the projection p : Gv-+V is equi- 

dimensional. 

Before discussing the claim, we show how it can be used to conclude the proof. 

Let M. be the subvariety of  G constructed in Lemma (i .  i). Then M.v-+V is equi- 
dimensional, since it pulls back from M.->C.  Set 

z = - [ M . v ] ,  

an (n + I)-cycle on Gv (n = dim M). 

Fix t e C ,  let D be the non-singular rational curve on V which maps isomor- 

phically by p to { t } •  1, and let v0be the point on D that maps to {t}• Let G' 

be the non-singular curve on V that maps isomorphically by p to C• and let v 1 
be the point on C' which maps to {t}• Since p is a birational proper morphism 
between non-singular surfaces, p-i({t}x{oo}) is a connected collection of  rational 
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curves LI, . . . ,  Lm which meet transversally. (Cf. [Zariski, Introduction to the problem 
of minimal models in the theory of algebraic surfaces, Mathematical Society of Japan, 1958].) 

_ vo~ D 
Lt 

~-l(Xo0) 

~ V o  

Xv o 

Then J$0(z % [D]) = z*p [v0] , 

The idea of the proof is as follows. I f  we restrict z first to D, and then to vo, we 
obtain the cycle needed to calculate the localized class for E. t. By the equidimensionality 
assumption, using Serre's intersection theory, this restriction can be done directly from V 

�9 h chxE. Travelling to v o Similarly, restricting z to C', and then to v I, gives the cycle for "* M 
from v 0 to v 1 along the lines L~ will give the required rational equivalence between them. 

Since V is non-singular, for any cycle w on G v whose components are all equi- 
dimensional over V, and any cycle B on V, the intersection cycle w % B on G v is defined 

([S; V], [App., w 2]). 
Now [W %D] is the " W-cycle " used in computing the localized class of  E.t, 

since it agrees with the desired cycle over { t} •  1. Therefore (1) [~V]%[v0 ] is the 
Z~-cycle used for this construction. Since [W] op [v0] and [M,v ]op [v0] agree over 
Mt- -Xl ,  and M, v c G ,  v , we may use the remark in w 2. I to deduce: 

(I) ch~ttE.t=%o.(ch ~--- (z %[v0])) in H.X~ (where we identify G~o=Gt, X%=X,) .  
Similarly, with C' ~ C, X c, = X, we get 

(2) chMx E . = n c , . ( c h  ~--- (z%[C']))  in H .X .  

Consider the fibre square 

i,.> =~1(Xi)) C G D 

'~~ > X D C M D 

SO 

%o,(ch ~ ' - ( z  op[vo]))=%o.j~o(ch ~ -  (z %[D])) =i~*o~D,(Ch ~ -  (z %[D])) 

(1) If v is a point on a non-singular curve S on V, then w op[v] = (w op[S]) ps[V] (cf. [App., w 9.9, Lemma 4])�9 
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[App., w 4" 2]. Therefore from (I) we get 
(S) ~' - ' *  chx, E.,--,%nD,(ch ~- (z%[D])). 

The same argument, using voeL I in place of voeD shows that the right-hand side 
of ( I )  is also equal to the Gysin pull-back of ~Ll.(ch ~---(z %[L1])) under  the imbedding 

X% = X t c X~I-= X~ • L 1. Now if we let v vary in L1, these Gysin pull-backs will not 

vary [App., w 4.3].  We move similarly through the curves L~, . . . ,  Lm, until we arrive 
at the equation 

(4) ch~', E., = %,. (ch ~ --- (z % [vl])). 

And the same argument  applied to vteC' shows that  the r ight-hand side of (4) is equal 
to the Gysin pull-back of ~c,.(ch ~ - ( z % [ C ' ] ) )  under  the imbedding i t of Xt-=X,1 
in X = Xc,. By (2) this completes the proof. 

The  claim is a consequence of Grothendieck's construction of the Hilbert schemes. 
This construction gives us a birational morphism Pt : V~ -+ C • P~, isomorphic over 
C • A t, and a subscheme "~r 1 of G v which extends M • &t and is fiat over V 1. (See [R;  
Chapter  4, w 2] for a discussion of this as well as generalizations to the non-projective 
case.) I f  V-+V~ is taken to resolve the singularities of Vt,  then the composite 

V-+V1 ~C X p1 

will satisfy the conditions of the claim. 

Property (2 .6 )  (Pull-back). - -  Let p : P-->M be a f la t  morphism, and let Q = p - l ( X ) ,  
q : Q - + X  the restriction to X .  Then p*E. is a complex on P exact of f  Q ,  and 

q*(chMxE.)= P * chq(p E.) 

where q" : I t . X - +  H . Q  is the Gysin map [App., w I.  9]. 

Proof. - -  We claim that  the entire construction for p 'E,  on P is obtained by pulling 
back the construction for E. on M. Denote the corresponding spaces for E.=p~ *E. 
by G, etc. We have a fibre square 

~--=GxMP ~> P 

P 

G > M 

~=~*~,  " ~ r = ~ - t W ,  so Zoo=P*Zoo since rational equivalence pulls back [App., w 1.9]. 
Also l~I.=p~*M., so Z = ~ * Z ,  where g : % - l ( Q ) _ +  r~-t(X). Therefore 

ch ,  E. - ~* ~* =,%(ch(p ~)---q Z) 
-----r~,(q (ch ~ - - Z ) )  
= q*=.(ch ~ ~- Z) 
= q ' ch ,  E. 

where we have used [App., w 3. I]. 
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3" P r o o f  o f  R iemann-Roch .  

Since w167 3-6 of Chapter I used only these six properties of the localized class 
(together with formal properties of homology and cohomology), we see that the Riemann- 
Roch theorem as stated at the beginning of this chapter is true. The additional 
condition (3) on restricting to open subschemes follows immediately from the strengthened 
form of the excision Property (2.4). 
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CHAPTER III  

UNIQUE N E SS  AND GRADED K 

x. The  C h o w  Groups  and Graded  K-Groups .  

Let X be a quasi-projective scheme over a field. Consider the filtration on K0X 
by dimension of support [SGA 6]. FiltkK0 X is generated by classes of sheaves whose 
support has dimension ~k ,  or by the structure sheaves of subvarieties of dimension ~ k .  
The associated graded groups GrkX define a theory closely related to the Chow 
groups AkX. I f  we assign to a subvariety Y of X the class of its structure sheaf Gy 
in KoX, we obtain [App., w I .9] a natural  surjective transformation 

A. -~  Gr. 

of  functors from the category of quasi-projective schemes and proper morphisms to the 
category of graded abelian groups. Even if X is non-singular, q~ may not be an iso- 
morphism [SGA 6; XIV, 4.7]. Grothendieck showed in the non-singular case that 

is an isomorphism modulo torsion [ibid., 4-2]. Our Riemann-Roch theorem enables 
us to extend this to the singular case, with a somewhat simpler proof. 

Theorem. - -  For all quasi-projective schemes X over a field: 

(a) q~ induces an isomorphism A. XQ-~ Gr. XQ. 
(b) The Riemann-Roch map "~ induces an isomorphism 

K 0 XQ -~ A. XQ. 

Proof. - -  We show that the associated graded map to the map in (b) gives the 
inverse to the map in (a). I f  Y is a subvariety of X, i �9 Y - + X  the imbedding, and 
we regard Oy as a sheaf on X, then v(Oy) -~ i,I:(Y) is contained in i,(A.YQ), by naturality 
of Riemann-Roch. Therefore v maps FiltkKoX into 

Filtk(A.XQ)----- Y, AjXQ. 
j_<k 

Thus ~ induces a mapping Gr. X ~ A. XQ of associated graded groups. Both (a) and (b) 
will follow if we show that the composite 

A.XQ -+ Gr. XQ -+ A. XQ 

is the identity, and this is an immediate consequence of the following lemma, applied 
to irreducible subvarieties of X. 
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Lemma. - -  I f  X is an irreducible variety, then the top dimensional cycle in -:(X) is [X]. 

Proof. - -  This follows by restricting to the non-singular part  X 0 of X, where it 
is clear by (2) of  the Riemann-Roch Theorem. Or one may let X be a projective closure 
of X, and apply naturality to a finite map X - > P "  to reduce it to P". 

2. U n i q u e n e s s  T h e o r e m s .  

We consider only projective varieties over a field. (If .r is determined on these, 
it is determined on all quasi-projective varieties by condition (3) of the theorem, and 
on schemes by applying naturality to injections of irreducible subvarieties.) A.XQ is 
the Chow group with rational coefficients. 

In  our first uniqueness theorem no mention is made of Todd classes or Chern 
classes of bundles. We see that the Todd class, and the Riemann-Roch formula for 
a non-singular variety, are completely determined if we want any kind of natural 
theorem. The Todd class does, however, naturally enter into the arguments at several 
points (see Chapter I, Proposition 3.4 and Chapter IV, Proposition 1.3). For an 
explicit differential-forms approach to the inevitability of the Todd class see [Baum]. 

Theorem. - -  There is only one additive natural transformation ":: Ko--->A.Q with the 

property that i f  P is a projective space, the top dimensional cycle in ,:(Or) is [P]. 

Proof. - -  Let vQ : KoQ-->A. Q be the map induced by -:. 
We have constructed one such ":. Suppose ":' were another. Then by w I, we 

get a natural transformation 

0~:z~o':~ 1 : A.Q-->A.Q 

which takes [P] to [P] + lower  terms, for P a projective space. But the only such natural 
transformation is the identity [App., w 5]. 

Remark. - -  I f  o~ is a sheaf on an irreducible variety X, then the top-dimensional 
cycle in x(~') is rank(o~'). [X]. Of  course, this property also determines -c uniquely. 

I f  we include compatibility with the Chern character in our conditions for % 
then it only needs to be normalized on a point. 

Corollary. - -  There is a unique additive natural transformation v : K0->A. Q satisfying 

(I) I f  E is a vector bundle on X ,  then z ( E ) : c h  E----:(0x). 
(2) I f  X is a point, then -:(#x)-=I in O.=A.XQ.  

Proof. - -  We must show ,r(Op,)= [P" ]+  lower terms. I f  p is a point in P", the 
Riemann-Roch theorem for the imbedding i :{p } ~  P" gives ch(i, 0{p/)--- [P"] = [p]. 

Since i,0{pieKoP" , by (I) we must have -:(i ,0tp/)=ch (i,d){vi)---z(~p,). By natu- 
rality and (2), ":(i,O~pi)=i,[p]. These two equations imply that " : (0p , )=[P"]+lower  

terms. 
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Remark. - -  The theorem and corollary also hold for complex varieties with values 
in singular homology with rational coefficients. As in the proof of the theorem, we 
get a natural transformation 

o~ : A.Q--~ H . ( ; Q )  

such that 0r [P]-= [P]-t-lower terms for P a projective space. 
transformation is the one induced by the usual cycle map 

And the only such natural 
A . ~ H . ( ; Z )  [App., w 5]- 

3" Cartes ian Products .  

Theorem. - -  Let X, Y be quasi-projective schemes. 

KoX| Y ~| -- A.XQ| 

Then the diagram 

K0(X• ~, A.(X• 

commutes; the vertical maps are the usual Kiinneth maps. 

Corollary. - -  For any quasi-projective schemes X ,  Y 

v(X•  =x(X)  xv(Y). 

Proof. - -  By w i, the horizontal maps are isomorphisms when tensored with Q.  
Consider the mapping 

0 : A.XQ| ~ A.(XxY)Q 

obtained by going around the diagiam ( |  from upper right to upper left to lower 
left to lower right. This 0 is an additive natural transformation of functors from 
pairs (X, Y) of quasi-projective schemes and morphisms to abelian groups. We must 
show 0 is the usual Kfinneth product. 

Since 0 is compatible with restriction to open subschemes, we may restrict attention 
to projective schemes. Note also that 0 ( [ X ] N [ Y ] ) = [ X x Y ] + l o w e r  terms for var- 
ieties X, Y (w I, Lemma~. It is not difficult, following Landman's proof for single 
spaces [App., w 5] to show that there is only one such natural transformation 0. 
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THE TODD CLASS AND GYSIN MAPS 

For a quasi-projective scheme X, let ,~(X)=v(0x) be its Todd class. Write 
= 

z. Mappings .  

I f  f : X--->Y is a morphism, it is natural to compare the Todd classes of X and Y 
in terms of properties o f f .  This section contains four facts of this type. All of these 
are special cases of a conjectured formula, which will be stated in w 3- From part  (3) 
of the Riemann-Roch Theorem in Chapter II  we obtain the following fact: 

Proposition (I .  I ),  - -  I f  X is an open subscheme of Y,  then the Todd class of Y restricts 
to the Todd class of X .  

This determines %(X) for all k bigger than the dimension of the singularities 
of X. For example, if X is a projective normal surface, then deg v 0 X = z ( X ,  0x), 
v l ( X ) = - - K / 2  where K is a canonical divisor on X, and z2(X)= [X]. 

Corollary. - -  Let f : X-+Y be a birational proper morphism, and let Z be closed in Y 
such thatfmaps X - - f - I ( Z )  isomorphicaUy onto Y - -  Z. Then f ,  vkX=zkY for all k > d i m  Z. 

Proof. m In fact, f ,  vX and vY agree in A. (Y--Z) ,  and Ak(Y ) -+ Ak(Y--Z ) is 
an isomorphism for k~>dim Z [App., w i .9]. 

Proposition (x.2).  - -  Let g : M-->N be a smooth morphism of non-singular varieties, 
Y a closed subvariety of N, X = g - l ( Y ) ,  f : X-+Y the restriction of g to X.  Then 

v(X) = td(Tf) ---f*-~(Y), 

where Tf is the relative tangent bundle o f f .  

Proof. ~ From property (2.6) of Chapter II, we deduce f*ch~0y  = ch~O x. Then 

-c(X) = td(T~) --- ch~0 x = td (Tt) .g*(td T~) ---f*ch~0y 

= td(Tf) ---f*(td T N--- ch~ ~y)=  td(Tt) ---f*z(Y). 

This applies for example if X = P ( E )  is a projectivized vector-bundle over Y, 
giving the Todd class of X in terms of the Todd class of Y and the Chern classes of E. 
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Proposition ( I .  3) (Adjunction formula). - -  Let X be an effective Cartier divisor on Y ,  
i : X-+Y the inclusion. Let x = c l ( 0 ( X ) ) e A 1 Y  be the class determined by X .  Then 

i.-r = (x --  e- ~) ----~(Y) in A.YQ. 

Proof. - -  From the exact sequence 

o -+ r ( - x ) r i .  e x O 

we see that ch( i ,d~x)=I--e  -~. Therefore 

/ . , ( x )  = X i .  Cx)  = - e - ' )  - -  

Proposition (x.4). - -  Let X be a local complete intersection in a non-singular variety Y,  
i : X--->Y the inclusion, N the normal bundle, Ty the tangent bundle to Y .  Let 

Tx =i*T --NeK~ 

be the virtual tangent bundle of  X .  Then 1:(X)----td(Tx)----IX]. 

Proof. - -  To prove this it is enough to show ch~0 x = td(N) -1"-" [X]. This follows 
from Proposition (5.3) of Chapter I (with X = M ,  ~ = d ~ x ,  Y = P ) .  Note that the 
non-singularity of M was not used in Chapter I, w 5. In fact, the results of Chapter I, 
w 5 hold for any local complete intersection X cY.  In  w 3 we will discuss this case in 

more detail. 

Remark. - -  The virtual tangent bundle is independent of the imbedding in Y 

[SGA 6; v i i i ] .  

2.  F a m i l i e s .  

Let C be a smooth (geometrically), connected curve, and let f :  X-+C be a flat 
morphism. (If X is an irreducible variety, flatness means only that f does not map X 

to a point.) 

Theorem. - -  For each (closed) point teC, let i t : Xt -+X be the inclusion of  the fibre f - 1 ( t )  

in X .  Then 

XX,) = i~,(X) 

where i2 :A.XQ ~ A.XtQ is the Gysin map [App., w 4]. 
In particular, the Todd class of the general fibre specializes to the Todd class of 

the special fibres [App., w 4.4]. 

Proof. - -  Factor f into an imbedding X---> P • C, where P is smooth, followed by 
the projection to C. Let E. resolve ~x on P •  Then, for all t~C, E. t resolves 0x~ 
on P t = P •  Therefore by the homotopy property (2.5) of Chapter I I  

Yt "* P X chxt 0x ' = ~, ch x c 0x" 

Since i~Td(P•  the theorem follows. 
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It  follows that if zeAkX, the numerical function deg(z---%(Xt) ) is a constant 
function of t. 

3- Loe.al Complete Intersections. 

Let i : X-+Y imbed a scheme X as a local complete intersection in a quasi- 
projective scheme Y, with normal bundle N. Let F be a vector bundle on X, and 
E.-+i.(F) a resolution by vector bundles on Y. 

We will compute explicitly all the cycles and bundles involved in the Grassmannian 
graph construction (Chapter II, w ~). This will show how in this case chxVE, lifts 

canonically to a " cohomology " class c h ,  E.. From this we will be able to prove some 
" cohomology " Riemann-Roch theorems (cf. [SGA 6]) for quasi-projective schemes. 

Here we take H.X=A.XQ----Gr.XQ, and H ' X = A ' X Q = G r ' X Q  (cf. [App., w 3]); 
or, for complex varieties, H . X = H . ( X ; Q ) ,  H ' X = H ' ( X ; O ) ,  ordinary singular 
homology and cohomology. 

Let ~ : G--->Y, 4, q~ : W -+P1 be as in the construction of Chapter II, w ~ for 
the complex E. on Y =  1V[. In  this section, however, we let Z x be the scheme-theoretic 
fibre ~-i(x) ; we regard Z x as a Cartier divisor on W, instead of a Weil divisor (cycle). 
( I fY  is not reduced, the scheme W is not defined by its underlying set; the local equations 
for W will appear in the proof of the following proposition.) 

Proposition. - -  ( i ) The Cartier divisor Z~ has a unique decomposition Z~o= Z + Y .  where 

Z andY .  are Cartier divisors on W ,  ~ maps Y. birationaUy onto Y (Y. is the blow-up of  Y along X), 
and r c (Z)=X.  

(2) There is a commutative diagram 

P = P ( N |  

p 

X 

J > G 

> Y 

wherej  maps P isomorphically onto Z, and j*~-= Z (--~)~A~H@p*F in K~ with H as in the 

proof of  Proposition (3- 4) in Chapter L 
(3) Z xwY, is a Cartier divisor on Z and Y,; W is a local complete intersection in G X pt .  

Y " |  (4) chxYE.-=ch~E.'-'[X], where chxE.=p , (ch(A I t  p ) ) = t d ( N ) - t - - - c h ( F )  and 

p, = H'P--> H ' X  is the Gysin map (cf. w 4 and [App., w 3-4]). 

Proof. - -  We first construct the map j of (2). The restriction E. IX of E. to X 
is a complex whose homology sheaves ~ = T o r ~ Y ( 0 x ,  F) are canonically isomorphic 

to AqXI| ([B-S, w I5], [SGA6;  VII]) .  The inclusion Hcp*~l |  of bundles on 

P = P ( N @ I )  gives rise to an inclusion 

AiH cAi(p*~7 | I) = A~p*~I | 
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Tensoring this with p*F gives 

A'H| F cF~| 

By the universal property of Grassmannians, this induces a morphism 

i = 0  

where e = rank N, f =  rank F. 
Let ._Y~=Ker(d~| ~ = I m ( d ~ N O x ) .  Since the ~ are locally free on X, 

so are the ~ and ~I~, and the surjections ;,~i--+~ give an imbedding 

X G r a s s ( ~ ) f ( ~ |  -+ X Grass.i(~*N(]i_l).  

(Note that  the tautological bundles in the i-th factor differ by ~ |  
The  imbedding ~ c Ei I X gives 

X Grass, ( ~ i r  1) c X  Grass,i(Ei ] X@Ei_ a IX) = G I X. 

The  composition of these maps is the morphism j : P : P ( N @ I )  -+ G I X .  By 
construction j * ~ : ~ ( - - I ) % i H |  in K~ (Note that  the extra factors ~@4~i_ 1 

cancel when we take the alternating sum on P(N@I).)  
The  other assertions in (I)-(3) are local on Y. 
We assume that  Y is affine and small enough so F and N extend to (trivial) 

bundles F and N on Y, and that  there is a section s : Y---~N whose zeros define X scheme- 
theoretically. (In terms of coordinates for N, s is given by a regular sequence of functions 
defining X.) L e t / V N  v be the Koszul complex defined by the section s. By the local 

R ' ~ E "  uniqueness of resolutions (cf. [S; IV, App. I]) we may assume E, = ~ . v  . , where 
E~-----A'NV| and E:' is exact on all of Y. 

We first define a morphism 

f: P( el) xP I-, GxP' 
which restricts to j over Xx{oo}. Corresponding to the decomposition E.=E:@E:' 

we have an inclusion G'xG"cG, where 

G' = X Grass (~)t ( (AiN v | F) | ( A ' - ' N  ~ | F)) 

G" = X Grass,/_ (~)t (S~' @ E~" 1) 
i 

and ~wi l l  factor through G'X G " •  1. Thus )"will be determined by constructing two 
mappings 

~ = P ( S @  I)--> G' 

~ = P ( N @  I) X P' --> G "  X P'. 
N N N 

Then  j(x,y)=jl(x)• ). 
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The first morphism 

J'~: P(N @ I) --~G' 

comes from the " Koszul complex"  /VH| on P(N@I),  where H is defined by 
the exact sequence 

�9 1) -+r  -+o  

(cf. the construction of j ) .  The second mapping 3~ factors: 

p ( ~ i ) •  1 pxt> y• > G,,• 

where the second is the map constructed in the proof of Chapter II,  Lemma ( i .  i), 
for a complex E~' exact on all of  Y. 

I f  we define finally 

y •  •  

by (y, X ) ~ ( ~ ( y ) ,  (1; X)), the composite 

Y •  1 - + N X P I C P ( N ~ I ) •  1 s  G x P t  

is exactly the morphism constructed in the Grassmannian-graph construction for E on Y. 
It  follows that W is the closure of Y x A  1 in P ( N ~ I ) •  1. We have studied 

this closure in Chapter I, w 5 (here Y = M, ) ,= I/t). I f  we choose coordinates Yl, �9 �9 -,Y, 
which trivialize N, so Y0, . - - ,  Y, are homogeneous coordinates for the fibre of P(N| I), 
and s(x)=~f~(x)y, ,  then local equations for W in P ( N * I ) • 2 1 5  i are 

)'0Yi = Xlf~(x)yo i = I, . . . ,  e 

y~fj(x) =yj fdx)  i , j  = i, . . . ,  e. 

Then Z~o is defined by adding the equation )'0= o, which is the sum of the two divisors 
Z = X •  e and Y . c Y x P  " - t  defined by the equations Y~fJ=Ysf~, i .e .Y,  is the blow-up 
of Y along X. And Z X w Y . = X •  "-1. The remaining assertions of (1)-(3) can be 
verified by looking at the local equations; we leave this to the reader. 

The assertion (4) follows from the identification of Z and ~lZ in (3), and the 
formal fact that p . ( c h A ' H ) = t d ( N )  -1 in H 'X ,  which was proved in Chapter I, Prop- 

osition (3-4). 

Let f :  X-+Y be a projective complete intersection morphism of quasi-projective 
schemes. This means [SGA 6; VII I ]  that f factors 

i 
X - + Y •  Y, 

where P is a projective space, i imbeds X as a local complete intersection in Y, and 
p is the projection. I f  N is the normal bundle of the imbedding i, and T~ is the relative 
tangent bundle of p, then the " virtual tangent bundle o f f "  

Tf = i*T, - -N in K~ 

is independent of the factorization [SGA 6; VIII ,  Cor. 2.5]. (Our T r is dual to that 

in SGA 6.) 
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Corollary 1 (Berthelot, Grothendieck, Illusie et al.). - -  I f  f :  X-+Y is a complete 
intersection morphism as above, and xeK~ then 

ch (f,x) =f , (ch(x) .  td(Tr) ) 

in H'Y,  where f ,  : H ' X - + H ' Y  is the Gysin map (cf. w 4 and [App., w 3.3]).  

Proof. - -  The case of a projection is quite formal (cf. [B-S], [SGA 6]), so we confine 
ourselves to the case where f - ~  i is an imbedding.  We may assume x is the class of 
a bundle F on X. Since c h ( i , F ) =  ch(E.), where E. is as at the beginning of this section, 
we are reduced by (4) of the proposition to showing 

i,(ch~E.) = ch E.. 

This is a cohomology version of our localization property (2. I) (b) of Chapter  II .  
We prove it as follows. In the notat ion of the proposition 

i, chxYE. = i ,p,(chj*~) = ~z,j, ch(j* ~). 

Let jz : Z x - + G  be the inclusion. Since =J0 is an isomorphism of Z 0 with Y, 
under  which Jo*~ corresponds to ?~ (--I)~E~, we get ch E.=r:,jo,(ch(3o*~)). So it 
suffices to show that  

j ,  ch(j*~)=Jo,ch(jo*~ ) in H 'G .  

We claim first that  

(I) jo,(I)----j:o,(I) in H 'G .  

It  is enough to show that all Z z define the same cohomology class in I--I" W, sincejx factors: 
Zx-+W->G• In  the Chow theory H ' = G r ~  this follows from the fact that 
the Z x are all linearly equivalent Cartier divisors on W. For the singular theory see w 4, 
Proposition (4.~) c). 

Let k be the inclusion of Y, in G. We claim secondly that  

(2) joo,(i) = j . ( i )  + k , ( i )  in H 'G .  

In the Chow theory this follows from the exact sequence 

o-> d ) z ~  @z | Oy, --> d) z • o 

and the fact that  the Gysin maps are determined by the corresponding sheaves; note 
that  Z • is a local complete intersection of lower dimension, so it does not contribute 
[SGA 6; VII, 4.6].  For the singular case see w 4, Proposition (4.2) e). 

Since j ,  c h ( j * ~ ) = c h  ~.j ,(I),  and similarly forj~o, and k,, we deduce 

�9 h "* " h "* 3r c (3-~)=3,  c (3 ~)+k,(chk*~);  

but k*~ = o in K~ (cf. proof  of property (2. I) in Chapter  II) which concludes the proof. 

Corollary 2. - -  Let f :  X - + Y  be a complete intersection morphism as above. Then 

f , v  (X) - - f ,  (td (Tt)) --- v(Y). 

136 



RIEMANN-ROCH FOR SINGULAR VARIETIES x37 

Proof. - -  Set x = i  in Corollary I, and cap both sides with z(Y) 
ch( f .  I) --- v(Y) = f . ( t d ( T  t)) --- -r (Y). By the module property and naturality 

ch(f .  I) "-- "~(Y) : v(f .  I) : f . ' ~  (X), 

as desired. 

to get 

This contains Proposition 3 of w I as a special case. When one has a Gysin 
map f*  : H.Y--->H.X for a complete intersection morphism f :  X->Y, one expects the 
stronger 

C o n j e c t u r e . -  -~(X)=td(Tr)-- - /*z(Y ). 

We proved some cases of this in w I; see also Chapter III ,  w 3. 
In the singular homology theory for complex varieties we will construct such 

Gysin maps in the next section, but the conjectured formula has not been proved in 
this context (1). 

4" Gysln Maps in the Classical Case. 

Let f :  X-+Y be a proper complete intersection morphism of possibly singular 
quasi-projective schemes over the complex numbers. In this section we define a 
cohomology push-forward map f .  : H'(X; Z) ---> H'(Y; Z) which generalizes what in 
various cases has been called the Gysin homomorphism, the Umkehrhomomorphism, or 
integration over the fiber. We also define a dual homology pull-back 

f*  : H.(Y; Z) -> H.(X;  Z). 

The definitions and proofs apply to any pair of extraordinary cohomology and homology 
theories in which a complex vector bundle E has a canonical orientation (or Thorn 
class in H'(E, E - -{o} ) ,  where {o} is the zero section). For example topological 
K-theory provides such a pair [B-F-M]. 

The main tool is an appropriate definition of a generalized Thom class 

Uxye H"(Y, Y- -  X) 

where X is included in Y as a local complete intersection and dim Y-~ dim X + n .  Note 
that the pair (Y, X) will not in general be locally homeomorphic to (A • R 2", A • o) 
for any A. Even when it is, Uxy may not be the classical Thom class if X is not reduced. 

Let X c Y be a local complete intersection. Choose an algebraic section s :Y-+ E 
of a vector bundle E over Y such that X-~s - l ({o})  as a scheme. This can be done 
similarly to the construction of Chapter I, w 5. Then as in Chapter I, w 5 the normal 
bundle N to X in Y sits naturally in the restriction of E to X. Choose a classical 

neighborhood V of X in Y and choose a topological complex vector bundle C over V 

(1) Note added in proof. - -  J.-L. Verdier has constructed these Gysin maps for the Chow homology and 
proved the conjecture in general [S6minaire Bourbaki, n ~ 464, Feb. x975]. 
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contained in E such that C restricted to X is a complement to N in E. This can be 
done by an argument using Urysohn's lemma. Let Q be the quotient topological 
vector bundle E/C over V. Note that Q identifies canonically with N over X. Let 
~-: V - + Q  be s followed by the quotient map. 

Lemma (4.  * )- - -  Shrinking V to a smaller neighborhood of  X i f  necessary, -~ maps the 

pair (V, V - -X)  to the pair ( Q ,  Q - { o } ) .  

Proof. - -  We may work locally in Y. Locally as in Chapter IV, w 3, N extends 
(algebraically) to a subbundle N of E so that s maps V to N. Since being a complement 
is an open condition, C is a complement to N in E on a possibly smaller neighborhood V 
of X. Then over V, the quotient map q :N--->O is an isomorphism of topological 
vector bundles. Since s takes V - - X  to N--{o},  }-takes V - - X  to Q - { o } .  

Definition. - -  The generalized Thorn class Uxye Hn(V, V- -  X) (which is H"(Y, Y--  X) 
by excision) is given by 

= 

where UqeHn(Q,  Q - { o } )  is the Thorn class determined by the complex structure 
on the vector bundle Q .  

The pullback of Uxy to Y will be {X}, the cohomology class " carried by " X ,  

or i. I where i is the inclusion of X into Y. 
We will sometimes use the subscript XY on objects (E, V, C, Q ,  s, s-) relating to 

the construction of Uxy. In particular Vxy denotes an arbitrarily small classical 
neighborhood of X in Y. 

Proposition (4- 2): 

a) Ux~ is independent of  the choices. 
b) For X c Y c Z, zf r : Vxz-+Vxy is a retraction and j : Vxz -~Vyz is an inclusion, then 

Uxz = j*  Uyz---" r*Uxy. 

c) I f  2 ~ "  > Y 

X ~ > y  

is a fiber square such that r~ is f l a t  and the inclusions are local complete intersections, then 

~* Uxy = U2~. 

d) I f  M is non-singular and g ' : X c Y = X •  is the graph of  g : X ~ M  and 
h : Vxy -+ g - I T M  is a tubular neighborhood homeomorphisra sending g'(X) to the zero 

section, then 

h* Ur,T~ = Uxy 

where Ug-ITM is the classical Thorn class. 
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e) The generalized Thorn class of the sum of two Cartier divisors is the sum of their Thorn 
classes. In particular, i f  X and Y are of codimension one in W and have no component 
in common, then 

Ux0Y, w =  *Ux, w +  +*uy, w 

where 9 and ~ are the evident inclusion of pairs. 

Proof: 
a) Let E', s', c', be different choices and let ~ : O'  ~ Q be a topological isomorphism 

extending the identification of Q with N with Q'  over X. (Here as always, shrink V 
when necessary.) We show that t(}-)+(i--t)~qg:' maps ( V , V - - X )  to ( 0 , 0 - - { o } )  
and thus provides a homotopy from one situation to the other. Working locally as in 
the proof  of the lemma above, we have the diagram 

02 

\ _ /  
N 

V 

and we must show that 

t .s @( I - - t ) (q - l~q  ') .s' ~eo 

off X. Introduce a norm I I 11 on N. Since s - - s '  is given by functions in the 
square of the ideal of X, for any r  V can be shrunk so that I I s - s ' l l<~l l s ' l l .  
Since q-X~q is the identity on X, we can also have I lq - l~ f ' s ' - s ' l l<~ l l s ' [ I .  With 
e < i/2 the result follows. 

b) By adroit choices, we can arrange things so that over Vxz we have the following 
commutative diagram with an exact sequence of topological vector bundles accross the top 

0 > O--~XY > Q,XZ > Q.Yz 

l ~xY ~xz ~rz 

> O 

Now our equality for the triple of spaces (Z, Y, X) can be pulled back from the cor- 

responding known equality for the triple (Qxz,  QxY, { o }). 
r We can make choices so that Q:~-7= ~ - l Q x Y  and the following diagram 

commutes 
Q~7 > QxY 

8~ exy 

V~7 ~ > Vxy 
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d) Since all classes in H"(Y, Y - - X )  are multiples of h*Ur_,T• by the Thorn 
isomorphism, we can use c) to reduce to the case where X is a zero dimensional scheme. 
Here one checks that the following diagram can be made to commute:  

Q - -  v x Tt(~)Y 

I. 
Vx Y h ~ Ttc~)y 

e) Since we are dealing with divisors, we have the global algebraic commutative 

diagram  Ixwi:w 
, xw| Q y w  

SXVr ~ SYW 

W 

where t takes x@y to x| Our equality is then the pullback by s of  the relation 

in H ' (Qxw~QYw,  Q.xw~ Q ~ w -  t-l{ o }). 

But this relation is true because both sides agree when restricted to 

H'(Q,xw*Q.~w-{O}; Q.xw*Q.yw-t-~(o}) 

and this implies that they are equal by the long exact sequence of  the triple 

(Qxw * Q.~w, Q.xw ~ O ~ w -  ( o }, Q.xw* Q.~w- t-  1{ o }). 

I f  f :  X-~Y is an arbitrary proper complete intersection morphism, i . e . f  lifts to 
an inclusion as a local complete intersection in Y •  for some smooth M, construct 
the following diagram: 
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i -  p 

, V <  = W /Z/. 
X " Y x M  c Y •  

Here V is a neighborhood of X in Y•  M that retracts by r onto X. (For example 
V could be a regular neighborhood with respect to a triangulation of the pair (Yx M, X).) 
D is a disk of dimension at least 4 dim M + 4  in which M is differentiably embedded; 
W is a tubular neighborhood of V in Y •  r is the retraction. Orient D and the 
fiber of r' so that the orientations add in the natural decomposition 

TroD = TmM~T~r ' - l (m)  for meM;  

let U D and U w be the corresponding Thorn classes. 

Definition. - -  The cohomology Gysin komoraorphism 

f .  : H'(X; Z) - ,  H'(Y; Z) 

is the composition 

H'(X) (~o,'1", H'(W) (~'*u=,.• 

H'(Y) c . ~  H ' (Y •  Y•  
t ~  

, H'(W, W - - X )  

excision 

inclusion* 
, H ' (Y•  D, ( Y •  

Two special cases of this map are more classically known. I f  Y is non-singular 
and X is reduced then this is the Umkehrhomomorphism f , ( c ) =  Poincar6 Dualf ,(e---[x]) .  
I f f  is a fibration, then this is integration over the fiber [Borel and Hirzebruch, Charac- 
teristic Classes and Homogeneous Spaces, I, Am. J .  Math., 8o (I958), p. 482]. 

Proposition (4 .3) .  - -  The homomorphism f .  is independent of  the choices involved. 

Proof. - -  The homomorphism is independent: of  the imbedding of M in D since 

for D this large all embeddings are isotopic; of U w since to change it would produce a 
cancelling change in U D; of the map r o r' since all such are homotopy inverses to the 
inclusion of X. It remains to show independence of the factorization o f f  through 
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Y•  Since any two such factorizations are dominated by the product, we reduce 
to the special case 

Y •  

X c Y  

By applying the fact that the Thom class of a direct sum vector bundle is the product 
of the Thorn classes pulled up, we reduce to showing the following fact. Let 

r : Vx, y• x• M 

be a retraction and p : Vx, y• y be the projection and h : Vx, x• be 
as in Proposition (4.2) d). Then 

Ux, y • =(hor)*Ug-,WM'-~P*Uxy. 

But this follows easily from Proposition (4.2) b), c) and d). 

Proposition (4.4): 

a) The Gysin homomorphism is functorial, ( fog),  =f ,g , .  
b) The projection formula holds 

f . (x  v f . y )  ----f.x v y .  

Using Proposition (4.2), the proof is entirely parallel to that for the classical 
Umkehrhomomorphism as in [Dyer, Cohomology Theories, Benjamin, 1969, p. 47]. 

Definition. - -  The homology Gysin homomorphism 

f*  : H.(Y; Z) -+ H.(X; Z) 

where H. is homology with closed support (Borel-Moore homology) is the composition 

H.(X) <-(~~ H.(W) ~ I~'*cx,~• 

p ,  ]Uo 
H.(Y) -> H.(Y• D, Y• 0D) 

H.(W, W--X) 

excision 

inclusions, H.(Y• (Y•  

It has similarly proved independence of choices and functoriality. 

5" Riemmma-Roch Without  Denominators .  

In this section we work in either of the following contexts: 

(I) Complex quasi-projective schemes; H" denotes singular cohomology with 
integer coefficients. 
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(2) Smooth quasi-projective varieties over an arbitrary field; It" denotes the Chow 

ring with integer coefficients. 

I f N  is a vector-bundle of rank don  X, let P = P ( N |  I), p : P - + X  be the projective 
completion, and let 

o-+H-->p*(~I | I) -->0(I) -~o 

be the universal exact sequence on P. 
For any bundle F of r a n k f o n  X let P(F, N)=p . ( c ( /VH|  in H 'X .  (For 

its Chern class c(E.) is [[. c(E~)(-1)i). The calculation of P(F, N) is purely complex E., a 

formal. The component Pq(F, N)=p,(cq(/VH| in Hq-aX may be written 

Pq(F, N ) =  Pq(f, q(F), . . . ,  cq_a(F) ; q(N), . . . ,  c,_d(N)) 

where Pq(To, . . . ,  Tq_a; U1, - - . ,  Uq_d) is a universal polynomial with integer coefficients. 
This may be extended to any F e K ~  with f = ~ ( F ) .  

Theorem. ~ Let i : X-+Y imbed X as a local complete intersection in Y ,  with normal 

bundle N of rank d. Then for F e K ~  

c,( i .F)=i .(Pq(F,  N)) in HqY 

where i. = H q- d X -+ H qY is the @sin map. 

Proof. - -  We may assume F is a bundle. Let E. be a resolution of i.F by bundles 

P J> G 

X > Y 
i 

on Y, and let 

be the diagram constructed in w 3, Proposition (2), for E. on Y. Then c( i .F)=c(E . ) ,  
and i.P(F, N ) =  n . j . c ( / V H |  ~. j .c( j*~) .  Then the proof proceeds exactly as in 

the corollary in w 3, replacing " c h "  by " c " 

Remark. - -  A formal calculation shows that P a ( I , N ) = ( - - I ) d - l ( d - - I ) ! e H ~  
It follows that ca( i .Ox) - - - ( - - I )a - l (d - - I ) ! i , ( I )  in HaY. In the classical case, even 
for X a point on a three-dimensional Y, this was unknown before [SGA 6; XIV, w 6]. 

6. Examples.  

(I) We first give an example to show that the Todd class is not always in the 

image of the " Poincar6 duality " mapping H ' X - + H . X  given by a ~ a , " ,  [X]. We 
construct a three-dimensional normal variety X with one singular point, such that 

-%(X) ~H4(X; Q )  is not in H~(X; Q)- -"  [x] .  
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Let C1, G~ be non-singular projective curves of genus I, o respectively, and let 
L1, L~ be negative line bundles on C1, C 2 of degrees --da, - - d  2. Let S = C 1 •  
L = L I |  2 (a negative line bundle on S), P = P ( L |  the projective completion of L, 

f :  P-+S the projection. Regard L o P  as usual, and S c L  by the zero section. By 
Grauert 's criterion (cf. [EGA II,  8. 9. I]) we may form the variety X = P / S  obtained 
by blowing S down to a (singular) point;  let r~ : P--->X be the collapsing map.  

Let z = q ~ , ( I ) e H ~ ( P ) .  The  standard formula H ' P = H ' S |  and the split 
exact homology and cohomology sequences of the pair (P, S) allow us to compute the 
homology and cohomology of X. In particular z gives a basis for H~X, and 

T~ = r~.(f-~(C~ • { pt. })) and T2--= rc.f-~({pt .}•  

give a basis for H4X. The  relation [s]a"~l=z+f*q(L) in H2P [G; w 5, Lemma 3] 
implies that  z--. IX] = d~T 1 + dlT 2. 

From the standard formula for the tangent bundle to a projectivized bundle we 
see  that  c(Tp)  -~- c(f*(L|  I) |  i.e. c(Tp)  ~--- (I -- d 2 T 1 - - d t T 2 ) ( I  + z ) ( I  + a T 1 )  

Since v2X=r~,(vzP) (Cor. to Proposition i .  I), we deduce that  

z~X= �89 (-- d~Tt -- dtT~+ 2z--, [X] + 2Tt) 

= �89 z ~" [X] +T~,  

which is not in H~'(X; O )  --- [X] = O .  (z--- [X]). 
(~) In  the above example -r~X = �89 where c~X is the homology Chern class 

of X [M 2], since the singularities of X have dimension <~ ;  but  such a relation cannot 
be expected in general. To see this, fix a curve C of genus g2>2, and an integer d 
between g and ~g. For each line bundle L on C of degree --d, let X~ be obtained by 
blowing C down to a point  in P (L |  Then the arithmetic genus 

%(X,) = g  + dim H~ L") ,  

which varies with L, but  the Chern classes depend only on the degree of L. 
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