ON THE ZETA FUNCTION OF A HYPERSURFACE®
By Bernarp DWORK

This article is concerned with the further development of the methods of p-adic
analysis used in an earlier article [1] to study the zeta function of an algebraic variety
defined over a finite field. These methods are applied to the zeta function of a non-
singular hypersurface § of degree 4 in projective n-space of characteristic p defined
over the field of ¢ elements. According to the conjectures of Weil [3] the zeta function
of § is of the form

() (g, ) =P [T (gt

where P is a polynomial of degree d™*{(d—1)"*'+ (—1)"*1(d—1)}, (here n>o0,d>1,
for a discussion of the trivial cases n=o0,1 see § 4 & below). It is well known that this
is the case for plane curves and for special hypersurfaces, [3]. We verify (Theorem 4.4
and Corollary) this part of the Weil conjecture provided 1 = (2, p, d), that is provided
either p or d is odd.

In our theory the natural object is not the hypersurface alone, but rather the
hypersurface together with a given choice of coordinate axes X, X,, ..., X, ,,. Iffor
each (non-empty) subset, A, of the set S={1,2, ..., n4 1} we letH, be the hypersurface
(in lower dimension if A=#S) obtained by intersecting $ with the hyperplanes
{X;=0};¢4, then writing equation (1) for §,, we define a rational function P, by

setting
m{ A)

(2) USas ) =Pa() =" 1 gt [ T (1 — g0,

where 1+4+m(A) is the number of elements in A, If §, is non-singular for each subset A
of S and if the Weil conjectures were known to be true then we could conclude that P,
is a polynomial for each subset A.

Our investigation rests upon the fact that without any hypothesis of non-singularity
we have

(4-33) ) = (=) TIPy(ge),

(1) This work was partially supported by National Science Foundation Grant Number G7030 and U.S. Army,
Office of Ordnance Research Grant Number DA-ORD-31-124-61-Ggs.
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the product on the right being over all subsets A of S and yj is the characteristic series
of the infinite matrix [2] associated with the transformation «=:={oF introduced in our
previous article [1] and studied in some detail in § 2 below. We recall that
13(t) = 1p(t) [xx(gt) and the fundamental fact in our proof of the rationality of the zeta
function is that yg is an entire function on £, the completion of the algebraic closure
of Q', the field of rational p-adic numbers.

In § 2 we develop the spectral theory of the transformation « and show that the
zeros of yp can be explained in terms of primary subspaces precisely as in the theory
of endomorphisms of finite dimensional vector spaces. In this theory it is natural to
restrict our attention to a certain class of subspaces L(b) (indexed by real numbers, 5)
of the ring of power series in several variables with coefficients in Q. The
definition of L(4) is given in § 2, for the present we need only mention that if 4>,
then L(5’) cL(5).

An examination of (4.33) shows that if the right side is a polynomial and if 6!
is a zero of that polynomial of multiplicity m then (8¢)~* must be a zero of y; of
multiplicity m(*}7). This is « explained » by the existence of differential operators
Dy, ..., D, satisfying
(4-35) xoD; = ¢gD;ou

The space L(b) fi:DiL(b) is studied in § g 4 (in a slightly broader setting than
required for the geometric application), for 1/(p—1)<b<p/(p—1), the main results
being Lemmas 3.6, 3.10, 3.11. This is applied in § 4 to show that if §, is non-singular
for each subset A of S then the right side of (4.33) is a polynomial of predicted degree
and is the characteristic polynomial of «, the endomorphism of L(4)/ZD,L(b) obtained
from « by passage to quotients. (Theorems 4.1, 4.2, 4.3) We emphasize that this
result is valid for all p (including p =2).

The main complication in our theory lies in the demonstration (Theorem 4.4 and
corollary) that if 1={(2, p, d) then Py(tq) is the characteristic polynomial of &°, the
restriction of & to the subspace of L(5)/ZD,L(b) consisting of the image of LS(6) under
the natural map, L8%(b) being the set of all power series in L(b) which are divisible
by XX, ...X,,;. This result is of course based on the study (§ 3¢) of the action
of the differential operators on L8(4). This study is straightforward for p ¥ 4 but for p|d
the main results are shown to be valid only for special differential operators.

We must now explain that for a particular hypersurface we have many choices
for the operator « (see § 4 a below) but once « is chosen the differential operators
satisfying (4.35) are fixed. With a simple choice of « the eigenvector spaces lies

in L(p ;I) while for a more complicated choice of a the eigenvector space is known

to lie in L(L) The special differential operators referred to above in connection

with the case p|d are those which correspond to the simple choice of « for which the

6
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~1

- if p =2 (and fortunately,

only in that case). Thus for p =2, if 2|d we cannot apply the results of § 3 ¢ to determine
the action of the special differential operators on L(1/2).

Finally (§ 4¢) using an argument suggested by J. Igusa, we show that our
conclusions concerning P =Py remain valid without the hypothesis that §, is non-
singular for each choice of A.

This completes the sketch of our theory. We believe that our methods can be
extended to give similar results for complete intersections. We note that the Weil
conjectures for non-singular hypersurfaces also assert that the polynomial P in equation (1)
has the factorization P(¢) = Il (1 —8;) such that

1

eigenvector space liesin L(p ; ! ) Unfortunately 4 ; < ; !

|6, =¢\"~12 for each i (Riemann Hypothesis)
0,—¢""1/0; is a permutation of the 6; (functional equation).

We make no comment concerning these further conjectures.
In fulfillment of an earlier promise we have included (§ 1) a treatment of some
basic function theoretic properties of power series in one variable with coefficients in Q.
It does not appear convenient to give a complete table of symbols. We note
only that throughout this paper, Z is the ring of integers, Z_ is the set of non-negative
integers and R is the field of real numbers.

§ 1. P-adic Holomorphic Functions.

Let Q be an algebraically closed field complete under a rank one valuation
x—ord x. This valuation is a homomorphism of the multiplicative group, Q', of Q
into the additive group of real numbers and is extended to the zero element of Q by
setting ord 0= +400. Furthermore ord(x-4 y) <Min(ord x, ord ) for each pair of
elements x, y in Q and the value group, ®, of Q (i.e., the image of Q" under the
mapping x—ord x) contains the rational numbers.

For each real number 5, let

Iy={xcQ|ordx =5}
U, ={xeQ|ord x>b}
C,={xeQ|ord x> b}.

As is well known, Q is totally disconnected, and each of these sets are both open and
closed. However by analogy with the classical theory it may be useful to refer to the
set G, (resp: U,) as the closed (resp: open) disk of additive radius &.

U_,, will be understood to denote Q and clearly I, is empty if & does not lie in
the value group of Q. We further note that U, (resp: C,) is a proper subset of U,
(resp: G,) if '>b. If b¢® then U,=C,.
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The power series in one variable with coefficients in Q,
(x.1) Fit)= X Az
s§=0

will be viewed as an Q valued function on the maximal subset of Q in which the series
converges. (This is to be interpreted as a remark concerning notation, the power
series and the associated function cannot be identified unless (cf. Lemma 1.2 below)
the series converges on some disk, U,, 5>c0). It is well known that F converges
at xeQ if and only if lim Ax*=o0. An obvious consequence may be stated :

Lemma x.x. — F converges in G, if and only if
(x.2) ,152 (ord A;4-jb) = oo,
provided be®. The series converges in U, if and only if
(x.3) ligr_x»jonf (ord A))[j>—b.

We may now prove the analogue of Cauchy’s inequality as well as the analogue
of the maximum principle for closed disks.

Lemma x.2. — If F converges on G, and be® then

(1.4) lx\/el%‘rz ord F(x) :()1;/¥1<nao (ord A, +jb)
Furthermore
Min ord F(x) = Min ord F(x).
zeTy zeCy
Proof. — Since T', is not compact it is not immediately obvious that ord F(x)

assumes a minimum value at some point of I',. However the existence of the right

side of (1.4) is an immediate consequence of Lemma 1.1. Let M= Min (ord A, 4-jb),

then ord (A;x)) >M for all xel', and hence ordF(t)>M on I',. Let S be the set

of all jeZ, such that ord A;4jb=M. By definition S is not empty and Lemma 1

shows that S is finite. Let g(¢) = 'ZSA,.t", f(t)=F()—g(t). Lemma 1 also shows that
i€

there exists €>0 such that ord A;+jb>M--¢ for each j¢S. Hence ord f(t)>M+<
everywhere on I',.  Let nel’,, n'ely and let g(f) =g(nt)/w’. Let B; be the coefficient
of # in g. For jeS, ordB,=ord A,4jb—M=o0. Thus the cocfficients of g, are
integral and the image of g, in the residue class field of Q is non-trivial. Since the
residue class field is infinite there exists a unit x in Q such that ord g,(x)=o. This
shows that ord g(rx) =M. However nxeI', and hence ord F(¢) assumes the value M
on I';.  This shows that the left side of (1.4) exists and is equal to the right side. The
assertion concerning C, follows from the obvious fact that for 5'>b, we have
ord A;+jb'>ord A;+jb for each jeZ, and hence Min ord F(x)>Min ord F(x),
. . . . xel"br zer i
which implies the assertion of the lemma.

8
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As in [1], the ring of power series in one variable, ¢, with coeflicients
in Q, Qft}, is given the structure of a complete topological ring by letting the subgroups
{C{t} +1"Q{t}},cn mez, constitute a basis of the neighborhoods of zero. This topology
will be referred to as the weak topology of Q{t}. It may also be described as the
topology of coefficientwise convergence.

We now obtain an elementary, but useful relation between convergence in the
weak topology and uniform convergence in the function theoretic sense.

Lemma x.3. — Let f,, f,, - .., be a sequence of elements of Q{t}, each converging in C,,
be®.
(1) If the sequence converges uniformly on G, to a function ¥ then

a) The sequence is uniformly bounded on C,.
b) The sequence converges in the weak topology to feQ{t} which itself comverges on C,
and f(x)=F(x) for all xeGC,.

(ii) Conversely, if
a) the sequence is uniformly bounded on G,
b) the sequence comverges in the weak topology to feQ{t}

then f converges in U, and for. each >0 the sequence converges uniformly to f on Gy, ..

Progf. — Let f(t)= X A, ¢/ fori=1,2, ...

i=0

(1) Since the sequence converges uniformly on C, and since, by Lemma 1.2,
/i is bounded on C,, we may conclude that the sequence is uniformly bounded on C,.
By hypothesis, given N>o0 there exists neZ, such that ord (f(t)—/f:(#))>N for
all teC, and all ¢, ’>n. Hence by Lemma 1.2, for ¢, #’>n and for all jeZ_

(1.5) ord(A; ;—A;,;) > N—jb.

For fixed j, (5) shows that {A, };_,, . is a Cauchy sequence and hence converges
to an element A; of Q. It now follows from (1.5), letting 2'~>oc0 that for i>n and
all jeZ,

(x.6) ord(A; ;,—A;) >N-—jb.
Let f(t)= ﬁ A#. If f does not converge on C, then we may suppose N chosen such
j=0

that ord A;+jh<N for all j in some infinite subset, T, of Z,. Let ¢ be a fixed integer,
i>n. Since f; converges in C,, we know that ordA;;4j6>N for all jeZ —T"
where T’ is a finite (possibly empty) subset of Z,. For jeT —'1",ord A; >ord A,,
which together with (1.6) shows that ord A;--j6>N. Hence T—T' must be empty,
a contradiction, which shows that f converges on C,. Lemma 1.2, together with
equation (1.6), shows that for i>n, ord(f;(t)—f(¢)) 2N everywhere on C,. In parti-
cular for fixed teC,, letting N-—>co we conclude that f(t) =lim f(¢) =F(¢). This
completes the proof of (i). o
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(ii) By hypothesis the sequence is uniformly bounded on C, and hence by
Lemma 1.2 there exists a real number, M, such that

(xr.7) ord A, ;476 >M

for all ¢ jeZ, . Furthermore, writing f= %Ajt", we know that for each jeZ_,
j=0

}Lrg A, ;=A, For each jeZ, , therefore, there exists i (depending on j) such that

ord (A; ;—A;) >M—jb. Hence by comparison with equation (1.7) we may conclude

that

(x.8) ord A;4+jb>M

for all jeZ, . This shows that f converges in U,. Now let ¢ be a real number, >o.
Given a real number N, let j,eZ_ be chosen such that je+M>N. Then by (1.7%)
and (1.8) we have

ord A;+j(b+<)>N, ord A; ;+j(b+<)>N

for all 1€Z, and all j>j. Hence ord (A,;—A)+j(0+¢)>N for all j>j,
icZ,_, while since }LIE, A;;=4;, we may conclude that there exists n€Z,_ such
that ord (A;;—A)) +j(b+e)>N for all j<j,i>n Hence for i>n, jeZ,,
ord (A; ;—A;) +j(b+¢)>N and hence by Lemma 1.2, ord(f;(t)—f(t))>N everywhere
on G,, which shows that the sequence converges uniformly to fon C,_,,. This completes
the proof of the lemma.

With F(¢) as in equation (1.1) we define the j* derivative of F (for jeZ,) to be the

power series FO(t) = X s(s—1) ... (s—j+ 1)A# ™7 andlet Fil()= X (5)A*~ where (¢)
s=7 s=0

denotes the binomial coefficient of # in the polynomial (1 +¢)*. Clearly F@¥—;!FUl

the notation FUl being convenient if the characteristic of Q is not zero.
We now prove an analogue of Taylor’s theorem.

Lemma x.4. — If FeQ{t} converges in C,, (be®) then
" (i) F is a continuous function on C, and ts the uniform limit of its partial sums.
(it) F converges in C, for each jeZ,. n
(ili) For fixed xeC,, the polynomials P,(t) =X Fi)(x)(t—x)! (n=1,2,...) converge
7

n © —0
weakly in Q{t} to F(t). The element L(Y)= X Fil(x)Y'eQ{Y} comverges for all YeG,
and F(t) =L(t—=x) for each teC,. =0

Progf. — (i) In the notation of equation (1.1), we conclude from (1.2) that given
N>o, there exists neZ, such that ord A;4j>N for all j>n. Hence by Lemmar.z2,

ord (F(¢) — X Aj#)>N everywhere on C,. Hence F is the uniform limit on C, of its
j=0

partial sums and thus continuity of F follows from the continuity of polynomials.
Assertion (ii) is a direct consequence of Lemma 1.1.

10
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(iii) For jeZ,, let M;= It/gl (ord A, +sb). Since F converges on C,, Lemma 1.1
shows that M;—o0 as j—>oo. Lemma 1.2 shows that for xeGC,,
ord Fli(x) > l\s/I>1§1 {ord (§) +-ord A, + (s—j)b}.
Hence

(x.9) la}ggbl ord Flil(x) >M,—jb, M, , > M.

Hence by Lemma 1.1, the series L(Y) converges for all yeC, and hence by
part (i), P,(f) converges uniformly to L(¢t—x) on C, (as n—>o). Thus in view of
part (i) of Lemma 1.3, the proof is completed if we can show that P,(¢) converges

weakly to F(f) as n—soo. Let P,(f)= 2 A, . We must show for fixed s that
lim A, ;=A,. From the definitions 0

n—>coo

(r.10) A

M=

Fi(x) () (—#)"~".

n,8

1

0
We now write F=F,+G,, where F, ()= X Aj#. Clearly A, =A, +A;,, where
i=0 -

A, , (resp. A} ) is given by the right side of (1. 10) upon replacing F by F, (resp. G,). Since
Taylor’s theorem is formally true for polynomials, A; =A, fors<n, A; =o fors>n,
On the other hand for all jeZ,, ord (GF(x)) >M,—jb and hence ord A, ,>M,—sb.
Hence for n2>s, ord(A,—A, )=ord A] >M,—sb—>c as n—>co. This completes
the proof of the lemma.

We can now give some equivalent definitions of the multiplicity of a zero of a
power series.

Lemma 1.5. — If F converges in C,, meZ,_ and xeC, then the following statements
are equivalent

«) ltim F(t)/(t—x)™ exists.
B) F¥(x)=o0 for i=o0,1,...,m—1.
Y) The formal power series, F(t)(1—1t/x)™™ converges in C, if x+o0 while if x=o,
t" divides F(t) in Q{t}.
Proof. — By Lemma 1.4 for teC,, t+x, we have
m-—1 «©
F(t)/(t—x)"= 2 F(x)/(t—x)"" 4+ 2 Fl(x)(t—x) .
i=0 i=m
Hence, by the continuity of power series, the limit exists if and only if (8) is true.
Thus («) and (B) are equivalent. If x=o0 then (B) and (y) are clearly equivalent.
Hence we may suppose that x+o0. Let feQ{t}, f(¢)(1—t/x)"=F(f). Since the rules
of multiplication of formal power series and of convergent power series (in the

function theoretic sense) are the same, it follows that if f converges in G, then as a function,
S)=F(t)/(1—t/x)™ for all teC,—{x}. The continuity of convergent power series now

11
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shows that (y) implies («). To complete the proof we show that (8) implies (y). Itfollows
from (B) and Lemma 1.4 that in the weak topology F(¢) =3er; an Fil(x)(t—=x)' and
hence in that topology, F(£)(1—¢/x) ™= (—x)™ 322 Zn FUl(x) (t—-x),:;. The coefficient
B, of # is clearly BsziimF[ﬂ(x)(7"3’")(—:‘:)7'“3 $0 ’tzh';t by (1.9),

ord B,> I]\_g?{M,--—sb}.

Thus ord B,4-s6>M, and since M,—>co with s, this shows that F(¢)(1—¢/x)™
converges in C,.

If F converges in C,, xeC,, we say that x is a zero of multiplicity m >0 if F¥l(x) =o
for i=o0,1,...,m—1, while F™(x)+0. In particular if H converges in C,, x+o,
H(x)+0 and F(¢)=(1—¢/x)"H(¢) then x is a zero of F of multiplicity m.

Let F be an element of Qf¢} which converges in U, for some 5<co (i.e., the
domain of convergence of F is not the origin). We assume with no loss in generality
that Fer+¢Q{t}. In the notation of equation (1.1), the Newton polygon of F is the
convex closure in R xR (=two dimensional Euclidean space with general point (X, Y))
of the positive half of the Y axis and the points (j, ord A}), j=o, 1, ..., it being recalled
that ord A;= +oo0 if A;=o0. The Newton polygon will have a second vertical side
of infinite extent if F is a polynomial of degree m>o. In this case the boundary of
the Newton polygon (excluding the vertical sides) is the graph of a real valued function,
#, on the closed interval [0, m]. Likewise if F is not a polynomial then the boundary
(excluding the vertical side) is the graph of a real valued function, %, on the positive
real line. In either case, % is continuous, piecewise linear with monotonically increasing
derivative. Furthermore equation (1.3) shows that the graph of 4 is asymptotic (if F
is not a polynomial) to a line of slope — &, where 5 is the minimal element of the extended
real line such that I converges in U,. If x is not an end point of the interval on which %
is defined then A'(x—o0)<Ah'(x+40). The points at which the strict inequality holds
are called the vertices of the polygon. The abscissa, j, of a vertex is an integer and the
vertex is then (j, ord A;). Finally, if / is the line obtained by extending in both directions
a non-vertical side of the Newton polygon of F then for each jeZ,, the point (7, ord A))
lies on or above the line /.

n

Lemma x.6. — Let F(t)= EAjtf: Il (1 —tjx,) be a polynomial of degree n>o,

. i=0 -1
with constant term 1. Let N <0<...<k, be the distinct values assumed by ord o;* as i runs
Jrom 1 to nand for j=1,2, ...,s, letr; be the number of zeros, o, of F (counting multiplicities)

_such that —orda=2x.  The vertices of the Newton polygon of F are the origin Py, and the s poinis

(x.x1) Pa:(

a=1,2,...,5.

1

a a
Ty X TQ‘;)
=1 =1

12
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Proof. — Let the zeros of F be so ordered that ord o '<ord ¢ '<... <ord o; .
The proof may be simplified by letting 7,=o0, A, be any real number, say A, —1. Then

P,= ( i 75 é 7;7\,) for a=o, 1, ...,s5 Letj, be the abcissa of P,, then A, is the sum
=0 i=0 . da

Ja
of all products of the «; ! taken j, at a time. This sum is dominated by IT«;%. Hence
. . i=1

I la
ord A, =ord [T ojt= 2rp. If a>o,j,_,<j<j, then
é i=1 i=0

i a—1
ord A;>ord Il ot = 2 a3, (j—j, )
i=1

1=0

and hence the point (j, ord A;) lies on or above the line P, _,P, since the equation
of that line is

a—1
(x.12) Y— X rn=7X—j,_0).

i=0
Thus the Newton polygon is the convex closure of the s+ 1 points Py, Py, ..., P, and
the point (0,4 o0). Equation (1.12) shows that the slope does change at the points
P,P,, ...,P,_, and this completes the proof.

Corollary. — The numbers {orda;'Yi_, are precisely the slopes of the non-vertical sides
of the Newton polygon of F.  If Mis such a slope then the number of zeros o of F such that ord & = —2
is the length of the projection on the X-axis of the side of slope M.

We now prove a refined form of a well-known theorem [4, Theorem 10, p. 41]
which states roughly that two polynomials of equal degree have approximately the
same zeros if the coefficients of the polynomial are approximately equal.

Lemma x.7. — Let f and g be elements of Q[t] and let \ be an element of the value
group & of Q such that

a) f(o) =g(0) =1
b) The number (counting multiplicities) of zeros of f on T'y is a strictly positive integer, n.

If N is a strictly positive real number such that

(x.13) Min ord (f(x) —g(x))>nN,

z€T
then each (multiplicative) coset of 1 + Cy coniains the same number of zeros of fin I'y as of g.

Proof. — Let o, ..., a, be the zerosof fin T, let y,, .. ., v,, be the (possibly empty)
set of zeros of f in U, and let S be the set of zeros of f outside C,. Clearly for
«eS, ord <A and hence if BeT,,ord (1—B/a)=o0. Since ordy,>2, we have
ord (1 —B/y;) =ord (B/y;) =r—ord ;<o for i¢=1,2,...,m if Bel,. Since

A =T (1 —tfo) . T (x— ) T (1 1)

i=1 =1 aES

13
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we may conclude that for 8el’,, ord f(B) = % ord (1 —p/e;) + f: (A—ord v;). Letting
i=1 i=1

mn

¢= 2 (—r+ord y,), we note that ¢ is independent of BeIl',. Letting «f, o, ..., a,

= ey O,
be the (possibly empty) set of zeros of g in I', we conclude by the same argument as
above that there exists a constant ¢’ > o such that for BeT,

ord f(B)=—c+ .‘;"“lord (1—BJa;)

(1'14) n'
ord g(f)=—c¢'+ X ord (1 —B/a)),
i=t
it being understood that ordg(B) =—¢" if n’=o0. It is easy to see that n'+o0 for

otherwise ord g(o,) = —¢’ <o<aN<ord(f(«,)—g(«,)) =ord g(a,), a contradiction.

Let B4, ..., B, be chosen in T, such that B,(1 +Cy), ..., B,(1 +Cy) are disjoint
and such that their union contains all zeros of f and g in T,. If ¢>1,

ord (1 —B,/B)<N for j=2,3, ... ¢ and hence there exists ¢>0 such that
(x.15) o<ord(1—@;/R)<N—e for 2<j<e.

If e=1, we interpret this condition to mean simply 0<e<<N. With ¢ so chosen we

shall for the remainder of the proof let § be a variable element of I', satisfying the
condition

(x.16) N—e<ord(1—B,/f8)<N.
We now show that if «ef,(1 +Cy) then

ord(r—B/B,) if i=1x
(x.x7) N> ord (I_B/a)=0rd(l—ﬁi/@11) i it
For i¢=1 this follows from «/8=(a/B,)(B,/8)e(R:/B)(1+Cy), while by (1.16)
(8,/8) ¢ (1 +Cy). For i>2, we have «/Be(By/B)(r+ Cy)=(8:/8,)(,/B) (1 +Cy) while

by (1.15) and (1.16) ord (1 —8,/8,) <N—e<ord (1—B,/B). This completes the proof
of (1.17).

In particular if « is a zero of fin I'; then, by (1.17), ord (1 —pB/a)<N and hence

by (1.14) since ¢>o, ord f(B)<zN. From (1.13) we now see that ord f(B) =ord g(B)
and thus equation (1.14) shows that

(x.18) _c+‘n§ ord (1 —f/o;) =—c¢' + .é ord (1 4 B/«;)

For j=1,2,...,¢ letn (resp. n;) be the number of zeros of f (resp. g) in B;(1 + Cy).
Equations (1.17) and (1.18) now give

(1.x9) (ny—n]) ord(r —B8/B,) =c—¢’ +7_§2 (nj—n;) ord(1 —By/B,)

the right side being simply ¢—¢’ if e=1. As B varies under the constraints of (1.16),
ord (1—p,/B) varies at least over the rational points in the open interval (N—¢, N)

14



ON THE ZETA FUNCTION OF A HYPERSURFACE 15

while the right side of (1.19) is independent of B. This shows that n,=mn, and by
the same argument n,=n; for ¢=2,3, ...,e. This completes the proof of the lemma.
As an immediate consequence we state the following corollary.

Corollary. — Let f and g be elements of Q[t] such that f(o)=g(o)=1. Letb be an element
of ® and let m be the number (counting multiplicities) of zeros of fin G,.

. If l\g};n ord ( f(x) —g(x))>0 then the sides of the Newton polygon of f of slope not
TeLy

greater than —b coincide with the corresponding sides of the Newton polygon of g.
2. If N is a strictly positive real number and

Micn ord( f(x) —g(x))>mN
re b
then each coset of 1+ Cy in C, conlains the same number of zeros of f as of g.
We can now demonstrate the main properties of the Newton polygons of power
series.

Theorem x.x. — Let b'<6<oo, be® and let ¥ be an element of Q{t} converging in
U,., F(o) =1. Let m be the total length of the projection on the X axis of all sides of the Newton
polygon of F of slope not greater than —b.  There exists a polynomial G of degree m, (G(o)=1)
and an element H of Q{t} such that the zeros of G lie entirely in C, and

(i) H converges in U, ord H(t) =0 everywhere in C,.

(ii) F=GH.

These conditions uniquely determine G and H. Furthermore :

(iil) The Newton polygon of G coincides with that of F for o <X <m while the polygon
of H is obtained from the set: (Polygon of F) — (Polygon of G) by the translation which maps
the point (m,ord A,) info the origin.

(v) If K is a complete subfield of Q which contains all the coefficients of F, then GeK[t].

(v) If for each partial sum, F,, of F we write F,=G,H,, where G, is the normalized
polynomial whose zeros are precisely those of ¥, (counting multiplicities) in Gy, then G, converges
to G in the weak topology of Q{t}.

(vi) If neZ,_ and N is a strictly positive real number such that ord (F(t)—F,(¢))>mN
everywhere on Gy, then each coset of 1+ Cy in G, contains as many zeros of ¥ as of F,.

Proof. — We follow the procedure of part (v). For n>m the Newton polygon
of F, coincides with that of F in the range 0 <X <m and furthermore all sides of the
polygon of F, of slope not greater than —4& occur in that range. This shows that for
n>m, F, has m zeros in G,. Since the sequence {F,} converges uniformly on C, to F,
we conclude that given N>o, there exists n,€Z, n, >m, such that if » and »’ are integers
not less than n, then ord (F,—F,)>mN everywhere on C,. We may conclude from
the corollary to the previous lemma that each coset of 1+ Cy in G, contains as many
zeros of F, as of F,. and hence the same holds for G, and G,.. This shows that for n>m

m
we may write G,(f) = .H (1 —tfa, ;) where the zeros a, 4, ...,

n,m
=1

of G, are so ordered

15



16 BERNARD DWORK

that lim«, ;=«; exists for i=1,2,...,m. This shows that G, converges to G, a

polynomial of degree m whose Newton polygon coincides with that of ¥, and hence
with that of F for o <X <m. :

For each neZ_, H,(¢) is a product of factors of type (1—#/a) where ord «<&.
Hence

(1.20) ord H (#) =0

everywhere on G,. G, is a product of factors of type (1-—¢/«), where aeC, and hence if
ord t<b then ord G,(t)<o (equality holds if G,(¢)==1). Ifthen 5"€®, b>b"">b’, then
ord G,(¢) <o everywhere on I';. and hence ord H,(t) =ord F,(¢) —ord G,(t) >ord F,(z)
everywhere on T',,. Lemma 1.3 shows that F,(f) is uniformly bounded on TI'y. and
hence the same holds for H,(¢). Hence by Lemma 1.2 the sequence H;, H,, ... is
uniformly bounded on C,.. We show that the sequence H, H,, ... converges in the
weak topology of Q{t}. This follows from the fact that 1+-#Q{f} is a complete multi-
plicative group under the weak topology. Certainly F,—F and G,—G in that topology
and hence H,=F,/G, converges weakly to the power series H=F/Ger1+1Q{t}. It
now follows from Lemma 1.9 (part ii) that H converges in U,. (and hence letting
b”—b',in U,) and that for each >0, H, converges uniformly on G, ., to H. Using
equation (1.20), it is now clear that H(t) is a unit everywhere on C,.

This completes the proof of parts (i), (ii), (v). Assertion (iii) has been verified
for G, its verification for H follows from Lemma 1.6 and the fact that H,—H.
Assertion (vi) follows from the construction of G, the corollary to Lemma 1.7 and from
the fact that the zeros of F in C, are precisely those of G.

To verify (iv) it is enough to show that G,eK[t] for each neZ_ _ since then
G =1lim G,eK[f]. Since the valuation in a finite field extension of K is invariant under
automorphisms which leave K pointwise fixed, we may conclude that the coeflicients
of G, are purely inseparable over K. Thus we may suppose K is of characteristic p +o.
If « is a root of G, then it is a root of F, of the same multiplicity and hence the multiplicity

must be a multiple, mp", of a power of p such that P is separable over K. This shows
that the coefficients of G, are separable over K which now shows that G,eK[t]. This
completes the proof of the theorem.

Part (v) of the above theorem has an important generalization which is the analogue
of a theorem of Hurwitz.

Theorem 1.2. — Let b'<b<oco,bc® and let f,f,, ... be a sequence of elements
of Q{t}, each converging in Cy such that fi(0) =1 for each jeZ, and such that the sequence
converges uniformly on Cy to FeQ{t}. By the preceding theorem, T ==GH, f;=gh; where G
(resp. g;) is a polynomial whose zeros are precisely those of F (resp. f;) in Gy, and G(0)=g;(0) =1.
The conclusion is that G=lim g, and that for i large enough, g; and G are polynomials of equal
degree. B

16
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Proof. — Let degree G =m and for each jeZ,, let F; be the j* partial sum of F
and let f;; be the j* partial sum of f;. Let N be a strictly positive real number.
Pick jeZ, such that

(x.21) ord (F(f) —F;(¢))>mN

everywhere on G,. Part (vi) of Theorem 1.1 shows that F; has m zeros in C,. Pick 4,
such that for each >4,

(x.22) ord (F—f)>mN

everywhere on G,. Pick ueZ_ such that for given >,

(x.23) ord(fi—f; ,)>mN

everywhere on C,. We may conclude from these three relations that
(x.24) ord(F,—f; ,)>mN

everywhere on C,, and the Corollary to Lemma 1.7 now shows that each coset
of 14 Cy in G, has as many zeros of F; as of f; , and in particular f; , has m zeros in G,.
Equation (1.23) together with part (vi) of Theorem 1.1 now shows that f; has m zeros
in C,. Furthermore equations (1.21) and (1.23) and part (vi) shows that each coset
of 1+ Cy contains as many zeros of F in C, as of F; and as many zeros of f; as of f; ,,.
We may now conclude that each coset of 1 + Cy contains as many zeros of F in G, as
of f; for each i>7,. It is now clear that g;—G and that deg g, —m for ¢ large enough.

Corollary. — Under the hypothesis of the theorem, for i large enough, the zeros o 4, o, 55 - .. 0
of fi in G, may be so ordered that ima, ;=a;,j=1,2,...m and o, ..., o, are the zeros
. 1~>0
of ¥ in C,.

We conclude by recalling that in our previous article we left two propositions
unverified. Proposition 2 of [1] is contained by Theorem 1.1 above. We now
demonstrate Proposition 1.

Proposition. — If '<b<co and F converges in U, but is never zero in Uy, then the
series 1/F converges in U,.

Proof. — As before we may assume A =1. The Newton polygon of F has no
side of slope less than —& and hence ord A;>—jb. The conditions Ay=1, ord A;>—b
define a subgroup of 1+ Q{t} and hence are satisfied by the formal power series 1/F.
This shows by Lemma 1.1 that 1/F converges in U,.

§ 2. Spectral Theory.

Let Q' be the field of rational p-adic numbers, Q the completion of the algebraic
closure of @/, the valuation of Q being given by the ordinal function x—ord x which
is normalized by the condition ord p= +1.

Let ¢, n, d be integers ¢>1,d>1,n>0 which will remain fixed throughout this

17



18 BERNARD DWORK

section. Let T be the set of all w=(uy, u, ..., u,)eZ?*! such that duy>u, + ... +u,
The set, Z3*! may be viewed as imbedded in n-+ 1 dimensional Euclidean space, R*+!
and let & be the projection (g, %, - -, %)~y of R*'! onto R,

We formalize and reformulate in a manner convenient for our present application

the methods appearing in the second half of the proof of Theorem 1 [1].

m o
Lemma 2.1. — Let ¢, be the minimal value of (Z u(‘)) as (™, ..., d™) runs through
1

i=

all sets of m distinct elements of . Then ¢, /m—>o0 as m—> 0.

Let 9t be an infinite matrix with coeflicients 9, , (in Q) indexed by T X I which
have the property ord M, ,>xs(qu—o) where x is a strictly positive real number. When
convenient we write M(u, v) instead of M, ,.

Lemma 2.2. — (1) If M is any finite submatrix of W obtained by restricting the indices (u, v)
to T’ X X' where X' is a finite subset of T, then the coefficient v,,, of ™ in det(I—IMM') satisfies the
condition: ordy,, >»(q—1)¢,. Hence fortcQ, ord det(I—IR") > M_nol(m ord t4x(g—1)g,),

an estimate depending only on ord ¢ and the constants x, ¢, d, n, but independent of '  In particular

Jor each bounded disk of Q, det(1—t9N") is uniformly bounded as T’ varies over all finite subsets of X.
(i) If (u, v)eT' XX, then the minor of (u, v) in the matrix (1—tIN') is a polynomial

2y, (u, 0)t™ and

" ord v,,(u, v) > gro(v—u) +x(g—1)c,,.

Hence for teQ, ord (minor of (u, v) in (I—1IM')) > gus(v—u) +c¢, where ¢ is a constant inde-
pendent of M’ and T’ (if ord ¢ is fixed).

”m
Proof. — (ii) The coefficient, v,,(u, v) is a sum of products P =4 JT M, o),
i=1
where {u, u™, ..., 4™} is a set of m+ 1 distinct elements of T' and {o, o, ..., s™}
is a permutation of that set. Hence

» tord P> % o(quit)— ) = c{q(u + % u(i)) — (v + 'f.‘« U(i)) ~—(qu—7v)}=
i=1 i=1 i=1

o{lg—1) (v £ %) —(u—)}=gol0—1) + (g— 1)

Lemma 2.3. — For NeZ,, let My be the submatrix of I obtained as in the previous
lemma by letting T ={ueT|o(u) <N} Let My be the matrix obtained from My by replacing
M, , by zero whenever o(qu—0v)>(q—1)N. Then Nlim det (I—tMy) =Nlim det (I—My),

the limit being in the sense of uniform convergence on each bounded disk of Q. The limit is an
entire function, 2 y,i", and ord y,,> (g—1)xc,,.
m=0

The remaining proofs may be omitted since they are consequences of the methods
of [1]. Lemma 2.3 follows from Lemma 2.2 and Lemma 1.3 (part (ii)) once it is
verified that the two sequences converge weakly to the same limit. However the details
concerning weak convergence are very similar to the proof of Lemma 2.2. (We note

18



ON THE ZETA FUNCTION OF A HYPERSURFACE 19
that the method used in [1, equ. (20.2)] to show weak convergence cannot be used
here as that proof made use of the geometrical application.)

Let Q{X} be the ring of power series and Q[X] the ring of polynomials in
n+1 variables X, X, ..., X, with coefficients in Q. If w=(u,u, ...,u,)eZi*,

let X* denote the monomial IIX™. Let ¢ be the endomorphism of Q {X} or Q[X]
i=0 .
. u o if gqtu
as linear space over Q defined by ¢(X*) = X4 if glu”
For each ordered pair of real numbers {5, ¢), let L(d, ¢) be the additive group of
all elements XA X“cQ{X} such that

(1) A,=o0 if u¢d
(ii) ord A, > buy+c.

Let L(5)= U L(b, ¢), £ be the subspace of Q[X] spanned by {X"},.4. For each
ccR
integer N>>o, let 2™ be the subspace of £ consisting of elements of degree not greater
than N as polynomials in X,. Let £(b, ¢) =2nL(b, ¢), &N(b, ¢) =LV AL(, ¢).

If HeQ{X}, let YoH denote the linear transformation E—¢(HE) of Q{X}
into itself,

Lemma 2. 4. — Let w be any mapping of Q[X] into the real numbers such that for k,, &,,
EEQ{X}, ceQ, c+o0,
w(&E) <u(&y) +ulEy), ulo) =—oo0
(2.1) w(bE) Sp(B)/g, n(ct) =n(E)
w(E + &) <Max (n(§), n(&)).

If s is an integer, s>1, A is a non-zero element of Q and & is a polynomial such that
(2.2) (I—2r"'¢oH)*%. =0, (H=+0)
then
w(€)<u(H)/(g—1).
The proof may be omitted as it follows trivially from the fact that for neQ{X},
a($(H)) <(u(H) + p(n))fg.

In particular if 4 is a linear homogeneous function on R%}*! and if for each 7eQ{X},
t(m) is the maximum value assumed by A(z) as X* runs through all monomials occurring
in v, then p satisfies the conditions of Lemma 2.4. In particular if He@®¢~1)  then
letting A(u) =u,+ ... +u,—du,, we may conclude that if £ satisfies (2.2) then £ lies
in @ and letting A(x) =u, we may conclude that £ lies in "

Thus the definition of det (I —#yoH) appearing in our earlier work is unchanged
if ($oH) is restricted to £ for any integer m>N.

Now let x be a strictly positive rational number. Let F=2ZXA X" be an element
of L{», o) which will remain unchanged in the remainder of this section. We associate
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20 BERNARD DWORK

with F a power series yp, the characteristic series of oF which generalizes the characteristic
polynomial appearing in the case in which F is a polynomial. For each integer N>o,

X* if u, <N
™ |o otherwise
Let ay be the mapping £—>{(&(Ty,_F)), and let ay be the mapping &—Ty(Y(EF))
of (say) £ into itself. If in the terminology of Lemma 2.3, we set M, ,=A ,_, for
all (u,2)eTx I, then relative to a monomial basis of 8™ the matrix form of ay is My
while that of ay is My. Hence Nlim det (I—tay) and I}1_510 det (I-—tay) both exist and

>0

let Ty be the linear mapping of L{—o) into 8N defined by Ty(X")

are equal by Lemma 2.3. The characteristic series, yy, is defined to be this common
limit. Lemma 2.3 shows that yg is entire and lies in O{¢}, © being the ring of integers
of Q.

The mapping «:E&—>¢(FE) of Q{X} into itselfl will now be examined. We
first show by a general example that a satisfactory theory cannot be obtained if we
allow o to operate on the entire space Q{X}. If F has constant term 1 then let

GX)=1II F(qu). Clearly, F(X)=G(X)/G(X?) and hence if Ao, 2eQ then
o 1=0
£= X WXT/G(X) is a non-zero element of Q {X}, while af=2%. Thus as an operator
i=0

on Qf{X} each non-zero element of Q is an eigenvalue of «. We shall show that yy
can be explained by restricting « to L(gx). However to obtain a complete theory it
will be necessary to assume that the coefficients of F lie in a finite extension of Q’.

Let Q be the field of rational numbers. The value group of Q is the additive
groupof Q. For x=(x,, %, ..., x,) Q""" let ordx = (ord x,, ord x,, ..., ord x,)eQ"**
if none of the x; are zero.

If 2 and @’ are elements of Q"*!, we define the usual inner product

(2.3) ela, a') = % aa;.
=0

R L
4

If £cQ{X]}, let S, be the set of all 2eQ"*! such that & converges at x if ord x =a.
Writing

(2.4) t= X BXY4

n+1
uez+

we have a generalization of Lemma 1.1 : If 2eQ"' then «eS; if and only if
ord B, +p(u, a) >+ o0 as u—o0 in Z%T'.

It is convenient to introduce a partial ordering of Q***. If g and a’ are elements
of Q"*%, we write a’>a if a/>q for i=o,1,...,n Ttisclear that if a’>a and aeS,
then a’eS,. We easily check that for £, neQ{X},

Sy 295
(2.5) Sin DSgnS,‘
SE+n3 SanS,‘

20
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Let g be a mapping of Z3+! into the set of two elements, {o, 1} in Q. Let y be
the Q linear mapping of Q{X} into itself defined by
(2.6) ¥(X¥) = g(w) X~
For such a mapping we have
(2.7) Sy Se-
For each aeS§,, let

M(E, a) = 1}1/Ii£1 ord £(x).

The generalization of Lemma 1.2 may be stated without proof.

Lemma 2.5. — For aeS;, € as in (2.4),
M(£, a) = Min (ord B,+p(u, a)).

uez'f:rl
If a’>a then
M(E, a’) > M(E, a).
We easily verify for £, neQ{X}, y as in (2.6) that
(2.8) M(En, 2) > M(E, @) 4 M(x, a) if aeS;nS,
(z-9) M(~E, a) > M(E, a) if aeS;
(2.10) M({E, a) > M(E, a/q) if ajgeS,
(z.11) M(E 4+, a) >Min{M(E, a), M(x, a)} if aeSgnS,

and equality holds in (2.11) if M(E, a) = M(y, a). Let
S={aeQ"*|ay> —gn, da; -+ ay> —qu, i=1,2, ..., n}
Elementary computations show that if ¢ is a real number, neL(gx, ¢) then

5,08

(2.12) M(x, a) > ¢ for aeS,
and
(2.13) SpDg 'S

13 M(F, a/q)> o if aeS.

It follows from (2.8), (2.10) and (2.13) that
(2.14) M(ak, a) > M(E, a/q) if aeSngS;.

This relation remains valid if « is replaced by aoy or you, the composition of « with y
on either right or left side.

Let O{X} be the ring of power series in X, ..., X,, with coefficients in O, the
ring of integers in Q. Let L’ be the space of all elements of Q {X} which converge
in a polycylinder of radii greater than unity (i.e. an element £eQ {X} lies in L’ if and
only if there exists a rational number $>o0 such that (—b, —b, ..., —b)€S;). We
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note that L’DL(4) for all >0 but L’ is not the union of such subspaces since the
monomials, X* in L’ need not satisfy the condition ueZ.

Lemma 2.6. — Let neL(gx, —q(g—1) ' ord X), where A is a non-zero element of Q,
and let & be an element of L'nO {X} such that

(2.15) o =ME +).
We may then conclude that £eL(qe, —q{g—1)"'ord A).

Note. — The same conclusion would hold if « in (2.15) were replaced by aoy or
by yox, with y as in (2.6). In particular, « may be replaced by ay.

Proof. — Writing (2.15) in the form &=—yn+A"'af, we see from (2.5) that
S¢25,n8,:38,n¢5;:25,n¢SzngS,, and hence by (2.12) and (2.13) we have
(2.16) Sg2SngS,.

By hypothesis, £eL’ and hence there exists 5> o such that ¢%=(—b, —b, ..., —b)eS,.
If aeS then there exists an integer, r>>0, so large that ¢ "a¢>4 and hence

g "aeS;.

Let r be the minimal element of Z_ such that the displayed relation holds. If aeS

then ¢~ 'a, ¢~%a, etc.,licin S and hence if r>1 then ¢~ Yz liesin S as well as in ¢S,

so that by (2.16) we have ¢ ""YgeS,, contrary to the minimality of r. This shows

that =0 and hence ScS;. Since ¢7'ScS, we may also conclude that ScgS,.
Equations (2.14) and (2.15) show that

(2.17) ord A +M(E 4, a) >M(E, a/q) if aeS.
We write £ as in (2.4) and we assert that for aeS, veZ’t?,
(2.18) ord B, +¢(v, a)> —q(g—1)"tord A.

To prove this we think of a as fixed and consider two cases.
Case 1. — M(E, a)>M(v, a)
In this case Lemma 2.5 and equation (2.12) give a direct verification of (2.18).
Case 2. — M(E, a)<M(n, a).
Here we may use (2.11) and deduce from (2.17) that

(2.19) ord A+ M(E, ) >M(E, a/q).

Lemma 2.5 shows that there exists a particular element, ueZ%*' (depending upon a)
such that

M(E, a/g) =ord B, +p(u, a/q).
On the other hand M(, a)<ord B,+ (v, a), for each veZ}*'. Thus we have
(2.20) ord B, + ¢(v, @) +ord A >ord B, +o(x, a/q),
22
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for a particular u and for all veZi*. In particular (2.20) holds for #=u and this
gives
(2.21) ord A> (g7t —1)e(u, a).

We recall that by hypothesis £eO{X} and hence ord B,>o. Equation (2.18) now
follows from (2.20) and (2.21). This completes our verification of (2.18) for all a€S.

Now let ¢ be a rational number, ¢>o, let gy, a4, ..., a, be rational numbers,
ay> —qn, qy=c—d qu+a,) for i=1,2,...,n. Then a=(ay,4q,...,4)eS and

e(v, a) =a0(z)0—d_1 ﬁ vi)—{— (c—dgn) i v,
i=1 i=1

which shows that if vo<d”1_i v, then p(v, a)>—ow as ag,—+ oo if ¢ is kept fixed.
Applying this to (2.18) we ;; that ord B,= 4 o0 if vo<d’1.i v, 1.e.
(2.22) B,—oif o T. -

With ¢>o0 as before, let ay=-—gx+¢, =0 for i=1,2,...,n Once again
a=(ay, a4, ..., a,)€S and thus (2.18) shows that

ord B,> vy(gx—¢) —g(g—1)"' ord A

for each ¢>o0. Taking limits as ¢—o,
(2.23) ord B,> gxv,—¢(¢—1)"! ord .
Relations (2.22) and (2.23) show that &eL(gx, —g(¢—1)"'ord 1), as asserted.

Note. — If n=o0 in the statement of the lemma, then equation (2.19) is valid
for all zeS. Since (o, o0, ..., 0)€eS, it follows that ord A>o.

Theorem 2.x. — Let X, ...,A, be a set of non-zero elements of O and let
e= Dord A+ (g—1)"* Max ord \,. Let & be an element of L' 0O {X} such that
i=1 1€i<s
(2.24) (I—xN'2)E=o0,

i=1

then EeL{gn, —e).

Proof. — The theorem is a direct consequence of the previous lemma if s=1.
Hence we may suppose s>1 and apply induction on s. Let ordA>...>ordA,

s=1
and let n=(a—AJ)% Since %eL’'nO{X} and II({I—2'x)n=0, we may
i=1

conclude that wneL(gx, —¢'), where ¢ =e¢—ord},. We may choose yeQ such
that ordy=¢ —(¢g—1)"tord),. Clearly A *jeL(qge,—g¢{g—1)""ord2,), while
a(YE) =2, (YE -+ v, ). Since yA;'eD, we may conclude from the previous lemma
that ~yEeL(gx,—gq(¢g—1)"*ord2,). The proof is completed by checking that
—ord y—g¢(g—1)"tord A, = —e.
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Note. — Although not needed for our applications, we note that we had shown
with the aid of Lemma 2.4 that if Fe@®¢~Y and £ is a polynomial satisfying (2.24),
then £ lies in Y. We can now show that if £ is known to satisfy (2.24) and is known
to lie in L’ then it must be a polynomial (and hence lie in 8%), If Feg@™e¢~Y then
there exists yeD such that yFeO[X] and hence if reZ_, pNe-'yFel(r,0). If
B, = Yop™e~UyF, then H (I—x 18, )E=0, where A ,=XAyp™¢~ and hence the theorem

=1
shows that £ lies in L(gr,—e—(s+ 1) (ordy +7N(¢—1))). Hence £{=XBX* uecX
and ord B,>gruyy—e-—(s—1) ord y—rN(¢—1) (s-1) for each reZ,_. Letting r—oo,
it is clear that B,=o0 if #,>N(¢g—1)(s41)/¢g, which shows that £eQ.

Theorem 2.2. — If the coefficients of ¥ lie in a field, K, of finite degree over Q and
if X1 is a zero of order w of Y, then the dimension of the kernel in L(gx) of (I—2"'a)* is not
less than ., indeed the kernel contains y. linearly independent elements which lie in L(gx) nK,(3){X}.

Proof. — We may suppose that p>1. Since ypeO{t}, xp(0) =1, we may conclude
from Theorem 1.1 that 2eD. Let ygx(¢) =det(I—fay). We recall that Lemma 2.3
shows that yy—>yp uniformly on each bounded disk. There exists a real number,
e>o0 so large that ¥y has no zero distinct from A" in A7'(1 +C,). The proof of
Theorem 1.2 shows that for N large enough (as will be supposed in the remainder of
the proof) there exist (counting multiplicities) precisely p zeros, Ay, ..., Ay of
xxin A1 +4C,). Since g, yy and the set A7'(14C,) are all invariant under auto-
morphisms of Q which leave K (A) pointwise fixed, we conclude that the polynomial

1
fN(t)=.H1(I——7\i’Nt) is also invariant under such automorphisms and hence lies
i=

in K,(A)[#]. Let K be the composition of all field extensions in Q of K() of degree
not greater than p. Theorem 1.1 shows that A is algebraic over K,, hence
deg (K,(2)/Q/)<co. This shows that deg (K/K,)<eco and hence deg (K/Q’)<co.
The conclusion is that 2, yeK, éii?fw=* for t=1,2,...,p and that K is locally

compact. Furthermore fy is relatively prime to yy/fx-

We now restrict ay to K[X]n2™, This does not change the characteristic equation

of ay and letting Wy be the kernel in that space of By= ﬁ (I—xay), we conclude
i=1

that the dimension of Wy {as K-space) is p. An element, £, of W will be said to be

normalized if it lies in O{X} and at least one coefficient is a unit. If § is such a normalized

element of Wy then by Theorem 2.1, £€L(gx, —e), where ¢=(p+ (¢—1)7") ord A

If we write {=2XB,X* then ord B,>¢gxu,—¢ and hence B, must be a unit for at least

one element ue¥, ={ve¥|v,<e/(gx)}. Conversely if B, is a unit then ueZ,.

It is clear that a subspace W of K[X] of dimension y has a basis &, ..., §, in
O[X]AK[X] for which there exist distinct elements u,, ..., %, of Z%*' such that the
coefficient of X" in &, is the Kronecker 3, ;(¢,j=1,2, ..., ). Hence for each N there
exists a set of p linearly independent elements {£; x}_,, .., in Wy corresponding to
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which there exist p distinct elements, {4 x}_1, . ., in I, such that & yeO[X] and
the coefficient of X"o~ in £ y is §;; for 4, j=1,2,...,p. Since I, (and hence T})
is a finite set, there exists by the pigeon hole principle, an infinite subset, U, of Z, such
that u;,=u; y is independent of N for each N in the subset and i=1,2, ..., u. In the
following N will be restricted to this infinite subset.

Now let B=K{X}nL(gx, —e¢). Generalizing the definition of § 1, we may
define the weak topology of K{X} and by the local compactness of K and the theorem
of Tychonoff, B is compact under the induced topology. Thus B*, the u fold cartesian
product of B is also compact under the product space topology. Clearly the ordered
set EN=(f y, &, ..., &, x)eB* and hence an infinite subsequence of the sequence
{E™}yca must converge. Hence there exists an infinite subset, A of A such that
{EMecy converges to an element (&, ...,£)eB* For j=1,2,...,u we have
{€; xInew—E; and since the coefficient of X" in §; y is 3, ;, the same holds for ;. This
shows that £, ..., &, are elements of 8 which are linearly independent over Q.
Furthermore By%; y=o0 for each NeU’ and hence taking limits as N—oco in U, we
conclude that &, ..., £, lie in the kernel of B=(I—A""a)* in L(gx).

Now let @, ..., &, be a minimal basis of K over Ky(»). If neK{X}nL(gx, —¢)

m
then there exist %, ..., n,eK,(2){X} such that y= X n; and since the basis is
- i=1 m
minimal, n,eL{gx, —e—1) for i=1,2,...,m. If o=@xnthen o= X o;fx; and since
i=1

BrieK,M){X} for i=1,2,...,m, we can conclude that »; lies in the kernel of .
Applying this argument to £, ..., §, we conclude that the Q-space spanned by them
is spanned by elements of the kernel of 8 in L(gx)nK (3){X}. This completes the
proof of the theorem.

To complete our description of yp in terms of a spectral theory for «, we must
prove a converse of the previous theorem.

Theorem 2.3. — Let . be an integer, n.>1 and ) a non-zero element in Q. The dimension
of the kernel in L’ of (1—2"ta)* is not greater than the multiplicity of X" as zero of 5.

We defer the proof except to note that we may assume that the kernel of (I—x"ta)*
in L’ may be assumed to be of non-zero dimension and to show that AeD. If the kernel
of (I--A"'a)* is not {o} then by an obvious argument, the same holds for the kernel
of (I —Ax"'a). Hence there exists £eL’ such that «f=2%, E+0. Since £eL’ there
exists yeQ, y+o0 such that yEeO{X}. Hence it may be assumed that E£cO{X}.
Thus NE=a'¢ for each reZ, and since o maps O{X} into itself, we conclude that
E+o0, " EcO{X} for all reZ,_ . This shows that AeD. Theorem 2.1 now shows that
we can replace L’ in the statement of the theorem by L(gx).

Before resuming the proof we must recall some formal properties of matrices.
Let A be an m xm matrix with coefficients in some field of characteristic zero. For
each subset H of {1,2, ..., m}, let (A, H) be the square matrix obtained by deleting
the j* row and column of A for each jeH. Let [H] denote the number of elements
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in H and let ¢ be trancendental over the field, K, generated by the coefficients of A.
If [Hl=m, we define det (A,H)=1 and for o<[H]<m, I—#(A, H) denotes
(1—tA), H),

Lemma 2.7. — For 1<r<m
r—1
(2.25) (H (té—(m~—i)) ) det(I—tA) = (—1)"r! 2 det(I—t(A, H)),
i—o\ dt [H]=r
the sum on the right being over all subsets, H, of {I, 2, ..., m}such that [H]=r.

Proof. — We recall the classical result that if Bis an m xXm matrix whose coefficients
are differentiable functions of ¢ then

(2.26) det B= X det B;

=1

where B, is the m Xm matrix obtained from B by differentiating each coefficient in the j*

row and leaving the other rows unchanged. Thus % det(It—A) = 2 det(It—(A, H)).
(H] =1

However ¢ " det(I—tA)=det(t7'I—A) and therefore

—mt~ " det(I—(A) +t""% det(I—#A) = —¢7* X det(t™'I—(A, H)) =
{H] =1
—t73=m=0 X det (I—t(A, H)).
[H]=1

The assertion for r=1 follows immediately. We may therefore suppose r>1 and
use induction on 7. Hence

(2.27) r!‘l(rﬁl(t%—(m—i))) det (I—tA) =

i=0

(—1)’“1r_l(t%—(m»——(r——1))) 2 det(T—t(A, H)).

Hl=r—1t

The lemma is known to be true for r=1 and hence for given H such that
[Hl=r—1, since (A, H) is an (m—r+1) X (m—r+1) matrix,

(tgt_(m-r+ I)) det(I—t(A, H)) =—}§ det(I—¢((A, H), H")),

the sum being over all H” C{I, 2,...,m}—H such that [H']=1. However

((A, H), H") = (A, H") where H'=H"UH and hence the sum over H"” may be replaced

by X det (I—¢(A, H")), the sum now being over all H' such that H'>H, [H'] =7. Thus
-

the right side of (2.27) is (—1)7 1X X det (I —¢(A, H’)), the sum being over all H
HH'

such that [H]=r—1 and over all H’'>DH such that {[H'] =r. But given H’ such that

[H']=r there exists exactly r distinct subsets H of H’ such that [H]=r—1. Thus the

right side of (2.27) is (—1)" 2 det(I-—¢(A, H’)), which completes the proof of the
H)=r

lemma.
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With the previous conventions, let S%(A),j=o0,1,...,m denote the elements
of the field K generated by the coefficients of A which satisfy the formal identity

(2.28) det(I+tA) = 3 SO(A)#
i=0
We observe that
(2.29) S=N(A)= X det(A,H),j=o0,1,...,m—1
: (H] =

the sum being over all subsets H of {1, 2, ..., m} such that [H]=j.

Let w>1 be a rational integer, let « be a primitive p® root of unity in some
extension field of K. For (i, 4, ...,%, ,)eZ%, let g(4,4, ...,%, 1) =" where

-1

n—1 w
r= Y si,. Since det(I—*A*) = II det(I—tw™*A), we have
s=1 8

= =0

m w—1 m
(2.30) 3 iSi(— A" = IT ¥ #SH(—w—A).
j=0 §=0j=0

For 0<i<m, by comparing coefficients of #*"~* on both sides of (2.30), we conclude

that
w—1

(2.31) S(m—l')(Au) — (S(m—i)A)u-_I_ (___I)i'(u_‘l)zlg(z'o, - iu—1) I1 s(m—is)A’
8=10

w—1
the sum, %', being over all (i, ...,7, ,)eZ%,7;<m such that X j =upi, but
. . .. .. - =0
ly=10,=...=14, ;=1 is explicitly excluded. ’

Proof (Theorem 2.3). — We first outline the proof. Let W be the kernel of
(I-—x"!a)* in L’ (and hence by Theorem 2.1) in L(gx). Suppose dim W>r>o for
some reZ,. We must show that y§ VA" =o for s=1,2,...,7. Let My (for
each NeZ,) denote the matrix relative to a monomial basis corresponding to the linear
transformation «jy=Tyoax of M. Explicitly, for each 2eTy, ay(X*) = ZMy(, v)X%,
the sum being over all ueXy.

Let yy(t) =det (I—Mty). We know that for all seZ+,Nlim WY =5
and thus we must show that 1%im WV Y=o for s=1,2,...,7. Letting N’ be the
dimension of €W, equations (2.25) and (2.29) show that it is enough to prove that
(2.32) Jim SW =1 —A"'My) =o for i=o,1,...,7—1I.

We shall prove the existance of a constant ¢ independent of N, such that for
1==0,1, ...,7—1

(2.33) ord S&'=9((I ~A~19M)*) > ¢ 4x(g— N

and prove (2.32) by using (2.33) and (2.31) to deduce the existence of a constant ¢’
independent of N such that for ¢=o0,1,...,7—I

(2.34) ord S™ NI —A~1M) > ¢’ +n(g—1)Njui L,
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Let My = (I —2"'My)*. We may view Iy as a matrix whose rows and columns are
indexed by the set Ty of all ueT such that »,<N. If His any subset of Ty, H+ Ty,
we may, following our previous convention, denote by (9iy, H) that square matrix
obtained from My by deleting all rows and columns indexed by elements of H. We
shall show that if H is any set of not more than r—1 elements of T then ¢ may be
chosen independent of H and N such that

(2.35) ord det(My, H) >¢ +x(¢—1)N

whenever H (if not empty) is contained properly by Ty. Equation (2.29) shows that

equation (2.35) implies (2.33). Our first object is the proof of equation (2.35).
Let H be a set of no more than r—1 elements of . We know that there exist

g, ..., &, asetof rlinearly independent elements in W.  Let §,=2%B, ;X" j=1,2, ..., 1,

,
the sum being over all ue¥. The (possibly empty) set of [H] equations ’Elaij.:o
for each ueH, in r unknowns a,, a,, ..., q, certainly has a non-trivial solution in Q

(since 7>[H]). Since &, ..., %, are linearly independent, we conclude that &= X g,
i=1

is a non-trivial element of W. Since o+£eL(gx), & may be normalized so that £eD{X{

and at least one coefficient of £ is a unit. Thus there exists a normalized element

£ =3%B,X* in Wsuch that B,=o0 foreach ucH. Theorem 2.1 shows that, for all ueX,
(2.36) ord B, > gnuy,—e,

where e=pordr+(¢—1)""ordr. Hence if N>N,=¢/gk, we may conclude that
TyE is also normalized and the coefficients of £y =Ty satisfy (2.36).

For typographical reasons we shall when convenient denote the coefficient of X*
in £ (resp. F) by B(u) (resp. A(u)) instead of B, (resp. A,). For given integer j>1,

(0 TE = (Tigor) Ty & = EX 2B (") A quo— ) Alguo® —a0) ... (g —a0''~)

0) 1)

the sum on the right being over all (w9, w®, ..., 0" eTi. We may write Ty(e’E) as
a similar sum except in this case the sum is over all ((w®, w®, ... w'~Y), ) e x Ty.
Since ord A, >xu, for all ueT, we have by (2.36),

=t
x tord {B(w™)A(qu™ —w®) ... A(qu®—w"V)}> —x_le—i—c(qw@—l— 2 (qw(i+1)~w(i)))=
i=0
-1
—x"te+ c(qw(i) +(g—1) X w(")).
i=0
ji—1

If &« ..., w1 do not all lie in Ty then certainly “(.E w("))>N. Thus we
can conclude (using only the fact that £eL(gx, —e¢)) that "

(2.37) Tx(olE) = (Tyea)’ TyE mod X X*C(xgu,—e+ (¢g—1)xN),

ueTy
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where for each real number, 5, C(d) is used in the sense of C, in § 1. Since

0= (I—1ta)rE= 2 (—a)i)a's

we have
0=Z (=AY Tule8) = Z () (—)(Tyoa Tt =

(I—2"tag)*TxE mod X X“C(xqu,—2e -+ (g—1)xN).

uEIy

For each element (u,2)eTyX Ty, let My (4, v) denote the coefficient of the matrix My
in 4™ row and »® column. We have for each veZy, (I—Aatag)*X"=2ZMy (s, v)X",

the sum being over all ue¥y. Thus (I—Atag)*Tyt=2B,2My (4, )X, the sums
being over all ueTy and all veTy. We conclude that for each ueZy,

2Ny (u, v)B,=0 mod C(xquy—2 e+ (g—1)xN),

the sum being over all veTy. We recall that B,=o for veH and hence if N*" is the
number of elements in Tx—H, the system of N’ congruences indexed by ueIy—H,

(2.38) Zp Ny (u, v)B,=0 mod C(—z2 e+ (g—1)xN),

(the sum being over all veTy—H), has a non-trivial solution if N>Nj since B, is a
unit for at least one veIy—H. The ring of integers, O, of Q is not a principal ideal
ring, but finite sums of principal ideals are principal. Hence the theory of elementary
divisors may be applied to the matrix Ey indexed by (Ty—H) x(ITy—H) whose
»general” coefficient is Eyg(u, 0) =p "My (u, v). If g lc,|... ey, are the elementary
divisors of Ey then (2.38) shows that

(2.39) exr =0 mod C(—2 ¢+ (g—1)xN).

Since our object is to prove (2.35), we may assume det(3ty, H) +0. Hence o+det Ey,
o+ey.. Ifuand vlie in Ty—H, let (Ey, (¥, v)) denote the matrix obtained from Ey
by deleting row « and column ». Let ((INy, H), (», v)) denote the corresponding matrix
associated with (MY, H). It follows from the definitions that

(2.40) det(Ey, (1, 0))/det Ey=pdet((MRY, H), (4, 7)) /det(My, H).

Ideal theoretically, (det Ey) = (ey.)Z(det(Ey, (4, v))), the sum being over all
(u, v)e(Ty—H)?. Thus — ord ey = Min ord det(Ey, (1, v)) — ord det Ey, the mini-
mum being over all (x, v)e(Ty—H)?. This together with (2.40) shows that

(2.41)  —ord ey = Min{xgu, + ord det((My, H), (4, v)) } —ord det(My, H),
the minimum being over the same set as before. This together with (2.39) would
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give the proof of (2.35), if it were known that ¢ may be chosen independent of N and H,
u and » such that

(2.42) xqu, -+ ord det((My, H), (1, v)) >c+2e.

Thus the proof of (2.35) has been reduced to that of (2.42).

We observe that My (u,v) =A,_, and hence ord My (u, v) >xo(qu—vr). It is
easily verified that if two square matrices (each indexed by Ty) satisfy this estimate
then so does their product since xo(qu—uw)+xe(qw—0v)>ns(qu—2). Thus

v = (T2 =T+ My,
where MM’ is a square matrix indexed by Iy—H satisfying the condition
(2.43) ord My’ (4, 2) > xo(qu—71)

for all (u,v)e(Ty—H)®. Equation (2.42) now follows directly from Lemma 2.2 (ii).
This completes the proof of (2.42) and hence of (2.35). As we have noted previously,
this implies the validity of (2.33). We must now show that (2.33) implies (2.34).
This is clearly the case for r=1. Hence we may assume that r>1 and that (2.34)
has been verified for i=o0, 1, ..., 7r—2. Replacing A by I—2A"'9Ry in (2.31), we have

(S(N'—(’—l))(l—l_lgﬁﬁ))u= .
w—
SOV = =1 (T — A~ 190t *) — 38l e ey dy_y) 11 S(N’_is)(]:_)\—lg‘m&)
s=0

the sum, X’, on the right being over all 4,,¢, ...,4,_, in {1, 2, ..., N} such that
u-l . . . . -

2 t,=u(r—1), but {=d=...=1,_, is excluded. In each term in the sum, ¥’, at
8=0

least one factor S{N'—i)(I—A7'90;) occurs such that i,<r—1, while the remaining
factors are p—1 in number and each of type SN =N I—a~'My), j<p(r—1). The
assertion follows from the induction hypothesis provided we verify the existence of a
finite lower bound for ord SN ~(I—A~'9}) independentof N and valid for j<u.(r—1).
The existence of such a lower bound is an obvious consequence of equation (2.29) and
Lemma 2.2 (i). This completes the proof of the theorem.

Note. — No use has been made in Theorem 2.3 of compactness and no hypothesis
concerning the field generated by the coefficients of F is needed. On the other hand
we do not know if Theorem 2.2 is valid without that hypothesis.

We now summarize some of our information.

Theorem 2.4. — For each non-zero element, ), of Q, let s, be the multiplicity of A7 as
zero of xp. If the coefficients of ¥ lie in a finite extension, K, of Q/, then for s>s, the space
W, =kernel in L’ of (I—X"1a)® isindependent of s, lies in L(xq) and is of dimension s,. Further-
more W, has a basis consisting of elements of Ko(r){X}.

Proof. — For given aeQ’, let W® be the kernel of (I—A~'a)’. Theorem 2.2
shows that for s>s,, dim W®>s,  while Theorem 2.3 shows that dim W¥<s, for all
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s>1. Since WOcWOGHY for all s>1 it is clear that W® is independent of s and has
dimension s, for s>s,. Theremainder of the theorem follows directly from Theorem 2. 2.

Corollary. — If G is an element of K(X) such that for some real number b>o both G and
1/G lie in L(b) and if HX) =F(X)G(X)/G(X?) then yp=1yy, it being understood that F
and K, satisfy the conditions of the theorem.

Proof. — Let ¢=Min (%, §). It is clear that £—+G.£ is a mapping of L(c) onto
itself. The corollary now follows from the theorem and the fact that each £eL(c),
Y(HE) = G(X) . a(E) .G(X).

We have shown that the zeros of yz can be explained in terms of spectral theory
if F satisfies the condition of Theorem 2.4. If it were known (as is the case in the
geometrical application) that the coefficients of F and the zeros of y; all lie in a finite
extension, Q, of Q' then the zeros of yy can be explained entirely on the basis of the
spectral theory of « as operator on L”=Q{X}nL(gx). We make no assertion of the
type: L” is a sum of primary subspaces corresponding to «. Our next result serves as
a substitute for a statement of this type.

Theorem 2.5. — If N is a non-zero element of Q which is algebraic over Q/, if X1 is

of multiplicity u. as a zero of g, if the coefficients of ¥ lie in a finite extension, K, of Q' and if K
is any finite extension of K, (\) then

(2.44) (I—r"ta)* P (RK{X}nL(gn)) = (I—2ta)*(K{X}nL(gx)).
In particular if p=o (i.e., yp(07") +0) then K{X}nL(gx) = T—2""a)(K{X}nL(gx)).
Proof. — Let K'=K,(2). By hypothesis K is a finite extension of K’. For given K

we show that (2.44) holds if and only if it is valid when K is replaced by K’. Let
oy, ..., , be a minimal basis of K over K’. Suppose (2.44) is valid with K replaced

by K. If £eK{X}nL(gx) then &= X «§;, where {eK'{X}nL(qn),i=1,2,...,m.
i=1
Hence by hypothesis there exist 7, ...,7, each in K/{X}nL(gx) such that
(I—Aata)# iy = (I—a"ta)*E, i=1,2, ...,m, and hence %= 2 o;n,eK{X}nL(gx)
i=1
and furthermore (I—A~ta)**ly=(I—A"ta)*E. This shows that
(I—a"ta)**Y(K{X}nL(gx))> (I—r"to)*(K{X}nL(gx))
and since inclusion in the opposite direction is clear, we may conclude that (2.44) is
valid for K if it is valid for K. Conversely if (2.44) is valid for K, then given
EeK'{X}nL(gx) there exists neK{X}nL(gx) such that (I—r"ta)**n=(I—r""a)"E.
The relative trace, S, which maps K onto K’ may be extended to a mapping of K{X}
onto K’{X} in an obvious way. The trace, S, commutes with « and hence

(I—rta)*E = (I—2"a)*+1S(n/m) since S(§)=mE. Since S(n)eK'{X}nL(qx) we
may conclude that (2.44), if valid for a given K, is also valid for K'.
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We have shown that it is enough to prove the theorem for one finite extension,
K, of K’. If A~!is not a zero of yp, let K=K’. IfA~!is a zero of yp then following
the procedure of the proof of Theorem 2.2, let yy(f) =det(I—txy), let p be real, p>o0
such that yy has no zeros in A7*(x +C,) distinct from 27!, For all N large enough,
xx has precisely p zeros Ay, ..., A % in A7 (14 C,), these are zeros of a polynomial fy
of degree p. which divides yy and is relatively prime to yy/fy. LetK be the composition
of all extensions of K’ of degree not greater than p. We know that Ay, ...,A %
lie in K, approach A~! as N—»oo and are distinct from all other zeros of y5. In the

following ay will be restricted to K[X]n g,
w
Let By be the endomorphism Il (I— inoy) of K[X]ngM (By=I if p=o0).
i=1

Since By annihilates the primary components of K[X]n8™ relative to ay corresponding
to the eigenvalues X y, ..., A, x, it is clear that By(K[X]ng"™) is the direct sum of
the primary components of K[X]nf8™ corresponding to the remaining eigenvalues
of ay. Hence if «ff denotes the restriction of ay to Bx(K[X]nL™), we can conclude that

13
i=1

Let £ be a given element of K{X}nL(gx). We must find v in the same space
such that (I—A"'a)**ly=(I—r"'a)*E. We may suppose that EeL(gx,0). Let
Ex=TyE. Since X is not an eigenvalue of ay, there exists nyeK[X]n€™ such that

(2.46) (T2 o) Byin =PBxEn-

Eventually we shall complete the proof by taking the limit of this relation as N-—»co.
The main problem is the demonstration that ny may be chosen such that its limit lies
in L(gx). We note that Byvny is uniquely determined by (2.46) and hence 7y is uniquely
determined modulo the kernel, Wy, of 8y in K[X]n€"™, a subspace of dimension p.
We shall show that there exists a real number ¢’ independent of N such that 7y can be
chosen so as to satisfy the further requirement

(2-47) e K[X]nL{gx, ¢')

for an infinite set of integers, N.

We first construct a basis of By(K[X]n2™). For each ueTy, let Y, y=0,X"
The set {Y, x} indexed by ueZy, spans By(K[X]n€™) but does not (unless p=o)
constitute a basis of that space. In the proof of Theorem 2.2, it was shown that there
exists an infinite subset, A, of Z, and a set S of . elements of T such that for each Ne%,
the kernel, Wy, of By in (K[X]n2") has a basis {g,x},cs consisting of elements
of K[X]ng™(gx, —e)nO[X] indexed by S such that for each veS the coefficient of
X’ in g,y is the Kronecker 3,,. (In the previous remark, e=(u4 (¢—1)7%) ord 2,
precisely as in the proof of Theorem 2.2.) Thus for each ueS, we have (N being assumed
in the remainder of the proof to lie in %),

(2 . 48) SuN= X¥+ ZEN(ws u) X,
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the sum being over all weZIx—S, and furthermore ord Ey(w, u) > gxw,—e. We may
now conclude that for each ueS, since o=0y(g,y), that

(249) —Yu,N:ZEN(w, u)Yw,l\b

the sum being over all weIy—S. Thus the set {Y, y} indexed by Ty—S spans
Px(K[X]n€W) and hence must be a basis of that space, since it contains the correct
number of elements.

We have noted that if 7y is a solution of (2.46), then the sum of 7y and any K-linear
combination of the g, y is also solution of (2.46). Equation (2.48) shows that ny may
be chosen such that the coefficient of X* in 7y is zero for each ueS. (In fact these
additional conditions uniquely determine vy). Thus we may write =y=2XB, X",
the sum being all »eTy—S. By hypothesis £eL(gx, 0) and we write £=2XGX’, the
sum being over all »e¥. Thus £y=T¢E=2G, X" the sum now being over T, and
ord G2 gy Thus fix= 2 G¥on= % GYyx+ 5 G¥,x. Applying (2.49)

vEIN vEINT U
we now obtain ByEy=2Y,  {G,— ESGMEN(U, u)}, the sum being over all »eTy—S.
Thus ByEx=ZG,xY,x, the sum being again over all veTy—S. Here

Gv,N = Gv— % EN(DJ u)Gu

ues

and hence ord G, y>gxu,—¢, ¢ being a real number independent of N.
We now determine the matrix of oy relative to the basis {Y,y},ex,_s Of
Bn(K[X]nL™). Since ay commutes with Py, we have

oy o, N ™ anBaX’ = ByoanX’ = Py pY Aqw—va°

wEIN
With the aid of equation (2.49), it is easily seen that for 2eTy—S
(2.50) ay Y, n=2Ax(w, 0) Y, x»
the sum being over all weTy—S, where for (w,v)e(Tyx—S)%

A;‘I(w, l)) =Aqw-—v—— Z EN<w’ u)Aqu—v'
ues
It is easily verified that ord Ay(w, v) >xo(qw—0v)—e.

Let Ay be the square matrix indexed by Ty—S whose w, v coefficient is
Ai(w, v). Equation (2.50) shows that det(I—x"*Ay)=det(I-—2"'a)). Since
yr(t) =N1im det(I—zay), we conclude from (2.45) that Nlim det(I—2"*Ay) is the value
assumed at £=A"1 by yp(¢)/(1—xf)*. This value is not zero since p is the multiplicity
of A7! as zero of yp and hence for N large enough, det(I-—A7'AJ) is bounded away
from zero. Explicitly there exists a rational number ¢ such that for N large enough,

(2-51) ord det(I—a71AQ) <¢".
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Equations (2.46) and (2.50) show that the set {B,y} indexed by ve3y—S is
a solution of the system of equations indexed by weIy—S

(2-52) 2(8y,, 27 Ax(w, 2))B, N =Gy

the sum being over veTx—S, it being understood that §,, , is the Kronecker § symbol.
To verify equation (2.47), we apply Cramer’s rule to equations (2.52) and estimate
ord B,  for each veTy—S. For each element (w, ») of (Ty—S8)?%, let((I—A"'Ay), (w, v))
be the square matrix obtained from I—A"'A} by deleting row wand column 2. Clearly

B, y.det(I—2"'Ag) = Zhdet((I—2""Ay), (w, 1))G,, x

the sum being over all weTy—S. In view of (2.51) it is enough to show that there
exists ¢’ independent of N such that

(z-53) ord det((I—x"1AY), (w, v))+ord G, = gy, —c'"

for all (w,v)e(Ty—S)®>. Equation (2.53) is however a direct consequence of
Lemma 2.2 (ii) and our estimates for ord G,y and ord Ay(w, v). This completes
the proof of (2.47).

Since K{X}nL(gx,¢’) is compact, we conclude that the infinite sequence {ny}
has a limit point % in L{gx, ¢’). Taking the limit of equation (2.46) as N-—>oco over
a suitable infinite subset of Z_, we obtain (I—x"ta)* iy =(I—21"'a)*E. Thus we have
shown that (I—a"to)**H(K{X}nL(gp))>(I—2"'o)*(K{X}nL(gx)). This completes
the proof of the theorem.

Corollary. — In the notation of the theorem, let {=XK{X}nL(gx) and let W be the kernel
of (I—x"ta)* in K. For each integer j, j>1 we have

KR=W- (I3 ta)]

(2 54) Wal—ata)i® = (I—1"1a)/W.

If I—2"'a)>W={o} then
(2.55) (I—2t) '] =(I—2'a)" K.

Proof. — For simplicity let us use the symbol 6 for (I—x7'«). The theorem
shows that given nef there exists £eR such that 6%7n=0"*'Z, which shows that
6“(n—0%) =0 and therefore neW+0£. This shows that RcW 46K and hence using
the fact that OWcW we easily see that RCW-0'R if j>1. This proves the first half
of equation (2.54). Writing this with j=1 and applying 6" to both sides we obtain
']R=0"W-0"*Q which proves (2.55), since "W =o.

If £e® and 6£cW then 8”“&66“\’\’:{0} and using Theorem 2.4 we sce that
£eW, which shows that 67£e6/W. This completes the proof of (2.54).
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§ 3. Differential Operators.

a) Introduction

In this section we modify the notation of the previous section so as to facilitate
the application of our results to projective varieties. Let Q' and Q be as before.
Let €, be a finite extension of Q' in Q, whose absolute ramification is divisible
by p—1. Let n>o0,d>1 be fixed integers as before. Let T now be the set of all
w==(Uy, Uy, ..., U,.,)ELY? such that duy=u,+ ... +u, ;. The definitions of L(b, ¢),
L(6), &, 8™, 8™ (p, ¢) are now precisely as in § 2 except that the set T is given a new
meaning and furthermore these additive groups now lLie in Q{X,, X,, ..., X, }
instead of Q{X,, X;, ..., X,}. LetS be theset {1,2,...,n+1}. For each subset A
of S (including the empty subset), let M, be the monomial llXi, (M,=1) and let

ie

LA(b, ¢), LA(b), 84, &™) 4™ ¢) be the subsets of the previously defined sets which
satisfy the further condition of divisibility by M, in Q{X,, X,, ..., X,}-

Let S'={o,1,...,n41}, S"={o,1,...,n}

Let O, be the ring of integers in £, and let K be the residue class field of Q,.

Let E, be the derivation E»Xlai of Q{Xp, ..., X, 1}i=0,1,...,2+1. A homo-

geneous form fin Dy {X,, ..., X, .} will besaid to be regular (with respect to the variables
X, «.. X, ,y) iftheimagesin K[X|, ..., X, ] of the polynomials f, E,f, ..., E,  ,f
have no common zero in z-dimensional projective space of characteristic .

Let = be an element of O, such that ord n=1/(p—1), f a form of degree d in
O[Xy, ..., X,4,] which is regular with respect to the variables X, ..., X, ., and
let H be an element of L(1/(p—1)) such that

HeQ){X}
H=r=X,fmod X2
H,=EHeL(p/(p—1), —1),i=0,1, ..., n+1.

For i=o,1,...,n+1, let D; be the differential operator {—E£ +£.H;, mapping
L(—oo) into itself. It is easily verified that dD,=D, + ... +D, ., that D;,oD;=D;0D,
and that D; maps L(5) into itself for 4 <p/p—1. The object of this section is the study

n+1
of the factor space L(b)/ 2 D,L(8). To make use of the regularity of f we must recall
i=1

“some well-known facts about polynomial rings.

b) Polynomial Ideals.

If A is any set and G is an additive group then a set of elements &, ; in G indexed
by AxA will be said to be a skew symmetric set in G indexed by A if En; —& i &i=0
for all i, jeA.

Let & be a field of arbitrary characteristic, and let ¢ be a homogeneous ideal
in K(X]=RK[X,, ..., X,;J. The ideal a has an irredundant decomposition into
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homogeneous primary ideals, a—= flg,. The dimension of a is defined to be
i=1

Max dim q; and dimension here is in the projective sense. We recall [5],

I. If geR[X] then (a:g)=a if and only if gé¢q,i=1,2,...1

II. If g is a non-constant homogeneous form then dim (a4 (g)) =dima—-1
if g lies in no primary component g; of maximal dimension, while otherwise
dim(a + (g)) =dim a.

ITII. (Unmixedness Theorem): If a=(g, &, ..., 8),t<n+1 and dima=n—!
then each primary component of a is of dimension n—t¢.

Lemma g.x. — If g, ..., g, are non-constant homogeneous forms in K[X,, ..., X, ]
with no common zero in n-dimensional projective space of characteristic equal to that of R and if
{P.}.ca is a set of polynomials indexed by a subset A of S={1,2,...,n+1} such that

2 P,g;=0 then there exists a skew symmeiric set v ; in R[X] indexed by A such that P, = 2 g
IEA JEA

Sor each icA. Furthermore if {P;}, ., consists of homogeneous elements such that deg(P;g,) =m
is independent of i, then each v, ; may be chosen homogeneous of degree m—deg(g;g;).

Proof. — Let a,=(g, ..., &,), 1<r<n-+1. Byhypothesis dim a, ;=—1, while
by II, dima,—1<dima,, ,<dima, for r=1,2,...,7 Also by II, dim ¢, >n—1.
These inequalities show that dima,=n-—r for r=1,2,...,24+1 and that
dima, ,=dima,—1 for r<z Hence by III, the primary components of q, are all
of dimension »n—r and by II, g,,, does not lie in any primary component of a, for
r=1,2,...,n. Hence by I, (a,:g,,,) =aq,. Furthermore since dima,=n—1, we
know g +o. If A={1} then P,=0 and hence we can assume A={1,2,...,741},
r>1. Since (a,:g,.,)=aq,, P, €a, and hence there exist polynomials A, #h,, ..., A,

r

such that P, ,= X kg. Thus 2 (P,+hg, ,)g=o0. Using the obvious induction
i—1 ;

=1
hypothesis on 7, there exists a skew symmetric set v, ; in &[X] indexed by {1, 2, ..., 1}

such that P,+hg ., = X g for i=1,2,...,7. Let %y, =k, =—h, for
=1 .

i=1,2,...7r and let %,,,,,(,7=0. The assertion follows directly.
The valuation of Q, can be extended to a valuation of the polynomial ring Q [X]
in the usual way, if g(x¥) =Xa,x*, let ord g=Min ord q,.

Lemma g.2.— Let g, ..., g,., benon-constant homogeneous formsin Do[Xy, ..., X, ;]
whose images in K[X] have only the trivial common zero. Let A be a non-empty subset of S and
let g be an element of the ideal 2 (g) of Q[X]. Then there exist elements {h};c, of Q[X]

icA

such that g= 2 gh, and such that ord h,>ord g for each icA.
icA

Proof. — We may suppose that g#+o0 and hence that ord g=o. By hypothesis

g= X gh, hbeQ[X]. Letebetheabsolute ramification of Q,andlet —b=e. I\/éiAn ord #;.
icA j
Clearly b is an integer and we complete the proof by showing that if 4>o0 then there
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exists a set of elements {A/};c, indexed by A in Q[X] such that g= X g4/ and such
icA

that e. Mm ord A >—b+1. Let II be a prime element of Q,. By definition,
" heD [X] for each jeA and if >0 then 2 g’k =1I"g=0 mod(Il). Let G,

icA

be the image of g; and let &; be the image of I1°4; in K[X] for each ieA. Thus in K[X],
o= X G;£ and so by Lemma 3.1, there exists a skew symmetric set, {y;;}, in K[X]
icA

indexed by A such that £, = 2 7;,;G; foreach ieA. Wenow choose a skew symmetric set
ieA

{ni ;}in Oy[X] indexed by A such that v, ; is the image in K[X] of v , for each (i, j)eA X A.
Hence II°4,= 2w/ ;g mod(IT) for each icA. We now define a set of elements
JEA

{hi};ca in Q[X] by the equations II°4=II"A+ Zm’,,.gj for each ieA. Clearly
I’k = 0o mod(I1) and hence ¢.Min ord k; >—b+1 On the other hand the skew

jEA
symmetry of the set v, shows that g= E gzh which completes the proof of the
lemma.

Corollary. — If gis - - s Guyy Satisfy the conditions of the above lemma and {P.};c, is
a set of elements of Q[X] such that 2 P,g,=o0, then the skew symmetric set n; ; of Lemma 3.1
iGA

may be chosen such that Min ord v, ;> Min ord P,.
i, [

Let f be the form of degree d in Op{X,, ..., X, ,} which is regular with respect
to the variables X,, X,, ..., X,.,. Let fi=f,fi=E/f for i=1,2,...,n41. Since
dfy=fi+fi+ ... +f..4 it is clear (letting f; be the image of f; in K[X,, ..., X, 1)
that the regularity of f is equivalent to

() f»>fis .., [, have only the trivial common zero

(i) fi, /5> - - -5 fors have only the trivial common zero if ptd.

Condition (ii) is simpler for most of our applications but will not be used since it
would limit our results to the case in which 4 is prime to p. However we do note that in
any case the regularity of fimplies the triviality of the common zerosin Qof £, fo, . . -, fo i1+

Thus Lemma §.1 shows that f,f,, ..., f,,; are linearly independent over , (and ).
The following lemma refers to ideals in either Qi[X] or in K[X]. To simplify
the statement we use the same symbol for f; and f.

Lemma 3.3. — Let B be a non-empty subset of S={1,2,...,n4+1}.
(i) Mp)n X (f)= X (Mpf)+ 2 (Mpfi/X)
1EA 1EA—B IEANB
if A is any non-empty subset of S, provided the characteristic does not divide d (i.e. the assertion holds

in any case in Q[X] and if ptd in K[X]).
(1) In either characteristic, if A+S then

M)A () + 2 () = Maf) + 2 (Mef)+ I (MyfiX).

unless both AUB=S and A contains n elements.
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Proof. — In both statements the ideal on the right side clearly lies in the ideal |
on the left side. To prove (i) it is clearly enough to show that if My.he 2 (f;) then
icA
(3.1) he 2 (f)+ X (ffX)

i€A—B i€ANnB
Let BnA=C,B'=B—C. Let ¥’ =M. We firstshow that #'e 2 (f,). This is clear
ieA

if B’ is empty, hence we may use induction on the number of elements in B’. If jeB’,
then letting B =B'—{j}, #'=My.4’" then XA”"=Mgph'e 2 (f;) and if we can show
icA

that e 2 (f) then by the induction hypothesis we may conclude that the same holds
ieA
for #'. Thus we consider j¢A, Xk e X (f;) and recall that Xy {fitiziies Is a set
icA

of n4 1 non-constant polynomials with no non-trivial common zero (since the charac-
teristic does not divide d) and hence Lemma 3.1 shows that 4’eX (f,). Hence
icA
Mche % (f) as asserted. If d=1 then if C is empty, (3.1) is trivial, while if jeC,
ieA
then f/X; is a non-zero constant which again shows that (g.1) is trivial. Hence
it may be supposed that 4>1, in which case f/=/f//X, is a non-constant form for
eachieS. Wemayassumethat C={1,2,...,7}, A={1,2,...,t},r<t<n+1  Thus
‘ ‘
X X,...Xhe X (f;) and hence for some polynomial #4,, X,(X,...X:r—f/h)e X (f).
i=1 i=2

We now apply Lemma 3.1 to the n+1 polynomials, X, f;, ..., fisfis1s - - s Sasr and
14
conclude that X,...Xke(f/)+ 2 (f) (the left side is £ if r=1). Now suppose for
i=2

8 t

some 5, 1 <s<r,X X .,...X ke (f/)+ Z (f). Then there exists a polynomial,

t=1 j=5+1

s !
hyy1, such that X (X, . Xh—h,  f )eZ (f)+ 2 (). The n+1 poly-
i1 j

j=s5+2

nomials /', /), .. .. [y, Xo o s fs 42 - - -5/u 1 arenon constant forms satisfying the conditions
s+1 ¢

of Lemma 3.1 and hence X ,,... X eX (f/)+ X (f). This completes the proof
i=1 t==542

of (3.1), and hence of the first part of the lemma.
(ii) Here it is enough to show that if Mghe(f;) + 2 (f;) then

(2

icA
(3-2) he(f)+ 2 (f)+ 2 (f).

1CA B tEANB
Let C and B’ be defined as before and let 2’ =M k. We first show that
(3.3) Keh)+ 2 (f).

To show this, it is enough (as before) to show thatif 1¢A and X k"€ 2 (f) -+ (f,) then
iea

the same holds for £’. By hypothesis B' is empty if A contains n elements and hence
for the proof of (3.8) it may be assumed that A does not contain n elements. Thus
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Au{1} contains at most # elements. Let C’ be a subset of S disjoint from {1} which

contains A and consists of exactly n— 1 elements. The n+ 1 polynomials, f, X, {fi}ico

satisfy the conditions of Lemma 3.1 and hence 4"e 2 (f;) + (f;). This proves (3.3).
iEA

If C is empty then (3.2) is trivially true, hence we may assume G not empty. If d=1
the f’=1 for each icAnB<+ (@ and hence it may again be assumed that 4d>1. We
may now let C={1,2,...,7}, A={1,2,...,1},7<t<n. Since (3.3) now shows that

i
X,... X, ke(fy) + 2 (f;), we have for some polynomial, A,
i=1

X%y X bty S+ E (),

The set of n+ 1 polynomials, (f,, X,,fs, ..., f,) satisfy the conditions of Lemma 3.1
¢
and hence X,...X.he(f,) + (f{)+ 2 (f;)- We now suppose that for some s, 1<s<7,
i-1

¢

we have X .,...Xhe(f)+ Y (f)+ X (f). Then for some polynomial
i=1

i=st1
t

hevys Xy (Xps- -Xr-h—ﬂl+-1hs+1)E(fo)”*‘ig‘l (fi)+ ) 2(fn) The =n+1  polyno-

mials  fi, fi's .. S XosrsSogns - - S, satisfy the conditions of Lemma 3.1 and
¢

s+1
hence X .,...X,he(f) —}-.Z (i) + 2 (f) which completes the proof of (3.2)
and hence of the lemma. ' seke

c) P-adic Directness.

Let W be a vector space of dimension N over €, which has a « naturally » preassigned
basis. For the purpose of the immediate exposition, we may let W be the space all
N-tuples, QF, with coefficients in Q,. However in the applications in the following parts
of this section, W will be a subspace of Q,[X] whose « natural » basis is a finite set of
monomials.

Let I be the O,-module, O, in W and let ¢ be the natural map of I onto the
K-space, W =K¥. For each subspace W, of W there exists a subspace, W;=o(W,nB),
of W. The correspondence W,—W, maps the set of all subspaces of W onto the set of
all subspaces of W and preserves dimension. If W, and W, are subspaces of W then
(W,nW,) cW;nW;,, but equality need not hold If however W;nW,={0}, then equality
must hold and hence W,nW,={o}. We shall say that W, +W, is a p-adically direct
sum, written W, [{1W,, if WiaW;={o}. In particular if W,[+]W,=W then we
shall say that W, is p-adically complementary to W, in W, It follows from the above remarks
that given a subspace W, of Q) , there exists a subspace of W which is p-adically comple-
mentary to W, in W.

The notion of p-adic directness is introduced because of the metric naturally
associated with W. If w=/(w,, ..., wy) isanelementof W thenlet ord w = Min ord w,.
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If weW'+W"”, (W and W'’ being subspaces of W), then w=w"-+ w"’ where w'eW’',
w''€eW”. Certainly ord w> Min{ord &', ord »'’), butif the sum W'+ W’ is p-adically
direct then ord w=Min (ord »’, ord w”’) and hence ord w’> ord w.

d) General Theory.

Let o be the ideal (f;, fi, ..., /) in QfX,, ..., X,,{]. For each integer m>o,
let W™ be the space of forms of degree dm in Q [X,, ..., X, . ], let A, =W"™nA and
let V" be a subspace of W™ p-adically complementary to A, in W™, with respect
to the monomial basis of W™, Since (f,, f;, ...,f,) have no common nontrivial zero
in Q, A must contain all homogeneous forms of high enough degree and hence there

exists an integer, N;, such that V™ ={o} for m>N,. We shall show eventually that
we may take N, to be n. We note that V%=,

We now let V= 2 X"V asubspace of 8", and for each pair of real numbers b, ¢,

m=0
let V(b,¢)=VnL(b,¢). It follows from Lemma 3.2, the construction of V and the
regularity of the polynomial f that if Q is a homogeneous form in Qj[X,, ..., X, ]

of degree dm, then Q=P+ 2 P,f;, where PeV"™ P P, ..., P, each lie in W1
i-0

and ord P>ord Q,ord P,>ord Q for i=o,1,...,n

We now proceed with the analysis of the differential operators introduced in
part a) of this section. We recall that H,eL.(p/(p—1), —1), and that H; hasno constant
term. It follows easily thatif s<p/(p—1) then H,eL(s, —¢), where e=56-—(p—1)"".

Lemma3.4.— Lib,e) =V (b, c) + = H,L(b,c4¢) if b<p/(p—1),e=b—1/(p—1).
i=0

Proof. — It is clear that the left side contains the right side. If £ is an element
of L(b, ¢), we show that for each NeZ_ there exists nyeV(h, ¢)n2Y and a set & y_,
of elements in L(b, c+¢) indexed by ieS”={o, 1, ...,n} such that

(3-4) E-'EnN—i_.E:OH'LEJLN—l mod (X7 1)

SWN—l = 7y mod Xgr

(3-5) E x_1=E n_osmod X§~ for each ieS".

Let P be the constant term of &, then (3.4) holds for N=o0 if we set 7,=P?eV(b, ¢)
and £, _;=o0 for each ieS”. We now suppose N>o0 and use induction on N. Then
E‘N)=Z—(nNﬂ+ 2 Hiii,N_z) lies in L(b, ¢) and is divisible by XY. Let P®™ be the
i=o
coefficient of XY in &™. Clearly ord PM>bN+¢ and as noted above there exists
QWevW pN-1 PN each in WY such that PN=QWN 4 IxPN-1 f,
where ord QN> pN +¢, ord PN "U> N +¢—(p—1)"'=(b—1)N + ¢ +¢ foreachieS”.
We now let ny=uny_; +X5QMeV(b, ¢), and for each ieS" let
Ei,N—l = Fm‘,N—z +X§_1P§N_1)GL([7> ¢+e)
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and compute
E— (7)N + X Hiai,Nl) =
1=0

_XNQM __xN-1 & HPN-Y XN( QN)—TC ZfPN 1) = 0 mod X¥+1,

i=0

This completes the proof of (3.4) and (3.5). The proof is completed by taking weak
limits, & y—E,€L(b, c+e) for each ieS”, ny—>%eV(h,¢) and hence &=n-+ f} HE,.

i=0

Lemma 3.5. — Va3 HL(®) ={o} if b<p/(p—1).
i=0

Proof. — Let £ lie in the intersection, then &= % HE,, £.L(b) for each 1eS”.

i—0
Let m be the minimal integer such that the coefficient P™ of X7 in &, is not zero for at
least one 7€S". For given £ it may be assumed that &), . .., &, have been chosen in L(5)

such that m is maximal. For m’<m -+ 1 itis clear the coefficient of X% in & is zero. Let
n

Q+1 be the coefficient of X7 in €. Clearly Q"*!=n 2‘,f.P(."‘)eV(”““”h‘II,H_1 ={o}.

It follows from Lemma g.1 that there exists a skew symmetnc set {B,,;} indexed

by S” in W™= 1 suych that P"=n ZfB for each ieS”. Let =,,=B, X771,

n =0 g
£ —E— Z H,m ;€L(b), then £= 2 H& = Z HE and for each ieS” the coefficient
of X7 in E' is zero for m'<m and the coeﬂic1ent of X™is Pi"_—x Z f,B‘ ;=0, contra-

dicting the maximality of m.

Lemma 3.6, —
L(b, ¢) =V (b, c) + 3 DL(b, ¢ +e)
1=0

if (p— 1) <b<pl(p—1),e=b—1/(p—1).

Proof. — Certainly L(b, ¢) contains the space on the right side. We first prove
inclusion in the reverse direction if ¢>o (i.e. b>1/(p-—1)). Given EeL(b,¢) we
construct a sequence of elements indexed by reZ_,

(B0, " BN EY e (b, ¢ +1e) X V(b, ¢ +re) X (L(b, ¢+ (r+1)e))"

by letting £®=£ and the following recursive method. Given E"eL(b,c--re) we
choose by Lemma 3.4, 7"”eV(b,c+re) and EleL(b,c+ (r+1)e) for i=o0,1,...,n

such that £" =4 > HE". We now define £+ by
i=0
(36) E(H—l) zg __7] L Z E
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We must show that E"*YeL(b,c+(r+1)¢). We note that

£ = — B EHEL(b, o+ (r+ 1))
i=0

and this establishes our recursion process. Writing equation (3.6) for r=o0,1, ...,k
and adding, we obtain
h n h
(3-7) EMD—g0— X 4f)— X D, 2 g,
r=0 =90 =0

For ¢>o, Z 7;(” converges in V(b,¢) and X " converges in L(b,c+e) for each

r=0

1eS”. Furthermore gkt 50 as h—+oo and thus taking limits as ~—oc0, equation (3.7)
shows that £ lies in the right side of the equation in the statement of the lemma.

We now consider EeL(b,¢),b=1/(p—1). If NeZ, ,e>0,5<N then
se/N+8)+ec—e<sb+c¢ and therefore TyEeL™N(s+¢/N,¢—e), which shows since
b+e/N>1/(p—1) that there exists n™MeV(e/N 4+ b, c—e), ENeL(b +¢/N, c—e +¢/N)
for each ieS" such that

(3-8) TNE=V)(N)+ % DiggN)-
i=0

The space V(b,c—e)x (L(b, c—¢))""' is compact in the weak topology, which
shows that the sequence (n™, &Y, .. &Y ., , has an adherent point
(0, &, ..., E®) in that space. Hence taking limits we obtain from equation (3.8),

(3.9) E="+ X D,

We now let € run through a monotonically decreasing sequence of positive real numbers
with limit zero. The use of compactness shows that the sequence (7, £, ..., )
indexed by € has an adherent point.  Restricting our attention to a converging subsequence
we conclude that the adherent point (z, &, &, ..., £,) liesin V(b, c—e) x (L(b, ¢—¢))"*?
for each ¢ in an infinite sequence of positive real numbers with limit o. Thus taking

limits in equation (3.9) we obtain £=u+ Z D;%;, eV (b, c), £,eL(b, ¢c) for each ieS".
This completes the proof of the lemma. '~°

We defer for the moment the discussion of Vn Z D,L(5).

1=0

Lemma 3.7. — Let p,¢, b be real numbers, b<p/(p—1), N an element of Z,
e=b—1/(p—1),p+e>c and let A be a proper subset of S', A+S. Let {E;},c, be a set of
elements in XJQu{X}nL(b, c) indexed by A such that 2 H;E,eL(b, p). Then there exists

i€A

a set of elements {n;};cn tn (XY Q[Xy, .., X, J)nL(b, o+e) indexed by A, and a
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skew symmetric set w;; in (XY QX ..., X, )AL, c+e) indexed by A such that
if we set

(3.10) = Ei—("li + ,E H,‘“’h’j)
jeA
Jor each i€ A then 2 HEcL(b, p) and &) lies in L(b, c) and is divisible by X3+ for each icA.
ica

Progf. — It is quite clear that if the elements v; are chosen in L(b, p +¢) and
the », ; are chosen in L(b, c+e¢) then &/ as given by (3.10) certainly lies in L(4, ¢)
and _%H,.a; =XHE —XHm;eL(b, p). Thus the only important condition to be satisfied
by &; eis that of divisibility by XJ*L.

For each ieA, let P{Y' be the coefficient of X in £, and let Q¥ Y be the coefficient of
X+ in ZAHiii. Hence ord PN > Nb 4¢, ord Q9> (N +1)b 4-p, Q¥ V=5 EfP‘N\.

ic

Lemma 3.2 now shows that there exists a set of homogeneous forms of degree d N {C,}hE A

such that QW+ '=x Zﬁ ., ord C,>Nb+p+e Thus o= 2 f,(C,—P™) and hence
ieA

by the corollary of Lemma 3.2, there exists a skew symmetric set of forms of degree
d(N—1), {B;,} indexed by A such that for each ieA.

(3.11) PY=C;+= 2B, f;
jEA

andord B;> (N-—1)b+c e (since by hypothesis,p +-¢>¢). Wenowlet v, ;=B X[ !
for each ( i,j)eAx A and v,=CXJ for each ieA. It is clear that XY divides &, (as
given by equation 3.10), while the coefficient of X in & is PV —C,—= X B, f,=o.
This completes the proof of the lemma. A

Lemma 3.8. — Let b, ¢, o be real numbers, b p/(p—1), e=b—1/(p—1), e+ p>c.

Let A be a proper subset of S', A% S and let {£,},c, be a set of elements of L(b, ¢) indexed by A

such that L HEeL(b, p). Then there exists a set of elements {n;} in L(b, p +e¢) indexed by A
icA

and a skew symmetric set v, ; in L(b, c+¢) indexed by A such that
E@-=m+.2 H,")i;‘
jeA
Sor each ieA.
Progf. — Let EY=E, for each ieA. It is clear that Lemma 3.7 gives a
recursive process by which for each NeZ, we may construct a set {3/} in

(XEQIXy, -+ s X, 441)nL(b, p+¢) indexed by A and a skew symmetric set {n{ "}
in (XF1Q[X,, ..., X, ])aL(s, c+e) indexed by A such that for each ieA,

(3-12) g =gV (m + EHm,y )

ENEL(, ¢ ) Xy divides &Y, THEY is divisible by X and lies in L(b, ). Let

Z e, 1y = Z 73] for each 1, jeA, convergence being obvious in the weak topology.
N=0 N0
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Clearly w;eL(b, p+e),n;,€L(b,c+e¢). For reZ, , we write equation (3.12) for
N=o,1,...,7 and add. This gives

T r
Br=g0— X "+ S H; X ff’
N= jea  N=1

1

The lemma now follows by taking limits as r—oco since lim £/ *" =0 in the weak topology.

=

Lemma 3.9. — Let b, ¢, o be real numbers such that o> ¢, 1/(p—1)<b<p/(p—1) and
lete=b—1[(p—1). Let A be a proper subset of S’y A=%S and let &; be a set in L(b, ¢) indexed
by A such that X DE.eL(b, 0), then there exists a set {v;} in L(b, o +¢) indexed by A and a

ieA

skew symmetric set {n;;} in L(b, c+¢) indexed by A such that &=+ % Dy, ..
jeA

Proof. — There exists a unique element N of Z_ such that (N—1)e+¢<p<Ne+-c.
For each integer 7, 0 <r <N we construct a set {£"} in L(4, c-+re) indexed by A and,
for o<r<N a set {#{"} in L(b,c+ (r+1)¢) indexed by A and a skew symmetric set
{n"%}in L(b, ¢+ (r+1)e) indexed by A such that (letting a=i€ZAD,,g.)

(3-13) E= 2 DY for o<r<N,
icA
(3-14) Er =y X Hv{, for r<N,
jeA
(3-15) ErrV=gN— X Dy for r<N,
jEA

and such that EY=E, for each icA. Suppose the set {£'}.., in L(b, ¢ +re)
satisfying (8.13) is given for some integer 7, 0 <r<<N. We then have

ZHEN=£— Z EEVeL(d, p) + L(b, c +re) = L(b, ¢ + re).

icA icA
Hence by Lemma 3.8, elements 7 in L(b, c+e(r+1)) and v} in L(b, ¢+ (r+1)e)
may be chosen such that equation (3.14) is valid for each ieA. If E+D s
now defined by equation (g.15) then certainly &= 2 D,;E'+Y and furthermore,

i€

grtt =yl — X EmiheL(b, c+ (r+1)e). This completes the construction of £ for
jEA

r=o,1,...,N, since & is specified, and also of 4’ and ", for r=o,1,...,N—1.

In particular, ENeL(b, ¢+ Ne)cL(4, o) and therefore 2 HiEN = — X EENeL(s, p).
IEA 1EA

Since p+e¢>c+Ne, we may conclude from Lemma 3.8 that there exists a set {y{N'}

in L(b, p+¢) indexed by A and a skew symmetric set {y{} in L(4, ¢+ (N +1)e)

indexed by A such that equation (g.14) is valid for r=N. If now we define for each

ieA, EN*Y by setting r=N in equation (3.15) we have
£ = B B el (b, o+¢) +L(b, o+ (N+1)0) =L(5, p+-o).
S ‘ ,
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If now we write equation (3.15) for r=o, 1, ..., N and add, we obtain after
N

obvious cancellation, §NTV =§ E D, ( IR 7). The lemma follows directly by setting

7 =ENVeL(b, p +e) and m,;=zoﬂ§f)j€L(b, c+e).

Lemma 3.10. — If A is a proper subset of S', A%S;b,c are real numbers,
tf{(p—1)<b<p/(p—1) and if {€} is a set in L(b, c) indexed by A such that Z D.EA:o then

there exists a skew symmetric set {m; .} in L(b,c-e) indexed by A such that E = 2 Dm, ; Jor
each i€A.

Proof. — Let ¢ be any real number, then 2 Dgf.eL(b, p) and hence if p>¢ there
i€A

exists a set {#} in L(b,p+e¢) indexed by A and a skew symmetric set {7} in
L(bd, ¢ +e¢) indexed by A such that

(3-16) £, = 4 2 Dwp?)
JEA ’

for each izcA. Let p run through an infinite sequence of real numbers towards + oo,
then by the compactness of the cartesian product of copies of L(b, o) indexed by A and
of copies of L(b, c+¢) indexed by A x A there exists an infinite subsequence such that
if ¢ is restricted to the subsequence, then, as p—c0, 7/®) converges (necessarily to o) and
7} converges to n;eL(b, c+e). Clearly the set {x,} is skew symmetric and taking
limits in equation (3.16) as p—co, the assertion is proved.

Lemma g.11. — For b>1/(p—1),Vn ¥ D,L(b) ={o}.
§=0

Proof. — Let £ be an element of the intersection. It may be assumed that
1/(p—1)<b<p/(p-—1). With b fixed in this range, let p be chosen such that £eL(b, p),

E¢L(b,po+e). If £+0 then p certainly exists. Since E,ei D,L(s), Lemma 3.9

1=0 n
shows that there exist %,,%,...,n, in L(b,p+e) such that &= X D;y;. Thus
i=0

£E— Z Hg 2 ExeL(b,p+e¢). Lemma 3.4 shows that there exists £'eV(b, o +e),

Moy «« oy My iN1 L(b p +2¢) such that E~ Z Hy, =8+ by H;v,. This shows that §—
i=0
liesin Vn Z H,L(b), and hence by Lemma 3.5 &—& =o0. Thus £=E'cL({h, p-}¢),

=0
which contradicts the choice of p. Hence £ =o.

This completes the « general » theory of the differential operators. We note that
if 6<p/(p—1) then for each subset A of S, the subspace LA(5) of L(b) is invariant
under each D;. The action of the differential operators on these subspaces must now be
discussed in greater detail.
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e) Special Theory.

In this section we cannot avoid distinctions (') depending upon whether or not p
divides d. Furthermore some of our results will be valid only if H and the H;=EH
are subject to further restrictions. To avoid confusion, for each ieS, let H. =n’
and let ®; be the mapping {—EEf+EH;, where =n'eQ,, ord n'=1/(p—1).

For each subset, A, of S ={I, 2, ...,n+1}, let X, be the set of variables {X.}ica-
The ring, Q[X,], of polynomials in the variables X, with coefficients in Q,, is viewed
as a subring of Q [Xs] =€ [X,, ..., X, ;] and in particular if A is empty then Q;[X,]
is the field Q,. Let 3, be the homomorphism of Q,[X] onto O [X,] defined by

VX, if ieA
BI=007 i g

0J 1

As before W™ denotes, for each meZ_, the space of forms of degree dm in
Q,[X;]. For each subset A of S let W =3, (W™) and for each subset B of A, let
WP =W{"n (Mjg), where (Mg) denotes the principal ideal in Q[X,] generated by

the monomial MB=~HBX®'. (Unfortunately, our notation permits the same space to
i€
be designated by several symbols. Thus if ¢ is the empty subset of S, then W{™ =W
and W™ =W =Wa0m),
For each subset A of S let B}'™ be a subspace of W™ which is p-adically comple-
mentary (with respect to the monomial basis of W4™) in Wi to WiM™naJ, ().
Thus we have

(3-17) W) — B ] (WA 3, (90)
For each subset, A, of S, let
(3.18) i — DR,

B

the sum being over all subsets, B, of S which contain A.

Lemma 3.12. — Let A be a subset of S.
(i) WEm = 2 WEB™ the sum being over subsets, B, of S which contain A.
ADB

(ii) Wg'n (Kernel of 3,) = 2 WE™, the sum being over all subsets, B, of S whick
contain but are not equal to A. B2

Progf. — The first assertion is trivial. For (ii) we observe that a polynomial, £,
lies in the kernel of 3J, if and only if each monomial, X appearing in £ is divisible by at

() The theory in the case p|d is hampered by the fact that Lemma 3.3 fails to give an explicit basis for the
- - - _ n+1 -
ideal (M) N (fy,fy» - -5 /) in K[X]. This ideal contains but is not necessarily equal to (Myfy) + X (M £/X,),
i=1
a counter-example being given (for n = 3) by & =£,8,(8,—1) f; +£:3,(1—38,) ,—/i3:8,f2, where for i=1,2,3, 4,
8; is the specialization of K[X,, X,, X;, X,] defined by 3;X; = o, 3;X; = X; for j+i.
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least one variable X, such that ;eS—A. If X" is also divisible by M, then certainly
there exists a subset, B, of S containing A properly such that My divides X*. For the
proof of (iii), we use Lemma g.3 (i) which shows that as an ideal in Qi[X,],
M)n3J, (AU = 'EA(MA(SA f)/X)). Intersecting both sides of this last relation with W™,

we see W™ a3, A is the set of all homogeneous polynomials of degree dm of the form
2 M, (3, f)/X,;, the g being elements of Q[X,]. By homogeneity it may be assumed
icA

that g;M, f,/X, isaform of degree dm in Q,[X.] and henceliesin AN WA, This shows
that the left side of (iii) lies in the right side, which completes the proof since inclusion
in the reverse direction is trivial.

Lemma 3.13. — Let A be a subset of S

(i) BV =Z0BE ™, the sum being over all subsets B of S which contain A.

(i) WE" =84 ™ (A WE ™) and the sum is p-adically direct if p 1t d.

Proof. — (i) The definition of 8™ shows that it is enough to prove the p-adic
directness. For each set B containing A, let £; be an element of VE™ such that
ord (££5)>0. Let C be a minimal subset of S which contains A such that ord £;<o.
Clearly ord &;=ord(J Z&g) > ord(XEg) >0, which shows that ord £,>0 for each B.

(ii) We first prove this assertion without any claim concerning directness. The
assertion 1is equivalent to equation (3.17) if A=S. Thus we may assume that
A+S and use induction on the number of elements in A. By Lemma 3.12 (i),
Wi —= Wi L ¥ WE™_  Equation (3.17) and Lemma g.12 (iii) show that

BOA

+
Wit =@4 "+ F, (UnWE ™) and since I, acts like the identity on W™, we may
conclude that W™ cB ™ 4+ An W™ 4 (Kernel I,)n W™, Lemma g.12 (ii) now

shows that Wi B4 M 4 YW 1 3 WE™ and it is clear from the previous relations
BDA

+
that W{™ also lies in this space. The induction hypothesis now shows that
WEHM e L YA WS 4 2 (BE™ L YAWE™), Equation (3.18) now shows that

BOA

W™ B ™ 4+ An W™ and equality is clear.

To show directness (in the ordinary sense) of the sum, let £ be an element in
B (AnWE ™). Equation (3.18) shows that for each set B containing A, there
exists £5eBE™ such that £=3£;. Let C be a minimal set containing A such that
Zo+0. Clearly £,=3.£e3,U and hence £;e(WG™nJA)nBS™, which shows by
equation (3.17) that &;=o0. This contradiction shows that £;=o0 for all B and
hence £=o.

Let £ be an element of B4™ and % an element of W™ A9, both in O,[X] such
that ord (§-—mn)>0. To complete the proof of the lemma, we must show (if ptd)
that ord £>0. By definition, for each set B containing A there exists £5eB5™ such
that §=2X&;. We show that ord §3>0 for each B. Suppose otherwise, then there
exists a minimal set C containing A such that ord £;=o0. Then ord({,—3J3:&)>o,
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while ord(J.&—Jyn)>ord(E—n)>0. Thus £;eQ,[X;] and ord(&;— Jgm)>o0. Let
Z. be the image of &; in K[X;] under the residue class map. Clearly & is divisible
by M, and lies in the image in K[X,] of Oy[X]nJ,A. Using the asterisk to denote
images in K[X.] under the residue class map, we may conclude from Lemma 3.3 (i)
(since ptd) that there exist a set of forms of degree dm, {g;} in K[X.] indexed by C
such that EE:_ZCgiMC(SC f)/X;. Choosing forms G, of degree dm in D,[X.] which
ie

represent the g; and setting &, = Ec G M (3. f)/X;eWE ™I U, wehaveord (£, —E;)>o0.
Since E.eBS™, this contradicts equation (3.17) and so the proof of the lemma is
completed.

For each subset A of S, let V§™=%4™ if ptd, while otherwise let V& be
chosen in Wg'™ p-adically complementary to (AnW4 ™), (Clearly we may let
Vim =g5m™ in any case.) It follows from the definitions and Lemmas 3.2, 3.3
and g.13 that if AcS”nS and PeW4%™ then there exists Q™eVA™ and a set of
homogeneous elements {P;} indexed by S’ in Q;[X] such that

(3-19) P:Q'(’”)-{—'Z PiﬁMA/XF{". E P, fM,,
. €A 18 —A

ord Q™ >ord P, ord P,>ord P. If A is any subset of S, there exists Q™eB4™ and
a set of homogeneous elements {P;} indexed by S in Q,[X] such that

(3-20) P=Q" + X P fM/X;+ X PfM,,
i€A i€8—A

but in this situation the previous estimates for ord Q"™ and ord P, do not hold unless p
does not divide d.

Finally let V4= § V4 mXm B = § Ba™Xr, VA(b, ¢) =VEnL(b,¢). In parti-

m=0 m=0
cular the space, V, defined previously, may in our present notation be written V§. We
shall write V* (resp. 8*) instead of V4 (resp. B2) and likewise V (resp. B) instead of V°
(resp: B?) whenever there is no danger of confusion. In particular B =284, the sum
being over all subsets A, of S. We note that for each subset A of S, VA and B* lie
in 8% and have equal dimension.

Lemma 3.14. — If 6<p[(p—1), and A is any subset of SNS’' then
LA, o) =VA(b, c) + ZHIA Wby cte) + X HIAb, c+e).
icA €S —A
If ptd then
L8(b, ¢) = V®3(b, ¢) + ZHLS (b, c +e).
i€S

The proofis a step by step repetition of that of Lemma g.4 and therefore may be omitted.
We note that the statement of Lemma 3.4 is obtained from this lemma by setting A =g.
Lemma 3.15. — If (p—1)"'<b<p/(p—1) and if A is any subset of SnS"' then
LA, ¢) =VA(b,¢) + ZDJLA (b, c+e) + X DIAB, c+e)
€S —A

€A
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If pYd then
L3(b, ¢) =V5(b, ¢) + 2 D,LS (b, c +-e).
ics
This generalization of Lemma 3.6 follows from Lemma 3.14 in precisely the same
way that Lemma 3.6 follows from Lemma 3.4.

We must now overcome some of the difficulties caused by the incompleteness
of Lemma 3.15.

Lemma 3.36. — For each subset A of S and each NeZ,_, N2> N,,
QAN @A | TPQA-BN-U L T peAN-y

iea ies—A
and the equality remains valid if B is replaced by V*.

Progf. — Since the left side of our assertion clearly contains the right side it is
enough to shows that the right side contains the left side. We show this inclusion for
each NeZ,. This is trivial for N=o since @@ =840=V40={o} (resp. Q)
if A+e (resp. A=o). We now suppose that N>o0 and use induction on N. Let
£efMN and let P be the coeflicient of X§ in &. Let homogeneous forms Q™ {P,},cs

be chosen as indicated by equation (3.20) (with m replaced by N). Let
£.=XY"IM,P/X; for icA and £,=XY"'M,P, for ieS—A. Let n=Q"X[eB* and

n+1
then £— (n 4 2 DE)eLN~Y. This shows that
i=1

ﬁA,(N)CQB(A)_}_ ZmigA—{i},(N—-l)_*_ E b‘-’ﬁA’(N—l)—}—gA’(N—l)
i€A

iES —A

and the assertion now follows from the induction hypothesis. The above argument
can be used for B* replaced by V), since Q™ may be chosen in VA® instead of B4 ™.
The following lemma is a special case of Lemma 3.11 unless p divides 4.

nt1
Lemma 3.v7. — For b>1/(p—1), B 2 DL(H) =o.
i1

ntl n+1
Proof. — The previous lemma shows that Vc @™ =8 + X D,2N"VcB 4 X DL(H).
i=1 i=t
We may assume that b<p/(p—1) and use Lemma 3.6 which shows that
n+1 n+1
L(s) =V + X D,L(h) and thus conclude that L(s) =84 X DL(). Lemma 3.11shows
i=1 i=1
n+1 n+1
that V~ L(b)/ X D,L(8) ~ B/(Bn X DL(h)). Since V and B are vector spaces of the
i-1 i=1

same (finite) dimension, this completes the proof of the lemma.
Our next lemma is a weak form of Lemma g.15 of interest only if p divides 4.

Lemma 3.38. — If A is any subset of S and if 1/(p—1)<b<p[(p—1) then

n-+1

LA(B)cB* + gll’biL(b).

49



50 BERNARD DWORK

Progof. — By Lemmas 3.15 and 3.16 we have if A%£S,

n+1 n+1 nt+1

TAB)cVA + 2 DL ce M) 1 T D.L(6)cBA + X D,L(b).
i=1 i=1 i=1

To prove the lemma for A=S, let B={1, 2, ...,n} and let J, ., denote the mapping
of O {X;} onto Q{X;} obtained by replacing X, ., by o. For each ieB let D; be
the mapping £{—E£+E3, . H of Q{Xg} into itself. For £eQy{X;}, ieB we have
3, 1 DE=D/J,, .5 while J,,,D,,E=0. If £€L?(b) then from the part of the lemma

n+1

already proven, there exists 7eBf such that Zey —}— Z D;Ls(4). Applying J, ., to this
relation we have o= ,,+11)—I— Z D;Lg(b). However equation (g.18) shows that
B2 =BE 4+ B and hence Sn+1ne%B and hence lies in Q}Bn 2 D;Lg(b), which according

to Lemma 3. 17 (with S replaced by B) is{o}since 6>1/(p— ) Thus J,,;n=o0, which
shows that neB;. This completes the proof of the lemma.

f) Exact Sequences.

The object of this section is the computation of the dimension of the space V§
defined in the previous section. For this purpose we shall need a theorem concerning
exact sequences which will be used again in the geometric application of our theory.

Let & be a field of arbitrary characteristic and let W be a vector space over |
with an infinite family of subspaces indexed by both Z and by the subsets of
S:{I, 2, ...,n+1}. Thatis, for each teZ and each subset, A, of S, let W(A, ) be

a subspace of W. Let ¢,,...,9,,, be a commutative set of endomorphisms of W
with the property
(3.21) o;W(A, ) cW(AUL{i}, 1 + 1)

for each €8, teZ, and each (not necessarily proper) subset, A, of S.

For each reZ. and each pair of subsets A, B of S such that ¢+ ACB, let
F(t, r; A,B) be the space of all antisymmetric functions g on A" such that
glay, ..., a)eW(—i—r,B—{a,, a, ..., a,}), it being understood that F(t, 0; A, B) is
to be identified with W(—¢, B). For r>1, let 3(t,7; A,B) be the mapping of
Tt r; A, B) into (¢, r—1;A, B) defined by

(3-22) (3t r; A, B)g)(ay, -5 a,4) :EA%g(d' e gy J)

for each ge® (¢, r; A, B). This mapping shall be denoted by § when no confusion can
arise.

Theorem 3.1. — If the sequence
§lt,r+2;A,B) > §lbr+15A,B) > §(t, 13 A, B)

is exact when r=o0 for all pairs of subsets A, B of S such that o+ ACB then the sequence is
exact for all reZ,.
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Proof. — We must show that Kernel 3(¢, 7+ 1; A, B) =Image 3(¢, r + 2; A, B).
We show that the right side is contained by the left side by showing that
3(t,r+1;A,B)3(t,r+2; A, B)=0. Let ge®({,r+2,A,B), then

O, r+1; A, B)8(t,r+2; A, B)g)(ay, ay, ..., a,)=

.y Gy

.Z @;(3(r+2; A, B)g)(a,, ..., a,, j) =_Z o0;8(a, ..., a,,],t)=0
jEA z,)EA

by the commutativity of the endomorphism ¢, and the skew symmetry of g.
To complete the proof we must show:

Kernel 3(t, 7+ 1; A, B) cImage 3(¢, 7+ 2; A, B).

This is true by hypothesis for 7= 0 and hence we may assume that > 1. Antisymmetry
shows that if A contains just one element then F(t,7+1; A, B)=F(t, r+2;A,B)=0
for r>1. The assertion is thus trivial if A contains only one element. We now
may assume that A contains at least two elements, that r>1 and we use induction
onrforall &. Let ge Kernel 8(f,7+1; A, B). Renumbering the elements of S if neces-
sary we may suppose that A={1,2, ...,s},s>2 and hence o= > ©;8(ay, - - -, a,, §)

j=1
for all (a;,...,a)cA’. With ga, fixed, say a,=1, we consider the mapping

(ay, ..., a,,1)—>g(1, 8, ...,a,,,) as a function on (A—{1})", indeed as an element
of Ft+1,r; A—{1}, B—{1}) since itisskew symmetricin the « variables» a,, ..., q,,,
and g(1, 8, ...,a,,,)eW(—t—r—1,B—{1}—{a, ..., 4,.,}). In this sense the
mapping lies in Kernel 8(¢41,7; A—{1}, B—{1}) and hence by induction on r
there exists A'eF(t+1,7+1;A—{1},B—{1}) such that

G+, r+1;A—{a}, B—{1 )t )(ay, ..., a,,,) =g(1, a5, - .., a,,,)

for all (a,,...,a,,.,)e(A—{1}). Let % be the function on {1}x (A—{1})"*! defined

by A(1, a5, ..., a,,)=k(a, ...,a,,,) forall (a,...,a,,)e(A—{1})"". Let A, be

the set of all (b,,8,, ..., 8,,,)€A™? such that at least one « coordinate » is 1. By

anticommutativity, £ may be extended uniquely to a mapping (again denoted by k)

of A, into W. Furthermore it is easily verified that if (4, ..., 5, ) X ACA, (i.e. atleast

one b;=1) then g(b;, by, ..., 0, ) =‘%<p,-h(bl, byy ..y b 0). IE (b, ..., b, ,)€A
i€

then (b, by, ..., b, ) eW(—t—(r+2),B—{b;, ..., b,,,}) asfollows directly from the
corresponding property of #'.

For each integer m, 1 <m<s, let A ={(a, ..., a,,,)cA " ?|ge{1,2,...,m} for
at least one ie{1,2,...,r+2}}. Let A, ={(ay, ..., a,,)eA " |qe{1,2,...,m} for
at least one ie{1, 2, ...,r+1}}. Suppose (second induction hypothesis) that £ has been
extended to a skew symmetric function on A, such that for all (q,, ..., a,,,)€A, and
(bys + -y byy1) €A, wehave k(ay, ..., 0, ,)eW(—t—(r+2),B—{a,,a,, ..., 4,,,}) and
glbyy ooy b, y) ='§xq}jh(b1’ vy by ,J). If m=s, we are done, i.e. he§(t, r+2; A, B)

7
and 3(f,7+2; A, B)h=g. Hence we may assume that 1 <m<s. If m=s—1 then
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since r+1>2,g(m+1,4,, ...,a,,,) =0 unless (m+1,4a,, ...,4q,,,)€A,. Likewisehis
defined on A, and can be extended to an anticommutative mapping of A”*? into W by
letting # map elements of A""% not in A,, into 0. Thus for (m+1,4a,, ..., a,,)€A™",

gm+1,a, ..., a,,.)= 2 oh(m-+1,a, ...,a,.,1) since this is certainly true if
icA

(m+1,a,, ...,a,,.,)€A,, while otherwise m+1=a,= ... =a,, and hence both sides

are zero.

Thus our second induction hypothesis may be applied to the case in which
1<m<s—1. We know that X gg(m+1,4,, ...,4,,7)=o0 forall (a, ...,a)ecA""
jEA

We restrict (a,, ...,q,) to (A—{1,2,...,m})""". For j<m, the second induction

hypothesis gives g(m+1, ay, ..., a,,j)= % ¢;k(m+1, ay, ..., a,,J, {) and hence
i=1

M=

o= Xoohim+1,a,...,4,510)+ 2+1<p].g(m+x,a2, e @y ]).
j=m

j=1i=1

The anticommutativity of 2 on A,, shows that

o=X

j=1i=1

Nk

cpjcpih(m—i— 1,85, -5 G,y Jyt)

and hence

s \ . “ , ..
o= X (Pj/g(m+laazy --~,ar,,])+i§1<?ih(m+l,ag; sy @Gy, Z’J)g'

j=m-+1
Since m 4 1<s, this last relation may be written o= i 2g’(m+ I,dy, ...,4,,]) whereg’
is the mapping (a5, ..., a,.4) > glm-+1,4,, ..., cyz::;——ﬁ oh(m-+1,ay, ...,8,,,1),
of (A—{1,2,...,m+41})" into W. It is easily veriﬁe(;ztlflat
gegt+1,rnA—{1,2,...,m+1},B—{m+1})
and we have just shown that g’ lies in the kernel of
St+1,r;A—{1,2,...,m+1},B—{m+1})
and hence by induction on 7, there exists

ReF+r,r+1;A—{1,2,...,m+1}, B—{m+1})
such that d(t+1,7+1;A—{1,2,...,m+1},B—{m+1})k"=g". Thus

m s
gmt1,a, ..., a,,,)= .El%k(m‘f‘ I, Gy < vy Gyigy L) +k Z+2<pkfz"(a2, e @iy, K)
i= =m

for all (ay, ...,a,,,)e(A—{1,2, ..., 1+m})". We now define for all
(Ggy -+ sty )e(A—{1,2, ...,m+1}) P h(m+t 1,0y, ..o, 0,4, 8,0)=h" (4, ..., a,.,)

and extend % by antisymmetry to I'={(a,, ..., a,,,)e(A—{1,2, ..., m})""® such that
at least one a,=m+1}. (We note that I'nA, =o¢ while T'UA,=A, ). Thus £ is
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now well defined and antisymmetric on A, ,. If now (a4, ...,a,.,)€A, ,, then
gla, .- -»a,.)= 2 o;h(a,, ...,a,.,,1) since this is known by the induction hypo-
icA

thesis to be true if (a;, ...,4,,,)€A, and hence we may assume that
(@, ..y a,)e(A—{1,2, ..., m})"**

and that at least one of the ¢;is m + 1 in which case we may use our relation involving A",
our extension of £ and the antisymmetry of both % and g. Finally we note that for
(@, s @, 0) €A1 R(ay, oo oy a,, ) eW(—t—r—2,B—{a,, ..., a,,}) since this holds
by the induction hypothesis if (a, ..., a,,,)€A,, while otherwise we may suppose
a,=m+1,(a,...,a,.,)e(A—{1,2,...,m+1})" sothat

hay, oo osa,0)=h'(a5, ..., a,,)

which lies in the asserted space since A" eF(t+1,7+1;A—{1,2, ..., m+1},B—{m+1}).
This completes the proof of the theorem.

For subsequent applications it is convenient to make available a weaker form of
the theorem. Let W now be a vector space over K with an infinite family of subspaces,
W(t), indexed by tcZ. Let o, ..., ¢,,, bea commutative set of endomorphisms of V
with the property o,W()cW(t+1) for each ieS, teZ. For each reZ, and each
non-empty subset, A, of S, let F(¢ 7; A) be the space of all antisymmetric functions,
g, on A’ such that g(a,, ..., a,)eW(—t—r), it being again understood that $(¢, 0; A)
is to be identified with W(—i¢). For r>1, let 3(¢,7; A) be the mapping of F(Z, r; A)
into §(¢, r—1; A) defined as in equation (3.22). The second corollary follows directly
from the theorem.

Corollary. — If the sequence
Bl 725 A) 5§l 7+ 13 4) > F6 73 A)

is exact when r=0 for each non-empty subset A of S then it is exact for all reZ,.
For our final result of this section we use the notation of § 3 e.

Lemma 3.19. — Consider the polynomial, Y"+'(1—Y* " 1)r+1/(1 —Y)"*' =3y,Y! in one
variable, Y. Then for each meZ,

dim B ™ =+, ,, and hence

dim B8 =4~ { (d— 1)1+ (— )" (d—1) }.

Proof. — In the notation of Theorem 3.1, let W=2 and let W(z, A)=Wg"
for each teZ and for each subset A of S. For each €S, let ¢; be the mapping £— fi£
of W into itself. It is clear that condition (g.21) is satisfied. To apply the theorem we
must verify that if e+ AcBcS then Kernel 8(¢, 1; A, B) =Image (¢, 2; A, B). This is
equivalent to the assertion that if %, is a set of elements of W§ ‘™" indexed by A such
that he(Mg/X,) and such that 'EAhi f;=o0 then there exists a skew symmetric set {n,;}

ic
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in W{*~® indexed by A such that k= X, f; for each ieA and such that », ;e (Mg/XX,).
ieA

This assertion may be proven without difficulty by means of Lemma 3.3 (i), using the
fact that the proof of Lemma g.1 shows that (f,...,f) :fii1=(f, .-, f,) for
r=1,2, ...,n Thus, Theorem 3.1 may be applied and denoting 8(—m, r; S, S) by
3, for fixed m, and F(—m, r; S, S) by §,, we may conclude that

(3.33) Kernel 3, = Image 3,

for r=1,2,... Furthermore §, being the space of all skewsymmetric functions, g,
on S taking values in W™~=" such that g(a, ..., a,)e WSt -marhn=1 " ye easily compute
(3-34) dim §, = ("71) (")

Since Image 8,~,/Kernel 3, and since §, is of finite dimension, we have

(3.35) dim §, = dim Kernel 3, 4 dim Image 3,.

Writing [Im 8] (resp: [Ker 3,]) for dim Image 3, (resp: dim Kernel 3,), we now have

aspowerseriesin Y, X Y'dimF = 2 Y'[Im 3]+ X Y'[Ker3,]. Equation (3.33) now
. r=1 r=1 r=1
gives

(3.36) S Y dimg, = Y[Im3]+ (1 + Y1) 2 Y[Ims].
r=1 r=2

Since dim §,=o0 for r>n-+1, this equation is a relation between polynomials and
o0

hence setting Y=—1 in (3.36), we have —[Im8]= X (—1)"dim§,. By definition
1

r—
B&™ is isomorphic to the factor space W™/(AnWS™) and Lemma 3.3 (i) shows
that ANWH™ =Images,. Furthermore §,= W™ and hence

dim 85" = dim §,— [Im 3,].

We may conclude that

(3-37) dim B " =

r

(—1)" dim §,.

I M8
[}

It is easy to verify with the aid of (3.34) that the right side of (3.37) is the coefficient v,
of Y™ in the polynomial

B(Y) =Y (1 — Yo=tymHl) (1 Y)Y (p Y L YO

Clearly dim®B§ = X y,,=d X k(w), the sum being over the d* roots of unity. Clearly
m=0 ®

1—o' ' =—0""(1—ow) and hence i(w)=(—1)"*" if @+ 1, while A(1)=(d—1)"*".
This completes the proof of the lemma.

We now observe that dim V = dim 8 = 2 dim B4, the sum being over all subsets A
A
of S. In particular for A=g,dimBj=1 and this coincides with the formula of the
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previous lemma if we replace n+1 by o. Itis easily verified that dim V=d", a result
that could have been obtained directly by an argument similar to that of the lemma in
which the corollary of Theorem 3.1 is used instead of Theorem 3.1.

Since the polynomial % in the proof of the previous lemma has the property
fl(Y) =Yd("+1)/l‘(Y_1)
it is clear that vy, ,,, ;=y; for all jeZ. In particular
Yma = Y(in+1—myd

for all m, a result which may be related to the conjectured functional equation of
the zeta function. We also note that y;=o0 if and only if d<z+4 1, a fact related to
the results of Warning.

§ 4. Geometrical Theory.

The notation of § g shall be used whenever possible. In this section ¢=¢° acZ_,
a>1. The first subsection involves power series in one variable, £, with coefficients in Q.
Such a power series, Xv,,t", will be said to lie in L(b, ¢) if ord y,,>mb+-¢ for all meZ_ .

a) Splitting functions.

In [1] we gave two examples of a power series, 8§, in one variable satisfying the
conditions
(1) 0eL(x, 0),%x>o0.
(i) 6(1) is a primitive p'™ root of unity.
(iii) If yP°*=~v for some integer s, s>o then
§—1 SEIYP i
I 6(yP) =06(r)""

7=0

(iv) The coefficients of 6 lie in a finite extension of Q.

A power series in one variable satisfying these four conditions will be called a
splitting function. We shall construct an infinite family of such functions indexed by
Z'={+w}u{seZ|s>1}. Indeed the theory of Newton polygons shows that for each
s€Z’, the polynomial (or power series),

3 yo 9

i=0

has a zero, v,, such that ord y,=1/(p—1). While there are p— 1 such zeros, we shall
suppose one has been chosen for each seZ’. For each seZ® we now set

(4-1) 6.0 =exp) 5 ()
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Lemma 4.1. — For each seZ’, 0, is a splitting function.

Proof. — In the following the symbol y shall denote a parameter to be chosen in Q
subject to the condition ord y=1/(p—1). For eachseZ,,let g (¢, ) =exp{— (¥)?°[p’}.
It is easily verified that g,eL(a,,0), where

(4-2) e, =(p— 1) —p" s+ (p—1)7")

for seZ, , while a, is taken to be (p—1)™' for later use.
For seZ, let G,(t,y)= II gl(t,»). Since a;,,>a; for each jeZ, , we conclude
j=s+1
that G,(¢, »)eL(a,,,,0). Let E(¢) denote the Artin-Hasse exponential series

(4-3) E(t) =exp] 2 tP/pi.
li=o

It is well known that

(4-4) E(t)eL(o, o)

E(t) = 1+t mod £#Q’{¢}.
Let 4,(t, ) =E(y) and for seZ,_,s>1 let

(4-5) hy(t, 9) = ke, (8 9) G, (4, 9)
and so for seZ’
(.6) h(62) =exp| Z ()7 lp

Clearly #,(t,y)eL(a,,0) and for seZ, s>1, equation (4.5) shows that
(47) hs(t’.y) EL(as+1’ 0)‘

Since a,= (p—1)/p*>0, we may conclude that 4,(¢, ) converges for ord ¢ >0. Further-
more equation (4.5) shows that

(4.8) B(63)+ O 1 = by (t,9) mod £ 0 fs)
Combining this relation with (4.7) we conclude that for s>1
(4-9) ord(h,(1, )+ I — ko (1, )) > a4y (145,

Since £,(1,9) =E(y), we conclude with the aid of (4.4), and (4.2) that for seZ_,
$>1

(4-10) ord(f,(1,9) —1) =1/p—1

and (4.4) shows that (4.10) is valid for all seZ’. Furthermore equation (4.6) shows
that for seZ'

(4-1x) log h,(1,5) = |y
i=0
and hence log %,(1,vy,) =o.
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Since 0,(t) =#4,(t,v,), we conclude from (4.7) that 6.,eL(a,,,, 0), and from (4.11)
that 6,(1) isa p'—th root of unity for some r while (4. 10) shows that 6,(1) is a primitive p*

root of unity. . ! o

1

Ify?" =y where reZ,r>1 then as a power series in y, 'Hohs(ypj,y) =h(1,9) "
as may be seen from equation (4.6). Replacing y by v, w:: conclude that 0, satisfies
condition (iii) in the definition of a splitting function. We have already verified
conditions (i) and (ii). Finally we note that Q’(y,) is a purely ramified extension of Q’
of degree p— 1, while condition (ii) shows that Q’(y,) contains a primitive ™ root of
unity. We conclude that for each seZ’ the coeflicients of 6, lie in the field of p* roots
of unity. This completes the proof of the lemma.

If ger+:Q{e}, let g(t)=11 g(t""), an infinite product which converges in the
j=0
formal topology of Q{t}. Clearly g(¢)=g(¢)/g(¢*) and if ¢=p" a>1 then

(4.12) TH gty =3 (1)) (1.

j=1

It follows from the definitions that for each seZ'

(4-13) 6,(t) = exp ]gv i
where .

(4-14) Yo = éovﬁ’ilﬁi

It is worth observing that

(4-15) ord v, ;= (p— 1) —=(+1)

In particular ﬁlzexp (v)- In the application use will be made only of 6, and 6,.

b) Let f(X) be a homogeneous polynomial of degree d in n-+1, (n>0) variables,
X, Xps o ooy X, 11 whose coefficients are either zero or (¢— 1)—th roots of unity in Q.
We may write

P
(4.16) fX)= 2 AM,,
i=1
where A%=A; and M; is a monomial in X, ..., X, , for i=1,2,...,0. Let @,

denote n dimensional projective space of characteristic p and let § be the variety in G,
defined over the field £ of ¢ elements by the equation f(X)=omodp. For n=o,
extending in the obvious way the usual identifications associated with projective
coordinates, G, consists of just one point which is of course rational over the prime field.
In any case § =G, if fis trivially congruent to zero mod p. If fis not trivial mod p
then § is a Aypersurface in S,, to which we attatch the conventional meaning if n> 2,
while if =0 then § is empty and if n=1 then § is a set of at most d points on the
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projective line which are algebraic over £ and closed under field automorphisms which
leave the elements of £ fixed.

For n>0 we say that § is a non-singular hypersurface of degree 4 in &, if the
polynomials £ 7('/', cees . (mod p) have no common zero in $,. For n>2 this
X, 0X, 11 =
coincides with the usual definition, while for n =1 it means that § is a set of 4 distinct
points and for n= o0, it means that § is empty (i.e. f is not trivial mod p).
Let £($, t) be he zeta function of § as variety defined over £ and let P($), ¢) be
the rational function defined by

(4.17) P(H, V" =L(9, ) (1 —q¢") ' I1 (1 —q%)

=0
According to the Weil hypothesis, if 2> 2 and § is a nonsingular hypersurface of degree
in S, then P($, t) is a polynomial of degree d~'{(d—1)"*'+ (—1)"*'(d—1)}. Using
the above conventions this hypo.esis is easily verified fir =0, 1 as for n=o,

1 1§ is empty
8 )= ’
while if =1 and § consists of d distinct points, then § 1= s union ol ¢ disjoint sets of
points, the i"™ subset consisting of ; points conjugate over + .4 each point generating
an extension of £ of degree 4. In this case d= 2 b, and
i=1
(4-19) (9, ) =TI (1—2%)~"

i=1
Thus if § is a non-singular hypersurface of degree 4 in S, then
I if n=o0

(4-20) P($, t)=3<_1i[1(1_tb@))/(1—z) if n=1,

A

which is precisely the Weil hypothesis in these trivial cases.

We know from [1] that the zeta function of § is related to the linear transformation
¢oF, where

(4.21) F(X) = T T 0((X,AM)?),

i=1j =0
6 being any splitting function. If f is defined as before then since AI=A,,
(4-22) F(X) = F(X)/F(X)

where
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If we take the splitting function to be §,, s=1,2, ..., +c0, then F takes the

form
s—1

(4-23) F,(X)=exp| T v, XE /7 (XP),
i=

where 7 is the Frobenius automorphism over Q' of a sufficiently large, unramified
extension field.

Since 8,cL(4,;,,0), equation (4.12) shows that 0,(6)/6,(t" eL(pa,, /g, 0). It
follows without difficulty that F (X) = F,(X) /F (X9 eL(pa,,/q, 0) in the sense of § 3,
a,,, being given by (4.2).

We now recall and clarify the geometrical significance of the characteristic series,
yp,» Where F is given by (4.21) If geQ{t}, let g° be the power series g(gf) and if
ge1 +tQ{t}, let g° be the power series g'~®=g(t)/g(qt).

n+1

If § is the « hypersurface », Il X;=0 in &,, then by [1, equation (21)]
i=1

(recalling that although F now involves a total of n--2 variables, we are now counting
points in projective rather than affine space)

(4-24) US—5, g =u VT (1—p OV

For each non-empty subset A of S={1,2,...,n+1}, let 14+m(A) be the
number of elements in A and let §, be the variety in &,,,, defined by the equation in X,,

I, f=0modp
and let §) be the hypersurface H X;=o0 in G,,,. Let A, be the power series in one
variable defined by
1+m )
(4-25) C(Ds—Hi> o) = (1)

The precise formulation of A, as a characteristic series in the sense of § 2 does not concern
us here, except that we observe that $;=29, A;y=yy. To simplify notation let P,(¢)
denote P(H,,t) as defined by (4.17), so that

m m{A) )
(4-26) P, ()" =49y, 8) (1—g" W) TT (1—g').
i=0
If B is a non-empty subset of S then
(4-27) 9= (H:—91),

a disjoint union indexed by all non-empty subsets, A, of B. We may conclude with
the aid of (4.25) that

Un 91) = I €.~ 95, g1) = TL{AT BT py= =3y

But an elementary computation gives X —(—3)"#=8§"1(¢**™®—1) and hence
BCA

(4.28) UBps gt) = (1)@ M1 A7,

ACB
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while equation (4.26) shows that

— 1ym(B) = _ .m(B)
(4-29) UHg, gt) ={Pe(t) V" (1—g) 73 1@ P®
comparing (4.28) and (4.29) we obtain
(4-30) (1— )P (1) U™ = [T A (-3 +mW
AcB

Relations such as (4.30} can easily be inverted by an analogue of the Mébius inversion
formula. Explictly if A—®, is a mapping of subsets of S into a multiplicative abelian
group and if for each subset B of S

(4-31) Gy=116,,

ACB

the product being over all subsets, A, of B, then
(432 6, = I G0

ACB

The inductive proof of (4.32) may be omitted since it depends entirely on the well

known fact that ZT] (M (—1)f=—1 for each integer r>1. Applying this to (4.30)
i=1

and leting B=S, we obtain AS_(“S)H"=H{PA(t)‘?(“l)m(A)(I—t)}(_l)"_m(A). Since

yp=1_A7g we obtain A

(4-33) W= (1—1) I;IPA(qt),

the product being over the non-empty subsets, A of S. (A similar formula appeared
in an earlier work [6, equation 21].) We believe this equation is quite significant
since yg is entire even if §) is singular.

Since ¢($,, t) is rational, P, is also rational and hence (4.33) shows that the zeros
of yp and the (¢g—1)p roots of unity generate a finite extension, ,, of Q. With this
choice of Q,, the results of § 2 show that the zeros of y; are explained by the action
of YoF as linear transformation of L(gx) if FeL(x, o).

We now fix seZ, let F=F, so that x=pa /g, F=expH, where
s—1 o X
H= X y, XP'f7"(XP'). We shall assume unless otherwise indicated that fis a regular
1=90

polynomial ('). Equation (4.15) shows that H satisfies the conditions of § 3. It
follows from (4.22) that « =¢oF, may be written

(4-34) a=F"toyoF,

while with this choice of H, the mappings D; of § 3 are simply £—>13“1E‘.(Ef‘). Since
gE,0y ={oE,, we conclude for ¢=o0,1,...,24+1 that

(4-35) aoD; = gD;o0.

1y This condition on f is equivalent to the condition that $, is non-singular for each non-empty subset,
q A gu pty
A, of S. It will be shown that this condition involves no essential loss in generality.
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If A is any non-zero element of Q;, let W, be defined as in Theorem 2.4,
ie. W,={o} if 2! is not a zero of yz, while W,=Kernel of (I—A"'x)* in L(gx)
if 7! is a zero of multiplicity p. We note that %, «, F, the D;, H, and the spaces W,
depend upon our choice of s. The maximum value of g« is p/(p—1) and corresponds
to s=o. The minimum value of ¢« is (p—1)/p and this exceeds 1/(p—1) unless
p==2. This minimum value of g» corresponds to s=1. It is assumed in the following
that gu>1/(p—1).

Lemma 4.2. — If A is any subset of S and o<b<gn then
W;\n Z D,,L(b) = 2 DiWA/q
icA icA

Proof. — Let {£,} be a set of elements in L() indexed by A such that 2 D, =EeW,.
icA

Let p=max{dim W,, dim W,,}. It follows from the corollary to Theorem 2.5 that
for each icA there exists 7,eW,, and %;eL(d) such that

&=+ (I—(\g) " a)*n;.
Thus (I—21a)* X Dy = 2 D¢, — 2 D;n, =E— 2 D;x;, which lies in W, by hypothesis,
icA i€ i€A icA
choice of the %, and equation (4.35). We may now conclude from equation (2.54)
that (I—a"ta)* X DyyieW,n (T2 a)*L(d) = (I—x'a)*W, ={o}. This shows that
icA
£— X D,m;=o0 andhence £e X D;W,,,. Thus W,n 2 D,L(b)c Z D;W,,, and equality
icA icA icA ‘

i€
follows without difficulty.

Lemma 4.3. — If A is a non-empty subset of S and {E};c, is a set of elements in W,

such that X D;E;=o0 then there exists a skew symmetric set {n;} in W, indexed by A such that
icA

g, = X Dy, for each icA.
jEA

Proof. — Let A={I, 2, ..., 1} 1<r<n+1. Ifr=1 then D,§ =0, §eL(g) and
hence Lemma 3.10 shows that & =o0. We may therefore assume r>1 and use
induction on r. Lemma 3.10 shows that there exist &, ..., & _, in L(gx) such that

r—1
t,= 2D,
i=1
Since %.eW,, the previous lemma shows that the & may be chosen in W,,. Hence
r—1
o= % D,(,+D,) andsince £+D,£;eW, for i=1,2, ..., r—1, the induction hypo-
i=1

thesis shows the existence of a skew symmetric set {»; ;} in W, indexed by {1, 2, ...,7r—1}
such that for i1=1,2,...,7—1

r—1
E+DE = _leﬂki
=
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We now extend the skew symmetric set by defining », ,=—&/=—m, ;for i=1,2,...,7—1
and %,,=o. Itis readily seen that the 7, satisfy the conditions of the lemma.

Let A be an eigenvalue of «. We now compute the dimension (as vector space
n+1

over Q,) of the factor space W,/ % D;W,,.
i=1

n+1 n+1
Lemma 4.4. — Dim(Wl 2 DiWNq) =2 ("I")(—1)" dim Wy,
i=1 r=0

Progf. — In the statement of the Corollary of Theorem 3.1, let W=L(gx) and for
each teZ, let W(t)=W,y, ¢;=D, for i=1,2, ...,n41. The previous lemma shows
that the sequence of the Corollary is exact when 7r=o0 and hence the Corollary may be
applied. In this application §(o, r; S) is the space of all skew symmetric maps of S
into W(—r)=W,;r and hence dim (o, 7;S)=("}")dim Wy .

The corollary may be used to obtain an identity similar to equation (3.36),
where §,=%(o,r;S),3,=38(0,7;S) and the assertion follows without difficulty since

n+1 ©
dim(Wl 2 DiWA,q)zdim F—[Im3]= 2 (—1) dimg,.
i=1 ' r=0

L+n .
We can now show that y2  is a polynomial.
nt1

Theorem 4.x. — For each \eQYy, let b, =dim W,/ X D;W,, , then
it

=)
the product being over all eigenvalues N of «.

Progf. — Let A be an eigenvalue of « with the property that A/¢” is not an eigenvalue
for any r>1. For each eigenvalue, V', of «, there exists an eigenvalue A with this property
such that A'=g¢'An for some ieZ,_. Let g;=dim W, for each jeZ,. The factors
of yp corresponding to terms of type (1—Ag't), reZ, may be written

H, () = ﬁ (1—ng)% = (1—tn)i=0
i=0

The previous lemma shows that
n+1

bygi= EO (—1)(* e

7
and hence

(I—<P)”“an,-<9"=i§0bxqiq>‘-
It follows that

§ bagi pt
1 . 7
H, (1% = (1—ag)i=0

This completes the proof of the theorem.
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Equations (4.26) and (4.33), together with the known rationality of zeta functions,

Lin . . . .
show that 33 is a rational function. The theorem shows that the function is entire

in the p-adic sense and hence it must be a polynomial.
nt+1
Let 28 be the factor space L(gx)/ X D,L(gx). For gx>1/(p—1), we have shown
n+l t=1

in § g that dim W=4d". Since X D,L(gx) is a subspace of L(gx) which is invariant
i=1

under «, there exists an endomorphism « of Y deduced from « by passage to quotients.

Theorem 4.2.
X "= det (I—ta),
provided gv>1/(p—1).

Progf. — It is quite clear that the characteristic equation of « is independent
of Q, and hence it may be assumed that Q, contains the zeros of det (I—t«). For each
non-zero element A of Q,, let MW, be the primary component of A in W with respect to «.
To prove the theorem it is enough in view of Theorem 4.1 to show that

n+1
(4.36) dim B, = dim (wx/ py DiWM)
i=1

Under the natural mapping, J, of L(gx) onto M, W, is mapped into MW, with kernel

nt1 ntl

W,n 2 D.L(gx), which by Lemma 4.2 is X DW, . This shows that dim B, is at
i=1 i=1

least as large as the right side of (4.86). To complete the proof it is enough to show
that I, is the image of W, under J. To prove this let £ eB,, hence there exists r>1

such that (I—A'a)( =o0. Let & be a representative of & in L(gx), then
n+1

(I—2'«)2e 2 D,L(qx). Hence there exists elements v, ..., n,,; in L(gx) such that
i=1

n+1

(I—x"'2)E = X Dy,.
i—1

Let p. be the multiplicity of (A/¢)™" as zero of yg, then

n+1

(I—at) t#E = 2 D;(I—gh o).
i=1
Theorem 2. 5 shows that there exist 7y, ..., n,,; in L(gx) such thatfor i=1,2,...,n41
(I—gn o) i = (T—qn"a) .
The last two displayed formulas show that
n+1
(1—1—&)““(5— > Dm;) ~o.
i=1

n+1

This shows that £eW, + % D,.L(gx) and hence & =J(£)€J(W,), which completes the
i=1
proof of (4.36) and hence of the theorem.

63



64 BERNARD DWORK

Theorem 4.3. — The mapping, «, is a non-singular endomorphism of W (and hence
X;S.}H is a polynomial of degree d").

Proof. — 1t is enough to show that « (M) =W, which by Lemma 3.6 is equivalent

to the assertion that
n+1

(4-37) aV+ 2 DL(g)>V

We recall that o depends upon the choice of seZ” in our construction of F=F,, but
the degree of x81+" is clearly independent of s and Theorem 4.2 therefore shows that
dim = () is independent of s provided gx«>1/(p—1). Since dim L3 is also independent
of s (subject to the same condition) we conclude that if equation (4.37) holds when
s=oc0 then it holds for all s such that gx>1/(p—1). We may suppose in the remainder
of the proof that s==00. Let 7 be an extension, which leaves fixed a primitive p* root
of unity, to Q, of the Frobenius automorphism over Q' of the maximal unramified
subfield of Q,. Our proof is based on the fact that while F(X)/F(X%) lies in
L(p/g(p—1), o), F(X)/F(X?) lies in L(1/(p—1), 0).

Let ¢, denote the mapping ¢ with ¢ replaced by p, (i.e. ¢=4¢;). Let @, be the
mapping X“—X™ of Q{X} onto itself. Let a,, B, be the Q'-linear mappings of Q{X }
into itself defined by

=F-! Loy, oF
Q‘):f‘ o‘ro(I) oF

We note that «, and B, are endomorphisms of Q{X} as Q_-space, not (necessarily) as

Q,-space. Inview of our previous remarks we easily verify since F(X) /FT(X”) eL(1/(p—1))
that

(BoL(p/(p—1)) CL(1/(p—1))
(4-38) #L(1/(p—1)) cL(p/(p—1))

and since {¢,0®,=1, we conclude trivially that
(4-39) 208y = I.
Since * leaves F invariant, the definitions show that
(4-40) o = agot® =1%0uy.
Equations (4.38) and (4.39) give
L{(p/(p—1)) = %o L(p/(p—1)) cox, L(1/(p—1)) cL(p/(p—1))

which shows that

(4-47) % L(1/(p—1)) =L(p/(p—1)).
Furthermore, the definitions show that for i=o,1,...,24+1
(4.42) %goD; = pD;00.
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n+1

Lemma 3.6 shows that L(1/(p—1)) =V + X D,L(1/(p—1)); applying o, to both sides of
i=1
this relation and applying (4.41) and (4.42) we find

n+1

(4-43) L(p/(p—1)) €%V + 2 D,L(p/(p—1)).
n+1 n-+1

(444 (' DL(I(p—1) < T DL(pI(p1).

Since VcL(p/(p—1)), we may conclude that for j=o0,1,...,a—1
n+1

W VeatV -+ -ED"L(MUJ_I))

an elementary consequence of which is
n+1

VeaV+ 2 DL(p/(p—1)).

Since L(p/(p—1)) is stable under v and V may be assumed to have been constructed
so as to be stable under 1%, equation (4.40) and this last relation give
n+1

VeaV+ 2 DL(p/(p—1)),

which is the form taken by (4.37) when s=o0. This completes the proof of the theorem.

We have thus shown that if f is a regular polynomial then (1—¢)IIP,(gf) (the
product being over all non-empty subsets, A, of S) is a polynomial of degree 4”; and
if 5 is chosen such that ¢x>(p—1)"! then this polynomial is simply the characteristic
equationof . Since x =pa, /¢, equation (4.2) shows that gx certainly exceeds (p—1)~'
if s>1 (resp. s=3) when p>2 (resp. p=2).

We now propose to investigate the factor Pg(gf) under the restriction that the
hypersurface is of odd degree if the characteristic is 2. To do this we now specialize s.
Ifp divides dlets=1. Ifp doesnotdivide dletsbesolarge that gx>1/(p—1) (says=o0).

For each subset A of S, a ring homomorphism, J, of Q [X;] onto Q)[X,] was
defined in § 3. We now use the same symbol to denote the extension of this homo-
morphism to one of Q{X,, X;} onto Q{X,, X,} which is defined by J,(X,) =X,

For each subset, A (including the empty subset) of S and for each subset B of A
and each real number b, let

Ly (b) =3, L(b)
LE(b) ={£€L,(b) such that My divides £}.
For ieAufo}, let D,, be the mapping £—>J,D;& of QfX,, X,} into itself. Let a,

be the mapping £—3,(«f) of L,(gx) into itself. Using an obvious analogue of
equation 4.35, the subgroup X D;,L,(gx) of L,(¢x) is mapped into itself by «, and
icA

hence by passage to quotients we define an endomorphism «, of the factor space
QBAzLA(qx)/ 2D, ,L,(gn). (Thusin the notation of Theorem 4.2, =MW, «=Tay).
icA
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Now let 4 be the image in 9B, of Li(gx). We note that L4(gx) is mapped into itself
by a, and hence x, maps I} into itself. Let a4 be the restriction of «, to IB4.

For the empty subset, o, of S, we have J,F=1, L,(gx) =Q,, D, ,L,(qx) ={0},
W, =MWy~ Q,, «, is the mapping £—¢& of Q, into itself. Clearly «, operates as the
identity mapping on ; and hence

det(I—tad)=1—¢.

Theorem 4.4.
det(I—fa) = [l det(I—fx?%),
A

the product being over all subsets, A, of S.

Proof. — Lemmas 3.11, 3.15, 3.17, 3.18 show that under the natural mapping
of L,(qx) onto MW,, B4 is mapped isomorphically onto W4. The proof of lemma 3.17
shows that W~ B=2B4 and here the isomorphism is given by the natural map of
Lg(gx) =L(gx) onto W. Foreach subset A of S, let P, be a basis of B4 and let P=uP,.
Lemma 3.13 shows that P is a basis of B. We use this basis to construct a matrix
corresponding to «. For each weB we may write (by virtue of Lemmas 3.15 and 3.18)

(4.45) a(w)e X M(w, 0)o’+ X D,L(gx),
: w'eP €8

where M(w, o' )eQ,. It follows from Lemmas g.11 and g.17 that this relation

uniquely determines M(w, o’). If M, divides o then «(w)eli(gx) and hence by

Lemmas 3.15, 3.18, 2 Mo, o’)w’'eB*, which shows that M(w, ©’) =0 unless M,
W' E€P

divides ’. We now order the elements of P so that the elements of B, preceed those
of Py if the number of elements in B exceed the number in A and such that for A+ B
no element of Py lies between two elements of P,. Let IN be the matrix indexed by
B x P with general coefficient M(w, ') and with the elements of B ordered as indicated.
Let 9k, be the submatrix obtained from It by restricting (o, o) to B, x P,. Itis clear
that 9, is a square matrix, its diagonal lies along the diagonal of I and the coeflicients
of M lying below M, are zero since these coefficients are of type M(w, '), where v’'eB,
and o is divisible by My for some B not contained by A. It now follows that

(4-46) det (I—¢I) =11 det(I—IM,),
the product being over all subsets, A, of S. It follows from (4.45) that
det (I—fa) =det (I—tIM). For weP, if we apply T, to both sides of equation (4.45)
we obtain
ai(w) =oy(0) =3, (an)e 'E‘B Mo, oo’ + ‘gDi’ALA(QX).
Since P, is a set of representatives of a basis of 984, this shows that for each subset A
det(I—t9,) = det(I—fa}).

The theorem now follows from (4.46).
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Corollary.
Py(gt) = det (I—£af)
deg Py =d=*{(d—1)"*! + (d—1)(—1)"*1}

Progf. — Theorem 4.2, equation 4.33 and Theorem 4.4 show that for each
non-empty subset B, of S,

Il det (I—sad) =T1P,(qt)
A A

the products being over all non-empty subsets A of B. This system of relations can be
solved for P,(qt)/det (I—fa}) by means of equation (4.32). This gives the first
assertion of the corollary. The assertion concerning the degree follows from the compu-
tation of dim B (Lemma 3.19) and the proof (Theorem 4.4) that « (and hence «f)
is non-singular.

¢) Let k (as previously) be the field of ¢ elements and let us extend the notion of
regularity (in the obvious way) to polynomials in A[X,, ..., X, {]. We have verified
a part of the Weil hypothesis for a non-singular hypersurface, §, in S, defined over £
provided d is odd if p =2 and provided the defining polynomial f ek[X] of § is regular.
(f =image for f under the residue class map). We now consider the situation in which f
is not necessarily regular. Let A= (g;;) bean (n4-1)Xx (n+ 1) matrix whose coefficients

are algebraically independent over A[X,,...,X,.,]. We consider the coordinate
transformation
n+1
Xi:jzlai;'Yja j:I’23 ...,ﬂ+I
and consider f as a polynomial in Y,, ..
We easily compute

.5 Y, with coefficients in £(ay, ..., a, ““)'

- aj‘ n+1 a]‘_
ﬁ = Yi@Y,- —jvzlxlﬁaﬁAli/det A

where A, is the cofactor of g;; in A.  Our problem is to specialize the matrix A subject
to the conditions

(1) det A%o

(2) f, (det A)f/, ..., (det A)f;,, have no common zero in &,.

Let U be the set of all A with coefficients in the algebraic closure of £ which fail to
satisfy these conditions, i.e. U is the set of all A such that either det A=o or

F> (det A)fY, ..., (det A)f., have a common zero in G,. It follows from elimination
theory that U is an algebraic variety in &,,, where m= (n+41)*—1. On the other hand
it is known ([7], Chap. VIII, prop. 13) that the generic hyperplane section of a non-
singular variety is non-singular and therefore U+&,. Hence the dimension of U is
at most m—1 (and hence must in fact be m—1). Thus if £, is the field of 4" elements,
the number of points of U rational over £, is no greater than b(¢"" '—1)/(¢’—1) for

67



68 BERNARD DWORK

some fixed real number 4. On the other hand there are (¢™-1)/(¢—1) pointsin G,
rational over k£,. Thus there exists an integer 7, such that for each r>r,, there exists
a point of G, rational over k, but not in U. This means that for each r>r; there exists
a coordinate transformation rational over £, such that §) is defined by a regular polynomial
with respect to the new coordinates. For each integer 7, let {, be the zeta function of §
as hypersurface over £, and let P, be the rational function defined by

B =5, TL (1—g7%).
i=0

It follows that for each reZ,r>1
P,(t) = IT P,
=1

the product being over all ™ roots of unity, v. Furthermore if r>7, then P, is a
polynomial of a certain predicted degree m’. If P, is a polynomial then clearly it must
also be of degree m’, and hence to complete our treatment of P, it is enough to show
that P, is a polynomial. Since P, is a power series with constant term 1, we may write

p,(t) = I (1—b,0)/ TT (x—b(1)
i=1 i=1

where the b are distinct from the 5;. Consider b;. If P, is a polynomial then there
must be an 7™ root of unity, v, such that b;v=2», for some integer i, 1<¢<¢. Let 7 run
through ¢+ 1 distinct primes each greater than 7,. By the pigeon hole principle there
exists one integer ¢ such that bjv'=5,=>5;v"’, where v’ (resp. v"’) is a p’-th (resp. p’’-th)
root of unity, p’', p'’ being distinct prime numbers. It is clear that v =v’'=1
and b;=b4,, contrary to hypothesis.

It is now clear that for the treatment of a non-singular hypersurface, the hypothesis
that the defining polynomial is regular is no essential restriction.
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