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This article is concerned with the further development of the methods of p-adic 
analysis used in an earlier article [i] to study the zeta function of an algebraic variety 
defined over a finite field. These methods are applied to the zeta function of a non- 
singular hypersurface .~ of degree d in projective n-space of characteristic p defined 
over the field of q elements. According to the conjectures of Weil [3] the zeta fimction 
of .~ is of the form 

(I) ~(.~, t) = P(t)(--1)n/'l-It ( I ' ~  --fit) 
l i = O  

where P is a polynomial of degree d-~{ (d - - i )~+t  + ( - - i ) ~ + ~ ( d - - i )  }, (here n 2 o ,  d 2  I, 
for a discussion of the trivial cases n = o , I  see w 4 b below). It  is well known that this 
is the case for plane curves and for special hypersurfaces, [3]- We verify (Theorem 4.4  
and Corollary) this part of the Well conjecture provided I = (2, p, d), that is provided 
either p or d is odd. 

In our theory the natural object is not the hypersurface alone, but rather the 
hypersurface together with a given choice of coordinate axes X1, X2, . . . ,  X,  +1. If  for 
each (non-empty) subset, A, of the set S = { I, 2, . . . ,  n + I } we let.~A be the hypersurface 
(in lower dimension if A4=S) obtained by intersecting ~ with the hyperplanes 
{Xi=o}ieA , then writing equation (I) for -~A, we define a rational function PA by 
setting 

ira(A) 
(2) ~(~a, t) = PA(t)(--1)m(A)(I --q'"(alt)/H__ ~ ( i - -qg) ,  

where i + re(A) is the number  of elements in A. If.~A is non-singular for each subset A 
of S and if the Weil conjectures were known to be true then we could conclude that PA 
is a polynomial for each subset A. 

Our investigation rests upon the fact that without any hypothesis of non-singularity 
we have 

( 4 . 3 3 ) ) / ~ n + l ( / )  = ( I  - -  t) l ~ P A ( q t ) ,  
A 

(a) This work was partially supported by National Science Foundation Grant Number G7o3o and U.S. Army, 
Office of Ordnance Research Grant Number DA-ORD-BI-I24-6I-G95. 



B E R N A R D  D W O R K  

the product on the right being over all subsets A of S and ZF is the characteristic series 
of the infinite matrix [2] associated with the transformation ~ --- ~boF introduced in our 
previous article [I] and studied in some detail in w 2 below. We recall that 
z~(t) =y.F(t)/zF(qt) and the fundamental fact in our proof of the rationality of the zeta 
function is that ZF is an entire function on ~,  the completion of the algebraic closure 
of Q',  the field of rational p-adic numbers. 

In w 2 we develop the spectral theory of the transformation x and show that the 
zeros of ZF can be explained in terms of primary subspaces precisely as in the theory 
of endomorphisms of finite dimensional vector spaces. In this theory it is natural to 
restrict our attention to a certain class of subspaces L(b) (indexed by real numbers, b) 
of the ring of power series in several variables with coefficients in ft. The 
definition of L(b) is given in w 2, for the present we need only mention that if b'>b, 
then L(b') eL(b). 

An examination of (4.33) shows that if the right side is a polynomial and i f0 -1  
is a zero of that polynomial of multiplicity m then (Oqi)-1 must be a zero of ZF of 
multiplicity m(n+i). This is << explained ~> by the existence of differential operators 

Dr, . . . ,  Dn+ 1 satisfying 

(4-35)  ~oD~ = qD~o~ 
l n + t  

The space L(b)/~=1D,L(b ) _  is studied in w 3 d (in a slightly broader setting than 

required for the geometric application), for i/(p-- I)<b<p/(p-- I), the main results 
being Lemmas 3- 6, 3. io, 3. i i. This is applied in w 4 to show that if ~A is non-singular 
for each subset A of S then the right side of (4.33) is a polynomial of predicted degree 
and is the characteristic polynomial of E, the endomorphism of L(b)/ED~L(b) obtained 
from ~ by passage to quotients. (Theorems 4. i, 4.2, 4.3) We emphasize that this 
result is valid for all p (including p----2). 

The main complication in our theory lies in the demonstration (Theorem 4-4 and 
corollary) that  if I = (2, p, d) then Ps(tq) is the characteristic polynomial of Es, the 
restriction of E to the subspace of L(b)/Y.DiL(b ) consisting of the image of LS(b) under 
the natural map, LS(b) being the set of all power series in L(b) which are divisible 
by X1X~. . .  X ,+  1. This result is of course based on the study (w 3 e) of the action 
of the differential operators on LS(b). This study is straightforward for p t d but for p ld 
the main results are shown to be valid only for special differential operators. 

We must now explain that for a particular hypersurface we have many choices 
for the operator ~ (see w 4 a below) but once ~ is chosen the differential operators 
satisfying (4.35) are fixed. With a simple choice of ~ the eigenvector spaces lies 

in L ( ~ - - ~ )  while for a more complicated choice ofc~ the eigenvector space is known 

to lie in L ( # - ~ ) .  The special differential operators referred to above in connection 

with the case p]d are those which correspond to the simple choice of ~. for which the 
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eigenvector space lies in L(P__I~. U n f o r t u n a t e l y p - - I <  I i f p = 2  (and fortunately, \ P /  p p--I  
only in that case). Thus for p = 2, if ~ ] d we cannot apply the results of w 3 e to determine 
the action of the special differential operators on L(I/2).  

Finally (w 4c) using an argument suggested by J.  Igusa, we show that our 
conclusions concerning P = P s  remain valid without the hypothesis that -~A is non- 
singular for each choice of A. 

This completes the sketch of our theory. We believe that our methods can be 
extended to give similar results for complete intersections. We note that the Well 
conjectures for non-singular hypersurfaces also assert that the polynomial P in equation (i) 

has the factorization P ( t ) =  l ]  (I--O~t) such that 
i 

i0~1 = q(,~-l)12 for each i (Riemann Hypothesis) 
Oi--~qn-1/Oi is a permutation of the Oi (functional equation). 

We make no comment concerning these further conjectures. 
In  fulfillment of an earlier promise we have included (w I) a treatment of some 

basic function theoretic properties of power series in one variable with coefficients in f2. 
It does not appear convenient to give a complete table of symbols. We note 

only that throughout this paper, Z is the ring of integers, Z+ is the set of non-negative 
integers and R is the field of real numbers. 

w L P - a d i c  H o l o m o r p h i c  F u n c t i o n s .  

Let f2 be an algebraically closed field complete under a rank one valuation 
x ~ o r d  x. This valuation is a homomorphism of the multiplicative group, f~*, of f2 
into the additive group of real numbers and is extended to the zero element of f2 by 
setting ord o = -b o0. Furthermore ord(x +y)  < Min(ord x, ordy) for each pair of 
elements x, y in f~ and the value group, (5, of fl (i.e., the image of s under the 
mapping x-+ord x) contains the rational numbers. 

For each real number  b, let 

I'b={xE  lordx=b } 
U b ----- { x ~ )  [ ord x>b} 
Cb = { x ~  Io rdx>b} .  

As is well known, f~ is totally disconnected, and each of these sets are both open and 
closed. However by analogy with the classical theory it may be useful to refer to the 
set C b (resp: Ub) as the closed (resp: open) disk of additive radius b. 

U_ oo will be understood to denote f2 and clearly F b is empty if b does not lie in 
the value group of f~. We further note that U b, (resp: Cb, ) is a proper subset of U~ 
(resp: Cb) i f b ' > b .  If  be(5 then U b = C  b. 
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The power series in one variable with coefficients in ~,  

(x.x) F(t) = ~ A S 
S~0  

will be viewed as an f~ valued function on the maximal subset of f~ in which the series 
converges. (This is to be interpreted as a remark concerning notation, the power 
series and the associated function cannot  be identified unless (cf. Lemma  1.2 below) 
the series converges on some disk, Ub, b>oo). I t  is well known that  F converges 
at xEf2 if and only if lirnA~x~=o. An obvious consequence may be stated : 

L e m m a  x . i .  - -  F converges in C b i f  and only i f  

(x .2) lim (oral A j §  = 0% 

provided b e(5. The series converges in Ub i f  and only i f  

(I .  3) lim inf (ord Aj) / ]> - -  b. 
j--~ 0o 

We may now prove the analogue of  Cauchy's inequali ty as well as the analogue 
of the m a x i m u m  principle for closed disks. 

L e m m a  x . 2 .  - -  I f F  converges on C b and be~  then 

(i .4) Min ord F(x) = Min (ord Aj+ jb )  
x E P  b O ~ i < ~  

Furthermore 
Min ord F (x) --= Min ord F (x). 
x E r  b zEC b 

Proof. - -  Since Fb is not compact  it is not immediately obvious that  ord F(x) 
assumes a m in im um  value at some point  of  Pb" However the existence of the right 
side of ( I .4)  is an immediate  consequence of Lemma  I . I .  Let M = Min (ord Aj +jb),  
then ord ( A i x i ) ~ M  for all xEP~ and hence o rdF( t )__M on F b. Let S be the set 
of all jEZ+ such that  o r d A j + j b  = M. By definition S is not  empty and Lemma i 
shows that  S is finite. Let g(t) = ~, Ajt j, f ( t )  --=F(t)--g(t).  Lemma  I also shows that  

yes  

there exists ~>o  such that  o rdAj - ] - jb>M-t -~  for each j ~ S .  Hence ord f ( t ) > M + r  

everywhere on P b. Let nEFb, n ' e F  M and let gl(t) =g(nt) /n ' .  Let Bj be the coefficient 
of t ~ in gl. For jES,  o r d B j = o r d  A j §  Thus  the coefficients of gl are 
integral and the image of gl in the residue class field of ~2 is non-trivial. Since the 
residue class field is infinite there exists a unit  x in f~ such that  ordgi(x ) = o .  This 
shows that  ord g(r~x) = M. However r~xEP b and hence ord F(t) assumes the value M 
on Pb. This shows that  the left side of (I . 4 )  exists and is equal to the right side. The  
assertion concerning C b follows from the obvious fact that  for b'>b, we have 
o r d A j + j b ' > o r d  A i + j b  for each jEZ+ and hence Min ord F ( x ) > M i n  ord F(x), 
which implies the assertion of the lemma. ~Erb' ~Erb 
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As in [I], the ring of power series in one variable, t, with coefficients 
in f~, ~{t}, is given the structure of a complete topological ring by letting the subgroups 
{Cb{t}+ tmf~{t}}belt,,,eZ§ constitute a basis of the neighborhoods of zero. This topology 
will be referred to as the weak topology of ~{t}. It may also be described as the 
topology of coefficientwise convergence. 

We now obtain an elementary, but useful relation between convergence in the 
weak topology and uniform convergence in the function theoretic sense. 

Lemma z. 3. - -  Let f t , f 2 ,  . . . ,  be a sequence of elements of f2{t}, each converging in Cb, 
be(5. 

(i) I f  the sequence converges uniformly on C b to a function F then 

a) The sequence is uniformly bounded on C b. 
b) The sequence converges in the weak topology to f e l l { t }  which itself converges on C b 

and f ( x ) = F ( x )  for all x eC  b. 

(ii) Conversely, i f  

a) the sequence is uniformly bounded on Cb, 
b) the sequence converges in the weak topology to f e ~ { t }  

then f converges in U b and for each ~>o the sequence converges uniformly to f on Cb+ ~. 

Pro@ - -  Let .f(t) = ~ A~,itJ for i---- I, 2 ,  . . .  

i=0  

(i) Since the sequence converges uniformly on C b and since, by Lemma i .2, 
f l  is bounded on Cb, we may conclude that the sequence is uniformly bounded on C b. 
By hypothesis, given N > o  there exists neZ+ such that ord (f~(t)---~,(t))>N for 
all t~C b and all i, i '>n. Hence by Lemma i .2, for i, i '>n and for a l l j eZ+  

(x. 5) ord(A~, i--A~., i) > N- - jb .  

For fixed j ,  (5) shows that {A,,i}~=l, ~ .... is a Cauchy sequence and hence converges 
to an element A i of fL It now follows from (I .5), letting i'--~oo that for i>n and 
all j e Z +  

(x. 6) ord (A~,j-- Ai) > N --jb. 

Let f ( t )  = ~ A/i. I f f  does not converge on C b then we may suppose N chosen such 

that ord A~.+jb<N for all j in some infinite subset, T, of Z+. Let i be a fixed integer, 
i>n. Since f~ converges in Cb, we know that ordAi ,~ .§  for all j e Z + - - T '  
where T '  is a finite (possibly empty) subset of Z+. For j e T ~ T ' ,  ord Ai, j>ord  Aj, 
which together with ( i .6)  shows that o rdAj - t - jb>N.  Hence T - - T '  must be empty, 
a contradiction, which shows that f converges on C b. Lemma x .2, together with 
equation (x.6), shows that for i>n, o r d ( f ( t ) - - f ( t ) ) ; > N  everywhere on C b. In parti- 
cular for fixed teCb, letting N-+oo we conclude that f ( t ) = l i m f ( t ) = F ( t ) .  This 
completes the proof of (i). 

9 
2 
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(ii) By hypothesis the 
Lemma 1.2 there exists a real number, M, such that 

(x.7) 

for all i, jeZ+.  Furthermore, 

limi_, oo Ai, j = A i. For each j s Z + ,  

sequence is uniformly bounded on C b and hence by 

ord Ai, i +jb ~ M 

writing f =  ~ AitJ , we know that for each j~Z+,  

therefore, there exists i (depending on j )  such that 

ord (A~,j--A~) > M - - j b .  Hence by comparison with equation ( i .7)  we may conclude 
that 

(I.  8) ord A i-k-jb> M 

for all j eZ+.  This shows that f converges in U b. Now let ~ be a real number, ~>o. 
Given a real number N, let jo~Z+ be chosen such that jo e - [ -M>N.  Then by (I .7) 
and ( i .8)  we have 

ord A j + j ( b  + a ) > N ,  ord A~,j + j ( b  + r  

all J>Jo. Hence ord ( A , , j - - A ~ ) + j ( b + r  for all J>Jo, 
limA~.j=A~., we may conclude that there exists n~Z+ such 
i -+oo 

for all ieZ+ and 
i~Z+, while since 

that ord(Ai, i - - A j ) + j ( b + r  for all j< jo ,  i>n. Hence for i>n, j eZ+,  
ord (A~..i--Ai) +j(b  + r  and hence by Lemma i .  2, ord (fi(t) - - f ( t ) ) > N  everywhere 
on Cb, which shows that the sequence converges uniformly t o f o n  Cb+ ~. This completes 
the  proof of the lemma. 

With F(t) as in equation (I. I) we define t h e f  h derivative o fF  (for j eZ+)  to be the 

power series F/J)(t)-= - ~ s ( s - - I ) . . .  ( s - - j +  I)A~t s-j  andle t  F[fl(t)= ~=0(~)Ast~-J where (~) 
8 ~ j  

denotes the binomial coefficient of t ~ in the polynomial (i + t)*. Clearly F C~/=j ! F [fl, 
the notation F [fl being convenient if the characteristic of ~2 is not zero. 

We now prove an analogue of Taylor's theorem. 

Lemma I .  4 .  - -  I f  Fsf~{t} converges in Cb, (be(5) then 

(i) F is a continuous function on C b and is the uniform limit of its partial sums. 
(ii) F It converges in C b for each j e Z + .  ,, 
(iii) For fixed xeCb, the polynomials Pn(t) ----- ~] F[fl(x)(t--x) i (n = I, 2, . . . )  converge 

Qo j = 0  

weakly in f~{t} to F(t). The element L ( Y ) =  Y, FEfl(x)YJEf~{Y} converges for all Y~C b 
and F ( t ) = L ( t - - x )  for each teC b. ~=0 

Proof. ~ (i) In  the notation of equation (I.  I), we conclude from (1.2) that given 
N > o ,  there exists neZ+ such that ord A j + j b > N  for all j>n .  Hence byLemma  I .2, 

ord ( F ( t ) - - ~  Ait~)>N everywhere on C b. Hence F is the uniform limit on C b of its 

partial sums and thus continuity of F follows from the continuity of polynomials. 
Assertion (ii) is a direct consequence of Lemma x . i .  

10 
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(iii) For j e Z + ,  let M i =  Min (ord A s +sb). Since F converges on Cb, Lemma I . 1 
*>i 

shows that M~.--->oo as j ~ o o .  Lemma i .2 shows that for xeCb, 

ord Fti](x) > Min {ord (~) + o r d  A~+ (s--j)b}. 
- -  8 > i  

Hence 

Min ord FtJ](x) > Mj-- jb ,  Mr+t>  Mj. 
x C C  b 

Hence by Lemma i.  i, the series L(Y) converges for all yEC b and hence by 
part (i), P~(t) converges uniformly to L(t- -x)  on C b (as n-+oo). Thus in view of 
part (i) of Lemma 1.3, the proof is completed if we can show that P~(t) converges 

weakly to F(t) as n-+~.  Let Pn(t)-----~', An, st ~. We must show for fixed s that 
lim A n ~ = A  s. From the definitions ~=0 

B 

(I. IO) A . ,  s = Z 
i = 0  

We now write F=F,~-}-G,~, where F~(t)= Y~Aiti. Clearly A~,s=A'n,~-k-A',,',, , where 
i=O 

A~,~ (resp. A','s) is given by the right side of ( I .  io) upon replacing F by F,~ (resp. Gn). Since 
Taylor's theorem is formally true for polynomials, A',,~=A~ for s~n,  A~,,,= o for s>n. 
On the other hand for all j~Z+,  ord (Gt, i] (x))~M~--jb  and hence ord A', 's~M,,--sb.  
Hence for n>s, ord(A~--A~,s)=ordA~,~>M~--sb oo as n-+oo. This completes 
the proof of the lemma. 

We can now give some equivalent definitions of the multiplicity of a zero of a 
power series. 

Lemma x .5. - -  I f  F converges in Cb, meZ+ and xeC  b then the following statements 
are equivalent 

:r lim F( t ) / ( t - -x )"  exists. 
l "-~ x 

~) Ft~l(x) = o for i = o, I, . . . ,  m - -  i. 
"() The formal power series, F ( t ) ( i - - t / x )  -m converges in C b i f  x:~o while i f  x = 0 ,  

t" divides F(t) in ~{t}. 

Proof. - -  By Lemma i .4 for t~Cb, t~ex, we have 

F ( t ) / ( t - - x ) ~ = ~ t F t i J ( x ) / ( t - - x ) m - '  + ~ r[q(x)(t--x) '-'~. 
i = 0  i = m  

Hence, by the continuity of power series, the limit exists if and only if (~) is true. 
Thus (0c) and (~) are equivalent. If x = o  then (~) and (y) are clearly equivalen t. 
Hence we may suppose that x4:o. Let f ~ { t } ,  f ( t ) ( i - - t / x )m=F( t ) .  Since the rules 
of multiplication of formal power series and of convergent power series (in the 
function theoretic sense) are the same, it follows that iffconverges in C b then as a function, 
f ( t )  = F(t) / ( i - - t /x)  ~ for all t~Cb--{x }. The continuity of convergent power series now 

11 
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shows that (u implies (0c). To complete the proof we show that (~) implies (y). It  follows 
11 

from (~) and Lemma I.  4 that in the weak topology F(t) = lira ~2 F~l(x)(t--x) i and 
Y~---~ OO ~ ~ 

hence in that topology, F(t)(I - - t /x )  - " =  ( - -x)"  lim ~ FtJl(x)(t--x) j - ' .  The coefficient 

B~ of t s is clearly B , =  ~ Ftfl(x)(J-;"~)(~x) i-" so that by ( i .9) ,  
f - - m  

ord B~ > MingM.- -sb / .  
- -  i > s  t ~ . i  

Thus o r d B , + s b > M ,  and since Ms-+m with s, this shows that F ( t ) ( i - - t / x ) - "  
converges in C b. 

I f F  converges in Cb, XeCb, we say that x is a zero of multiplicity m > o  if FEd(x) = o  
for i = o ,  i, . . . ,  m u i ,  while Ft"l(x)~eo. In particular if H converges in Cb, x + o ,  
H(x) + o  and F ( t ) =  ( t - - t / x )mH(t )  then x is a zero of F of multiplicity m. 

Let F be an element of f2{t} which converges in U b for some b<oo (i.e., the 
domain of convergence of F is not the origin). We assume with no loss in generality 
that F e i  +tfl{t}. In the notation of equation ( I . i ) ,  the Newton polygon of F is the 
convex closure in R • R ( = t w o  dimensional Euclidean space with general point (X, Y)) 
of the positive half of the Y axis and the points (j, ord A~.), j = o, i, . . . ,  it being recalled 
that o r d A i =  q-oo if A j =  o. The Newton polygon will have a second vertical side 
of infinite extent if F is a polynomial of degree m>o.  In this case the boundary of 
the Newton polygon (excluding the vertical sides) is the graph of a real valued function, 
h, on the closed interval [o, m]. Likewise if F is not a polynomial then the boundary 
(excluding the vertical side) is the graph of a real valued function, h, on the positive 
real line. In  either case, h is continuous, piecewise linear with monotonically increasing 
derivative. Furthermore equation ( i .  3) shows that the graph of h is asymptotic (if F 
is not a polynomial) to a line of slope - -  b, where b is the minimal element of the extended 
real line such that F converges in Ub. If  x is not an end point of the interval on which h 
is defined then h ' ( x - - o ) < h ' ( x + o ) .  The points at which the strict inequality holds 
are called the vertices of the polygon. The abscissa, j ,  of a vertex is an integer and the 
vertex is then (j, ord AS). Finally, if l is the line obtained by extending in both directions 
a non-vertical side of the Newton polygon of F then for each j e Z + ,  the point (j, ord As) 
lies on or above the line l. 

Lemma x.6. - -  Let F ( t ) =  ~ A j t J :  I ]  ( i - - t /~i)  be a polynomial of degree n>o,  
#=o j=t 

with constant term i. Let Xx<X2<.. .<X s be the distinct values assumed by ord0~ -1 as i runs 
from I to n and for j =  i, 2, . . . ,  s, let rj be the number of zeros, ~, o f f  (counting multiplicities) 
such that ~ ord 0c = Xj. The vertices of the Newton polygon of F are the origin P0, and the s points 

(x .x I )  P . =  ri, r~;~ i 
i = 

a - ~ -  I ~  2 ,  . . . ,  s .  

12 
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Proof. - -  Let the zeros of F be so ordered that ord ~ - l < o r d  e ~ - l < . . .  < o r d  ~- l .  
The proof may be simplified by letting r 0 = o, X 0 be any real number,  say 7~-- I. Then 

P, = r~, r~X~ for a = o, i, . . . ,  S. Let j ,  be the abcissa of P,, then Ai, is the sum 
i ~ Ja 

of all products of the ~- i  taken j ,  at a time. This sum is dominated by I-I ~-l. Hence 
Ja Ja i = 1  

o r d A i = o r d I l e ~ - t =  Zr iN.  I f  a > o , L _ t < j <  L then 
i = l  /,=0 

] a- - I  

ord A i > o r d  1I ~i-1= Z r ( h 4 - X , ( j - - j , _ t  ) 
/ : 1  i = 0  

and hence the point (j, ord Ai) lies on or above the line 
of that line is 

a- - i  
(x.  x2) Y - -  X r~X~ = X . ( X - - L _ I ) .  

i,-O 

Pa  - 1  Pa since the equation 

Thus the Newton polygon is the convex closure of the s + I points P0, P1, �9 �9 P, and 
the point (o, 4-oo). Equation (I .  12) shows that the slope does change at the points 
Pa, P2, . . . ,  P~-i and this completes the proof. 

Corollary. - -  The numbers {ord ~-1}7= ~ are precisely the slopes of  the non-vertical sides 

o f  the Newton polygon ofF.  I f  X is such a slope then the number of zeros ~ o fF  such that ord ~ = - -  X 
is the length o f  the projection on the X-axis o f  the side o f  slope Z. 

We now prove a refined form of a well-known theorem [4, Theorem IO, p. 4 I] 
which states roughly that two polynomials of equal degree have approximately the 
same zeros if the coefficients of the polynomial are approximately equal. 

group 

(*. x3) 

Lemma x. 7. - -  Let f and g be elements o f  ~[t] and let X be an element of  the value 

of  ~) such that 

a) f (o )  = g ( o )  = I 
b) The number (counting multiplicities) of  zeros o f f  on Px is a strictly positive integer, n. 

If  N is a strictly positive real number such that 

Min ord (f(x) - -g(x))  >nN,  
xEP x 

then each (multiplieative) eoset of  I + C N contains the same number of  zeros o f f  in P x as of  g. 

Proof. - -  Let at, . . . ,  ~, be the zeros of f i n  Px, let ~(t, - - . ,  g,~be the (possibly empty) 
set of" zeros o f f  in U z and let S be the set of zeros o f f  outside Cx. Clearly for 
~ S ,  o rd~<X and hence if ~zPx, o r d ( I - - ~ / ~ ) = o .  Since ord~i>Z, we have 
ord ( i - -~/yi)  = o r d  (~/gi) = X - - o r d  u for i =  I, 2, . . . ,  m if ~ P x .  Since 

f(t) = f l  fI  ( , - t / v , ) .  II 
i = l  i = l  zttE8 
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we may conclude that for ~eFz,  ordf(~) = ~ ord (i--~/e~) + ~ (Z--ord Yl). Letting 
m i . = l  i = I  

c----- 2] ( - - ? , + o r d  y~), we note that c is independent of ~ e r  x. Letting 0~, ~ ,  . . . ,  ~,~, 
4=1 

be the (possibly empty) set of zeros of g in F x we conclude by the same argument as 
above that there exists a constant c ' > o  such that for ~EF x 

f t  

ord f (~ )= - - c -} -  Z o r d ( : - - ~ / ~ )  

(x. '4) 
ord g(~) = - -  c ' +  Y~ ord (I - -  ~/0d), 

4=1 

it being understood that o r d g ( ~ ) = - - c '  if n'-----o. It is easy to see that n ' + o  for 
otherwise ord g(%) = - - c ' <  o<nN<ord( f (~ l ) - -g (o~ l )  ) = ord g(0cl) , a contradiction. 

Let ~,, . . . ,  ~, be chosen in Px such that ~l(I -r . . . ,  ~e(I +CN) are disjoint 
and such that their union contains all zeros of f and g in F z. If  e > i ,  
ord ( I - - ~ / ~ l ) < N  for j = 2 ,  3, --- e and hence there exists e > o  such that 

(I .IS) o < o r d ( I - - [ ~ i / ~ l ) < N - - r  for 2<j<_e .  

If  e =  x, we interpret this condition to mean simply o < ~ < N .  With r so chosen we 
shall for the remainder of the proof let ~ be a variable element of Fx satisfying the 
condition 

(I .  I6) N - -  a< ord(1 - -  ~1/~) < N. 

We now show that if aa~i(1 -}-CN) then 

ord(1--~/~l)  if i =  I 
( I . IT)  N>ord ( I - - ~ / ~ ) = o r d ( i _ _ ~ j ~ i )  if i4:1. 

For i = I  this follows from ~/}----(,/~I)(~X/})E(~J~)(I+CN), while by (1.I6) 
(~l/}) 6(I -~-CN). For i > 2 ,  we have 0t/~G(~,/~)(i +CN) ~ (~J~t)(~l/~)(i +CN) while 
by ( i .  15) and ( : .  16) ord ( I - - 3 J ~ l ) < N - - r  ( I - -~l /~) .  This completes the proof 
of (I .  17). 

In  particular if ~ is a zero of f i n  F x then, by (I .  :7), ord (: - - ~ / ~ ) < N  and hence 
by ( i .  i4) since c>o ,  o r d f ( ~ ) < n N .  From (I.  13) we now see that ordf(~)  = o r d g ( ~ )  
and thus equation ( i .  I4) shows that 

? t  t 

(x.x8) - - c +  ~ ord ( I - - ~ / 0 t ~ ) : - - c ' +  Y~ ord (I +~/0~) 
i = l  4=1 

For j---- x, 2, . . . ,  e, let n~ (resp. n~) be the number  of zeros o f f  (resp. g) in ~i(I -~- CN). 
Equations (I .  17) and ( i .  18) now give 

e 

(I.  I9) (n 1 - -  n~) ord ( I - -  ~ / ~ l )  = C - -  C" -~-  i~2 (n; - -  ni) ord( I - -  ~i/~l) 

the right side being simply c - -c '  if e = 1. As ~ varies under the constraints of (1.16), 
ord ( x -  ~i/~) varies at least over the rational points in the open interval (N--C, N) 

14 



ON THE ZETA F U N C T I O N  OF A HYPERSURFACE I5 

while the r ight  side of  ( I .  I9) is i ndependen t  of ~. This  shows tha t  nl----n~ and  by 
the same a r g u m e n t  n~ = n~' for i = 2, 3, �9 �9  e. This  completes  the p roof  of the l emma.  

As an  immedia t e  consequence we state the following corollary. 

Corollary. q Let f and g be elements o f ~ [ t ]  such that f (o )  =g(o )  = I. Let b be an element 
of if) and let m be the number (counting multiplicities) of zeros o f f  in C b. 

~. I f  M i n o r d  ( f ( x ) - - g ( x ) ) > o  then the sides of the Newton polygon o f f  of slope not 
xCC b 

greater than - -b  coincide with the corresponding sides of the Newton polygon of g. 

2. I f  N is a strictly positive real number and 

Min  ord(f (x)  - -g (x ) )>mN 
xEC b 

then each coset of I -+-C N in C b contains the same number of zeros o f f  as of g. 
We can now demons t ra te  the ma in  propert ies  of  the Newton  polygons of power  

series. 

Theorem I . I .  - -  Let b ' < b < ~ ,  bEff) and let F be an element of ~{t} converging in 
Ub, , F(o) = i. Let m be the total length of the projection on the X axis of all sides of the Newton 
polygon of F of slope not greater than --b .  There exists a polynomial G of degree m, (G(o) = I) 

and an element H of ~{t} such that the zeros of G lie entirely in C b and 

(i) H converges in U~,, ord H ( t ) = o  everywhere in C b. 
(ii) F = GH.  
These conditions uniquely determine G and H. Furthermore : 
(iii) The Newton polygon of G coincides with that of F for o < X < m while the polygon 

of H is obtained from the set: (Polygon of  F) - -  (Polygon of G) by the translation which maps 
the point (m, ord Am) into the origin. 

(iv) I f  K is a complete subfield of s which contains all the coe ficients of F, then G e K [ t ] .  
(v) I f  for each partial sum, Fn, of F we write F n = G , H , , ,  where G, is the normalized 

polynomial whose zeros are precisely those of F n (counting multiplicities) in Cb, then G,, converges 

to G in the weak topologv of ~{t}. 
(vi) I f  neZ+  and N is a strictly positive real number such that ord ( F ( t ) - - F , ( t ) ) > m N  

everywhere on Cb, then each coset of I + C~ in C b contains as many zeros of F as of F,. 

Proof. - -  We follow the p rocedure  of  par t  (v). For  n>_m the Newton  polygon 
of  F, coincides wi th  tha t  of  F in the range o < X < m and  fu r the rmore  all sides of  the 
polygon of  F, of  slope not  greater  t han  - - b  occur  in tha t  range.  This  shows tha t  for 
n~m,  F,, has m zeros in C b. Since the sequence {Fn} converges uni formly on C b to F, 
we conclude  tha t  given N > o ,  there exists n l eZ  , nl>m , such tha t  i f n  and  n' are integers 
not  less than  n 1 then  ord ( F n - - F , , ) > m N  everywhere  on C b. We m a y  conclude  f rom 
the corollary to the previous l e m m a  tha t  each coset of  I + Cs  in C b contains as m a n y  
zeros ofF,,  as of  F,, and  hence the same holds for G, and  Gn,. This  shows tha t  for n > m 

we m a y  write Gn(t ) = 1-[ ( i - - t /a , ,~)  where  the zeros 0%1 , . . . ,  ~,,,,, of  G, are so ordered  
i = l  
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that l ima, ,~=a~ exists for i =  I, 2 , . . . , m .  This shows that G, converges to G, a 
n --~ OO 

polynomial of degree m whose Newton polygon coincides with that of F,1 and hence 

with that of F for o < X < m .  

For each n~Z+, H,(t) is a product of factors of type ( i - - t / a )  where ord 0c<b. 

Hence 

(x. 2o) ord Hn(t ) = o 

everywhere on C b. G, is a product of factors of type (i -- t in) ,  where ~eC b and hence if 
ord t<b then ord Gn(t)<o (equality holds if G , ( t )=  x). I f  then b"effj, b>b">b',  then 
ord G,(t) < o everywhere on Fb,, and hence ord H,~(t) = ord F,~(t) - -  ord G.(t) > ord Fn(t ) 
everywhere on Pb,,. Lemma I-3 shows that F,~(t) is uniformly bounded on Fb,, and 
hence the same holds for H.(t). Hence by Lemma 1.2 the sequence Ha, H2, . . .  is 
uniformly bounded on Cb,,. We show that the sequence H1, H2, . . .  converges in the 
weak topology of f2{t}. This follows from the fact that x +trY{t) is a complete multi- 
plicative group under the weak topology. Certainly F , ~ F  and G,--->G in that topology 
and hence H,,=F,/G,,  converges weakly to the power series H = F / G E I  +trY{t}. It  
now follows from Lemma I-3 (part ii) that H converges in Ub,, (and hence letting 
b"-+b', in Ub, ) and that for each r  H,  converges uniformly on Cb,+~ to H. Using 
equation (I .2o), it is now clear that H(t) is a unit everywhere on Cb. 

This completes the proof of parts (i), (ii), (v). Assertion (iii) has been verified 
for G, its verification for H follows from Lemma t .6 and the fact that H, -+H.  
Assertion (vi) follows from the construction of G, the corollary to Lemma I. 7 and from 
the fact that the zeros of F in Cb are precisely those of G. 

To verify (iv) it is enough to show that G, rK[ t ]  for each neZ+ since then 
G = lim G, eK[t] .  Since the valuation in a finite field extension of K is invariant under 
automorphisms which leave K pointwise fixed, we may conclude that the coefficients 
of G. are purely inseparable over K. Thus we may suppose K is of characteristic p 4: o. 
If  g is a root of G, then it is a root of F n of the same multiplicity and hence the multiplicity 

must be a multiple, mp r, of a power ofp  such that o~P" is separable over K. This shows 
that the coefficients of G n are separable over K which now shows that G,~K[t].  This 
completes the proof of the theorem. 

Part (v) of the above theorem has an important generalization which is the analogue 
of a theorem of Hurwitz. 

Theorem x.2. - -  Let b'<b<o% ben  and let f l , J ~ , . . ,  be a sequence of elements 
of f~{t}, each converging in C b, such that f i ( o ) = x  for each j e Z +  and such that the sequence 
converges uniformly on C b, to Fsf2{t}. By the preceding theorem, F = G H ,  f i=gjh  i where G 
(resp. g~) is a polynomial whose zeros are precisely those o fF  (resp. fi) in Cb, and G(o) =g~(o) = I. 
The conclusion is that G =~irng~ and that for i large enough, & and G are polynomials of equal 
degree. 
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Proof. - -  Let degree G = m and for each j E Z + ,  let F i be the jth partial  sum of  F 

and  let .~,i be the jth partial  sum of  f~. Let  N be a strictly positive real number .  

Pick j ~ Z +  such that  

( x. 2x ) ord (F (t) - -  Fj(t) ) > mN 

everywhere on C b. Par t  (vi) of  Theo rem I.  i shows that  F i has m zeros in C b. Pick i 0 

such that  for each i > i  o 

(I .  22) ord (F - - ~ ) > m N  

everywhere on C b. Pick ueZ+ such that  for given i > i  o 

(x .23) o r d ( f  - - f l ,  u ) > m N  

everywhere on C b. We may  conclude from these three relations that  

(x. 24) ord (F~.--f~, u) > mN 

everywhere on Cb, and the Corollary to L e m m a  1.7 now shows that  each coset 

of  i § C N in C 6 has as m a n y  zeros of  F~ as offi, u and in particularf~,u has m zeros in C 0. 
Equat ion (I .33) together  with par t  (vi) of  Theo rem I . I  now shows t h a t ~  has m zeros 

in C 0. Fur the rmore  equations (~.2I)  and (I .23) and par t  (vi) shows that  each coset 

of  I +-C N contains as m a n y  zeros of  F in C 0 as of  Fj and as m a n y  zeros of.~ as offi,~. 

We may  now conclude that  each coset of  I -t- CN contains as m a n y  zeros of F in C 0 as 

off~ for each i > i  o. I t  is now clear that  g~--~G and that  deg g~ = m tbr i large enough.  

Corollary. - -  Under the hypothesis o f  the theorem,for i large enough, the zeros ~, t ,  ~i, 2, �9 �9 �9 ~, , ,  

o f  .~ in C o may be so ordered that l i m e  i j = ~ i , j =  I, 2, . . .  m and ~1, . . . ,  %, are the zeros 

o f  F in C b. 

We conclude by recalling that  in our  previous article we left two propositions 

unverified. Proposition 2 of  [I] is contained by Theorem I . I  above. We now 

demonstra te  Proposition ~. 

Proposition. - -  I f  b '<  b < oe and F converges in U b, but is never zero in Ub, then the 

series I /F  converges in U b. 

Proof. - -  As before we m a y  assume A 0 =  I. The  Newton polygon of F has no 

side of slope less than - - b  and hence ord A j > - - j b .  The conditions A 0 =  i, ord A j > - - j b  

define a subgroup of  I +trY{t} and hence are satisfied by the formal power series I/F. 

This shows by L e m m a  I.  I that  I /F converges in U b. 

w 2. Spec tra l  T h e o r y .  

Let Q '  be the field of  rational p-adic numbers,  f~ the complet ion of  the algebraic 

closure of Q' ,  the valuat ion of f~ being given by the ordinal  function x--~ord x which 

is normal ized by the condit ion o r d p - =  + I. 

Let  q, n, d be integers q> I, d >  I, n > o  which will remain  fixed throughout  this 
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~8 B E R N A R D  D W O R K  

section. Let  3; be the set of all u = (u0, ul, . . . ,  u,)EZ~_ +1 such that  du o > u  1 + . . .  + u,. 
The  set, Z~_ +1 m a y  be viewed as i m b e d d e d  in n +  I d imensional  Eucl idean  space, I !  "+1 

and  let a be the project ion (Yo,Yl, ...,Y,)---~Yo of R "+1 onto  R.  
We formalize and  reformula te  in a m a n n e r  convenien t  for our  present  appl ica t ion  

the methods  appear ing  in the second ha l f  of  the p roof  of T h e o r e m  i [I].  

Lemma 2. I. - -  Let c,~ be the minimal value of as (u (t), . . . ,  u (")) runs through 

all sets o f r o  distinct elements of %. Then c"[m~oo as m-~ oo. 
Let 9J~ be an infinite mat r ix  wi th  coefficients 9)lu, v (in f~) indexed by ~ • 3; which 

have the p roper ty  ord  9J~,,~>• where  • is a strictly positive real number .  W h e n  
convenient  we write 9J~(u, v) instead of  9Jlu,~. 

Lemma 2.2. - -  (i) IfgJ~' is any.finite submatrix of 9J~ obtained by restricting the indices (u, v) 
to ~ '  x ~ '  where ~.' is a finite subset of ~, then the coefficient ~'m, o f t"  in det(I  --t?O~') satisfies the 
condition: o r d y , , > •  m. Hence for tEf~, ord d e t ( I - - t g ) ~ ' ) >  M i n ( m o r d t + •  

an estimate depending only on ord t and the constants• q, d, n, but independent orgY'. In particular 
for each bounded disk of f~, det( I  - -  t?Ol') is uniformly bounded as ~.' varies over all finite subsets of ~.. 

(ii) I f  (u, v) ~ '  • ~' ,  then the minor of (u, v) in the matrix (I--tgJ~') is a polynomial 
~]u v)t" and 

ord V (u, v) > + •  , 

Hence for tef~, ord (minor of (u, v) in (I--tgJ~') ) > q• §  where c is a constant inde- 
pendent of ~i~' and ~; ( i f  ord t is fixed). 

m 

Proof. - -  (ii) T h e  coefficient, ,("(u, v) is a sum of products  P =-t-1-I ~lJl(u (~), v(~)), 

where  {u, u (t), . . . ,  u (")} is a set of m + i dist inct  elements of  3;' and  {v, v (t), . . . ,  v (")} 
is a pe rmu ta t i on  of  tha t  set. Hence  

•  ~ a(qu(')--v (')) = a { q  u (~) - -  v +  v (') - - ( q u - - v ) } =  
i = i  '= i 

a { ( q - - I ) ( V +  ~ v (')] - - ( q u - - v ) } ~ q a ( v - - u )  ~- (q - -  I)C". 
i = 1  / 

Lemma ~'.3. - -  For N ~ Z + ,  let ?Ot~ be the submatrix of ?Ol obtained as in the previou~ 
lemma by letting ~;'={ue~l~(u)gN }. Let ~J~N be the matrix obtained from 9J~ by replacing 
~l~u, , by zero whenever a ( q u - - v ) > ( q - - i ) N .  Then lira d e t ( I - - t ~ s ) =  l im d e t ( I - - t ~ ) ,  

N-~oo N.-~ oo 

the limit being in the sense of uniform convergence on each bounded disk of ~. The limit is an 

entire function, ~ y,~t m, and ord  y , , ~  ( q - -  I)• 
" = 0  

T h e  r ema in ing  proofs m a y  be omi t t ed  since they are consequences of the methods  
of  [i] .  L e m m a  2 .3  follows f rom L e m m a  2.~ and  L e m m a  i .  3 (part  (ii)) once it is 
verified tha t  the  two sequences converge weakly to the same limit.  However  the details 
concern ing  weak  convergence  are very similar  to the p roof  of  L e m m a  ~. ~. (We note  
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that the method used in [I, equ. (2o.2)] to show weak convergence cannot be used 
here as that proof made use of the geometrical application.) 

Let f~ {X} be the ring of power series and ~) [X]  the ring of polynomials in 
n +  i variables X0, X1, . . . ,  X~ with coefficients in f~. I f  u =  (u0, ul, . . . ,  u,)eZ~. +l, 

n 

let X ~ denote the monomial l-I XUq Let + be the endomorphism of fl {X} or f~[X] 
~=0 Io if q~u 

as linear space over ~) defined by ~b(X ") = t X"/a if q lu" 

For each ordered pair of real numbers (b, c), let L(b, c) be the additive group of 
all elements Y,A,X"sf~{X} such that 

(i) A ~ = o  if ur 
(ii) ord A , >  bu o + c. 

Let L ( b ) = , U  L(b, c), E be the subspace of f2[X] spanned by {X"},ez. For each 
e l l  

integer N > o ,  let 2~ (s) be the subspace of E consisting of elements of degree not greater 
than N as polynomials in X 0. Let ~(b, c) = ~ n L ( b ,  c), ~(Sl(b, c) =E(mnL(b,  c). 

I f  Heft{X},  let +oH denote the linear transformation ~--~+(H~) of ~{X} 
into itself. 

Lemma 2 .4 .  - -  Let ~ be any mapping of  ~[X] into the real numbers such that.for ~1, ~2, 
c4:o,  

+ = - - o o  

(2. x) = 

+ < M a x  

I f  s is an integer, s >  t, x is a non-zero element oJ f~ and ~ is a polynomial such that 

(2.2) ( I - - z - l+oH)"~  = o, (H 4: o) 

then 

~(~)< v.(H) l (q- -  ~). 

The proof may be omitted as it follows trivially from the fact that for ~Efl{X}, 

V.(,.,b(H~)) < (o.(H) + ~(~))/q. 

In particular if h is a linear homogeneous function on R~. +1 and if for each ~f~{X},  
~(~q) is the maximum value assumed by h(u) as X" runs through all monomials occurring 
in ~, then ~z satisfies the conditions of Lemma 2.4. In particular if H e ~  (N(q-1)l, then 
letting h ( u ) = u t + . . .  +un--duo,  we may conclude that if ~ satisfies (2.2) then ~ lies 
in E and letting h(u) = u 0 we may conclude that ~ lies in E(N). 

Thus the definition of det ( I - - t+oH)  appearing in our earlier work is unchanged 
if (+oH) is restricted to ~(') for any integer m>N.  

Now let • be a strictly positive rational number. Let F-----Y~A~X" be an element 
of L(x, o) which will remain unchanged in the remainder of this section. We associate 
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with F a power  series Zv, the characteristic series of qJoF which  generalizes the characteristic 
po lynomia l  appea r ing  in the case in which  F is a polynomial .  For each integer  N > o ,  

t X" if u0<N 
let T n be the l inear m a p p i n g  of  L( oo) in to  E(n) defined by TN(X")=  (o otherwise " 

Let  eN be the m a p p i n g  ~--~qJ(~(Tn(q_t)F)) , and  let ~ be the m a p p i n g  ~---~T~(+(~F)) 
of  (say) ~(N) into itself. I f  in the te rminology of  L e m m a  2.3,  we set 9J~,,, = Aq~_, for 
all (u, v) e 3; • 3;, then  relative to a m o n o m i a l  basis of  ~(N) the matr ix  form of a n is gJ~s 
while that  of ~ is gJl~. Hence  lira det  ( I - - t e n )  and  l im det  ( I - - t a ~ )  both  exist and  

are equal  by L e m m a  2.3- T h e  characteris t ic  series, Xr, is defined to be this c o m m o n  
limit.  L e m m a  2 .3  shows tha t  XF is entire and  lies in ~{t} ,  ~ being the r ing of integers 
of  f~. 

The  m a p p i n g  ~ :~---~+(F~) of  f2{X} into itself will now be examined.  We 
first show by a general  example  tha t  a satisfactory theory  canno t  be ob ta ined  if we 
allow ~ to opera te  on the entire space f2{X}. I f  F has constant  t e rm I then  let 

G ( X ) = I : I F ( X q i ) .  Clearly, F ( X ) = G ( X ) / G ( X  q) and  hence if X ~ o ,  X~f~ then  
Q t )  

i = 0  

= ~ XiX0r is a non-zero e lement  of f~ {X}, while e~ = X~. Thus  as an opera tor  
i = 0  

on f~{X} each non-zero e lement  of f2 is an eigenvalue of e. We shall show tha t  Xr 
can be explained by restrict ing e to L(qz). However  to obta in  a comple te  theory it 
will be necessary to assume tha t  the coefficients of  F lie in a finite extension of Q' .  

Let  Q, be the field of  rat ional  numbers .  T h e  value g roup  of  f2 is the addi t ive  
g r o u p o f Q .  For  x =  (x0, x~, . . . ,  x~)ef2 ~+~, let o r d x =  (ordx0, o rdx t ,  . . . ,  o r d x ~ ) e Q  "+~ 
if  none  of  the x~ are zero. 

I f  a and  a' are elements of Q,+l ,  we define the usual inner  p roduc t  

(2.3) o(a, a') = Z a,a;. 
i = 0  

I f  ~ef~{X}, let S t be the set of  all aeQ,  n+l such tha t  ~ converges at x if ord x = a .  

4= ~ BuX", 
u~Z~b + t  

Writ ing 

(2.4) 

I . I  : I f  a e Q  n+t then  aeSg if and  only if we have a general izat ion of  L e m m a  
ord B u q- p (u, a) ~ -k oo as u-+ oo in Z~_ + 1. 

I t  is convenient  to in t roduce  a par t ia l  order ing of On+i.  I f  a and  a' are elements 
o f Q  n+l, we write a'>a if  a;>ai for i = o ,  I, . . . ,  n. I t  is clear tha t  if a'>a and aeS~ 
then  a'~S~. We easily check tha t  for 4, ~e f l{X} ,  

t 
Sr162 ~qSr 

S ~  D S~r~ S., (2.5) 
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Let g be a mapping of Z~_ +* into the set of two elements, {o, I } in f~. 
the f~ linear mapping of f~{X} into itself defined by 

(2.6) 

For such a mapping we have 

(2.7) 
For each aeS~, let 

y(X") = g ( u ) X  u. 

Sv(~)~ St. 

M(~, a) = Min ord ~(x). 
o r d x ~  

Let ~. be 

The generalization of Lemma I. 2 may be stated without proof. 

Lemma 2. 5. - -  For aeS~, ~ as in (2.4), 

M(~, a ) =  Min (ordB,+p(u ,  a)). 
uEZ~_ +l 

I f  a'> a then 
M(~, a') ~ M(~, a). 

We easily verify for ~, ~q~f~{X}, u as in (2.6) that 

(2.8) M(~q, a ) >  M(~, a ) +  M(~q, a) if aeS~nS~ 

(2.9) M(y~, a)~M(~, a) if a~S~ 
(2. xo) M(+~, a)> M(~, a/q) if a/qeS~ 
(=.xx) M(~ +~q, a ) > M i n { M ( ~ ,  a), M(~, a)} if aeSenS~ 

and equality holds in (2. i i )  if M(~, a) 4=M(~q, a). Let 

S={aeQ"+tlao>--q•  da i + a o > - q x  , i =  i, 2, . . . ,  n} 

Elementary computations show that if c is a real number, ~;cL(qx, c) then 

(2. x2) ) S~z S 
M(~q, a) > c  for aeS, 

and 
I SFD q-iS 

(2"x3) M(F, a / f ) 2 o  if aeS. 

It  follows from (2.8), (2. IO) and (2.13) that 

(~,. x4) M(~, a) > M(~, a/q) if aeS n qS ~. 

This relation remains valid i f ,  is replaced by coy or yo~, the composition of ~ with g 
on either right or left side. 

Let 9 { X }  be the ring of power series in X0, . . . ,  X , ,  with coefficients in 9 ,  the 
ring of integers in ft. Let L' be the space of all elements of f~ {X} which converge 
in a polycylinder of radii greater than unity (i.e. an element ~Ef~ {X} lies in L' if and 
only if there exists a rational number b>o  such that ( - - b , - - b ,  . . . , - - b ) e S ~ ) .  We 
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note that L'~L(b) for all b>o  but L' is not the union of such subspaces since the 
monomials, X ~, in L' need not satisfy the condition uz~.  

Lemma 2 .6 .  ~ Let ~q~L(q~, - - q ( q - - I )  -1 ord X), where X is a non-zero element o f  ~), 

and let ~ be an element of  L ' n O  {X} such that 

(2. xs) 
We may then conclude that ~r - - q ( q - - I )  -a ord X). 

Note. ~ The same conclusion would hold if ~ in (2.15) were replaced by ~oy or 
by ~,o~, with y as in (2.6). In particular, ~ may be replaced by ~{~. 

Proof. ~ Writing (2.r5) in the form ~-- -=--~+X-l~ ,  we see from (2.5) that 
S ~ 3 S ~ c ~ S ~ 3 S ~ n q S F ~ 3 S ~ n q S F n q S  0 and hence by (2. i2) and (2.I3) we have 

(2. I6) S~3 S r~ qS~. 

By hypothesis, ~eL' and hence there exists b>o  such that a(~ (~b ,  --b,  . . . ,  - -b )eS  t. 
If  aeS then there exists an integer, r>o,  so large that q - r a > a  (~ and hence 

q - ' a ~ S ~ .  

Let r be the minimal element of Z+ such that the displayed relation holds. If  aeS 
then q-~a, q-2a, etc., lie in S and hence if r> I  then q-('-~)a lies in S as well as in qS o 
so that by (2.16) we have q-( '- l)aeS~, contrary to the minimality of r. This shows 
that r = o  and hence ScS~. Since q-aScS, we may also conclude that ScqS~. 

Equations (2. r4) and (2. I5) show that 

(2.t7) ordX+M(~+~,a)>M(~,a /q)  if a~S. 

We write ~ as in (2.4) and we assert that for a~S, vaZ]_ +~, 

(~. x8) ord Bo + O (v, a) > - -  q(q--  I ) --1 ord X. 

To prove this we think of a as fixed and consider two cases. 

Case 1. - -  M(~, a)>M(~q, a) 
In this case Lemma 2. 5 and equation (2. r2) give a direct verification of (2.18). 

Case 9. - -  M(~, a)<M(~q, a). 
Here we may use (~. I i)  and deduce from (~. 17) that 

(m. x9) ord X + i ( ~ ,  a)> M(~, a/q). 

Lemma ~-5 shows that there exists a particular element, ueZ~_ +t (depending upon a) 
such that 

M(~, a/q) ----ord B , +  p(u, a/q). 

On the other hand M(~, a )<ordB~+p(v ,  a), for each vsZ~_ +~. Thus we have 

(~. ~,o) ord B~ + p (v, a) + ord X> ord B~, + p (u, a/q), 
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for a particular u and for all 
gives 

( , . 2 1 )  

We recall that by hypothesis 

veZ~_ +1. In particular (2.~o) holds for v = u  and this 

ord X_>(q - 1 -  I)p(u, a). 

~e~{X} and hence o r d B . > o .  Equation (2.I8) now 
follows from (2.2o) and (2,2I). This completes our verification of (2.18) for all aeS. 

Now let c be a rational number, e>o, let %, ax, . . . ,  a, be rational numbers, 
ao>--qx, a ,=c - -d - l (qx+ao)  for i = i , 2 , . . . , n .  Then a=(ao, a t , . . . , a , ) e S  and 

p(v, a)=ao(vo--d  -1 ~ , ) +  (c--d-tq• ~ , ,  
i = l  i = l  

n 

which shows that if v0<d-t]~ v i then p(v, a)--~--oo as a0---~+oo if c is kept fixed. 
i = 1  n 

Applying this to (2. I8) we see that ord B~----- -t-oo if v0<d - t  Y, vl, i.e. 
i = 1  

(2.22) B~=o if v~ 3;. 

With c>o  as before, let a o = - - q x + c , a ~ = o  for i -= I ,2 ,  . . . , n .  Once again 
a----- (a0, al, . . . ,  an)ES and thus (2.18) shows that 

ord Bo> v0(qx--c ) - - q ( q - - I )  - 1  ord X 

for each c>o. Taking limits as c-+o, 

(2.23) ord B~> qxv0-- q( q -  I) - t  ord ~. 

Relations (2.22) and (2.23) show that ~ e L ( q x , - - q ( q - - I ) - t o r d Z ) ,  as asserted. 

Note. - -  If ~ = o  in the statement of the lemma, then equation (~. 19) is valid 
for all a~S. Since (o, o, . . . ,  o)~S, it follows that ord X> o. 

Theorem 2.x.  - -  Let 11 , . . . , ;% be a set of non-zero elements of ~ and let 

e =  ~ ord Xi+ (q - - I )  -1 Max ordk  e Let ~ be an element of L 'o~){X} such that 
,/.=1 l <~ i<~ s 

( 2 . 2 4 )  = 

then ~eL(qx,--e) .  

Proof. ~ The theorem is a direct consequence of the previous lemma if s =  I. 
Hence we may suppose s > I  and apply induction on s. Let o r d X l > . . . > o r d X ~  

8 = 1  

and let ~q=(0~--X,I)~. Since ~qeL'~g){X} and II  (I--x~-x~)~=o, we may 
i = 1  

conclude that ~eL(qx, - -e ' ) ,  where e ' = e - - o r d X  s. We may choose yeO such 
that o r d - r = e ' - - ( q - - I )  -1 ord X,. Clearly T;~;-l~qeL(qx,--q(q - I )  -1 ord X,), while 
~(7~)-----Xs(~'r �9 Since y;~T~e~, we may conclude from the previous lemma 
that - (~eL(qx , - -q(q- - I ) - lo rdX,) .  The proof is completed by checking that 

- -o rd  7 - - q ( q - -  I) -1 ord ),~ = --e.  
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Note. - -  Although not needed for our applications, we note that we had shown 
with the aid of Lemma 2.4 that if F ~  (N(q-1)l and ~ is a polynomial satisfying (2.~4), 
then ~ lies in ~(N). We can now show that if ~ is known to satisfy (2.24) and is known 
to lie in L'  then it must be a polynomial (and hence lie in ~CNI). I f  F e ~  (NIq-l~) then 
there exists y~K) such that y F ~ 9 [ X ]  and hence if r~Z+,p'N(q-llyF~L(r, o). If  

~,---- ~bop~N(q-1)yF, then f i  ( I - -k~r )~- - - -  o, where ~, __~ypm(q-1) and hence the theorem 
~=1 

shows that ~ lies in L ( q r , - - e - - ( s +  i ) ( o r d y + r N ( q - - I ) ) ) .  Hence ~ = Z B ~ X  " ,u~X 
and ord B , , ~ q r u o - - e - - ( s - - I  ) o r d y - - r N ( q - - I )  (sq- I) for each r~Z+. Letting r-+o% 
it is clear that B,~-o if u 0 > N ( q - - I  ) ( s+  I)/q, which shows that ~e~. 

Theorem 2.2.  - -  I f  the coefficients of F lie in a field, K0, of finite degree over Q' and 
i f  k -1 is a zero qf order ~ Of XF, then the dimension of the kernel in L(qx) of (I--~-1~) ~ is not 
less than ~, indeed the kernel contains g. linearly independent elements which lie in L(qx) n K0(k ) {X}. 

Proof. - -  We may suppose that ~ I. Since XF~){t}, ZF(O) = I, we may conclude 
from Theorem I . I  that kes Let z~(t)----det(I-- t~) .  We recall that Lemma 2.3 
shows that Z~-+ZF uniformly on each bounded disk. There exists a real number, 
p>o  so large that X~ has no zero distinct from ),-~ in ?,-a(~ +C~) .  The proof of 
Theorem ~. 2 shows that for N large enough (as will be supposed in the remainder of 

�9 ~ - ~  . k - ~  of the proof) there exist (counting multiplicities) precisely ~ zeros, ~,~,. -, ,,N 
Z~ in )~-~(I -4- C~). Since XF, Z~ and the set ~-~(~ +Co)  are all invariant under auto- 
morphisms of ~ which leave K0(k ) pointwise fixed, we conclude that the polynomial 

f ~ ( t ) =  1-I (I--kr is also invariant under such automorphisms and hence lies 

in K0(k ) It). Let K be the composition of all field extensions in f~ of K(k) of degree 
not greater than [z. Theorem ~.~ shows that k is algebraic over Ko, hence 
deg(K0(~)/Q')~oo.  This shows that d e g ( K / K 0 ) ( o o  and hence d e g ( K / O ' ) ( o o .  
The conclusion is that ),~,NeK, l imk~N~X for i ~  I, 2, . . . ,  [z and that K is locally 

N .._~ o o , 

compact. Furthermore fN is relatively prime to zN/f~. 
We now restrict ~N to K[X] n 2  (N), This does not change the characteristic equation 

of a N and letting W~ be the kernel in that space of ~N ~ I-[ ( I - - ) ~ N )  , we conclude 

that the dimension of W N (as K-space) is B- An element, 4, of W~ will be said to be 
normalized if it lies in ~ {X} and at least one coefficient is a unit. If  ~ is such a normalized 
element of W~ then by Theorem 2. I, ~ L ( f f z ,  --e) ,  where e =  ( ~ +  (q - - I )  -~) ord k. 
If  we write ~ ~ B u X  ~ then ord B ~ U o - - e  and hence Bu must be a unit for at least 
one element ua~.,={wSg[Vo~e/(q• Conversely if B, is a unit then ueS~. 

I t  is clear that a subspace W of K[X] of dimension b~ has a basis ~ ,  . . . ,  ~ in 
s  for which there exist distinct elements ut, . . . ,  u~ of Z~_ +~ such that the 
coefficient of X u~ in ~i is the Kronecker 8i . i ( i , j= ~, 2, . . . ,  b~)- Hence for each N there 
exists a set of t* linearly independent elements {~,s}i=,,~ ..... ~ in Ws corresponding to 
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which there exist ~ distinct elements, {u~,N}i=~, 2 ..... ~ in Z~ such that ~.,~es and 
the coefficient of X ui,~ in ~i,N is 3i,~. for i, j = i, 2, . . . ,  tz. Since 3:, (and hence 3;~) 
is a finite set, there exists by the pigeon hole principle, an infinite subset, 9.I, of Z+ such 
that u~=u~, N is independent of N for each N in the subset and i =  I, 2, . . . ,  ~. In the 
following N will be restricted to this infinite subset. 

Now let f l3=K{X}r~L(qx,- -e) .  Generalizing the definition of w I, we may 
define the weak topology of K{X} and by the local compactness of K and the theorem 
of Tychonoff, ~3 is compact under the induced topology. Thus ~3 ~, the ~ fold cartesian 
product of ~3 is also compact under the product space topology. Clearly the ordered 
set ~(~/= (~,s,  ~,~ ,  . . . ,  ~ ,~ )  e f ~  and hence an infinite subsequence of the sequence 
{~(~/}Ne~ must converge. Hence there exists an infinite subset, 92[' of 2[ such that 
{~(N)}N~9 l, c o n v e r g e s  to an element (~1, . . . ,  ~)e~3 ~. For j =  I, 2 , . . . ,  ~ we have 
{~i,N}~e~,-+~ and since the coefficient of X u~ in ~',s is 3i.~., the same holds for ~.. This 
shows that ~ , . . . ,  ~ are elements of ~3 which are linearly independent over f2. 
Furthermore ~N~,N=O for each N ~ '  and hence taking limits as N-+oo in 9.[', we 
conclude that ~t, . . . ,  ~ lie in the kernel of ~ = ( I - - X - ~ )  ~ in L(qx). 

Now let to~, . . . ,  to,, be a minimal basis of K over K0(X ). I f  

then there exist ~1, . . . ,  ~%~K0(X){X } such that ~q = ~ ~to~ and since the basis is 

minimal, ~ L ( q x , - - e - - i )  for i = I , ~ ,  . . . , m .  I f o = ~ t h e n  o =  ~ t o ~  andsince  

~,~K0(X){X } for i =  i, ~ , . . . ,  m, we can conclude that ~, lies in the kernel of ~. 
Applying this argument to ~t, . . . ,  ~ we conclude that the D.-space spanned by them 
is spanned by elements of the kernel of ~ in L(qx)nK0(X){X }. This completes the 
proof of the theorem. 

To complete our description of ZF in terms of a spectral theory for ~, we must 
prove a converse of the previous theorem. 

Theorem 2 .3 .  - -  Let ~. be an integer, ~. > i and X a non-zero element in fL The dimension 

of  the kernel in L' of ( I - -Z- l~ )  ~ is not greater than the multiplicity of  X -1 as zero of  z F. 

We defer the proof except to note that we may assume that the kernel of ( I --X-l~)~ 
in L' may be assumed to be of non-zero dimension and to show that X~s If  the kernel 
of ( I - -? , - '~)  ~ is not {o} then by an obvious argument, the same holds for the kernel 
of (I--X-t0Q. Hence there exists ~eL'  such that ~=-X~, ~4=o. Since tEL '  there 
exists u such that y~E~)(X}. Hence it may be assumed that ~e~3{X}. 
Thus Xr~=~r~ for each feZ+ and since e m a p s ~ { X }  into itself, we conclude that 
~4:o, Z ~ f ) { X }  for all rcZ+.  This shows that XeD. Theorem 2. I now shows that 
we can replace L' in the statement of the theorem by L(qx). 

Before resuming the proof we must recall some formal properties of matrices. 
Let A be an m • matrix with coefficients in some field of characteristic zero. For 
each subset H of {i, 2, . . . ,  m}, let (A, H) be the square matrix obtained by deleting 
the jth row and column of A for each j ~ H .  Let [H] denote the number  of elements 
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in H and let t be t rancendental  over the field, K, generated by the coefficients of A. 
I f  [ H ] = m ,  we define d e t ( A , H ) = i  and for o < [ H ] < m ,  I - - t ( A , H )  denotes 
( ( I - -  tA),  H) .  

Lemma 2.7. - -  For I < r < m 

/r-1/ddt ) )  1-I t - - - -  d e t ( I - - t a )  ) 'r! Y, de t ( I - - t (A ,  H)),  ( 2 . 2 5 )  (,=o( (m--i) = ( - - ,  
[H]=~ 

the sum on the right being over all subsets, H, of{ l ,  2, . . . ,  m} such that [H] = r .  

Proof. - -  We recall the classical result that  ifB is an m • m matrix whose coefficients 
are differentiable functions of  t then 

(2.26) det B = Y~ det Bj 

where B i is the m X rn matrix obtained from B by" differentiating each coefficient in t h e j  t~ 

row and leaving the other rows unchanged.  Thus ~ d e t ( I t - - A )  ---- Y, d e t ( I t - - ( A ,  H)).  
a s  [~ =t 

However t -m d e t ( I - - t A )  = d e t ( t - l I - - A )  and therefore 

d e t ( I - - t A ) + t - m d d e t ( I - - t A ) = - - t  -2 2~ d e t ( t - l I - - ( A , H ) ) =  
a $  

The assertion for r =  I follows immediately.  
use induction on r. Hence 

[H] = t 
- - t -~ t  -('-11 2 d e t ( I - - t ( A ,  H)). 

[ iq = i 

We may therefore suppose r > i  and 

,rs,  )) 
(2.~'7) r ! - l l  II [t----(m--i) det ( I - - tA)  = 

\~=0\ dt 

( - - ~ ) r - l r - ' ( t d - - ( m - ( r - - i ) ) )  Z de t ( I - - t (A ,  H)). 
[H] = r - t 

The lemma is known to be true for r =  I and hence for given H such that 
[ H ] = r - - 1 ,  since (A, H) is an ( m - - r +  I) x ( m - - r + i )  matrix, 

( td- - (m--r  + I)] de t ( I - - t (A ,  H ) ) = - - Y ~  de t ( I - - t ( (A ,  H), H")) ,  
l H ,I 

the sum being over all H " c { I , 2 ,  . . . , m } - - H  such that  [H"]----I. However 
((A, H), H")  = (A, H') where H '  = H "  u H and hence the sum over H "  may be replaced 
by ~] det ( I - - t (A ,  H')) ,  the sum now being over all H '  such that  H'D H, [H'] = r. Thus  

H '  

the right side of (2.27) is ( - - I ) r r - lW,~]det  ( I - - t (A ,  H')) ,  the sum being over all H 
H H '  

such that  [H]----r--I  and over all H'D H such that [H'] = r. But given H'  such that  
[H'] = r there exists exactly r distinct subsets H of H '  such that  [H] = r - -  I. Thus the 

right side of (2.27) is ( - - I )  r ~] de t ( I - - t (A ,  H')) ,  which completes the proof of the 
lemma. [H'] = r 
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With the previous conventions, let S i~l (A) , j=o,  ~ , . . . ,  m denote the elements 
of  the field K generated by the coefficients of  A which satisfy the formal identity 

(2.~8) det(I  + tA) = ~. S(~')(A)t i 
i = 0  

We observe that 

SIm-J)(A) --  ~] det(A, H ) , j  = o, i, . . . ,  m - -  I 
[H] = j 

the sum being over all subsets H of {I, 2, . . . ,  m} such that  [H] = j .  
Let ~ >  I be a rational integer, let ~ be a primitive /h  root of unity in some 

extension field of K. For (io, it, . . . ,  i~-l) eZ~-, let g(io, il, . . . ,  i~_1) = ~  where 
tt--I ~--I 

r =  Y~ si~. Since d e t ( I - - P A  ~) = l-[ de t ( I - - t co-~A) ,  we have 
8 = 1  8 = 0  

m I~ , - -1  m 

(2.3o) Z tJ~SI~)(--A~) = H Z tJSI~/(--o~-'A). 
~=o s=oj=o 

For o < i <m,  by compar ing coefficients of t ~!"-i) on both sides of (~. 3o), we conclude 
that  

g - - 1  

(~.3 I)  S(m-'t(A ~) = (S("-~)A)~ + (-- i)~/~-l/X'g(i0, . . . ,  i~,_1) I-[ s(m--i , )A,  
s = 0  

I.~--1 

the sum, E' ,  being over all (io, . . . , i ~ ,_ l ) eZ~_ , i~<m such that  ]~ i,-----~.i, but  
i 0 = i I . . . . .  i~_ 1 --= i is explicitly excluded. , =0 

Proof (Theorem 2-3).  - -  We first outline the proof. Let W be the kernel of  
( I - -X- l a )  ~ in L'  (and hence by Theorem 2. I) in L(qx). Suppose d im W > r > o  for 
some reZ+.  We must show that  Z~-I)(X -1) = o  for s----I, 2 , . . . , r .  Let gJl~ (for 
each NeZ+)  denote the matrix relative to a monomial  basis corresponding to the linear 
transformation ~k----=Tso~ of 2/~/. Explicitly, for each ve3;s, a~(X ~) =EgJtk(u,  v)X", 
the sum being over all u~3;s. 

Let x N ( t ) = d e t  ( I - - t g ) ~ ) .  We know that  for all seZ+,  lim ?(~l(X -~) =Z~/(X -1) 

and thus we must  show that  l im )~-~/(X -1) = o for s = I, 2, . . . ,  r. Lett ing N '  be the 
Ig --->- 0o 

dimension of ~(s), equations (2.25) and  (2.~9) show that  it is enough to prove that 

(2.32) l im S/N'-~/(I--Z-1932~) = o  for i = o ,  I, . . . ,  r - - I .  

existance of a constant c independent  of N, such that for We shall prove the 
i ~ o ,  I, . . . , r - - I  

(2.33) ord c + •  I)N 

and prove (2.32) by using (2.33) and (2.31) to deduce the existence of a constant c' 
independent  of  N such that  for i - - o ,  I, . . . ,  r - - i  

(2-34) ord S(Z~'-0(I--X-t~lJ~)2c'  + •  I)N[~ '+ ' .  
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Let 9J/~' = (I--X-~gTt~) ~. We may view 9J/ff as a matrix whose rows and columns are 
indexed by the set ~ s  of all u e3; such that u 0< N. If  H is any subset of ~ ,  H 4= 35r~, 
we may, following our previous convention, denote by (922~', H) that square matrix 
obtained from 9Jl{~ by deleting all rows and columns indexed by elements of H. We 
shall show that if H is any set of not more than r - -~  elements of 3; then c may be 
chosen independent of H and N such that 

(2.35) ord det (!IR~', H) _>c + x ( q - -  ~)N 

whenever H (if not empty) is contained properly by 35 N. Equation (2.29) shows that 
equation (2.35) implies (2.33)- Our  first object is the proof of equation (~ .35). 

Let H be a set of no more than r - - I  elements of ~E. We know that there exist 
~1, . . . ,  ~,, a set of r linearly independent elements in W. Let ~i=ZB,,iXu, j = I ,  2, . . . ,  r, 

the sum being over all ue3;. The (possibly empty) set of [H] equations ]~ aiBu, i = o  
i = 1  

for each ueH,  in r unknowns a 1, a~., . . . ,  a, certainly has a non-trivial solution in f~ 

(since r >  [H]). Since ~t, - . . ,  4, are linearly independent,  we conclude that ~---- ~ ai~ ~ 
j = i  

is a non-trivial element of W. Since o + ~eL(q~), ~ may be normalized so that ~es 
and at least one coefficient of ~ is a unit. Thus there exists a normalized element 
~ = Z B ~ X "  in W such that B , = o  foreach ueH.  Theorem ~. ~ shows that, forall  ue~;, 

(~. 3 6) ord B~> q• , 

where e = ~ t o r d X + ( q - - I ) - a o r d X .  Hence if N>No=e/qk ,  we may conclude that 
T ~  is also normalized and the coefficients of ~N=TN~ satisfy (2.36). 

For typographical reasons we shall when convenient denote the coefficient of X u 
in ~ (resp. F) by B(u) (resp. A(u)) instead of B, (resp. A,). For given integer j > i ,  

(0@ ~T N ~ = (T~ o~)JT N ~ ---- ZXW(/)B (w (~ A (qw I1)- w I~ A(qw C~)- w I1)) . . .  A(qw l i l -  w I j -  1)) 

the sum on the right being over all (w (~ w (1), . . . ,  w (i)) ~7~ +~. We may write TN(s as 
a similar sum except in this case the sum is over all ((w (~ w (1), . . . ,  w!i-~)), w Ij)) e3J x 3;N- 
Since ord A~>• 0 for all ue3;, we have by (2.36), 

i - 1  

X--1 ~176176 " " A(qw(i)--w(i-1)) } >-- --• qw(~ +,~=o (qw{'+ l)--w(i)) ) = 

) If  w/~ w(1), . . . ,  w Ci-t) do not all lie in 3;N then certainly a w/~) > N .  
i =  

can conclude (using only the fact that ~eL(qx, - -e) )  that 

(2.37) TN(~i~) -- (TNOe)~TN~ mod Y~ X~'C(• (q--~)• 
u ~  N 

Thus we 
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where for each real number, b, C(b) is used in the sense of C~ in w I. Since 

we have 

W 

o =  ( I - - X - t e ) ~ =  Y. (__?-t)i(~)~i~, 
i=0 

tx 

:=o i=o 
(I--X-%t~)~TN~ mod N X"C(xquo- -~e+(q- - i ) xN  ). 

For each element (u, v)s~l~ x ~N, let ~ ' ( u ,  v) denote the coefficient of the matrix ~l~' 
in u t~ row and v tb column. We have for each vs~N, (I--X-10t~)~X'=]~Jt~'(u, v)X ", 

t* 

the sum being over all u e ~  N. Thus (I--X-~a~)~TN~=Y~B~ Z~''''~-~tN(u, v)X ", the sums 

being over all u e ~  N and all w ~ s .  We conclude that for each ue~I~ , 

]~lJ~(u, v)B~-=o mod C(xqu0--~ e +  ( q ~ ) x N ) ,  

the sum being over all v s ~  N. We recall that B,-----o for w H  and hence if N"  is the 
number of elements in ~ - - H ,  the system of N"  congruences indexed by u e ~ N - - H  , 

(2.38) ~p-~'~ v)B,---o mod C(- -2  e +  (q--I )xN),  

(the sum being over all VEZN--H), has a non-trivial solution if N > N  0 since B, is a 
unit for at least one W ~N- - H .  The ring of integers, s of Y~ is not a principal ideal 
ring, but finite sums of principal ideals are principal. Hence the theory of elementary 
divisors may be applied to the matrix E N indexed by ( ~ - - H )  • (%N--H) whose 
,,general" coefficient is EN(U , v)-=p-"q~"gJl~z'(u, v). If  r are the elementary 
divisors of E N then (2.38) shows that 

(~'.39) CN"- O mod C(--2 e +  (q-- I)• 

Since our object is to prove (2.35), we may assume det(gX~', H) 4: o. Hence o 4 = det EI~ , 
O4:sN,,. If  U and v lie in ~N--H,  let (EN, (u, v)) denote the matrix obtained from E N 
by deleting row u and column v. Let ((gX~', H), (u, v)) denote the corresponding matrix 
associated with (gYt~', H). It follows from the definitions that 

(2.40) det(Es, (u, v))/det Et~ =p~"det((gJl~', H), (u, v))/det(gJ~, H). 

Ideal theoretically, (detEN)=(SN,,)E(det(EN, (u,v))), the sum being over all 
(u, v )e(~N--H)  2. Thus - -  ord r  ord det(Es, (u, v ) ) -  ord det EN, the mini- 
mum being over all (u, v)~(%N--H) 2. This together with (2.4 o) shows that 

(2.4I)  - -o rd  ,z~,,----Min {• + ord det((g3~', H), (u, v)) } - -o rd  det(~It~;, H), 

the minimum being over the same set as before. This together with (2.39) would 
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give the proof of (2.35), if it were known that c may be chosen independent of N and H, 
u and v such that 

(2.42) xqu o -}- ord det ((~Q~', H), (u, v) ) ~ c + 2 e. 

Thus the proof of (2.35) has been reduced to that of (2.42). 
We observe that 93~(u, v) =Aqu_ . and hence ord 9JUs(u, v)~x~(qu--v) .  It is 

easily verified that if two square matrices (each indexed by 25s) satisfy this estimate 
then so does their product since xa(qu--w)-+-xa(qw--v)~xa(qu--v) .  Thus 

t t  t l t  - - ~  ~ N  = ( I - - x - ~ ) "  = I + 9J~N x , 

where 9J~' is a square matrix indexed by X ~ - - H  satisfying the condition 

(2.43) ord ?/J~"(u, v) ~x~(qu ~ v )  

for all (u, v)e(B:s--HH) ~. Equation (2.42) now follows directly from Lemma 2.2 (ii). 
This completes the proof of (2.42) and hence of (2.35). As we have noted previously, 
this implies the validity of (2.33). We must now show that (2.33) implies (2.34). 
This is clearly the case for r =  I. Hence we may assume that r>  I and that (2.34) 
has been verified for i = o, i, . . . ,  r ~ 2 .  Replacing A by I--X-l~lJ~ in (2.3 I), we have 

(SIS'-r --),-~gJ~)) ~ = 

S/S'-I'-t))((I--X-a931~) ") --Z'g(i0, . . . ,  i~_t) I ]  S ( N ' - i , ) ( I - - X - t ~ )  

the sum, Z', on the right being over all i0, i D . . . , i ~ _ ~  in {I, ~ , . . . ,  N'} such that 
IX--1 
5~ i~=~t(r - - I ) ,  but io=i t . . . .  =i~_x is excluded. In each term in the sum, Z', at 

$ ~ 0  

least one factor S(N'-is)(I--Z-x~J~) occurs such that i s<r - - i ,  while the remaining 
factors are ~- -x  in number and each of type SIS'-i/(I--X-x~ff~), j ~ ( r - - i ) .  The 
assertion follows from the induction hypothesis provided we verify the existence of a 
finite lower bound for ord S I s ' - i ) ( I -x - t g J~ )  independent of N and valid for j ~ . ( r - -  ~). 
The existence of such a lower bound is an obvious consequence of equation (~. ~9) and 
Lemma ~.2 (i). This completes the proof of the theorem. 

Note. ~ No use has been made in Theorem ~. 3 of compactness and no hypothesis 
concerning the field generated by the coefficients of F is needed. On the other hand 
we do not know if Theorem ~. ~ is valid without that hypothesis. 

We now summarize some of our information. 

Theorem 2.4. - -  For each non-zero element, ~, of ~, let sx be the multiplicity of ~-1 as 
zero of XF. I f  the coeffcients of F lie in a finite extension, K0, of Q', then for s~s  x the space 
Wx=kernel in L' of (I _ ) - l ~ ) s  isindependentof s, lies in L(xq) andis of dimension s x. Further- 
more W x has a basis consisting of elements of K0(~,){X }. 

Proof. - -  For given )~2", let W cs) be the kernel of (I--),-1~) ". Theorem 2.2 
shows that for s~sx,  dimWIS)~sz, while Theorem 2.3 shows that dimWC~l~sx for all 
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s>~.  Since W(~)cW (~+1) for all s>~ it is clear that W (") is independent of s and has 
dimension s x for s > s  x. The remainder of the theorem follows directly from Theorem ~. ~. 

Corollary. - -  I f  G is an element of  K0(X ) such that for  some real number b > o  both G and 

~/G lie in L(b) and i f  H(X) =F(X)G(X) /G(X~)  then Z~=7.a, it being understood that F 

and K 0 satisfy the conditions o f  the theorem. 

Proof. - -  Let e = M i n ( •  b). I t  is clear that ~ G . ~  is a mapping of L(c) onto 
itself. The corollary now follows from the theorem and the fact that each ~eL(c),  

d?(H~) = G(X) - ' .  ~(~). G(X). 
We have shown that the zeros of Z~ can be explained in terms of spectral theory 

if F satisfies the condition of Theorem 2.4. If  it were known (as is the case in the 
geometrical application) that the coefficients of F and the zeros of Zr all lie in a finite 
extension, f20, of Q,' then the zeros of ;(~ can be explained entirely on the basis of the 
spectral theory of ~ as operator on L"=f~0{X}nL(q~z ). We make no assertion of the 
type: L "  is a sum of primary subspaces corresponding to :r Our next result serves as 
a substitute for a statement of this type. 

Theorem ~,. 5. - -  I f  X is a non-zero element of  ~2 which is algebraic over O', /f  X -1 is 

o f  multiplicity ~ as a zero of  )F, i f  the eoe~cients of  F lie in a finite extension, K0, of Q'  and i f  K 

is anr finite extension of  K0(X ) then 

(2 . t4)  (I--X- '~)~+* (K{X}n L(qx)) = ( I - -X-*~)~(K{X}n L(qx)) �9 

In particular i f  ~ = o  (i.e., Z~(X -~) 4:o) then K{X}na(qx)  = ( I - -X-* :c ) (K{X}na(qx) ) .  

Proof. - -  Let K '  = K0(X ). By hypothesis K is a finite extension of K'. For given K 
we show that (2.44) holds if and only if it is valid when K is replaced by K'.  Let 
col, . . . ,  r be a minimal basis of K over K'.  Suppose (2.44) is valid with K replaced 

m 

by K'.  I f  ~eK{X}nL(qx)  then ~ =  ~ co~., where ~eK '{X}nL(qx) ,  i =  i, 2, . . . ,  m. 
i = t  

Hence by hypothesis there exist ~ t , ' ' ' , ~ m  

(I--X-~0c)~'+l~qi = ( I - - X - l a ) ~ . ,  i =  I, 2, . . . ,  m, 

and furthermore ( I - - Z - ~ ) ~ + l ~ =  ( I - -X-~e )~ .  

each in K'{X}nL(q• such that 
m 

and hence ~ =  Y~ r ) 
i = 1  

This shows that 

(I--X-'0c)~+t (K{X}nL(q• ~ ( I - -X-*~)~(K{X}n L(qx)) 

and since inclusion in the opposite direction is clear, we may conclude that (2-44) is 
valid for K if it is valid for K'.  Conversely if (2-44) is valid for K, then given 
~eK'{X}nL(qx)  there exists ~eK{X}nL(q~z) such that = ( I - - x - t ~ ) ~ .  
The relative trace, S, which maps K onto K '  may be extended to a mapping of K{X} 
onto K'{X} in an obvious way. The trace, S, commutes with ~ and hence 
( I - -X- le )~ '~=(I - -X- la ) t '+ tS(~ /m)  since S(~)=m~.  Since S (~q)eK '{X}nL(qx)we  

may conclude that (2.44), if valid for a given K, is also valid for K'.  
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We have shown that it is enough to prove the theorem for one finite extension, 
K, of K'.  I f  k-1 is not a zero of ZF, let K = K'.  I f  X-1 is a zero of ZF then following 
the procedure of the proof of Theorem 2.2, let ZN(t)=det( I - - taN) , let p be real, p > o  
such that Z~ has no zeros in k-l(~ + Cp) distinct from k-*. For all N large enough, 

k-1 . k-1 in ~.--l(I Ji-Cp), these are zeros o fa  polynomialfN ZN has precisely ~ zeros 1,N, �9 �9 , ~,~ 
of degree ~ which divides ZN and is relatively prime to zN/fN" Let K be the composition 
of all extensions of K '  of degree not greater than ~. We know that k-~l,N, �9 �9 -, k~,N-1 
lie in K, approach k -1 as N-+oo and are distinct from all other zeros of ZN. In  the 
following a n will be restricted to K[X]  ni~ CN). 

~t 

Let ~n be the endomorphism I I  ( I - - k ~ a N )  of K [ X ] n ~  CN) (~N=I  if a = o ) .  
4 = 1  

Since ~N annihilates the primary components of K [ X ] n ~  (N) relative to a N corresponding 
to the cigenvalues )'I,N, - - - ,  k,,N, it is clear that ~NIK[X]nEIN)) is the direct sum of 
the primary components of K[X]r~(N) corresponding to the remaining eigenvalues 
of a n. Hence if a~' denotes the restriction of a n t o  ~N(K[XJo~tN)), we can conclude that 

(2-45)  det(I-- ta~')  = det ( I - - t a  N (I --th.N). 

Let ~ be a given element of K{X}nL(qx).  We must find ~q in the same space 
such that ( I - - Z - ~ a ) ~ + : ~ =  ( I - - Z - x a ) ~ .  We may suppose that ~eL(qx, o). Let 
~N----TN~. Since k is not an eigenvalue of a~, there exists BNeK[X]ns such that 

(2 .46)  (I - -Z -~ aN) ~N~n = ~z~ ~N" 

Eventually we shall complete the proof by taking the limit of this relation as N - + ~ .  
The main problem is the demonstration that ~s may be chosen such that its limit lies 
in L(q~). We note that ~N~N is uniquely determined by (2.46) and hence ~N is uniquely 
determined modulo the kernel, WN, of ~N in K [ X ] n ~  <N), a subspace of dimension ~. 
We shall show that there exists a real number  c' independent of N such that ~N can be 
chosen so as to satisfy the further requirement 

(2.47) ~NeK[X]~L(qx,  c') 

for an infinite set of integers, N. 
We first construct a basis of ~N(K[X]~IN)). For each Ue~:N, let Y,,N----~N X~. 

The set {Y~,N} indexed by ue~n ,  spans ~N(K[X]o~IN/) but does not (unless ~t = o )  
constitute a basis of that space. In  the proof of Theorem 2.2, it was shown that there 
exists an infinite subset, 91, of Z+ and a set S of ~z elements of ~5 such that for each Ne91, 
the kernel, WN, of ~N in ( K [ X ] c ~  Is/) has a basis {g,,N}~es consisting of elements 
of K[X]n~(N)(qx, - - e ) n ~ [ X ]  indexed by S such that for each veS the coefficient of 
X ~ in g~,z~ is the Kronecker 3,,,. (In the previous remark, e =  (~ -]- (q--  I) -~) ordk,  
precisely as in the proof of Theorem 2.2.) Thus for each u e S, we have (N being assumed 
in the remainder of the proof to lie in 91), 

(~' .48) g.,~ = X " +  ZE~(w, u)X w, 
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the sum being over all we3;~--S,  and furthermore ord EN(W , u)>qXwo--e. 
now conclude that for each ueS, since o =  ~s(g,,N), that 

(e-49) --Y.,N = ZEN(w, u)Yw,~, 

We may 

the sum being over all WE~N--S. Thus the set {Yw,~} indexed by ~N--S spans 
~N(K[X]ns  (N/) and hence must be a basis of that space, since it contains the correct 
number of elements. 

We have noted that if ~z~ is a solution of (2.46), then the sum of ~N and any K-linear 
combination of the g~,s is also solution of (2.46). Equation (2.48) shows that ~qN may 
be chosen such that the coefficient of X" in ~ is zero for each uES. (In fact these 
additional conditions uniquely determine ~qN). Thus we may write aqN=ZB~,NX v, 
the sum being all vE3;N--S. By hypothesis ~EL(qx, o) and we write ~---ZG,X ~, the 
sum being over all vz%. Thus ~ N = T N ~ = Z G , X  *, the sum now being over ZN, and 

ord G~> qxv 0. Thus ~N~N = y~ GvY~,N = Y~ G~Y~,N + ~] G~Y~,N" Applying (2.49) 
v~ZN v~ZN--S u~S 

we now obtain ~N~N----=ZY,,N{G~-- 2 G~EN(V , u)}, the sum being over all v e ~ s - - S .  
u@8 

Thus ~N~=ZGv,  NY~,N, the sum being again over all ve3;N--S. Here 

G~,~ = G,-- Z g~(v, u)G. 
u@S 

and hence ord G~,N>q• , c being a real number  independent of N. 
We now determine the matrix of ~ '  relative to the basis {Yo,N},eZ,,-s 

~N(K[X]ns Since ~N commutes with [~, we have 

0~N'Yv, N = 0~N~N xv ~--- ~N~N xv = ~N Z Aqw_vX w. 
w ~ N  

of 

With the aid of equation (2.49), it is easily seen that for W ~ s - - S  

(2.5 o) a~'Yv, N ---- EASt(w, v)Yw, rr, 

the sum being over all WeZN--S, where for (w,v)a(3;N--S) ~, 

A~(w, v) = Aqw_ v -  ?~ Ez~(w, u)Aq,,_~. 
uES 

It  is easily verified that ord A~r(w , v)>•  
Let A~ be the square matrix indexed by 35N--S whose w, v coefficient is 

AN(w , '  v). Equation (2.5 o) shows that det(I--X-~A~) = det(I--^'-laN)."' Since 
~F(t) = lim det(I-- taN) , we conclude from (2.45) that lim det(I--X-~A~) is the value 

N-o,- oo N~oo 

assumed at t = X  -~ by zr(t) /(I--Xt)  ~. This value is not zero since ~z is the multiplicity 
of X -1 as zero of Zr and hence for N large enough, de t ( I - -X- lA~)  is bounded away 
from zero. Explicitly there exists a rational number  c" such that for N large enough, 

(2.5 I) ord det(I--X-lA~) <c". 
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Equations (2.46) and (2.5 o) show that the set {B,,s} indexed by 
a solution of the system of equations indexed by w~3;~--S 

(~. 52) Z(8~,~--x-*a~(w, v))B,,N = Gw, z~, 

veX~--S is 

the sum being over w 3 ; s - - S ,  it being understood that ~,~ is the Kronecker ~ symbol. 
To verify equation (2.47), we apply Cramer's rule to equations (2.52) and estimate 
ordB,,s for each w 3 ; s - - S .  For each element (w, v) of (3~--S)  ~, let((I--X-tA~), (w, v)) 
be the square matrix obtained from I - -x -~A~  by deleting row w and column v. Clearly 

--1 , B,,~.det(I--X A ~ ) = Z + d e t ( ( I - - X - t A ~ ) ,  (w, v))G~,~ 

the sum being over all w~3;~--S. In view of (2.5i)  it is enough to show that there 
exists c'" independent of N such that 

(e.53) ord det((I--X-~A~), (w, v ) )+ord  G~.~>_q• 

for all (w,v)~(%N--S) 2. Equation (2.53) is however a direct consequence of 
Lemma 2.2 (ii) and our estimates for ordG~, N and ordA~(w, v). This completes 
the proof of (2.47). 

Since K{X}nL(qx, c') is compact, we conclude that the infinite sequence {~N} 
has a limit point v? in L(qx, c'). Taking the limit of equation (2.46) as N ~ o o  over 
a suitable infinite subset of Z+, we obtain (I--X-l~)~+tzq = ( I - - X - t ~ ) ~ .  Thus we have 
Shown that (I--X-I~)~+~(K{X}nL(q•215 This completes 
the proof of the theorem. 

Corollary. - -  I n  the notation of the theorem, let R = K{X}nL(q• and let W be the kernel 
of ( I - -X-t~)  ~ in R. For each integer j ,  j > I  we have 

( R = W +  (I--Z-l~)J~ 
(e 54) t W n ( i _ _ Z - ~ e ) j R =  ( I__X-~) jW.  

I f  ( I - - X - ' ~ ) ' W = { o }  then 

(2.55) (I--X-t~) ~+~R = (I--X-re) ~R- 

Proof. - -  For simplicity let us use the symbol 0 for ( I - -X- le ) .  The theorem 
shows that given ~ there exists ~ such that 0 ~ = 0 ~ + t ~ ,  which shows that 
0~(~--0~) = o  and therefore ~q~W-t-0~. This shows that ~cW-+-0!~ and hence using 
the fact that 0WoW we easily see that RcW+0~'R if j > I .  This proves the first half 
of equation (2.54). Writing this with j =  I and applying 0" to both sides we obtain 
0v!R----0~W-I-0~+t~R, which proves (2.55), since 0~W=o.  

If  ~ER and 0i~EW then 0 i + ~ 0 ~ W = { o }  and using Theorem 2. 4 we see that 
~ W ,  which shows that 0~~e0iW. This completes the proof of (2.54). 
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w 3. Differential Operators. 

a) Introduction 

In  this section we modify the notat ion of the previous section so as to facilitate 
the application of our results to projective varieties. Let Q '  and ~ be as before. 
Let ~,) be a finite extension of Q'  in f2, whose absolute ramification is divisible 
b y p  - I .  Let n > o , d > I  be fixed integers as before. Let Z now be the set of all 
U -==- (U(), U l ,  . . . ,  Un+I) EZ~ +2 such that  duo=Ux+.. .  +u,+ x. The definitions ofL(b,  c), 
L(b), ~, ~2 (N), PJl(b, c) are now precisely as in w 2 except that  the set Z is given a new 

meaning and furthermore these additive groups now lie in DO{X 0, X 1 , . . . ,  X,+~} 
instead of ~{X0, X1, . . . ,  X,}. Let S be the set { I , 2 , . . . , n + I } .  For each subset A 

of S (including the empty  subset), let M A be the monomial  l-Ix~, (M o = i) and let 
iffA 

LA(b, c), LA(b), ~A, ~A,(NI, ~A,(NI(b ' C) be the subsets of the previously defined sets which 

satisfy the further condition of divisibility by M t in f~o{X0, Xa, . . . ,  X,}. 
Let S ' ~ - { o , i , . . . , n + I } ,  S " = { o , I , . . . , n } .  

Let ~0 be the ring of integers in DO and let K be the residue class field of D 0. 

Let E i be the derivation ~ X ~ X ]  ~ of DO{X0, . . . ,  X,+a}, i = o ,  ,, . . . ,  n +  i~ A homo- 

geneous form f i n  D 0 { X ~ , . . . ,  X,+~} will be said to be regular (with respect to the variables 
Xa, . . . ,  X,+~) if the images in K[Xt ,  . . . ,  X,+~] of the polynomials f ,  E~f, . . . ,  E ,+a /  
have no common  zero in n-dimensional projective space of characteristic p. 

Let ~ be an element of1~ 0 such that ord ~ =  ~/(p--I) ,  f a form of  degree d in 
~)0[X~, . . . ,  X,+I] which is regular with respect to the variables X1, . . . ,  X,+  1 and 
let H be an element of L ( i / ( p - - x ) )  such that  

HeDO{X} 

H - ~zX0fmod Xo 2 
H~=E,H~L(p/ (p- -~) , - -~) ,  i = o ,  ~, . . . ,  n + , .  

For i = o ,  I , . . . ,  n + I ,  let D i be the differential operator ~--~Ei~+~.H~, mapping  
L (--oo) into itself. I t  is easily verified that dD 0 = D 1 + . . .  + D,+~, that  D~oD~ = DioD~ 
and that D~ maps L(b) into itself for b~p /p - -  I. The object of this section is the study 

n + l  

of the factor space L(b)/Y, D~L(b). To make use of the regularity of f we must recall 

s o m e  well-known facts about polynomial rings. 

b) Polynomial Ideals. 

I f  A is any set and G is an additive group then a set of elements ~. i in G indexed 
by A •  will be said to be a skew symmetric set in G indexed by A if ~.,i=--~i.~, ~ , i = o  
for all i , j~A. 

Let JR be a field o f  arbitrary characteristic, and let a be a homogeneous ideal 
in R[X]~-R[Xa ,  . . . ,  X , + J .  The  ideal a has an i r redundant  decomposition into 
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r 

homogeneous  p r imary  ideals, a =  n q/. T h e  d imens ion  of a is defined to be 
i = 1  

Max d im  q~ and  d imens ion  here is in the projective sense. We recall [5], 

I. I f  g e R [ X ]  then  ( a : g ) = a  if and  only if gisqi , i - = I , 2 , . . .  r. 

I I .  I f  g is a non-cons tan t  homogeneous  form then  d i m  (a + (g)) = d im a - ~  
if g lies in no p r imary  c o m p o n e n t  q~ of max ima l  dimension,  while otherwise 

d im(a  + (g)) = d im  a. 
I I I .  (Unmixedness  Theo rem) :  I f  a =  (gl, g2, �9 . . ,  gt), t < n +  i and d im  a - ~ n - - t  

then  each p r imary  c o m p o n e n t  of a is of  d imens ion  n - - t .  

Lemma 3. x. - -  I f  gl, �9 �9 g,+l are non-constant homogeneous forms in R[X1, . . . ,  X ,+ t ]  
with no common zero in n-dimensional projective space of  characteristic equal to that of  R and i f  

{P~}~EA is a set of  polynomials indexed by a subset a of  S = { I ,  ~ , . . . ,  n +  I} such that 

Pig /=  o then there exists a skew symmetric set ~/,i in ~R[X] indexed by A such that P /=  $'. ~%gi 

for each i~A.  Furthermore/f{Pi}iea consists of homogeneous elements such that deg(P/gl) = m 
is independent of  i, then each ~i,j may be chosen homogeneous of  degree m--deg(gigi).  

Proof. - -  Let a,. = (g,, � 9  gr), I < r < n + I. By hypothesis  d im a,+ 1 = - -  i, while 
by I I ,  d i m a r - - I ~ d i m a r + t ~ d i m a r  for r = I , e ,  . . . , n .  Also by II ,  d i m a , ~ n - - x .  
These inequali t ies show tha t  d im  a r = n - - r  for r =  i, 2, . . . ,  n-I- i and  that  
d im  a,+ t = d i m  r i for r~n .  Hence  by I I I ,  the p r imary  componen t s  of  a, are all 
of d imens ion  n - - r  and  by I I ,  gr+, does not  lie in any p r imary  c o m p o n e n t  of ar for 

r = I ,  2, . . . , n .  Hence  by I, (ar:gr+l)=a~" Fur the rmore  since d i m % = n - - I ,  we 
know gl :~~  I f  a - - { I }  then  P l = ~  and  hence we can assume a = { I , a ,  . . . , r + I } ,  
r:>x. Since (a, :gr+~)=a~, P,+lea~ and  hence there exist polynomials  h,, h2, . . . ,  h~ 

such tha t  P , + ~ =  ~ h/gi. Thus  ~ (Pi+higr+,)g~=o. Using the obvious induc t ion  
i = 1  i = l  

hypothesis  on  r, there exists a skew symmetr ic  set ~/,i in R[X]  indexed by {x, 2, . . . ,  r} 

such tha t  P~+h~g~+~= ~ ~%g~. for i =  I, 2, . . . ,  r. Let  ~+~ , /=h~ ,  ~i , r+t-~--h~,  for 
i=  

i =  i, 2, . . .  r and  let ~+~,~+~, r = o .  The  assertion follows directly. 
T h e  va lua t ion  of  ~0 can be extended to a va lua t ion  of  the po lynomia l  r ing ~0[X] 

in the usual  way, if g(x) =Za,,x", let o r d g = M i n  ord a,. 
u 

Lemma 3. ~. - -  Let g~ , . . . ,  gn + 1 be non-constant homogeneous forms in s . . . ,  X ,  + t] 
whose images in K[X]  have only the trivial common zero. Let A be a non-empty subset of  S and 

let g be an element of  the ideal Z (g~) of  x20[X ]. Then there exist elements {hi},e ~ of ~0[X] 

such that g = Y~ g/hi and such that ord h i ~  ord g for each / cA.  
i@A 

Proof. - -  We may  suppose tha t  g 4= o and  hence that  ord  g = o. By hypothesis  
g = Y, g/hi, hie~0[X ]. Let  e be the absolute ramif icat ion of ~0 and  let - -  b = e. Min  ord h;. 

Clearly b is an integer  and  we comple te  the p roof  by showing tha t  if b > o  then  there 
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exists a set of elements {h~}i~ A indexed by A in f20[X ] such that g-= Y~ g~h~ and such 
i@A 

that e. M i n o r d h ; ~ - - b +  I. Let II be a prime element of f20. By definition, 
iEA 

l-lbhi~s for each j ~ A  and if b>o  then Z g i H b h ~ = I l b g - o m o d ( I I ) .  Let G~ 

be the image ofg i and let ~ be the image of IPh i in K[X] for each leA. Thus in K[X], 
o =  Y~ Gi~ i and so by Lemma 3. i, there exists a skew symmetric set, {~,i}, in K[X] 

iEA 

indexed by A such that ~ =  Y~ ~,jG i foreach ieA. We now choose a skew symmetric set 
i@A 

{~, j} in s indexed by A such that ~, i is the image in K[X] of ~'~ for each (i, j )  cA • A. 
Hence Hbh~ = E ~ i g i m o d ( I I )  for each i~A. We now define a set of elements 

{hl}~E A in f~0[X] by the equations Ilbh~ = 1-Ibh~ + Y, ~',igJ for each icA. Clearly 
iEA 

I Ibh~=omod(II)  and hence e. M i n o r d h ~ - - b + I .  On the other hand the skew 
i EA 

symmetry of the set ~q~'j shows that g =  Y~ gih~ which completes the proof of the 
lemma. ~A 

Corol lary . -  I f  ga, . . . , g ,+~  satisfy the conditions of the above lemma and {P~},cA is 
a set of elements of I20[X ] such that ~ Pig~=o, then the skew symmetric set ~i,i of  Lemma 3. 

may be chosen such that Min ord ~q~,~> Min ord P~. 
i , i  

L e t f b e  the form of degree d in 230{X~, . . . ,  X,,+~} which is regular with respect 
to the variables Xa, Xz, . . . , X , + ~ .  Let f 0 = f , f = E J  for i = I , 2 ,  . . . , n + I .  Since 

d f 0 = f l + f ~ + . . - - q - f , + a ,  it is clear (lettingf~ be the image off~ in K[X~, . . . ,  X,+~]) 
that the regularity o f f  is equivalent to 

(i) f0,f~, . - . , ~  have only the trivial common zero 
( i i ) f l , f~,  . . . , f ,+~  have only the trivial common zero if ptd.  
Condition (ii) is simpler for most of our applications but will not be used since it 

would limit our results to the case in which d is prime to p. However we do note that in 
any case the regularity o f f  implies the triviality of the common zeros in f~ off~,fz,  .- �9 ,f ,+ ~. 
Thus Lemma 3. x shows that f~,f~, . . . , f ,+~ are linearly independent over D~ 0 (and f~). 

The following lemma refers to ideals in either f~0[X] or in K[X]. To simplify 
the statement we use the same symbol for f and f~. 

Lemma 3.3 .  - -  Let B be a non-empty subset of S = { i, ~, . . . ,  n + I }., 

(i) (M, )n  Y~ ( f )  = Y, ( M ~ f )  + X (Msf/X~) 
i ~  A i u A  - -B /~Ac~B 

i f  A is any non-empty subset of S, provided the characteristic does not divide d (i.e. the assertion holds 

in any case in ~2o[X ] and i f  p t d  in K[X]).  
(ii) In either characteristic, i f  A + S then 

(M,) o ((fo) + X ( f ) )  = (MBJo) + X ( M , f )  + X (M~f/X~.). 
i~A i~A--B i~A ('IB 

unless both A o B = S  and A contains n elements. 
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Proof. - -  In  bo th  s tatements  the ideal on the r ight  side clearly lies in the ideal 
on the left side. T o  prove (i) it is clearly enough  to show tha t  if M B . h e  ~ ( f )  then 

I E A  

(3. ,)  2 ( f , )+  2 (f, lX,) 
I G A - - B  i~Af~B 

Let B n A = C, B' = B - -  C. Let  h' = Mch. We first show tha t  h' E Y~ ( f ) .  This  is clear 
i E A  

if B' is empty ,  hence we m a y  use induc t ion  on the n u m b e r  of  e lements  in B'. I f  j ~ B ' ,  

then lett ing B " =  B ' - - { j } ,  h" = Mw,h '  then  Xjh" = M w h ' e  ~ ( f )  and  if we can  show 

that  h "e  Y, (f~) then  by the induc t ion  hypothesis we may  conclude tha t  the same holds 

for h'. Thus  we consider j C A ,  X j h " e  Y~ ( f )  and  recall tha t  Xj, { f } ~ . j , ~ s  is a set 
~A 

of  n § I non-cons tan t  polynomials  wi th  no non-tr ivial  c o m m o n  zero (since the charac- 
teristic does not  divide d) and  hence L e m m a  3 . i  shows tha t  h"eZ (f). Hence  

i E A  

Mche Y~ ( f )  as asserted. I f  d---- I then  if C is empty ,  (3- i) is trivial, while if j e C ,  
i@g  

then f / /Xj  is a non-zero constant  which  again shows tha t  (3. I) is trivial. Hence  
it m a y  be supposed tha t  d >  i, in which  case f~ = f / X  i is a non-cons tan t  form for 
e a c h i e S .  We may  assume that  C = { I , 2 , . . . , r } , A = { i ,  2 , . . . , t } , r < t < n + I  Thus  

t t 

X , X 2 . . . X r h e  2 ( f )  and  hence for some polynomia l  hi ,  X I ( X 2 . . . X f i - - f ( h t ) e  2 ( f ) .  
i = l  / = 2  

We now apply  L e m m a  3- I to the n +  i polynomials ,  Xl , f2  , . . . , f , f + l ,  �9 �9 . , f , + t  and  
l 

conclude tha t  X 2 . . . X f l ~ ( f ( )  + ~ ( f )  (the left side is h if r =  I). Now suppose for 
i = 2  

t 

some s, I < s <  r, X ~ + l X , + 2 . . . X r h E  ~ (fi ') @ Z (f/). T h e n  there exists a polynomial ,  
i = 1  ] = s + l  

t 

h~+,, such that  X ~ . t ( X ~ + e . . . X  fl h ~ + t f ~ ' + l ) ~  (f()  + ?~ (.~). The  n + I  poly- 
i:= 1 i = s + 2  

nomials fl '  ,f2', �9 �9 �9 , f , ' ,  X~.  t , f ,  + 2, �9 . .  ,J~ + 1 are non constant  forms satisfying the condit ions 
s + l  t 

of L e m m a  3.~ and hence X ~ 2 . . . X f l e  xZ ( f ' )  + Y, ( f ) .  This  completes  the proof  
i = l  i = s + 2  

of (3. I), and  hence of the first par t  of  the l emma.  

(ii) Here  it is enough  to show that  if MBhe (f0) + 2 (f~) then  

(3.2) 2 z (Z). 
i @ A - - B  i C A ~ B  

Let C and  B' be defined as before and  let h ' =  Mch. 

(3.3) h' (f0) + z (f,). 

We first show that  

To  show this, it is enough  (as before) to show tha t  if ICA and X t h " e  Z ( f )  + (f0) then 
/@A 

the same holds for h". By hypothesis  B' is emp ty  if A contains n elements and  hence 
for the p roof  of (3-3) it may  be assumed that  A does not  conta in  n elements.  Thus  
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Ata{I} contains at most n elements. Let C' be a subset of S disjoint from {x} which 

contains A and consists of exactly n - -  I elements. The n + I polynomials, f0, X~, {f~}~c' 
satisfy the conditions of Lemma  3. I and hence h"e 52 ( f )  + (f0). This proves (3.3)- 

4cA 
I f  C is empty then (3-2) is trivially true, hence we may assume C not empty.  I f  d =  I 
the f / ' = I  for each ieAc~BoeD and hence it may again be assumed that  d > i .  We 
may now let C = { I ,  2, . . . , r } , A = { I ,  2, . . . , t } , r < t < n .  Since (3.3) now shows that 

t 

X 1 . - - X , h ~ ( f 0 ) +  }2 (fi), we have for some polynomial, h~, 
i = t  

t 

X l ( X 2 . . . X r h - - h l f t ' ) c ( L  ) ~- ~a (fi)" 
i - - 2  

The set of n + ~ polynomials, (f0, X~,f~, . . .  , f , )  satisfy the conditions of Lemma 3- I 
t 

and hence X 2 . . . X ~ h e ( f 0 ) +  (f~ ')+ Z ( f ) .  We now suppose that for some s, I<_s<r, 
i = 1  

t 

we have X~+t.. .Xrh~(fo) § ~] ( f ( ) §  Y~ ( f ) .  Then  for some polynomial 
i ~ l  i = s + l  

t 

h ~ + ~ , X ~ + ~ ( X , + 2 . . . X ~ . h - - f j + t h ~ ) e ( f o ) + ~ ( f ( ) +  Z (L). The n-k-~ polyno- 
i = l  i = s + 2  

mials f 0 , f ~ ' , . . . , f j ,  X~+l , fs+-~, - . . , f~  satisfy the conditions of Lemma 3 . i  and 
s + l  t 

hence X ~ + 2 . . . X ~ h e ( f 0 ) §  ~] ( f ' ) +  Y~ ( f )  which completes the proof of (3.2) 
i = 1  i = s + 2  

and hence of the lemma. 

C) P-adic Directness. 

Let W be a vector space of dimension N over f~0 which has a <( naturally >~ preassigned 
basis. For the purpose of the immediate  exposition, we may let W be the space all 
N-tuples, Do s, with coefficients in ~0- However in the applications in the following parts 

of this section, W will be a subspace of f~0[X] whose << natural  ~ basis is a finite set of 
monomials. 

Let ~ be the ~)0-module, ~2 ,  in W and let q~ be the natural  map of ~ onto the 
K-space, W *=  K N. For each subspace W t of W there exists a subspace, W~ = 9  (Wa r~ ~B), 
of W*. The  correspondence W I ~ W  ~ maps the set of all subspaces of W onto the set of 
all subspaces of W* and preserves dimension. I f  W t and W~ are subspaces of W then 
(W 1 nW2)*c W~ n W.~, but  equality need not hold I f  however W~ nW~ = {o }, then equality 
must hold and hence Wtr~W 2 ={o}.  We shall say that  W 1 + W 2 is a p-adically direct 
sum, written W~[+]W2, if W~c~W~={o}. In  particular if Wt [+ ]W2=W then we 
shall say that  Wz is p-adically complementary to W 1 in W. It  follows from the above remarks 
that  given a subspace W a of Q ,  there exists a subspace of W which is p-adically comple- 

mentary  to W 1 in W. 

The  notion of p-adic directness is introduced because of the metric naturally 

associated with W. I f  w=(wt ,  . . . ,  wN) is an element of W then let ord w = M i n  ord w i. 
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If  w e W ' + W " ,  (W' and W"  being subspaces of W), then w = w ' §  where w 'eW' ,  
w"EW".  Certainly ord w >  Min(ord w', ord w"), but if the sum W ' +  W"  isp-adically 
direct then ord w = M i n  (ord w', ord w") and hence ord w'>_ord w. 

d) General Theory'. 

Let 9/be the ideal (f0,fx, - . . , f , )  in ~0[X1, . . . ,  X,+, ] .  For each integer m~o,  
let W (m) be the space of forms of degree dm in f~0[X1, . . . ,  X,+I]  , let 9/~ =W(m~c~9/ and 
let V <'~; be a subspace of W (m) p-adically complementary to ~Im in W ('), with respect 
to the monomial basis of W Ira). Since (f0, f l ,  . . .  ,f ,)  have no common nontrivial zero 
in ~,  9/ must contain all homogeneous forms of high enough degree and hence there 
exists an integer, No, such that V Ira) ={o} for m > N  0. We shall show eventually that 
we may take N o to be n. We note that V ~  

We now let V ~ ~ X~'V/"), a subspace ofE (N~ and for each pair of real numbers b, c, 
m=0 

let V(b, c )=Vt~L(b ,  c). It  follows from Lemma 3.2, the construction of V and the 
regularity of the polynomial f that if Q is a homogeneous form in ~0[X1, . . . ,  X,+I] 

of degree dm, then Q = P +  ~ P i f ,  where P~V (m), P0, P1, . . . ,  P, each lie in W (m-l) 
i =0  

and ord P > o r d  O ,  ord P ~ o r d  Q for i = o ,  i, . . . ,  n. 
We now proceed with the analysis of the differential operators introduced in 

part a) of this section. We recall that H~EL(p/(p-- ~), - -  I), and that H~ has no constant 
term. It follows easily that if b<p/ (p - -  x) then H~L(b ,  - -e) ,  where e =  b - -  (p - -  ~)-~. 

Lemma 3-4. - -  L(b, c) = V(b, c) + ~ H4L(b, c + e) i f  b < p / ( p - -  i), e = b- -  I/(p-- i). 
i=0  

Proof. - -  It is clear that the left side contains the right side. If  ~ is an element 
of L(b, c), we show that for each N~Z+ there exists ~qNeV(b, c )n~  Is/ and a set ~,N-a 
of elements in L(b, c+e) indexed by i E S " = { o ,  I , . . . ,  n} such that 

(3-4) ~ - ~N + ~ H,~,,N-1 mod(X0 N+~) 
r 

( 3 . 5 )  i ~ - 1  - ~z~ mod X0 N 
I ~ , N - ~ -  ~,N-z mod X0 N-1 for each ieS" .  

Let pl0) be the constant term of ~, then (3.4) holds for N = o if we set ~0 = P;~ b, c) 
and ~ i , _ l = o  for each ieS" .  We now suppose N > o  and use induction on N. Then 

~(N)=~--(~N_ 1 +  ~ Hi~.,N_21 lies in L(b, c ) a n d  is divisible by X0 s. Let p(N)be the \ {=0 / 
coefficient of X N in ~(N). Clearly ord P(N)~bN+c and as noted above there exists 
O~N)~V(N),p~0~-I) ' . . . ,p~N-1) each in W (N-~) such that P (N)=O~)+E~p~N- ' ) f ,  

where ord O ~ ) ~  bN ~- c, ord p~N--1)> bN + c - -  (p - -  ~)-1 = (b - -  I )N ~- c -}- e for each i e S". 

We now let ~=~N_~+X0nO~N)eV(b,  c), and for each i eS"  let 

~"N-- ID(N--I) ~ I /I~ 
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and compute 

~-- ~-q- H~ ~,~ t = 
i 0 

( ) 2 Xo = o m o d  X o  s + '  

This completes the proof of (3-4) and (3-5)- The proof is completed by taking weak 

limits, ~ ,s-+~eL(b,  c+e) for each ieS",  ~N-+~eV(b, c) and hence ~ = ~ +  ~ H ~ .  
i = 0  

Lemma 3 - 5 . -  V n ~  H,L(b)={o}  / f  b < p / ( p - - i ) .  
i = O  

Proof. - -  Let ~ lie in the intersection, then ~ = ~ Hi,i, ~eL(b) for each i~S". 
~=0 

Let m be the minimal integer such that the coefficient P~) of X~ in ~i is not zero for at 
least one ieS".  For given ~ it may be assumed that t0' �9 �9 ~. have been chosen in L(b) 
such that m is maximal. For m'<m -t- I it is clear the coefficient of X~' in ~ is zero. Let 

(m) (m + i) O~ ''+l) be the coefficient ~ in 4- Clearly O~"+~)=r~ Y~f~P~ eV ng.Im+l={o}. 
i = 0  

It  follows from Lemma 3-x that there exists a skew symmetric set {Bi, i} indexed 
n 

by S" in W tm-~) such that P~m/=r~Y,~B~,j for each ieS".  Let ~I,j-=B~,jX~ -x, 

~' = ~ i - -  ~ Hj.~.f~L(b), then ~ =  ~ Hi~=~ ~  ~ H,~ and for each i~S" the coefficient 
/ = 0  i = 0  i = 0  n 

of X~' in ~ is zero for m'< m and the coefficient of X~ is P!~)-- 7: ] ~ B i ,  i = o, contra- 
dicting the maximality of m. j=0 

Lemma 3.6. - -  

L(b,c)=V(b,c)+ ~ D,L(b,c+e) 
i = 0  

i f  ( p - - I ) - ~ < b < p / ( p - - I ) ,  e - - - b - - I / ( p - - I ) .  

Proof. - -  Certainly L(b, c) contains the space on the right side. We first prove 
inclusion in the reverse direction if e>o  (i.e. b > i / ( p - - 1 ) ) .  Given ~eL(b,c) we 
construct a sequence of elements indexed by reZ+, 

(~(r), ~(~), ~(0r), . . - ,  ~))~L(b, c+re) •  c+re)•  (L(b, c +  ( r +  l)e)) "+1 

by letting ~(0)= ~ and the following recursive method. Given 
choose by Lemma 3.4, ~(r)ev( b, c+re) and ~)~L(b, c +  ( r +  i)e) 

such that ~(')=~(~)+ ~ Hi~ r). We now define ~ ( r + l )  by 
i = O  

n 
( 3 . 6 )  ~(r+t) = ~(r)__@r)___ X Di~Ir). 

i = o  

~(r)~L(b, c+ re) we 
for i = o ,  I ,  . . . ,  7"/ 
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We must show that ~(r+t)eL(b,c+(r+i)e). We note that 

t(~+')= - ~ E,~)eL(b, c + (r + I)e) 
i = 0  

and this establishes our recursion process. Writing equation (3.6) for 
and adding, we obtain 

h h 
( 3 " 7 )  ~ ( h + l ) = ~ ( 0 )  X ~ ( r )  ~ D ,  Y~ ~!~). 

r=O i = 0  ~ =0 

r = o ,  I~ . . .~ h 

For e>o, ~ ~(r/ converges in V(b,c) and ~ ~,1 converges in L(b,c+e) for each 
r = 0  r = 0  

ieS". Furthermore t(~'+~l-->o as h~oo and thus taking limits as h~oo,  equation (3.7) 
shows that ~ lies in the right side of the equation in the statement of the lemma. 

We now consider teL(b,  c), b = I /(p--  I). If NeZ+,  ~>o, s<N then 
s(s/N+b) + c - - e < s b + c  and therefore TNtSL/N/(b+~/N, c--e) ,  which shows since 
b + s /N> i / (p- -  i) that there exists ~q(N)cV(e/N + b, c--s) ,  ~INlcL(b + z/N, c--~ + ~/N) 
for each i~S" such that 

(3.8) TN~=~ IN/-4- ~ D,~ Ni. 
i = 0  

The space V(b,c- -e)•  c--e)) ~+~ is compact in the weak topology, which 
shows that the sequence (~(N/, ~N/ ~(N/~ has an adherent point " " "~ ~n / N = 0 , 1 , . . . ~  

(vl ("), t~), . . . ,  ~)) in that space. Hence taking limits we obtain from equation (3.8), 

(3.9) t = ~(~/+ ~ D~t~). 
i=O 

We now let ~ run through a monotonically decreasing sequence of positive real numbers 
with limit zero. The use of compactness shows that the sequence (~(~/, ~1, . . . ,  ~/) 
indexed by e has an adherent point. Restricting our attention to a converging subsequence 
we conclude that the adherent point (~, t0, ~1, . . - ,  ~n) lies in V(b, c--e)  • (L(b, c--e)) "+1 
for each e in an infinite sequence of positive real numbers with limit o. Thus taking 

limits in equation (3.9) we obtain t =~q + ~ D~t~, "~eV(b, c), ~.eL(b, c) for each ieS".  
This completes the proof of the lemma, i=0 

We defer for the moment the discussion of V n  ~ D~L(b). 
i = 0  

Lemma 3-7. - -  Let p,c,b be real numbers, b<p/ (p - - i ) ,  N an element of Z+, 
e = b - - I / ( p - - i ) ,  p+e>_c and let A be a proper subset ofS' ,  A # S .  Let {~,}~sA be a set of 
elements in XoN~20{X}nL(b, c) indexed by A such that ~ Hi~eL(b , p). Then there exists 

iEA 

a set of elements {~,},SA in (XoN~20[Xa, . . . , X , + t ] ) n L ( b  , p+e)  indexed by A, and a 
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skew symmetric set ~ in 

i f  we set 

( 3 "  IO) 

for each l eA  then 

(XN-~Y~o[X~, . . . ,  X,,+~])nL(b, c +e) indexed by A such that 

iGA ] 

Z H~;eL(b,  p) and ~ lies in L(b, c) and is divisible by X~o+:for each /cA. 

Proof. - -  It  is quite clear that if the elements ~i are chosen in L(b, p +e)  and 
the ~qi, j are chosen in L(b, c+e) then ~ as given by (3.IO) certainly lies in L(b, c) 
and 2~ Hi~ ~ = E H ~ - - N H ~ i ~ L ( b ,  p). Thus the only important condition to be satisfied 

by ~ is that of divisibility by X0 ~+t 
For each leA,  let p~N/be the coefficient of X0 ~ in ~ and let Q~S+~/be the coefficient of 

X(0 N+~I in ~ H~,. Hence ord p!N/> Nb +c,  ord O~N+al> (N + I)b + p, O~ s+~/=~  y,f~p~N~. 
i@A i~A 

Lemma 3.2 now shows that there exists a set of homogeneous forms of degree dN, {C~}~A 
such that o~N+~I=~z ~ fC~ ,  ord C ~ > N b + 9 + e .  Thus o :  ~ f ( C ~ - P ~ ) )  and hence 

i~A leA 

by the corollary of Lemma 3-2, there exists a skew symmetric set of forms of degree 
d (N- - I ) ,  {B~,i} indexed by A such that for each leA. 

(3. ") p+N/= C,-t- ~ N B, i f  

and ord B~i> (N- -  i) b + c + e (since by hypothesis, p + e >c).  We now let ~i,~ = Bi,~X0 ~ - '  
for each ( i , j )~A x A and ~,----C,X0 ~ for each leA. It  is clear that X0 ~ divides ~ (as 
given by equation 3. IO), while the coefficient of X0 s in ~ is p~i~)__ C , - -~  2~ B,,ifi = o. 
This completes the proof of the lemma, iCA 

Lemma 3.8. - -  Let b, c, p be real numbers, b< p / ( p - -  i), e = b - -  I / (p- -1) ,  e + p >  c. 
Let A be a proper subset of S', A 4= S and let {~},eA be a set of elements of L(b, c) indexed by A 
such that Y~ Hi~.eL(b, p). Then there exists a set of elements {:qi} in L(b, p + e) indexed by A 

iEA 

and a skew symmetric set ~i~i in L(b, c +e) indexed by A such that 

~ = ~ + 2~ Hj~ i 
iEA 

for each i~A. 

Proof. - -  Let _.i~(~ for each icA. It  is clear that Lemma 3-7 gives a 
recursive process by which for each NcZ+ we may construct a set {~sl} in 

� 9  ~ ( N - 1 ) ~  (X~g~0[X1, . X ,+ l ] )nL(b  , p+e)  indexed by A and a skew symmetric set t'J~,j 
in (X0~-lf~0[Xl, . . . ,  X~+t])nL(b, c+e) indexed by A such that for each icA, 

(3.x,) = X 
~* jCA ~-*ij ) 

~SlcL(b, c), X0 s divides ~sl, ~2 H,~N/ is divisible by X~ and lies in L(b, p). Let 
iGA 

~ = ~ ~I ~), ~,j = ~ ,~i,~(~lj for each i, j c A ,  convergence being obvious in the weak topology. 
N =0 N =0 
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Clearly ~q~eL(b, p+e) ,  ~r c+e) .  For reZ+, we write 
N---=o, i , . . . ,  r and add. This gives 

N = 1  i ~ A  N = 1  

equation (3.i2) for 

The lemma now follows by taking limits as r--~oo since lim ~!r+l) = o in the weak topology. 
I. ,,,~ oo 

Lemma 3.9.  - -  Let b, c, p be real numbers such that p > c, I / ( p - -  I) < b < p / ( p - -  ~) and 
let e = b - -  I / ( p - -  I). Let A be a proper subset of S', A + S and let ~i be a set in L(b, c) indexed 
by A such that Y-, Di~ieL(b , p), then there exists a set {:qi} in L(b, p+e)  indexed by A and a 

i~A 

skew symmetric set {~} in L(b, c+e)  indexed by A such that ~ = ~ - t -  y~ D~:%~. 

(3. x3) 

(3- I4) 

Proof. - -  There exists a unique element N of Z+ such that (N- - I ) e  + c < p < N e  + c. 
For each integer r, o < r < N  we construct a set {~)} in L(b, c+re) indexed by a and, 
for o ~ r < N  a set {~)} in L(b, c +  ( r +  I)e) indexed by A and a skew symmetric set 
{~!"}} in L(b, c-t- (r-? ~)e) indexed by A such that (letting ~=- ~ D~.) 

~ =  Z D ~  0 for o < r < N ,  

~(r-}- 1) __-- ~ r ) _ _  Z ~(r) i Djqij 
iEA 

for r<N,  

for r<N,  

and such that ~0) ~i for each leA. Suppose the set f~(r)~ in L(b, c-t-re) I .~i  J i C A  

satisfying (3. I3) is given for some integer r, o ~ r < N .  We then have 

Z H,~") = ~- -  Z E~!')eL(b, p) +L(b ,  c-t-re) =L(b ,  c+re).  
i~h i c h  

Hence by Lemma 3.8, elements ~ r ) in  L(b, c~-e(r+I) )  and ~:} in L(b, c - t - ( r+I )e )  
may be chosen such that equation (3.i4) is valid for each i~A. If  ~r+l) is 
now defined by equation (3.I5) then certainly ~ =  Z D ~  r+l) and furthermore, 

~/r+l) (r) Y~ Ei~I~EL(b , c +  ( r +  i)e). This completes the construction of ~i r) for i ~ ~ i  - -  

r----o, I, N, since ~0) is specified, and also of ~r) and ~!r) for r-= o, I, N - - I .  
In particular, ~!meL(b, c + N e )  eL(b, 9) and therefore Z H ~ ) = f - -  E E~S)eL(b, p). 

i@A i@A 

Since 9 +e_> c + Ne, we may conclude from Lemma 3.8 that there exists a set {W~m} 
in L(b, p+e)  indexed by A and a skew symmetric set f~(N)~ in L ( b , c + ( N + I ) e )  t q i ,  j J" 

indexed by A such that equation (3. I4) is valid for r =  N. If  now we define for each 
i~A,  ~i~(~+1) by setting r = N  in equation (3.i5) we have 

~I~+1)-=~ s ) -  Z E ~ ) ~ L ( b ,  p+e)  +L(b ,  c +  ( N +  I )e )=L(b ,  p+e) .  
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If now we write equation (3.I5) for r = o ,  ~ , . . . ,  N and add, we obtain after 

(!) obvious cancellation, ~lY+~)=~--i~ D~ ~ 0 ~  ) . The lemma follows directlyby setting 
N 

p +e)  and :C c +e ) .  
r = 0  

Lemma 3.~o. - -  I f  A is a proper subset of S ' ,A4:S ;  b, c are real numbers, 
~ / ( p - - I ) < b ~ p / ( p - - I )  and i f  {~} is a set in L(b, c) indexed by A such that ~, D ~ = o  then 

iGA 
there exists a skew symmetric set {~,i} in L(b, c-+-e) indexed by A such that ~ =  ~, Dd% i for 
each i~A. ie~ 

Proof. - -  Let p be any real number, then ~ D~i~L(b, ~) and hence if O>c there 
iEA 

exists a set {~,/} in L(b, p+e)  indexed by A and a skew symmetric set {._(0)X in ql, ~j 
L(b, c+e) indexed by A such that 

(3-x6) ~ ~ ) +  E D~(~) " i Ai, j 
jGA 

for each ieA.  Let p run through an infinite sequence of real numbers towards + m ,  
then by the compactness of the cartesian product of copies of L(b, o) indexed by A and 
of copies of L(b, c + e) indexed by A • A there exists an infinite subsequence such that 
if p is restricted to the subsequence, then, as p-+ov, ~q~) converges (necessarily to o) and 
~ql~ converges to ~iEL(b, c+e).  Clearly the set {~i} is skew symmetric and taking 
limits in equation (3-16) as p-+ov, the assertion is proved. 

Lemma 3 . i i . -  For b ) l / (p - - I ) ,  Vn ~ D,L(b) ={o}. 

Proof. - -  Let ~ be an element of the intersection. It may be assumed that 
i /@- -  i ) < b ~ p / ( p - - i ) .  With b fixed in this range, let p be chosen such that ~ L ( b ,  p), 

~r  If ~:~o then p certainly exists. Since ~e~D~L(b) ,  Lemma 3.9 
i = 0  

shows that there exist ~0, ~1, --- ,  ~n in L(b, pWe) such that ~ =  ~ D~ i. Thus 
i = 0  

~--  ~ H~,---- ~ Edq~L(b , p+e) .  Lemma 3.4 shows that there exists ~'~V(b, p+e) ,  
i = 0  i - - 0  

~o, . - . ,  ~',~ in L(b, 9+2e)  such that ~--  ~ H ~ = ~ ' ~ -  ~ H~ o. This shows that ~--~,' 
i = 0  i = 0  

lies in V n  ~ HiL(b), and hence by Lemma 3.5, ~ - - ~ ' = o .  Thus ~=~ 'eL(b ,  p+e) ,  
i - - 0  

which contradicts the choice of 9. Hence ~----o. 

This completes the (( general )) theory of the differential operators. We note that 
if b < p / ( p - - I )  then for each  subset A of S, the subspace LA(b) of L(b) is invariant 
under each D i. The action of the differential operators on these subspaces must now be 
discussed in greater detail. 
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e) Special Theory. 

In this section we cannot avoid distinctions (1) depending upon whether or not p 
divides d. Furthermore some of our results will be valid only if H and the H~ = E~H 
are subject to further restrictions. To avoid confusion, for each ieS, let H~ =r~'X0fi, 
and let ~3~ be the mapping ~ Ei~ + ~H~, where r:'e f~0, ord r:' = x/(p--  I ) .  

For each subset, A, of S = { I, 2, . . . ,  n -t-I }, let X A be the set of variables {X,}~ A. 
The ring, f20[XA] , of polynomials in the variables X A with coefficients in f~0, is viewed 
as a subring of ~0[Xs] = f20[X1, . . . ,  X,+I] and in particular if A is empty then f~0[XA] 
is the field f~0. Let 3A be the homomorphism of f~0[Xs] onto f~0[XA] defined by 

~A(X, )= iXi  if i cA 
1 o i f  i e A  

As before W iml denotes, for each meZ+,  the space of forms of degree dm in 
f20[Xa]. For each subset A of S let Wk m/=.~A(W/~/) and for each subset B of A, let 
W~'I"/=W~"/c~(MB), where (MB) denotes the principal ideal in f~0[Xs] generated by 

the monomial M B = I-I X~. (Unfortunately, our notation permits the same space to 

be designated by several symbols. Thus if o is the empty subset of S, then W] " / =  W~ '/''l 
and W(m) _ w(m) _ ~O,(m)~ 

- -  ' ' S  - -  ' ' A  1" 
For each subset A of S let 23~ '('') be a subspace of W~ '(m) which is p-adically comple- 

mentary (with respect to the monomial basis of W~ '(m)) in W~ '(') to W~'(m)t~3A(9~). 
Thus we have 

( a . , 7 )  = 

For each subset, A, of S, let 

(3 .  x s )  = 
B 

the sum being over all subsets, B, of S which contain A. 

Lemma 3 .  x 2 .  - -  Let A be a subset of S. 

(i) Ws A'(m)= Y~ W~ '(m), the sum being over subsets, B, of  S which contain A. 
ADB 

(ii) WsA'(")r (Kernel of UA) = ~] W~ '(~), the sum being over all subsets, B, of S which 
~zx  

contain but are not equal to A. . 
(iii) W]'Im!n (~ag.t) = ~a(9~caW~'Iml). 

Proof. - -  The first assertion is trivial. For (ii) we observe that a polynomial, ~, 
lies in the kernel of g~ if and only if each monomial, X ~, appearing in ~ is divisible by at 

(x) The theory in the case pld is hampered by the fact that Lemma 3-3 fails to give an explicit basis for the 
n + l  

ideal (Ms) N ( f ~ , ~  . . . .  ,f~) in K[X]. This ideal contains but is not necessarily equal to (Msa~) + ~] (Msa~/Xi) , 
i=1 

a counter-example being given (for n = 3) by ~ =J~Sx(~4--I)fa +fa~(I--~,)f2--A~,~4A, where for i = t, 2, 3, 4, 
81 is the specialization of K[X1, X2, Xa, X4] defined by 8iXi = o, ~iXj = X i for j *  i. 
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least one variable X / such  that iES- -A.  If X ~' is also divisible by M A then certainly 
there exists a subset, B, of S containing A properly such that M B divides X ~. For the 
proof of (iii), we use Lemma 3.3 (i) which shows that as an ideal in ~0[XA], 
(MA) n~n(9~ ) ---- • (MA(~Af/)/X~). Intersecting both sides of this last relation with W(A m), 

i @ A  

we see W]'(m)n 3A9~ is the set of all homogeneous polynomials of degree dm of the form 
~] g~MA(~Af~)/X~, the gi being elements of f~0[XA]. By homogeneity it may be assumed 

i @ A  

that giMAfJXi is a form of degree dm in f20[Xs] and hence lies in 91nW~ '(~). Thisshows 
that the left side of (iii) lies in the right side, which completes the proof since inclusion 
in the reverse direction is trivial. 

Lemma 3.13. - -  Let A be a subset of S 

(i) ~ ' ( ~ ) = Z [ + ] ~  '(m), the sum being over all subsets B of S which contain A. 
(ii) W A' (m~ __ ~3A,(m)| S -- S (g[c~W~ '(~)) and the sum isp-adically direct i f p [ d .  

Proof. - -  (i) The definition of 2~ '(m) shows that it is enough to prove the p-adic 
directness. For each set B containing A, let ~B be an element of V~ '(~t such that 
ord (Z~B)> o. Let C be a minimal subset of S which contains A such that ord ~c <o .  
Clearly ord ~c ---- ord(,~cZ~) > ord(Z~B) > o, which shows that ord ~ > o for each B. 

(ii) We first prove this assertion without any claim concerning directness. The 
assertion is equivalent to equation (3.I7) if A = S .  Thus we may assume that 
A:t:S and use induction on the number  of elements in A. By Lemma 3-I2 (i), 
W~'~m)=W~'/")+ Y, WB s'(~). Equation (3.17) and Lemma 3 . i2  (iii) show that 

B D A  

W2 '("!=~AmA'Im)+~a(2Ic~W~'(m) ) and since -~a acts like the identity on W2 '!m), we may 

conclude that W2'(m) c2~2' (r~) -t- 2I n Ws A'(m) + (Kernel ~A) n Ws A'(m). Lemma 3- 12 (ii) now 

shows that W2'(")c 2~]'('~)+ ?I n Ws a' (~) + ~] Ws B'('~) and it is clear from the previous relations 
B D A  

that W2 '(m) also lies in this space. The induction hypothesis now shows that 
,-~ * A r t  (m) W~'(")c f~] ' I" )+'anvv+ ' + Y~ (~B'(m)-t-!~InWff'(m)). Equation ( 3 . I 8 ) n o w  shows that 

B D A  

W~'(m~ cm~'~-,s ('*! ~ ~ 2 r WA's ('*) and equality is clear. 
To show directness (in the ordinary sense) of the sum, let ~ be an element in 

~32'(m)n(2oW~'("/). Equation (3.18) shows that for each set B containing A, there 
exists ~,e~3 B'('/ such that ~ = Z ~ n .  Let C be a minimal set containing A such that 

~c+o.  Clearly ~ c = ~ c ~ c 2 [  and hence ~ce(WcC'(m)n~cg/)c~3 c'(~)c , which shows by 
equation (3.~7) that ~c=O. This contradiction shows that ~ = o  for all B and 
hence ~ = o .  

Let ~ be an element o f ~ s  ~,(m/ and B an element of W~t'/m)ng/, both in s such 
that ord (~--~q)>o. To complete the proof of the lemma, we must show ( i f p l d )  
that ord ~>o.  By definition, for each set B containing A there exists ~ e 2 ~  '(") such 
that ~ = Z ~ u .  We show that ord ~B>O for each B. Suppose otherwise, then there 
exists a minimal set C containing A such that ord ~c=O. Then o rd (~c - -~c~)>o  , 
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while o r d ( ~ c ~ - - ~ c ~ ) > o r d ( ~ - - ~ ) > o .  Thus ~ce~0[Xc] and ord(~c--~c~q)>o. Let 
~c be the image of ~c in K[Xc] under the residue class map. Clearly ~c is divisible 
by M c and lies in the image in K[Xc] of ~0[Xc] n~cg.I. Using the asterisk to denote 
images in K[Xc] under the residue class map, we may conclude from Lemma 3.3 (i) 
(since p t d) that there exist a set of forms of degree din, {g~} in K[Xc] indexed by C 
such that ~c = y' giMc(~cf~)*/Xi '. Choosing forms G i of degree dm in ~0[Xc] which 

represent the g~ and setting ~ = ~ GiM c (~cf) /Xi  eWc' (")n ~cg.I, we have ord (~c-- 4;) > o. 
iEC 

Since ~ce2~ c'("), this contradicts equation (3.17) and so the proof of the lemma is 
completed. 

For each subset A of S, let Vs A'(m) = ~sA,(~) if p t d, while otherwise let Vs A, (") be 
chosen in W~ 'Ira) p-adically complementary to (9.InW~'(m)). (Clearly we may let 
VsS'(")=~s s'(m) in any case.) It follows from the definitions and Lemmas 3.2, 3.3 
and 3-13 that if A c S " n S  and PeWs A'(m) then there exists O~")eVs A'(m/ and a set of 
homogeneous elements {Pi} indexed by S" in f~0[Xs] such that 

(3- I9) P = (~'~)+ Z P4f~M~/X4 + Z pJ~MA, 
i@A i~S ' "  - -A  

ord O~m)>ord P, ord P~>ord P. If  A is any subset of S, there exists O~m)e~3s ~'(m) and 
a set of homogeneous elements {P~} indexed by S in f20[Xs] such that 

(3-20) P = ( ~ )  + Z P~fM~/X~ + Y~ P~fM~, 
i~A iG S --A 

but in this situation the previous estimates for ord O~ ~) and ord P~ do not hold unless p 
does not divide d. 

Finally let Vs~= ~ Vsa'(m)X~, ~s a = ~ ~smA'('~)Y~"-0, Vs~( b, c) = Vs~nL(b, c). In parti- 
ng=0 m=O 

cular the space, V, defined previously, may in our present notation be written V~. We 
shall write V A (resp. ~ )  instead of V~ (resp. ~Bs ~) and likewise V (resp. ~3) instead of V ~ 
(resp: ~B") whenever there is no danger of confusion. In particular ~3 = Z ~ ] ,  the sum 
being over all subsets A, of S. We note that for each subset A of S, V A and ~3 A lie 
in ~(s~ and have equal dimension. 

Lemma 3 -  1 4 .  - -  I f  b <p/ (p- -  I), 

I f  p t d then 

and A is any subset of S n S" then 

LA(b, c) =VA(b, c) + ~ H~LA-(~)(b, c+e) + Y~ H~LA(b, c+e). 
i~A i@S" --A 

L s (b, c) = V s (b, c) + Z H~L s -  ~ (b, c + e). 
i@S 

The proof is a step by step repetition of that of Lemma 3.4 and therefore may be omitted. 
We note that the statement of Lemma 3.4 is obtained from this lemma by setting A = o. 

Lemma 3.x5. - -  I f  ( p - - I ) - l < b < p / ( p - - i )  and i f  A is any subset of S n S "  then 

LA(b, r =VA(b, c) + Y, D~LA-~i~(b, c+e) + 2 D~La(b, c+e) 
IEA i ~ S "  --A 
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I f  p I d then 
LS(b, c) =VS(b, c) + Z D, LS-{'/(b, c+e).  

~s 

This generalization of Lemma 3.6 follows from Lemma 3. I4 in precisely the same 
way that Lemma 3-6 follows from Lemma 3.4. 

We must now overcome some of the difficulties caused by the incompleteness 
of Lemma 3. I5. 

Lemma 3.I6.  - -  For each subset A of S and each NeZ+,  N>N0 ,  

s =~3A + X ~ 2  A-{~)'(N-t~ + y. ~A,I~-- l l  
~6A iES --A 

and the equality remains valid i f  2~ A is replaced by V A. 

Proof. - -  Since the left side of our assertion clearly contains the right side it is 
enough to shows that the right side contains the left side. We show this inclusion for 
each NeZ+.  This is trivial for N----o since ~A't0)--~A'(0)-----vA'(0)-----{O} (resp. ~0) 
if A + o  (resp. A = o ) .  We now suppose that N > o  and use induction on N. Let 
~e~ A't~I and let P be the coefficient of X0 ~ in ~. Let homogeneous forms Qsl,  {Pi}i~s 
be chosen as indicated by equation (3.20) (with m replaced by N). Let 
~=X~-~MAP~/X~ for i~A and ~=X~-IMAP~ for i~S- -A.  Let ~ = O ~ X 0 ~ e ~  A and 

n + l  
then ~--  (~ + Y, ~3~.) e~ A' IN-l/. This shows that 

i = l  

~A, (N) C~B(A) + ~ ~)~A-- {~}, (:~ --I) + y, ~A, :N --I) + ~A, :~ --I~ 
~EA iES --A 

and the assertion now follows from the induction hypothesis. The above argument 

can be used for ~A replaced by VIA), since O~ N) may be choscn in V A' IN) instead of 2~ A' (S). 

The following ]emma is a special case of Lemma 3-: : unless p divides d. 

n+l 

Lemma 3.x7. -- For b ~ I / ( p - - I ) ,  ~n ]~ ~31L(b)=o. 

n + l  n + t  
Proof. - -  The previous lemma shows that V C~/l~~ ---- ~ + 2~ ~3~ IN~ c ~  + Y~ ~3~L (b). 

We may assume that b < p / ( p - - I )  and use Lemma 3.6 which shows that 
n + l  n + l  

L(b) = V  + 2~ ~3~L(b) and thus conclude that L(b) = ~  + 2~ ~3~L(b). Lemma 3. ~ i shows 
i = 1  i = l  

n + l  n + l  
that V ~ L(b)/]~ ~3~L(b) ~ 23/(~n Z ~3~L(b)). Since V and ~ are vector spaces of the 

i=I i=i 

same (finite) dimension, this completes the proof of the lemma. 
Our next lemma is a weak form of Lemma 3. I5 of interest only if p divides d. 

Lemma 3 . I 8 .  - -  I r A  is any subset of S and i f  ~ [ (p - -x )<b<p/ (p - -x )  then 
n + l  

L~(b)c2~A+ Y~ ~),L(b). 
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Proof. - -  By Lemmas 3. I5 and 3.16 we have if A #  S, 
n + l  n + l  n + l  

LA(b)cVA+ Z ~L(b)ct~A'(N')- b Z ~)~L(b)c~A + Z ~L(b ) .  
i = 1  i=i i=I 

To prove the lemma for A = S ,  let B = { I ,  2, . . . ,  n} and let ~ + l  denote the mapping 
of f~0{Xs} onto f~0{XB} obtained by replacing X,+~ by o. For each ieB let ~ be 
the mapping ~ E ~ + ~ , , + ~ H ~  of ~)0{Xn} into itself. For ~en0{Xs} , ieB we have 
~,,, l~)i~==~)~nq_l ~, while ~,,+l~)n+l~=O. If ~eLS(b) then from the part of the lemma 

n + l  

already proven, there exists ~e~s B such that ~e~ Jr- ~] ~iLs(b). Applying U,+t to this 
i = 1  

relation we have o = ~ , + t ~ - k  ~ L B ( b  ). However equation (3.I8) shows that 
{ = 1  

~3~ =~3~-b~ ss andhence ~,+~:qe~3~ and henceliesin ~,e~ ~ ~L~(b) ,  which according 
i = 1  

to Lemma 3. ~ 7 (with S replaced by B) is {o} since b> ~ [ ( p - -  ~). Thus ~,  +t~ ---- o, which 
shows that ~e~3s s . This completes the proof of the lemma. 

f) Exact Sequences. 

The object of this section is the computation of the dimension of the space V s 
defined in the previous section. For this purpose we shall need a theorem concerning 
exact sequences which will be used again in the geometric application of our theory. 

Let R be a field of arbitrary characteristic and let W be a vector space over R 
with an infinite family of subspaces indexed by both Z and by the subsets of 
S = { I , 2 ,  . . . , n + i } .  That is, for each t~Z and each subset, A, of S, let W(A,t)  be 
a subspace of W. Let 9a, . - . ,  %+1 be a commutative set of endomorphisms of W 
with the property 

(3.2x) 9,W(A, t) cW(Au{i},  t-b i) 

for each i tS,  teZ, and each (not necessarily proper) subset, A, of S. 
For each reZ+ and each pair of subsets A, B of S such that o+A_CB, let 

~ ( t , r ; A , B )  be the space of all antisymmetric functions g on A r such that 
g(al,  . . . ,  a r ) e W ( - - t - - r  , B--{ai ,  a2, . . . ,  at}), it being understood that ~?(t, o; A, B) is 
to be identified with W(- - t ,B) .  For r > i ,  let 3( t , r ;A,  B) be the mapping of 
~?(t, r; A, B) into ~(t, r - -~;A,  B) defined by 

(3.22) (3(t, r; A, B)g)(al, . . . ,  at_l) = Y~ 9ig(a, ,  . . . ,  a r _ l , j )  
/ C A  

for each g e ~ ( t ,  r; A, B). This mapping shall be denoted by ~ when no confusion can 
arise. 

Theorem 3. x. - -  I f  the sequence 
8 8 

�9 .__). ~ ( t , r @ 2 , A , B )  ~ ( t , r + ~  A,B) ~ ( t , r ; A , B )  

is exact when r = o for  all pairs o f  subsets A,  B o f  S such that o + A c B  then the sequence is 

exact for  all reZ+. 
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Proof. - -  We must show that Kernel  ~(t, r +  ~; A, B) = I m a g e  ~(t, r + 2 ;  A, B). 
We show that  the right side is contained by the left side by showing that 
~ ( t , r + i ; A , B ) 3 ( t , r - b ~ ; A , B ) = o .  Let g ~ ( t , r + ~ , A , B ) ,  then 

(~(t, r +  i ;  A, B)~(t, r + 2 ;  A, B)g)(a~, a2, . . . ,  a~) = 

Y~ %.(8(r+~;  A, B)g)(al, . . . ,  a,, j )  = ~, ?,?ig(al, . . . ,  a, , j ,  i ) = o  
iGA ~,iGA 

by the commutat iv i ty  of the endomorphism q~ and the skew symmetry of g. 
To complete the proof we must show: 

Kernel  3(t, r-t- I;  A, B) c I m a g e  ~(t, r + 2 ;  A, B). 

This is true by hypothesis for r = o and hence we may assume that  r > I. Ant isymmetry 
shows that  if A contains just  one element then ~(t, r +  I ; A ,  B) = ~ ( t ,  r + 2 ;  A, B) = o  
for r>_I. The  assertion is thus trivial if A contains only one element. We now 
may assume that  A contains at least two elements, that  r >  I and  we use induction 
on r for all t. Let ge  Kernel  ~(t, r + i ; A, B). Renumber ing  the elements of S if neces- 

sary we may  suppose that  A = { l ,  2, . . . ,  s}, s > 2  and hence o =  ~ q~g(al, . . . ,  at , j )  

for all (al, . . . , a ~ ) ~ N .  With a 1 fixed, say a l = I  , we consider the mapping 
(a~, . . . ,  a~+l)-+g(I,  a2, . . . ,  at+l) as a function on (A- -{ I} )  ~, indeed as an element  
of ~(t  + I, r; A - - { i  }, B - - { I  }) since it is skew symmetric in the <( variables, ,  a2, . . . ,  a,+ 1 
and g(I,  a 2 , . . . , a r + l ) e W ( - - t - - r - - I , B - - { I } - - { a 2 , . . . , a ~ + l } ) .  In  this sense the 
mapping  lies in Kernel  S(tq- I, r; 1 - - { i } ,  B - - { I } )  and  hence by induct ion on r 
there exists h ' e ~ ( t +  I, r-t- I ; A - - { I } ,  B - - { I } )  such that  

(~ ( t - t -  I ,  r - } - I  ; A - - { I } ,  B - - { I  })h')(a2, . . . ,  at+l) = g ( I ,  a2, . . . ,  d r + l )  

for all (a2, . . . , a r + I ) E ( A - - { x } )  ~. Let h be the function on { I } •  "+1 defined 
by h(I,  a~, . . . ,  a~+z) =h'(a2, . . . ,  a,+2) for all (az, . . . ,  a~+ l ) e (A- -{ i} )  ~+t. Let a 1 be 
the set of all (bl, bz, . . . ,  b,+2)eA r+2 such that  at least one (( coordinate ,, is i. By 
ant icommutat ivi ty,  h may be extended uniquely to a mapping  (again denoted by h) 
o fA 1 into W. Fur thermore  it is easily verified that  if (b~, . . . ,  b~+ 1) • A c A  I (Le. at least 

one b , = i )  then g(b~, bz, . . . ,  b,+~)= Y~ ~pih(bl, b2, . . . ,  b~,~,j). I f  (61, . . . ,  br+2) E a  
iEA 

then h(b~, bz, . . . ,  b~ + 2) e W ( - -  t - -  (r + 2), B - -{b l ,  . . . ,  b~+z}) as follows directly from the 
corresponding property of h'. 

For each integer m, i < r n < s ,  let Am={(a~,  . . . , a~+2)eN+2 la~e{~ ,2 ,  . . . , m }  for 
at least one ie{I ,  2, . . . , r + 2 } } .  Let A ~ = { ( a a ,  . . . , a r+ l ) eA~+l la i e { i , 2  , . . . , m }  for 
at least one iE{I, 2, . . . ,  r + I}}. Suppose (second induct ion hypothesis) that  h has been 
extended to a skew symmetric function on A,, such that  for all (al, . . . ,  a,+2)eA,, and 
(bl, . . . ,  b ,+ l )eA ~ w e h a v e  h(ax, . . . ,  a , + 2 ) e W ( - - t - - ( r + 2 ) ,  B--{a l ,  a.,, . . . ,  ar+~}) and 
g(b~, . . . ,  b~+~) = Y, ~ih(b~, . . . ,  b~+l,j). I f  m = s ,  we are done, i.e. h ~ ( t ,  r + 2 ;  A, B) 

iGA 
and 3 ( t , r + 2 ; A , B ) h = g .  Hence  we may assume that i < m < s .  I f  r n = s - - I  then 
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since r +  22 2, g ( m +  I, a,~, . . . ,  ar+l) ~---O unless ( m +  I, a2, . . . .  a r+ l )eA~.  Likewise h is 
defined on A,, and  can be ex tended to an an t i commuta t ive  m a p p i n g  of  A '+~- into W by 
lett ing h m a p  elements of A '+2 not  in A,, in to  o. Thus  for ( m +  1, a2, . . . ,  a ,+~)eA "+~, 
g ( m +  2, a2, . . . ,  ar+~) = Z ?~h(m+ I, a2, . . . ,  at+t, i) since this is certainly true if 

i E A  

(m + I, a2, �9 �9  a,+t) EA~, while otherwise m + i = a2 = �9 �9 �9 = a,+ t and  hence both  sides 

are zero. 
T h u s  our  second induc t ion  hypothesis  naay be appl ied  to the case in which 

i < m < s - - I .  We know tha t  Y. 9 i g ( m +  I, a2, . . . ,  a~,j)  = o  for all (a2, . . . ,  a~)~A ~-1. 
~'GA 

We restrict ( a . , , . . . ,  at) to ( A - - { I ,  2 , . . . ,  m}) ' - t .  For  j < m ,  the second induct ion  

hypothesis  gives g ( m +  i, a,,, . . . ,  a ~ , j ) =  ~ 9 i h ( m +  i, a2, . . . ,  a t , j ,  i) and  hence  
i = 1  

8 

o =  ~ ~ 9ig, h(m + I, a2, . . ., a~,j, i) + X 9ig(m + I, a2, . . ., a , , j ) .  
j = l i = l  / = m + l  

T h e  an t i commuta t iv i ty  of h on A,, shows tha t  

o =  ~ ~ e~j?ih(m + I, az, . . . ,  a , , j ,  i) 
j-ii=l 

and hence 

O ~  Y~ 9i g ( m + l ,  a2, . . ., a~,j)  + 9ih(m + I, a2, . . ., a,, i , j )  . 
i = m + l  i=l 

Since m +  I<S,  this last relat ion may  be wri t ten  o =  Y, g ' ( m + I ,  a2, . . . ,  a~,j)  w h e r e g '  
i = m + 2  

is the m a p p i n g  (a2, . . . ,  ar+l) --> g ( m +  I ,  a.2, . . . ,  a , + l ) - -  ~ 91h(m+ I ,  a2, . . . ,  a~+t, i), 
i = 1  

of ( A - - { I ,  2, . . . ,  m-t- I}) r in to  W. I t  is easily verified tha t  

g'ea(t+ 2, r; A- - {~ ,  2, . . . ,  m +  2}, B - - { m +  ~}) 

and we have jus t  shown tha t  g' lies in the kernel of  

a ( t + I , r ; A - - { I ,  2, . . ., m +  I}, B - - { m @  I}) 

and hence by induc t ion  on r, there exists 

h " e ~ ( t +  r , r  + I; A - - ( I ,  2, . . . , m +  I ) , B - - { m q -  I}) 

such that  a ( t + I , r + i ; A - - { i , 2 ,  . . . , m + I } , B - - { m + I } ) h " = g ' .  Thus  

k g(m+ 2, a2, . . . ,  a ,+ l )  = ~ h ( m +  i ,  a~, . . . ,  at+,  i) + Z ~Y'(a2,  . . . ,  a~+, ,  k) 
i = 1  k = m + 2  

for all ( a 2 , . . . , a r + l ) e ( A - - { 2 , 2 ,  . . . , I + m } )  r. We now define for all 

(a2, . . . ,  a~+ l )e (A- -{1 ,  2, . . . ,  m +  1}) r+l, h ( m +  I, a2, . . . ,  a,+i,  a~+2)=h"(a2, . . . ,  at+z) 

and extend h by an t i symmet ry  to F = { ( a l , . . . ,  a r+2 )~ (A- -{ I ,  2 , . . . ,  rn}) ~+2 such that  
at  least one a ~ = m +  i}. (We note  tha t  P t ~ A m = o  while F o A m = A m + t ) .  Thus  h is 
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now well defined and anfisymmetric on A,,+l. I f  now ( o a , . . . , a r + l ) e A ~ +  1 then 
g ( a l , . . . ,  a , + l ) =  ]~ ? ~ h ( a l , . . . ,  ar+l, i  ) since this is known by the inttuction hypo- 

thesis to be true if (aa, . . . ,  a,+x)sA ~ and hence we may assume that 

( a l ,  . . . ,  a r + l ) e ( A - - { I  , 2,  . . . ,  m}) ~+t 

and that at least one of the a i is m + i in which case we may use our relation involving h", 
our extension of h and the antisymmetry of both h and g. Finally we note that for 
(aa, . . . ,  a,+ 2)eAm+,, h(a,, . . . ,  a , + ~ ) e W ( - - t - - r - - 2 ,  B--{a, ,  . . . ,  at+2} ) since this holds 
by the induction hypothesis if (al, . . . ,  a,+2)eA =, while otherwise we may suppose 
a , = m +  I, ( a 2 , . . . ,  a ,+~)e(A--{I ,  2 , . . . , m +  I})" so that 

h(a , . . . ,  = . . . ,  

which lies in the asserted space since h" ~ (t + i, r + i  ; A - -  { i, 2 , . . . ,  m + i  }, B - -  {m + I }). 
This completes the proof of the theorem. 

For subsequent applications it is convenient to make available a weaker form of 
the theorem. Let W now be a vector space over K with an infinite family of subspaces, 
W(t), indexed by teZ. Let q~l, �9 .- ,  q0,+t be a commutative set ofendomorphisms of V 
with the property 9~W(t) c W ( t +  I) for each i~S, tEZ. For each r~Z+ and each 
non-empty subset, A, of S, let ~(t, r; A) be the space of all antisymmetric functions, 
g, on A ~ such that g(a~, . . . ,  a r ) ~ W ( - - t - - r ) ,  it being again understood that ~(t, o; A) 
is to be identified with W(- - t ) .  For r > I ,  let 3(t, r; A) be the mapping of ~(t, r; A) 
into ~(t, r - -  i ; A) defined as in equation (3. ~ ) .  The second corollary follows directly 
from the theorem. 

Corollary. - -  I f  the sequence 

~(t, r-i- 2; A) ~(t, r + I ; A )  ~(t, r; A) 

is exact when r = o  for each non-empty subset A of S then it is exact for all 
For our final result of this section we use the notation of w 3 e. 

r~Z+. 

Lemma 3-I9.  - -  Consider the polynomial, Y"+t( I - -Y~-I )"+I / ( I  __y ) ,+ l  ____ y~y iy i  in one 

variable, Y .  Then for each meZ, 

dim ~s s' (m) _-- y,,a, and hence 
dim 23s s ----d-l{ (d--  I) n+l -I-(-- I) n+l . ( d - - I )  }. 

Proof. - -  In  the notation of Theorem 3. I, let W----E and let W(t, A ) = W s  A'(t) 
for each tEZ and for each subset A of S. For each i~S, let q~ be the mapping ~-+fi~ 
of W into itself. It  is clear that condition (3-2 I) is satisfied. To apply the theorem we 
must verify that if o + A c B  cS then Kernel ~(t, I ; A, B) = Image ~(t, 2 ; A, B). This is 
equivalent to the assertion that if h i is a set of elements of W(s - t - t )  indexed by A such 
that h~(MB/XI) and such that Y~ h~f~----o then there exists a skew symmetric set {~ii} 
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in W(s -t-2) indexed by A such that h~ = Z ~,js for each ieA and such that ~,.ie(MB/X~X~). 
iEA 

This assertion may be proven without difficulty by means of Lemma 3.3 (i), using the 
fact that the proof of Lemma 3 . i  shows that (fl ,  . . . , f , ) : f ~ + l = ( f , , - . - , f ~ )  for 
r =  I, 2, . . . ,  n. Thus, Theorem 3- i may be applied and denoting 8(--m, r; S, S) by 
8~ for fixed m, and ~ ( - -m,  r; S, S) by ~ ,  we may conclude that 

(3.33) Kernel 8 r = Image 8r+ 1 

for r =  i, 2 , . . .  Furthermore ~, being the space of all skewsymmetric functions, g, 
on S ~ taking values in W (m-') such that g(al ,  . . . ,  a,) aW s - {" ...... ,,}. (m-,), we easily compute 

(3.34) dim ~ = ("+~) (~(m--~)+ ~--1) 

Since Image 8r~-~{~,/Kernel 8, and since ~,  is of finite dimension, we have 

(3.35) dim 3,  = dim Kernel 8~ + dim Image 8,. 

Writing [Im 8~] (resp: [Ker 8~]) for dim Image 8~ (resp: dim Kernel 8~), we now have 

as power series in Y, ~ Y" dim ~ ' =  ~ Y ' [ Im 8~]-k- ~ Y ' [Ker  8,]. Equation (3.33) now 
gives , = 1 , = 1 , = t 

(3.3 6) ~ Y~ dim ~ = Y [ I m  8~] + (I --~ y - t )  ~ Y ' [ Im 8~]. 

Since dim ~,  = o for r > n  + I ,  this equation is a relation between polynomials and 

hence setting Y = - -  i in (3.36), we have - -  [Im 81] = ~ (--  I)r dim ~r. By definition 
r = l  

sS.(m) is isomorphic to the factor space WS'(m)/tg-InWS'(m)~s /~ s J and Lemma 3.3 (i) shows 
that 91nW~d(m)=Image81. Furthermore 30=W~s '(") and hence 

We may conclude that 

(a.37) 

dim ~3 s'(=) = dim ~o--  [Im at]. 

dim ~s,(~> = ~ (--I)~ dim ~ .  
r = O  

It is easy to verify with the aid of (3.34) that the right side of (3.37) is the coefficient y ~  
of Y ~  in the polynomial 

h(Y) =Y"+~(I  --Ya-~)"+~/(i  _ y ) , , + t  _ y , + a  (i + Y  + . . .  + yd-2),+~. 

OD 

Clearly d i m e s  s = 52 y ~ = d - i ~ h ( o ) ,  the sum beingover the d th roots of unity. Clearly 

I - - r  d - t  = - - r  and hence h(o~) = ( - -  1) "+1 if ~ .  I,  while h ( i )  = ( d - -  I) n+l .  

This completes the proof of the lemma. 

We now observe that dim V = dim ~ = Y~ dim ~ ] ,  the sum being over all subsets A 
A 

of S. In particular for A = o, dim ~o ~ = I and this coincides with the formula of the 
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previous l e m m a  if we replace n -k- I by o. I t  is easily verified tha t  d im V ---- d", a result 
tha t  could have been obta ined  directly by an  a r g u m e n t  similar to tha t  of  the l e m m a  in 
which the corollary of T h e o r e m  3. I is used instead of T h e o r e m  3. I. 

Since the po lynomia l  h in the p roof  of  the previous l e m m a  has the proper ty  

h (Y) = Y+(" + 1)h(Y-1)  

it is clear tha t  Ye(n+tt-~=Yi for all j E Z .  I n  par t icular  

Y,,~ = Y(n+l-m)a 

for all m, a result  which  may  be related to the conjectured funct ional  equat ion  of 
the zeta function.  We also note  that  Ya --= o if and  only if  d<n -k- I, a fact related to 

the results of  Warning .  

w 4. Geometrical Theory. 

T h e  nota t ion  of  w 3 shall be used whenever  possible. I n  this section q =pa, a e Z + ,  
a >  i. T h e  first subsection involves power  series in one variable,  t, wi th  coefficients in ~2. 
Such a power  series, Xy,+t ~, will be said to lie in L(b, c) if ord  ym>mb + c  for all m~Z+.  

a) Splitting functions. 

In  [i] we gave two examples of a power  series, 0, in one variable satisfying the 

condit ions 

(i) OzL(• o),•  
(ii) O(I) is a pr imit ive pm root of unity.  

(iii) I f  yP~-----,( for some integer  s, s > o  then  

s-1 8~21~'PJ 
H 0(v pi) = 0(I) =0 

j=0 

(iv) T h e  coefficients of 0 lie in a finite extension of Q' .  

A power  series in one variable satisfying these four  condit ions will be called a 
splitting function. We shall construct  an infinite family of  such functions indexed by 
Z * = { + o e } u { s ~ Z l s > i } .  I ndeed  the theory of Newton  polygons shows tha t  for each 
seZ*, the po lynomia l  (or power  series), 

yp /p  

has a zero, Ys, such tha t  ord  y+ = I / ( p - -  I). While  there are p - -  I such zeros, we shall 
suppose one has been chosen for each seZ*. For each s~Z* we now set 

(4" I ) 0 s (t) = exp ty~) P'/p' . 
J 
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that 

(4.3) 

It is well known that 

(4-4) 

Lemma 4. x. - -  For each seZ*, 0, is a splitting function. 

Proof. - -  In the following the symboly shall denote a parameter to be chosen in f~ 
subject to the condition ordy  = I / (p--  I). For each seZ+, let gs(t,y) = exp{-- (ty)~/p'~}. 
It  is easily verified that g, eL(as, o), where 

(4.2) a~ = (p--  I)- l --p-"(s  + (p--  I) -t) 

for seZ+,  while a~ is taken to be ( p - - I )  -1 for later use. 

For seZ+ let G , ( t , y ) =  f i  gj(t,y). Since ai+t>a i for each j~Z+,  we conclude 
/ = s + t  

G,(t,y)eL(as+t, o). Let E(t) denote the Artin-Hasse exponential series 

E(t) =exp ! ~ot@P~ I. 

Let h~(t,y)=E(ty) 

(4.5) 

and so for seZ* 

(4.6) 

E(t) eL(o, o) 

E(t)-=-I +tmodt~Q'{t} .  

and for seZ+, s >  I let 

h~(t,y) =h| 

Clearly 

(4.7) hs(t,y) eL(as+t, o). 

Since a 2-- (p - -  I)/p~>o, we may conclude that hs(t,y ) converges for ord t>o .  
more equation (4.5) shows that 

(4.8) hs(t,y ) + (ty)P~+l/p "+t - h~(t,y) mod tl+P~+~ f2{t}. 

Combining this relation with (4.7) we conclude that for s >  I 

(4.9) 

Since 
s > I  

(4-io) 

hs ( t, y) = exp l i~= o ( tY)Pi [P~ t. 

h~(t,y)eL(a| o) and for seZ, s > I ,  equation (4.5) shows that 

ord(h,(i ,y) +yPS+l/ps+x--h~o(I,y) ) > a~+1(i +p~+ ~). 

Further- 

h~(I,y) = E ( y ) ,  we conclude with the aid of (4-4), and (4.2) that for seZ+, 

ord(h , ( I , y ) -  I) = I / p - -  I 

and (4-4) shows that (4-Io) is valid for all seZ*. Furthermore equation (4.6) shows 
that for seZ ~ 

$ 

(4. xx) log hs(I,y ) = ZyPJ/p j 
i = 0  

and hence loghs(i , 7~) = o .  
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Since 08(t)=hs(t,'~8), we conclude from (4.7) that 08eL(a,+~,o), and from ( 4 .  I I )  

that 0~ (I) is a p~-- th root of unity for some r while (4. I o) shows that 08 ( i ) is a primitive pt~, 
r 1 . root of unity, r-~ v ypJ 

I f y  p~ = y  where reZ, r~1  then as a power series i ny ,  I I  hs(yPl, y) = h~(i,y) i =o 
/=0  

as may be seen from equation (4-6). Replacing y by ~'8 we conclude that 08 satisfies 
condition (iii) in the definition of a splitting function. We have already verified 
conditions (i) and (i_i). Finally we note that Q'(y~) is a purely ramified extension of Q' 
of degree p - - I ,  while condition (ii) shows that Q,'(Ys) contains a primitive pth root of 
unity. We conclude that for each ssZ* the coefficients of 08 lie in the field ofp th roots 
of unity. This completes the proof of the lemma. 

If  ge I  +trY{t}, let ~ ( t ) =  IIg(tPi), an infinite product which converges in the 
i=0 

formal topology of f~{t}. Clearly g(t)=fi,(t)/~(t p) and if q=p~, a>x then 

a - - 1  

(4- I2) H g(t pi) = ~ (t)/~ (tq). 
i = l  

It follows from the definitions that for each seZ* 

(4. x3) 

where 

(4. x4) 

It is worth observing that 

C4. I5) ord u 

1 8-1 tP I E 0~(t) = e x p  ,i=078,i , 

i 

vs, j = Z v '/p 
i = 0  

=(p- -~) - lpJ+l - - ( j -+1)  
A 

In particular 01 = exp (glt). In the application use will be made only of 0oo and 01. 

b) Let f (X)  be a homogeneous polynomial of degree d in n + I, ( n~o)  variables, 
X1, X~, . . . ,  X ,+  1 whose coefficients are either zero or (q--  i ) - - t h  roots of unity in f~. 
We may write 

P 

(4-i6) f (X)  = Z A,M~, 
i = 1  

where A~=AI  and Mi is a monomial in Xl,  . . . , X n +  1 for i = I ,  2, . . . , p .  Let 6 ,  
denote n dimensional projective space of characteristic p and let .~ be the variety in ~ 
defined over the field k of q elements by the equation f ( X ) -  o mod p. For n = o ,  
extending in the obvious way the usual identifications associated with projective 
coordinates, 60 consists of just one point which is of course rational over the prime field. 
In any case . ~ = 6 ,  i f f i s  trivially congruent to zero modp.  I f f i s  not trivial m o d p  
then ~ is a hypersurface in 6 , ,  to which we attatch the conventional meaning if n ~ 2 ,  
while if n = o then .~ is empty and if n = i then .~ is a set of at most d points on the 
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projective line which are algebraic over k and closed under  field automorphisms which 
leave :he elements of k fixed. 

For n > o  we say that ~ is a non-singular hypersurface of degree d in ~ ,  if the 

U gf (mod p) have no common zero in ~,, .  For n > 2 this polynonfials f ,  ~-Xl , . . . ,  ~Xn+ 1 

coincides with the usual definition, while for n = I it means that  .~ is a set of d distinct 
points and for n-----o, it means that .~ is empty (i.e. f is not trivial mod p). 

Let  ~(53, t) be ~be zeta function of ~ as variety defined over k and let P(.~, t) be 
the rational function defined by 

(4.I7) P(5, t ) ( -1 ) '=~ (5 ,  t)(I --q"t) ~ (I (~--q't) 
i=O 

According to the Well hypothesis, if n >  2 and ~ is a nonsingular hypersurface of degree d 
in ~ ,  then P(.~, t) is a poly~..,mial of degree d - ' { ( d - - I )  "+~ + ( - - I )"+~(d-- I )} .  Using 
the above conventions this hypoJ-,c.sis is easily verified fi r n = o, I as for n = o, 

- -  I I ": ~ is e,~,pty 
(4 I ~ )  l) 

�9 ( l - - t )  ' if 5 = 6  

while if n = i and .~ consists of d distinct points, then ~ ~:- ;~ union oi e disioint sets of 
points, the i th subset consisting of b/points  conjugate ovm ,, ,,,,d each point generat ing 

an extension of k of degree bi. In  this case d = ~ b i and 
i = 1  

(4" I9) ~(~, t ) =  f i  (I--tb/) -1 
/ = 1  

Thus if ~ is a non-singular hypersurface of degree d in 6 ,  then 

) i/~[I1 ( ) )  if n = o  (4.20) P(5,  t) = i--tbi / ( r - - t )  if n =  I, 

which is precisely the Well hypothesis in these trivial cases. 

We know from [I] that  the zeta function o f ~  is related to the linear transformation 
+oF, where 

p a--I 

(4 .2 I )  F(X) = H I I  0((XoA, MjPi),  
i-lj -o 

O being any splitting function. I f  0 is defined as before then since A~ = Ai, 

(4.22) F(X) = P (X)/P (Xq) 

where 

fI 6(A, XoM;) 
i=1  
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then F takes the If  we take the splitting function to be 0s, s =  i, 2, . . . ,  +o% 
form 

oxply0  I 
where -~ is the Frobenius automorphism over Q' of a sufficiently large, unramified 
extension field. 

Since 0~eL(as+l, o), equation (4-12) shows that Os(t)/O,(tq)eL(pa~+l/q, o). It 

follows without difficulty that F / X )  = F~(X)/~'8(Xq ) eL(pa~+:/q, o) in the sense of w 3, 
a~+ 1 being given by (4.2). 

We now recall and clarify the geometrical significance of the characteristic series, 
ZF, where F is given by (4.21) If  gea{t}, let g~' be the power series g(qt) and if 
g~:  +tn{t}, let g~ be the power series gl-~=g(t)/g(qt). 

n + l  
If  ~ '  is the << hypersurface )), l-I X i = o  in ~ ,  then by [i,  equation (2I)] 

i = l  
(recalling that although F now involves a total of n + 2 variables, we are now counting 
points in projective rather than affine space) 

( 4 " 2 ~ )  ~ ( 5 - - 5 ' ,  q ~ ) : ) ~ F - ( - - ~ ) n + l ( I - t )  - (  ~)n 

For each non-empty subset A of S = { I ,  2, . . . , . n + I } ,  let I + m ( A )  be the 
number of elements in A and let ~a  be the variety in ~,~(AI defined by the equation in X A, 

~ A f  --= O mod p 

and let ~ [  be the hypersurface I I  Xl = o in ~,,(AI" Let A A be the power series in one 
variable defined by ~A 

, ~ - ( -  ~)t + re(A) t .  _ _  t) - ( -  ~),~(A) 
(4" 25)  ~ ( -~A-- -~A,  qt) = a A ' ~, 

The precise formulation of A A as a characteristic series in the sense of w 2 does not concern 
us here, except that we observe that 5 s = 5 ,  As =ZF.  To simplify notation let PA(t) 
denote P(SA, t) as defined by (4. I7), so that 

m(A) 
( 4 . 2 6 )  PA(t) ( -  1)re(A) ~--- ~(SA, t)(I --q"(A)t)--: l-[ (I --fit). 

/=0 

If  B is a non-empty subset of S then 

( 4 - 2 7 )  "~" = A ~ ,  ( ~ A - - S i ) ,  

a disjoint union indexed by all non-empty subsets, A, of B. We may conclude with 

the aid of (4.25) that 

~(5~, qt)= I ]  ~(SA--~A, qt)= 1-] {A~-(-8)l +'n(A)(I--t)--(--8)m(A)}. 
AcB ACB 

But an elementary computation gives }2 --(--S)"(A)=8-:(qo:+m(~)--i) and hence 
B C A  

('1-28) ~(~I~, qt) = ( I  - - t )  ~ --1 ($1+m(B)_ 1) l -I  A2(--~) l+m:h)  , 
AcB 
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while equation (4.26) shows that 
(4" 29)  ~ (SB ,  qt) = { PB (t) ( -  1)re(B) ( I - - t )  -- ~ -1(1 -- ?re(B))}~ 

comparing (4.28) and (4.29) we obtain 

(4.3 o) (I--t)PB(t)~(--1)m(B)~--- I I  A~-(-8)t+m(A) 
ACB 

Relations such as (4.3 ~ can easily be inverted by an analogue of the MSbius inversion 
formula. Explictly if A-+(5 a is a mapping of subsets of S into a mulfiplicative abelian 
group and if for each subset B of S 

(4 .3  I) G B = I ]  (5 a, 
A CB 

the product being over all subsets, A, of B, then 

(4 .3  2) ( ~ B =  1-[ G(-1) ~(B)-m(AI 
ACB 

The inductive proof of (4.3 2) may be omitted since it depends entirely on the well 

known fact that ~ (~)(--i)~=--~ for each integer r ~  I. Applying this to (4.3 o) 
i=1 

and letting B = S ,  we obtain As(-~)l+"=I-[{Pa(t)~(-1)"Ia)(z--t)}(-1)"-"IAI. Since 
ZF = As we obtain A 

�9 s~+" -- ( I-- t )  I I  PA(qt), (4- 33) LF -- 
A 

the product being over the non-empty subsets, A of S. (A similar formula appeared 
in an earlier work [6, equation 2I].) We believe this equation is quite significant 
since XF is entire even if ~ is singular. 

Since ~(~A, t) is rational, PA is also rational and hence (4-33) shows that the zeros 
of ZF and the (q--I)p roots of unity generate a finite extension, ~0, of O.'. With this 
choice of ~0, the results of w 2 show that the zeros of ZF are explained by the action 
of ~oF as linear transformation of L (q• if F ~ L (• o). 

We now fix s~Z*, let F = F ~  so that • F = e x p  H, where 
s--1 

H = Y~ "(s, iX0P~J(XPJ). We shall assume unless otherwise indicated that f is a regular 
i=0 

polynomial (1). Equation (4. I5) shows that H satisfies the conditions of w 3. It 
follows from (4.22) that a = ~ o F ,  may be written 

( 4 . 3 4 )  = 

while with this choice of H, the mappings D i of w 3 are simply ~-+F-1Ei(~F ). Since 
qEio~b=~oEi, we conclude for i = o ,  i, . . . ,  n + I  that 

(4 .35)  0coD~ ----- qD, ooc. 

(1) Thi~ condition on f is equivalent to the condition that ~A is non-singular for each non-empty subset, 
A, of S. It will be shown that this condition involves no essential loss in generality. 
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I f  X is any non-zero e lement  of  Do, let W z be defined as in T h e o r e m  2.4,  
i.e. W x = { o  } if X -~ is not  a zero of  X~, while W x = K e r n e l  of  ( I - - X - ~ )  ~ in L(qx) 
if z -  ~ is a zero of mult ipl ic i ty  ~. We note  tha t  • ~, F, the D~, H, and  the spaces W x 
d e p e n d  u p o n  our  choice of  s. T h e  m a x i m u m  value of qx is p / ( p - - i )  and  corresponds 
to s = ~ .  T h e  m i n i m u m  value of qx is (p-- I )[p  and  this exceeds I / (p - -~)  unless 
p ~ 2. This  m i n i m u m  value of qx corresponds to s = I. I t  is assumed in the following 

that  qx>  I / ( p - -  I). 

Lemma 4 .2 .  - -  I f  A is any subset o f  S and o < b < q x  then 

Wxta Z DiL(b ) = Z DiWz/q 
icA leA 

Proof. - -  Let  {~} be a set of elements in L (b ) indexed  by A such tha t  Y~ D,~. = ~ c W  x. 
l e a  

Let  ~ = m a x { d i m W  z, d im  Wx/q}. I t  follows f rom the corollary to T h e o r e m  ~.5 tha t  

for each i c A  there  exists ~cWz/~ and  ~ c L ( b )  such tha t  

~i = ~, + ( I - -  (X/q) -~ 0~)~;. 

Thus  (I--X - t  ~)~' Y, D ~  = ~] D ~ - -  Y, D ~  = ~-- Y, D i ~ ,  which  lies in Wx by hypothesis,  
icA icA icA icA 

choice of the ~ and equation (4.35). We may now conclude from equation (2.54) 
tha t  ( I - -X-I~)  ~ ~] Di~q~cWxta ( I - -?~-~)~L(b)  = ( I - - k - l a ) ~ W x = { o } .  This  shows tha t  

l e A  

~-- ~ BiB i ---- o and  hence  ~ ~] D~Wx/q. T h u s  W x n  ~ D~L(b) c Y, DiWz/q and  equal i ty  
iGA ~cA i@A i~A 

follows wi thou t  difficulty. 

Lemma 4 .3 .  - -  I f  A is a non-empty subset of  S and {~}icA is a set of  elements in W x 
such that ]~ D~ .  = o then there exists a skew symmetric set {~%} in Wx/q indexed by A such that 

i c A  

~ =  ]~ D~q~ i for  each i c A .  
iCA 

Proof. - -  Let  A = { I ,  2, . . . ,  r}, I < r < n - ~ -  I. I f r = I  then  D1~1=o , ~lcL(qx) and  
hence L e m m a  3. IO shows tha t  ~1=o .  We m a y  therefore assume r > I  and  use 
induc t ion  on r. L e m m a  3. io  shows tha t  there exist ~i, . - . ,  ~:-1 in L(qx) such tha t  

r--1 

~, = Z D ~ .  
i = 1  

Since ~rcWx, the previous l e m m a  shows tha t  the ~ m a y  be chosen in Wx/q. Hence  
r--1 

o = Z D i ( ~ + D ~ . '  ) and  since ~ i + D ~ ' c W  x for i =  i, 2, . . . ,  r - - l ,  the i n d u c t i o n h y p o -  
i = l  

thesis shows the existence of  a skew symmetr ic  set {~,i} in Wx/q indexed by { i, 2, . . . ,  r -  I } 

such tha t  for i =  I, 2, . . ., r - - I  
r--1 

~ + D,~.' = ~] D i~  j 
i = 1  
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We now extend the skew symmetr ic  set by defining ~ql, ~ = - - ~  = --~%.~ for i = I, 2, . . ., r - -  I 

and ~r.~ = o. I t  is readily seen tha t  the ~i.j satisfy the conditions of  the lemma.  

Let  X be an eigenvalue of ~. We now compute  the dimension (as vector space 
In+ 1 

over ~0) of the factor space Wz/i~lDiWz/q.  

[ In+l \ n+l 
Lemma 4 .4 .  - -  DimtWx/,EtDiWx'q)'= ' = r=oX ( '+l)  (-- l)r dim Wk/qr.  

Proof. - -  In  the s ta tement  of the Corollary of Theorem 3. i, let W = L(qx) and for 

each t ~ Z ,  let W( t )=Wxqt  , q01=D ~ for i =  I, 2, . . . ,  n +  I. The  previous l emma  shows 

that  the sequence of the Corollary is exact when  r = o and hence the Corollary m a y  be 

applied. In  this application ~(o,  r; S) is the space of  all skew symmetr ic  maps of  S' 

into W(- - r )=Wx/qr  and hence d i m ~ ( o ,  r; S ) =  (n+l) dimWx/qr. 

The  corollary m a y  be used to obtain an identi ty similar to equation (3.36), 
where ~ ,=~? (o ,  r; S), 8r = 8 ( 0 ,  r; S) and the assertion follows without  difficulty since 

[ / '~+1 \ 
dim | W z / , ~ t  DiWx~q ] = dim ~~ [ Im 3'] = \ - / - ' =  ' ~=0 ( - - I ) r  dim ~r" 

31+n 
We can now show that  ZF is a polynomial.  

n+l 

* Z t DiWx,q, then Theorem 4.  x. - -  For each X~f~o, let b x = dim W z / . =  

z~rl+" = II(i_xt)b~ 
the product being over all eigenvalues X o f  ~. 

Proof. - -  Let X be an eigenvalue of  ~ with the proper ty  that  X/q" is not  an eigenvalue 

for any r > I .  For each eigenvalue, X', of~,  there exists an eigenvalue X with this proper ty  

such that  X'=qiX for some i ~ Z + .  Let a j=d imWzq~  for each j ~ Z + .  The  factors 

of  ZF corresponding to terms of  type (I--Xqrt), r~Z+ may  be wri t ten 

ai cp i 
Hx(t) = f i  ( I - - t~ .q i )a i=( I - - tX)  i=~ 

i=O 

The previous l emma shows that  
n+J. 

bxqi = Z (-- I)i("+J)ai_r 
j=0 

and hence 

I t  follows that  

( I - - ~ )  n+l  ~a ai(p i =  ~ bxqie~'. 
i=0 i=O 

b~qi (~ i 
Hx(t) ~n+l _-- (i--~kt)/=0 

This completes the proof  of  the theorem. 
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Equations (4.26) and (4-33), together with the known rationality of zeta functions, 

show that  ZSF t+" is a rational function. The  theorem shows that  the function is entire 
in the p-adic sense and hence it must be a polynomial.  

n + ,  

Let ~ be the factor space L ( q •  DiL(qn). For qx> I / ( p - - I ) ,  we have shown 
n + ,  i=' 

in w 3 that d im ~B = d  ". Since 5", D~L(qx) is a subspace of L(qx) which is invariant 
i - - 1  

under  e, there exists an endomorphism Y of g8 deduced from e by passage to quotients. 

Theorem 4.2. 

provided qx> I / ( p - -  I). 

~ , - I -n  
ZF = det ( I - - t l ) ,  

Proof. - -  It  is quite clear that  the characteristic equation of ~ is independent  
of D 0 and hence it may be assumed that  f20 contains the zeros of det (I-- t~) .  For each 
non-zero element X of f~0, let ~03 x be the pr imary component  of X in ~ with respect to e.  
To prove the theorem it is enough in view of Theorem 4. I to show that 

/ n + l  \ 

(4.3 6) dim ~Bx = dim ( W x / ~  D,Wx,,,q) 

Under  the natural  mapping,  J ,  of L(q• onto 2B, W x is mapped  into ~3 x with kernel 
n + l  n + l  

Wxn ~] D~L(qx), which by Lemma  4.2 is ~] DiWzi q. This shows that dim~3x is at 
i - - 1  i - - 1  

least as large as the right side of (4.36) �9 To complete the proof it is enough to show 
that ~ x  is the image o f W  x under  J.  To prove this let ~ ' ~ ,  hence there exists r~I  
such that  (I--x-l~)r~'=O. Let ~ be a representative of ~' in L(qx), then 

n + l  

( I - - X - ~ ) ' ~  ~ D~L(q• Hence there exists elements ~qt, . - . ,  ~+~ in L(qx) such that  
i = 1  

n + ,  

( I - - X - ~ ) ~  = 2] Di~ ~. 
i - - 1  

Let ix be the multiplicity of (X/q)-' as zero of )~, then 
n + I  

( I - -X- '~ ) r+~  = ~] D~(I--qX-~)~; .  
i = i  

i ! Theorem 2.5 shows that  there exist ~1, . . . ,  ~,+1 in L(q• such that for i = I, 2, . . . ,  n ~- I 

( i_qX-,~)~+ r~q~ = 

The  last two displayed formulas show that  

/ n + l  , \  q = o .  

n-l-I 

This shows that  ~ W x +  ]~ DiL(qx) and hence ~' =J(~)aJ(Wx), which completes the 
i = 1  

proof of (4.36 ) and hence of the theorem. 
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Theorem 't-3. - -  The mapping, ~, is a non-singular endomorphism of !lB (and hence 
X~ ~+" is a polynomial of degree d'~). 

Proof. - -  It is enough to show that K(~B) = 2B, which by Lemma 3.6 is equivalent 
to the assertion that 

n + l  

(4.37) ~Vq- Z D,L(qx)~V. 
i = l  

We recall that 0~ depends upon the choice of s~Z* in our construction of F=F~ ,  but 

.$1+, is clearly independent of s and Theorem 4.2 therefore shows that the degree of/~r 
dim K(~)  is independent of s provided q• I / (p - - I ) .  Since dim ~ is also independent 
of s (subject to the same condition) we conclude that if equation (4.37) holds when 
s = oo then it holds for all s such that q~> I / (p-- I ) .  We may suppose in the remainder 
of the proof that s ~ oo. Let -: be an extension, which leaves fixed a primitive pth root 
of unity, to f20 of the Frobenius automorphism over Q' of the maximal unramified 

subfield of gl 0. Our proof is based on the fact that while F(X)/F(X q) lies in 

L(p/q(p--  I), o), F(X) /F ' (X p) lies in L(I / (p- -  i), o). 
Let +p denote the mapping + with q replaced by p, (i.e. d? = d?~). Let ~p be the 

mapping X~-+X p" of no{X } onto itself. Let Co, ~o be the Q'-linear mappings of Do{X } 
into itself defined by 

We note that ~0 and [~0 are endomorphisms of DO{X} as Q'-space, not (necessarily) as 
f20-space. In view of our previous remarks we easily verify since F (X)/F'(X v) �9 L( I [(p--I) ) 
that 

i ~oL(p/(P-- I)) cL( I / (p - -  i)) 
( 4 . 3 8 )  

~0L(iI(p - i)) r  i)) 

and since +poOr= I, we conclude trivially that 

(4.39) ~oO~o = I. 

Since .:a leaves F invariant, the definitions show that 

( 4 . 4 0 )  = = 

Equations (4.38) and (4-39) give 

L(p/ (p-- I ) ) =~o~oL(p/ (p-- i ) ) c % L ( i / ( p - - i ) )  r  (p-- i ) ) 

which shows that 

(4-4 I) %L(I / (p- -  i)) = L(p[(p--  I)). 

Furthermore, the definitions show that for i = o, i, , , , ,  n + I 

(4" 42) ~0oD~ =pD, o%. 
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n + l  
Lemma 3.6 shows that L(I / (p--  i)) = V  + ~ DiL( i / (p- - I ) )  ; applying % to both sides of 

i = l  

this relation and applying (4.41 ) and (4.42) we find 
n + l  

(4.43) L(p/(p-- i)) c~0V + Y, D,L(p/(p-- I)). 
i=1  

[ n + l  ) n + l  

(4.44)  0 ,XlD, L(p/<p--i)) c X D,L(p/Ip--II). 
i=1  

Since VcL(p/(p--I)), we may conclude that for j = o ,  i, . . . ,  a - - i  
n + l  

a~Vc0@tV + Z D,L(p/(p-- i)) 
i = l  

an elementary consequence of which is 
n + l  

V c ~ V +  Y~ D~L(p/(p--I)). 
i = 1  

Since L(p/(p--I)) is stable under �9 and V may be assumed to have been constructed 
so as to be stable under v a, equation (4.4 o) and this last relation give 

n + l  

V c ~ V +  ~] D~L(p/(p--i)), 
i=1  

which is the form taken by (4- 37) when s = oo. This completes the proof of the theorem. 
We have thus shown that i f f  is a regular polynomial then (I--t)IIPA(qt) (the 

product being over all non-empty subsets, A, of S) is a polynomial of degree d"; and 
if s is chosen such that q• (p--I)  - t  then this polynomial is simply the characteristic 
equation of ~. Since • =pa~+t/q, equation (4- 2) shows that qx certainly exceeds (p-- I) t 

if s > i  (resp. s>3)  when p > 2  (resp. p = 2 ) .  
We now propose to investigate the factor Ps(qt) under the restriction that the 

hypersurface is of odd degree if the characteristic is 2. To do this we now specialize s. 
Ifpdividesdlets= I. Ifpdoesnotdividedletsbesolargethat q x > I / ( p - - i )  ( s ays=m) .  

For each subset A of S, a ring homomorphism, ~A of f~0[Xs] onto D~0[Xa] was 
defined in w 3. We now use the same symbol to denote the extension of this homo- 
morphism to one of f~0{X0, Xs} onto a0{X0, Xa} which is defined by ~A(X0)-----X0. 

For each subset, A (including the empty subset) of S and for each subset B of A 
and each real number b, let 

LA(b ) = ~AL(b) 
L](b) ={~ELA(b ) such that M B divides ~}. 

For i eau{o} ,  let D,, A be the mapping ~--->~AD,~ of f~0{X0, XA} into itself. Let "A 
be the mapping ~--->~A(,~) of LA(qx ) into itself. Using an obvious analogue of 
equation 4.35, the subgroup ~ Di, ALA(qx) of LA(qx ) is mapped into itself by % and 

hence by passage to quotients we define an endomorphism 0c- A of the factor space 
~BA = LA(q~)/i~A Di'A LA (q~)" (Thus in the notation of Theorem 4.2, ~B = ~gs, 0~ = 5s)- 
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Now let ~B] be the image in 213 A of L](qx). We note that L](qx) is mapped into itself 
by % and hence YA maps ~ ]  into itself. Let Y] be the restriction of ~A to ~ ] .  

For the empty subset, ~, of S, we have ~ A F = I ,  Lo(qx ) = S 0 ,  D0,oLo(q~ ) ={o}, 
O,.~, ~ o = ~ 3 o ~ f ~ 0 ,  % is the mapping ~--->+~ of f~0 into itself. Clearly % operates as the 

identity mapping on f20 and hence 

d e t ( I - - t ~ )  = i-- t .  

Theorem 4.4.  
det(I-- t~)  = I I  d e t ( I - - t ~ ) ,  

A 
the product being over all subsets, A,  of S. 

Proof. - -  Lemmas 3. i i, 3. :5, 3. :7, 3. :8 show that under the natural mapping 
of LA(qx ) onto ~3A, ~ is mapped isomorphically onto ~I~]. The proof o f l emma  3.17 
shows that ~BmN = Z ~ ]  and here the isomorphism is given by the natural map of 
L s (~ )  = L(qx) onto ~3. For each subset A of S, let ~3A be a basis of N] and let ~ = u ~3:. 
Lemma 3-I3 shows that ~3 is a basis of ~ .  We use this basis to construct a matrix 
corresponding to Y. For each coe~3 we may write (by virtue of Lemmas 3.15 and 3. i8) 

(4.'t5) s(co)e X 9X(co, co')co'+ 2 D,L(qx), 
r /GS 

where 9~(~, r 0. It follows from Lemmas 3.1I  and 3-~7 that this relation 
uniquely determines 9~(r r If  M A divides ~ then ~(~o)eL~(q• and hence by 
Lemmas 3- :5, 3- 18, ~: ~(r r  A, which shows that 9~(r r = o  unless M~ 

divides ~'.  We now order the elements of ~ so that the elements of ~ preceed those 
of ~B if the number of elements in B exceed the number  in A and such that for A 4= B 
no element of ~B lies between two elements of ~ .  Let ~ be the matrix indexed by 

• ~ with general coefficient 9~(r co') and with the elements of ~ ordered as indicated. 
Let 9 ~  be the submatrix obtained from 9~ by restricting (co, ~') to ~ • ~ .  I t  is clear 
that 9~A is a square matrix, its diagonal lies along the diagonal of ~ and the coefficients 
of 9~ lying below 9 ~  are zero since these coefficients are of type 9~(r ~o'), where ~ o ' e ~  
and r is divisible by M B for some B not contained by A. It now follows that 

(4.`16) det (I--tg"J~) = II det(I--tgX~), 

all subsets, A, of S. It follows from (4.45) that 
For r e ~A if we apply ~A to both sides of equation (4.45) 

the product being over 
det ( I - - t E ) =  det (I--t93l). 
we obtain 

s](co) =%(o~) =..~(~z~)~ Y, 9cJl(% o~')~ '+ 2~ D,,ALA(q• ). 
co' G ~3A i GA 

Since ~A is a set of representatives of a basis of ~B], this shows that for each subset A 

det( I - -  tgJlA) = det(I-- t~]) .  

The theorem now follows from (4.46) �9 
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Corollary. 
Ps(qt) = det (I--t~s s) 

deg Ps = d-l{( d - I )n+~  + (d - - i ) ( - - i  )n+ 1} 

Proof. - -  Theorem 4-2, equation 4.33 and Theorem 4.4  show that for each 
non-empty subset B, of S, 

H det ( I - - t ~ )  = H PA(qt) 
A A 

the products being over all non-empty subsets A of B. This system of relations can be 
solved for P~(qt)/det  ( I - - t ~ )  by means of equation (4.32). This gives the first 
assertion of the corollary. The assertion concerning the degree follows from the compu- 
tation of dim ~3s s (Lemma 3.19) and the proof (Theorem 4-4) that Y (and hence ys) 
is non-singular. 

c) Let k (as previously) be the field of q elements and let us extend the notion of 
regularity (in the obvious way) to polynomials in k[X1, . . . ,  X,+I].  We have verified 
a part of the Weil hypothesis for a non-singular hypersurface, 9 ,  in ~ defined over k 
provided d is odd if p = 2 and provided the defining polynomial f ek[X] of ~ is regular. 

( f  = image f o r f  under the residue class map). We now consider the situation in which f 
is not necessarily regular. Let A = (%) be an (n + i) • (n + i) matrix whose coefficients 
are algebraically independent over k[X1, . . . ,  X,+L]. We consider the coordinate 
transformation 

n + l  

X~= Z %Yj, j =  I ,  2 ,  . . . ,  n + I 
i = 1 

and consider f as a polynomial in Yt, . . . ,  Y,+ 1 with coefficients in k ( % ,  . . . ,  a, + 1,, + 1). 

We easily compute 

r T _ v O f  

where Aij is the cofactor of % in A. 
to the conditions 

(i) 

(2) f ,  (det A)f~', . . . ,  (det A)f,'+l 

n+l Of 
-- ~ X t ~ , % A 1 J d e t  A 

i,t=l i 

Our  problem is to specialize the matrix A subject 

det A 4= o 

have no common zero in ~n. 

Let U be the set of all A with coefficients in the algebraic closure of k which fail to 
satisfy these conditions, i.e. U is the set of all A such that either d e t A = o  or 

J~ (det a)j-~, . . . ,  (det a)f-~+ 1 have a common zero in ~ , .  It  follows from elimination 
theory that U is an algebraic variety in ~m, where m = (n + i ) 2  i. On the other hand 
it is known ([7], Chap. VI I I ,  prop. 13) that the generic hyperplane section of a non- 
singular variety is non-singular and therefore U 4= ~m. Hence the dimension of U is 
at most m--I  (and hence must in fact be m-- i ) .  Thus if k~ is the field of qr elements, 
the number  of points of U rational over k r is no greater than b(qr(m-l i - - I ) / (q~--I )  for 

67 



68 B E R N A R D  D W O R K  

some fixed real n u m b e r  b. O n  the other  hand  there are ( q " - - I ) / ( q ~ - - I )  points in ~, ,  

rational over k,. Thus  there exists an integer r 0 such that for each r>ro,  there exists 

a point  o f ~  m rational over k~ bu t  not  in U.  This means that  for each r > r  o there exists 

a coordinate  t ransformation rational over k, such that  ~ is defined by  a regular  polynomial  

with respect to the new coordinates.  For each integer r, let ~, be the zeta function of  

as hypersurface over k~ and let P, be the rational function defined by  

n- -1  

P~(t)(-1)"----~r(t) 1-[ ( I - - q ' i t ) .  
i = O  

I t  follows that  for each r~Z, r_) 

L(t)  = I I  P~(vt~/'), 
v r = l  

the product  being over all r th roots of  unity, ,~. Fur thermore  if r > r  o then P~ is a 

polynomial  of  a certain predicted degree m'. I f  1)1 is a polynomial  then clearly it must 

also be of  degree m', and hence to complete  our  t rea tment  of  Pt it is enough to show 

that  P~ is a polynomial .  Since t)1 is a power  series with constant  term I, we may  write 

V,(t) = f i  ( I - -b , t )  ( I - -b l t )  
i = 1  

where the b; are distinct from the b~. Consider b~. I f  Pr is a polynomial  then there 

must  be an r th root  o f  unity,  v, such that  b~v----b~ for some integer i, i < i <  c. Let  r run  

through c q- i distinct primes each greater  than r 0. By the pigeon hole principle there 

exists one integer i such that  b~v '=  b~-----b~v", where  v' (resp. ~") is a p ' - th  (resp. p"- th)  

root  o f  unity, p' ,  p "  being distinct pr ime numbers .  I t  is clear that  v ' = v " =  t 

and b~ = b l ,  cont rary  to hypothesis. 

I t  is now clear that  for the t rea tment  of  a non-singular hypersurface,  the hypothesis 

that  the defining polynomial  is regular  is no essential restriction. 

REFERENCES 

[ I ]  B. DWORK, On the rationality of the zeta function of an algebraic variety, Amer. 07. Math., vol. 82 (t96o), 
pp. 631-648. 

[2] J.-P. SERRE, Rationalit3 des fonctions z~ta des varidtds algdbriques, S6minaire Bourbaki, x9592x96o, n ~ i98. 
[3] A. Wsm, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc., vol. 55 (1949), PP. 497-5 o8, 
[4] E. ARTm, Algebraic numbers and algebraic functions, Princeton University, New York University, i95o-i951 

(Mimeographed notes). 
[5] W. GR6BNER, Moderne Algebraische Geometric, Wien, Springer, i949. 
[6] B. DWORK, On the congruence properties of the zeta function of algebraic varieties, .7. Reine angew. Alath., 

vol. 23 096o), PP. I3O-I42. 
[7] S. LANO, Introduction to algebraic geometry, Interscience Tracts, n ~ 5, New York, I958. 

Refu  le 15  aodt 1961 .  

The  Johns  Hopkins  Universi ty.  

68 


