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Abstract. The classical problem of finding a point in the intersection of countably 
many closed and convex sets in a Hilbert space is considered. Extrapolated iterations 
of convex combinations of approximate projections onto subfamilies of sets are 
investigated to solve this problem. General hypotheses are made on the regularity 
of the sets and various strategies are considered to control the order in which the 
sets are selected. Weak and strong convergence results are established within this 
broad framework, which provides a unified view of projection methods for solving 
hilbertian convex feasibility problems. 

Key Words. Alternating projections, Boundedly regular sets, Chaotic iterations, 
Convergence, Convex feasibility problem, Convex sets, Extrapolated projections, 
Fej6r-monotone sequences, Hilbert spaces, Parallel projections, Relaxations, Suc- 
cessive projections. 

AMS Classification. 90C25, 65J05, 52A41, 40A05. 

1. Introduction 

Numerous problems in applied mathematics, science, and engineering can be reduced 
to finding a common point of a family of closed and convex sets in a Hilbert space. This 
abstract formulation, known as the hilbertian convex feasibility problem, captures prob- 
lems in disciplines as diverse as approximation theory, integral equations, control theory, 
signal and image processing, biomedical engineering, communications, and geophysics. 

* This work was supported by the National Science Foundation under Grant MIP-9308609. 
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For detailed accounts of  concrete applications, the reader is referred to [20], [22], and 
[291. 

In Hilbert spaces, the use of  projection methods to solve convex feasibility problems 
goes back at least to 1933. Let Pi (a) denote the projection of a point a onto Si, i.e., the 
unique point in Si such that Ila - Pi (a)II = inf{ Ila - bll I b ~ Si }. In [54] Von Neumann 
showed that a point in the intersection of two closed vector subspaces (So, S~) could be 
obtained as the strong limit of  any sequence of iterates 

(Vn E N)  an+j = Pi(n)(a,~), (1.1) 

where i (n) = n modulo 2. This result was extended to finite families of  closed subspaces 
(Si)o<_i<_m-t in [34] by considering the periodic control scheme i (n )  = n modulo M. 
For more general control strategies, weak convergence results were established in [ 12] 
and [49]. These efforts culminated with a result of  Amemiya  and Ando [5], who showed 
that under the chaotic control rule 

(¥i c {0 . . . . .  M - 1}) i (n)  = i infinitely often, (1.2) 

the iterated projections (1.1) converge weakly to a point in the intersection of the M 
subspaces. For more restrictive control rules, nonlinear versions of  this result were given 
in [ 10] and [ 13], where arbitrary convex sets were considered. Methods such as (1.1) are 
serial in the sense that a single set is selected at each iteration. Their counterparts are 
methods of  parallel projections such as the barycentric method 

M - I  

(¥n c N) an+j = ( l / M )  Z Pi(an), (1.3) 
i=0 

which was shown in [6] to converge weakly to a point in the intersection of the closed 
and convex sets (Si)o_<i_<M-~. For both (1.1) and (1.3), strong convergence results have 
also been established under certain regularity conditions on the sets [33], [44]. 

The goal of  this paper is to study the convergence of a broad class of projection 
methods for solving hilbertian convex feasibility problems with a countable number 
of  sets. A general algorithm is proposed which provides a unifying formulation for 
projection-based methods. It proceeds by extrapolated iterations of  convex combina- 
tions of  approximate projections onto subfamilies of  sets. This formulation includes in 
particular serial methods, simultaneous methods, extrapolated relaxation method, and, 
under suitable assumptions, subgradient methods. In addition, general regularity condi- 
tions on the sets are used and various strategies are considered to control the order in 
which they are selected. The results presented herein extend and improve most known 
results on the weak and strong convergence of projection methods. 

The following two definitions describe the framework of this study. 

Definition 1.1. Let ,E be a real Hilbert space with scalar product (. I "), norm 1[. I], and 
distance d. Let (Si)i~1 be a countable (finite or countably infinite) family of closed and 
convex subsets of  ,q with nonempty intersection S and such that (¥i 6 I )  Si :P ,E. The 
hilbertian convex feasibility problem is to find a point in S, 
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Def in i t i on  1.2. Fix a0 6 ,~, C ~ N*, ~ c ]0, 1/C[, and (e, r/) ~ ]0, 1] 2. Let 

(Vn ~ N) a n + l = a n + ~ n ( Z W i , n P i , n ( a n ) - a n ) ,  (1.4) 
\ i E l .  

where at each iteration n: 

(a) The family In of  indices of  selected sets satisfies 

I n C I  and 1 < card In _< C. (1.5) 

(b) For every i in In, ~,n is the projection operator onto any closed and convex 
superset Si,n of Si such that 

d(an, Si,n) >_ rid(an, Si). (1.6) 

(c) The weights (wi,n)i~lo are convex and bounded away from zero on active sets, 
i.e., 

(,¢i ~ in ) IWi,n >__ ~ if an ~ Si and Z w i , n  = 1. (1.7) 
IWi,n > 0 otherwise, i~i,, 

(d) The relaxation parameter ~n varies over an iteration-dependent interval 

e < ~n -< ( 2 -  e)Ln, (1.8) 

with 

I ~-~icl''wi'nllPi'n(an)-anl]2 if a n ~ N S i ,  
Ln = II ~-~-iet,, wi nPi n(an) - anl[ 2 (1.9) 

• , iEl ,~ 

1 otherwise. 

The iterative scheme (I .4)-( 1.9) is called the extrapolated method of parallel projections 
(EMOPP). 

EMOPP unifies and extends existing projection methods in several respects: 

(a) The total number of  sets may be countably infinite. In addition, the sets acted 
upon may vary at each iteration according to various control strategies defined 
by the sequence (I,)n>_0. Such flexibility is very valuable in practice as it allows 
us to match the computational load of each iteration to the power of the concur- 
rent processors available. It also brings together serial methods, e.g., (1.1), and 
barycentric methods, e.g., (1.3). 

(h) If exact projections are used, i.e., Pi.n = P/ in (1.4), conventional projection 
methods are obtained. Otherwise, the approximate projection operator Pi.n can 
be regarded as the projection onto an affine hyperplane Hi(an) separating an 
from Si, as in [2] and [32]. When S ° ~ ~ ,  this framework also includes the 
subgradient projection methods of  [17], [28], and [36] where the sets take the 
form S, = {a 6 ~, 1 gi(a) <_ 0} in the euclidean space N, gi: ~ --~ ]~ being 
a convex functional. In this case, Hi(an) = {a ~ E I (an-a I ti,n) = gi(an)}, 
where ti,n is a subgradient of gi at an. 
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(c) 

(d) 

The weights on the projections may vary at each iteration, unlike in the parallel 
projections methods of [6], [19], [26], [27], [44], [45], and [50]. Note that if the 
current iterate an belongs to a selected set S/, the corresponding weight wi,,, can 
be set to zero. 
In the vast majority of  projection methods, the sequence of relaxations param- 
eters must satisfy 

('On E 1~) e < Jk,, < 2 - ~. (I .10) 

The exceptions are the extrapolated projection methods presented in [43]-[46] 
where 

(Vn E N) e < Ln < Ln. (1.1t) 

Since the extrapolation parameter Ln in (1.9) is never less than l, the relaxation 
range (1.8) encompasses both (1.10) and (1.11). In numerical applications, the 
large overrelaxations allowed by (1.8) have been shown to accelerate signifi- 
cantly the convergence of parallel projection methods [22]. 

R e m a r k  1.1. Projection methods similar to (1.4) have already been studied in the 
literature under more restrictive assumptions than those of Definitions 1. I and 1.2. Thus, 
(1.4) was proposed in [43] with exact projections and relaxation scheme (1.11). For 
relaxations as in (1.10) and I finite, (1.4) was proposed in [8] (and previously in [32] for 
euclidean spaces) in the equivalent form 

(¥n ~ N) a~+j = Z ~Oi'n((l - -  ~i,n)an "F ~i,nPi,n(an)). (1.12) 
iEL, 

Finally, EMOPP was proposed in [23] for I finite and E euclidean. Since the present 
paper was submitted (Spring 1994), it has come to our attention that a similar method 
was independently studied in that particular context in [38]. Relaxations of  type (1.8) 
were apparently first proposed in the parallel projection method of [40] to solve systems 
of linear inequalities in ]1~ n. 

R e m a r k  1.2. In the special case when only one set is selected at each iteration, EMOPP 
is under s e r i a l  c o n t r o l  and reduces to 

| an+ l  = an + ~.,,( Pi( , ) ,n(a~) - an) ,  
(¥n ~ N) "~e < )~, < 2 -  e, (1.13) 

| i ( n )  E I. 

Such methods are also known as methods of successive projections or "row-action" 
methods [ 16]. 

R e m a r k  1.3. Less general projection methods have been proposed to solve problems 
which extend the convex feasibility framework of Definition 1.1 in certain directions. 
Thus, problems with uncountably many sets are addressed in [15] and [42], while the 
inconsistent case, i.e., S = o ,  is discussed in [9], [24], and [33]. Feasibility problems 
outside Hilbert spaces are considered in [4], [25], and [50]. 
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The remainder of  the paper is organized as follows. In Section 2 some general 
properties of  EMOPP are presented. In Section 3 several control schemes are introduced 
and preliminary convergence results are proved. The convergence of EMOPP to a feasible 
point in the weak topology is then studied in Section 4 for various control strategies. 
In Section 5 regularity conditions on the sets are discussed and convergence results are 
established in the strong topology. Unless otherwise stated, the notations and assumptions 
introduced in Definitions 1.1 and 1.2 are used throughout the paper. 

2. General Propositions 

Notations. N is the set of nonnegative integers, N* = N\{0}, JR+ is the set of  nonneg- 
ative real numbers, and IR~_ = IR+\{0}. The closed ball of  center a and radius y in U, 
is denoted by B(a, 2,,). The cardinal of  a set A is denoted by card A. The expressions 

n 
an ~ a and an --~ a denote respectively the weak and strong convergence to a of a 
sequence (an)n>_0. The sets of weak and strong cluster points of  (an)n>_0 are denoted by 
~3(an)n>0 and ®(an)n>_0, respectively. OSi is the boundary of  Si and S[ its interior. If 
Si is an affine subspace (a translation of  a vector subspace), the vector space S/~ is its 
orthogonal complement. The expression a cx b indicates that the vectors a and b are 
collinear. 

In this section (an)n_>0 is a fixed, but otherwise arbitrary, orbit of  EMOPE 

R e m a r k  2.1. The convexity of II • II 2 yields 

a n  2 

S, 
iEln ' iEln 

Now, fix (c, n) ~ S x N. Then we have [55] 

(2.1) 

(Vi E In) (Pi,,,(an) -- c [ Pi,n(a,,) -- an) < O. (2.2) 

Whence 

and, thanks to Definition 1.2(b), we easily get 

an E A S i  ¢¢" ZWi,nllPi,n(an)--anll  2 = 0  
i~l,, iEL, 

2 

¢~ ~ wi,nPi,n(an) - an = 0. (2.4) 

Therefore Ln is well defined in (1.9) and in view of (2.1) we always have Ln _> 1. 



316 P.L. Combettes 

Proposition 2.1. For every c in S and every n in I~, we have 

Ilan+l - cll 2 < I[an - cll 2 - ~.n(2 - )~n/Ln) Z wi,nllPi,n(an) -- anll 2. 
iEln 

Proof. Take any (c, n) ~ S × 1% Then (1.4), (1.9), and (2.3) give 

an ( i~/ ,  ' ) 2  Ilan+j - ell z = - c + ~.n wi, .ei ,n(a.)  - a,, 

+ ( )~ /Ln)  Z wi,n Ilri~n(an) - anll 2 
i E l,~ 

< Ila~ - cll2-)~n(2-)~n/L~) ~ wi,~llPi,n(an)-anll 2, 
i c l,, 

which proves the assertion. 

(2.5) 

[]  

Proposition 2.2. The following results hold: 

(i) Fej&-monotonicity [41]: (V(c, n) E S × N) lla~+j - cll _< [lan - ell; 
(ii) card~3(a,z) ,>o > 1; 

(iii) c a r d ' ( a n ) n > 0  f3 S < 1; 
(iv) iff273(an)~>o C S, then (an)n>_O converges weakly to a point in S. 

Proof. (i) follows from Proposit ion 2.1 and (1.8). 
(ii) Fix c 6 S. Then (i) ::~ (an)n_>0 C B(c, Ilao - c][), where B(c, Ila0 - cll) is 

weakly compact .  
(iii) The p roof  of  (i) ::¢, (iii) appears explicitly or implicitly in [8], [10], [13], and 

[24]. 
(iv) In this case, (iii) implies that (an)n>_o has a unique weak cluster point, which 

must  therefore be its weak limit. [ ]  

We now fix an arbitrary point  c in S and define 

(Vn ~ N) fin = ]]an - c]] 2 - ]lan+l -- cl] 2. (2.6) 

Proposition 2.3. For every integer n, we have: 

(i) Y'~.i~l,, wi.,,j[Pi,n(an) - a n j ]  2 _< e-2fl,,; 
(ii) maxi~l,, d(a,,, Si) 2 < ~-le-2rl-zfln; 

(iii) I la,+l-anll  2 <  (2e - j -  1)/Sn; 
(iv) ( a n - c l a n - a n + l )  < e - I f l n .  

Proof. Since (1.8) implies that ~.n(2 - )~n/Ln) > E 2,  (i) follows directly from Propo- 
sition 2.1. 
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(ii) Take any i c In. If an 6 Si, d(an, S i )  : 0. Otherwise, using (1.6), (1.7), and (i), 
we get  

d(an, Si) 2 <_ rl-2llei,n(an) - a ~ l l  2 

< t l - 2 E w j , n l l P j , ~ ( a n ) - a ~ l l 2 / w i , n  
jcl,, 

(~- 1 6 ' - 2 0 - 2 f n ,  (2.7) 

and obtain (ii). 
To establish (iii), note that (1.4) and Proposit ion 2.1 entail 

Ilan+l - a n l l  2 = ~ ~--~Wi,nllPi,n(a,) - - a ,  II 2 
i ~1,,  

fin < - -  . 

- Ln )~n(2-  Z,ffLn) 

_< (2s -~ - 1)fn, (2.8) 

where we have used (1.8) to get )~n/Ln < 2 - s and 1/(2 - )~,,/Ln) <_ s -1. 
(iv) Note that Ila~+l - cl[ 2 = Ilan+l - anll 2 + 2(a ,+l  - an I an -- c) + Ila~ - cll 2. 

Therefore, using (iii) and (2.6), we obtain the last assertion: [] 

Proposition 2.4. (fn)n~o is summable. 

Proof. According to Proposition 2.2(i), (fn)~zo C IR+. Moreover, (2.6) implies 

(Vn ~ N) Y~=o fit = Ilao - cll a - Ila~+J - ell 2 < Ilao - c l [  2 and, therefore, ~ n > o  fn < 
Ila0 - c[I 2. [] 

3. Control Schemes 

Several control strategies will be considered for EMOPR They constitute extensions to 
parallel projection methods of schemes which have been proposed for serial ones. 

Definition 3.1. Assume that card I < + e c .  Then the control is: 

• Static if all the sets are selected at each iteration, i.e., 

(¥n c N) In = I. (3.1) 

This control condition goes back to Cimmino ' s  algorithm [19]. 
• Cyclic if there exists a positive integer M such that 

n + M - 1  

(Vn ~ N )  I =  U Ik. (3.2) 
k = n  

In words, if the control is M-cycl ic ,  all the sets must be selected at least once within 
any M consecutive iterations. This condition was utilized in [49] for the serial case 
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and in [43] for the parallel case. In the serial case with M sets, say (Si)o<i<_M_l, 
an important example of cyclic control is the periodic control scheme 

(Vn E N) i (n) = n (modulo M), (3.3) 

that was used in Kaczmarz'  algorithm [37]. For two vector subspaces, it yields 
the alternating projection scheme of [54], which has been rediscovered in many 
places [29]. 
Quasi-cyclic if there exists an increasing sequence of  integers (M,~),~ >_0 such that 

M0 = 0 ,  

m~>_0(Mm+l - -  Mm) -I  = +oo ,  

Mm+l - -  1 

[(Vm N) I=  U 
k=Mm 

(3.4) 

Thus, under (Mm)m>_o-quasi-cyclic control, all the sets are selected at least once 
within each variable cycle of  iterations {M . . . . . .  M,,+l -- 1 }. The nonsummability 
condition ensures that the lengths (M,n+l - Mm )m>O of the cycles do not eventually 
increase too fast. This type of  control was introduced in [53] for a serial method. 

R e m a r k  3.1. The above control modes are applicable only when (Si)iE 1 is a finite 
family because they impose that all the sets be selected over a finite number of itera- 
tions. Henceforth, any statement pertaining to static, cyclic, or quasi-cyclic control will 
implicitly carry the assumption card I < -I-o~. 

We now introduce control modes applicable to countable families. 

D e f i n i t i o n  3.2. The control is: 

• Admissible if there exist positive integers (Mi)iEl such that 

n+M~--I 

('v'(i,n) E 1 x N )  i E U lk. 
k~ n  

(3.5) 

Hence, the set Si is selected at least once within any mi consecutive iterations. Of 
course, if card I < + ~ ,  this control mode coincides with the cyclic mode (3.2). 
The admissible control condition was introduced in [12] for the serial method 
(1.1) (we adopt the terminology of  [13] here). 
Chaotic if each set is selected infinitely often in the iteration process, i.e., 

1 = lim sup In. (3 .6)  

This condition is an extension of (1.2), which goes back to Poincar6's balayage 
(sweeping) method [47]. It was used in the serial method of [49] and in the parallel 
method of  [43]. Note that (3.6) generalizes (3.1) (3.5). 
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• Coercive if 

\ (3(i(n))n>_OE X>oln ) / d(an, Si(n)) ~ 0  ==~ supd(an, Si)--~ O. (3.7) 
n_ iEl 

In the serial case, this control mode was proposed in [33] as a generalization of 
the most-remote set control scheme 

(¥n ~ N)(3i(n)  ~ In) d(an, Si(n) ) : supd(an,  Si), (3.8) 
iEl 

which is not always applicable when card I : +~x~. The most-remote set control 
strategy was introduced in [ t ] and [41 ]. 

• Chaotically coercive if (ln)n>0 contains a subsequence (Ink)k>0 such that 

(3(i(k))k>_OEXoIn,) d ( a n , , S i ( k ) ) ~ O  ==> sup d(an~ ' ~ )  --~k 0" (3"9) iel 

This condition generalizes (3.7) as well as the control strategy consisting in se- 
lecting one of the most remote sets infinitely often in the course of  the iterations. 

The results of  Section 2 have been obtained without making any assumption on the 
control sequence (In)n>_0. We now establish convergence properties that depend on the 
control. 

Proposition 3.1. 

(i) 

(ii) 
(iii) 

(iv) 
(v) 

Let (an)n>_o be an arbitrary orbit of EMOPP. I f  the control is: 

quasi-cyclic, then (an)n>_o possesses a subsequence (ank)k>o such that 

maxi,~ d(an~, Si) k_~ 0; 

admissible, then (¥i ~ I) d(a~, Si) ~ 0; 
chaotic, then,for every i in I, (an)n>_o possesses a subsequence (a,,k)k>_O such 

thatd(an k, Si) ~ 0; 

coercive, then supie/ d(an, Si) ~ 0; 
chaotically coercive, then (an)n>_O possesses a subsequence (ank)k>_O such that 

suPi~l d(ank, Si) ~ O. 

Proof. To demonstrate (i) and (ii), fix (i, n) in I x N. Let Kn,i C 1~ be a set of  
Kn,i consecutive integers containing n and some integer p such that i c Ip. Define 
Yn,i = Kn,i ~k~K°., ilk- Proposition 2.3(ii) yields 

d(ap, Si) 2 <_< 3-1e-2y] -2 j~p  _<< ~ - l £ ' - 2 r ] - 2 y n ,  i. (3.10) 

On the other hand, Proposition 2.3(iii) yields 

2 

'lap--an,,2 <_ (~K,, "ak+l--ak") 
k ,i 

< Kn.i Y ~  Ilak+l--ak[] 2 

kEKn.i 
< (2e -1 - 1)Vn.i. (3.11) 
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Let ~" = 2(¢$-lg-2r/-2 q- 2e -1 -- 1). By combining (3.10) and (3.11), we get 

d(a,,, Si) 2 ~ IIP/(ap) - a ,  II = 

<_ (d(ap, &) + Ilap - anll) 2 

<_ 2(d(ap, Si) 2 + Ilap - anll 2) 

<_ ~ Yn,i. (3.12) 

(i) Suppose (3.4) holds and let m = m(n) be the largest integer such that n >_ Mm. 
Then K, , i  = {M . . . . . .  Mm+j - 1} A Km will work for every i 6 I .  From (3.12), we 
obtain 

(Vm E N)(Vrt E {Mm . . . . .  M m + l  - -  1}) 
Mm+1-1 

°maxd(a . ,  Si )  2 <_ ~(Mm+l -- mm) ~ flk ~ ~)"nz. (3.13) 
iEl k=Mm 

Hence, to prove assertion (i), it suffices to show 0 6 G(Ym)m>_O. Observe that, if we had 
0 ¢ G(Ym)meO, there would exist (#, N) 6 R~_ x N such that (¥m > N) Ym > /*. In 
view of (3.13), this would yield 

Mm+1-1 
Z (mm+l - - m m ) - '  ~ I " L - I Z  Z flk ~ l ' £ - l Z f l k  • (3.14) 
m>N m>N k=M., k>O 

However, a contradiction would arise since the series in the left-hand side diverges by 
(3.4) while the series in the right-hand side converges by Proposition 2.4. This establishes 
(i). 

(ii) If  (3.5) holds, we can take lKn,i = {n . . . . .  n + Mi - 1 } and (3.12) leads to 

(¥(n , i )  E N × l )  d(a,, ,Si)2 < ~ M i Z f l k .  (3.15) 
k>n 

However, by Proposition 2.4, the right-hand side is the tail of a convergent series and it 
must converge to zero as n increases indefinitely. Thus, we obtain (ii). 

(iii) Fix i 6 I. If  the control is chaotic, there exists an increasing sequence (nk)k>0 C 
l~I such that (¥k ~ N) i E Ink. By Proposition 2.3(ii), we then get 

(Vk E N) d(ank, Si) 2 <__ ~-1~'-2rl-2]~n k. (3.16) 

Since fin, ~ 0, the proof is complete. 
(iv) Consider the coercive control scheme and define (i(n))n>0 as in (3.7), Then 

Proposition 2.3(ii) gives 

(Vn 6 N) d(an, Si(n)) 2 ~ max d(an, Si)  2 < 6-16 ' -2~-21~n.  (3.17) 
iEl,, 

However, since/~n ~" 0, we have d(an, Si(n)) -~ 0 and therefore (3.7) completes the 
proof. Note that (v) in the chaotically coercive case is proven in an analogous manner. [] 
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4. Weak Convergence 

4.1. Quasi-Cyclic and Chaotically Coercive Controls 

We start with the following facts. 

Lemma 4.1. For every sequence (an)n>_o C ~ the following statements hold: 

(i) Suppose (3i ~ I)  d(an, Si) --~ O. Then an ~ a ¢~ Pi(an) ~ a. 

(ii) Suppose (3i c I )  d(an, Si) ~ O. Then an -~ a ¢~ Pi(a~) ~ a. 

(iii) Suppose (3i ~ I )  d(an, Si) --~ O, where Si is boundedly compact (its inter- 
n 

section with any closed ball is compact). Then an --~ a ¢~ an ~ a. 

(iv) Suppose (¥i ~ I )  d(an, Si) --~ O. Then ~227(an)n>_o C S. 

Proof. (i) and (ii) are trivial. 
(iii) The forward implication is obvious. To prove the reverse implication, sup- 

pose an ~ a. Then (i) ~ Pi(an) ~-~ a =~ (Pi(an))n>_o is bounded. However, since 
(P/(an))n_>0 lies in the boundedly compact set Si, we must have @(Pi(an))n>_o = {a}. 

Therefore ~ ( a n )  --~ a and(ii)  =~ an ~ a. 
(iv) If  ~(an)~>_0 = O, (iv) holds trivially. Otherwise, take any a c ~(an)n>_0, 

k k 
say ank --~ a, and any i ~ I.  Then (i) =~ Pi(ank) ~ a, but (Pi(ank))~>o C Si and Si 
is closed in the weak topology. Whence, a E Si. Since i was arbitrary, we conclude 
a E S .  [] 

Theorem 4.1. Under quasi-cyclic or chaotically coercive control, every orbit o f  
EMOPP possesses one and only one weak cluster point in S. 

Proof. Let (an)n_>0 be an arbitrary orbit of  EMOPE By Proposition 3.1(i) and (v), 

there exists a subsequence (an~)k>0 of (a,)n>_0 such that (¥i ~ I )  d(ank, Si) ~ O. 
Clearly, Proposition 2.2 applies to (a,,)k_>o. Thus, by Proposition 2.2(ii), we can find 
a c ~(ank)k>_0- Lemma 4.1(iv) then gives a ~ S. Uniqueness follows from Proposi- 
tion 2.2(iii). [] 

R e m a r k  4.1. Under quasi-cyclic control, Theorem 4.1 was obtained in Theorem 2 
of [52] for a variant of  the serial algorithm (1.13) in which exact firmly nonexpansive 
operators (Ti)i~i with sets of fixed points (Si)icl were considered in lieu of approximate 
projections (projection operators are special cases of  firmly nonexpansive mappings 
[55]). As shown in [21], several of our results still hold true for the corresponding 
variant of  EMOPP, which provides a proper extension of results of  [52]. 

Coro l la ry  4.1. Under quasi-cyclic or chaotically coercive control, i f  an orbit o f  
EMOPP possesses no weak cluster point outside o f  S, then it converges weakly to a 
point in S. 
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4.2. Admissible  and Coercive Controls 

Theorem 4.2. Under admissible or coercive control, every orbit o f  E M O P P  converges 

weakly  to a point  in S. 

P r o o f  The claim follows from Proposition 3.1 (ii) and (iv), Lemma 4.1 (iv), and Propo- 
sition 2.2(iv). I-3 

R e m a r k  4.2. In the special case of algorithm (1.1), Theorem 4.2 coincides with Theo- 
rem 2 of [13] (Lemma 3 of  [12] in the linear case) for admissible control and Theorem 2 
of  [10] for most-remote set control. Now suppose that card 1 < + o a  and that the con- 
stant relaxation range (1.t0) is in force. Theorem 4.2 is established in this context in 
Theorem 3.200) of  [8] for cyclic control and in Theorem 4.26(ii) of  [8] for most-remote 
set control. It should be noted that these results assumed more general approximate pro- 
jections than those of  Definition 1.2(b). For exact projections, Theorem 3.20(i) of  [8] 
appears in Theorem l of  [24], which contains results of  [6], [10], [26], and [27], while 
Theorem 4.26(ii) of  [8] contains the finite-dimensional results of  [I], [31], and [41 ]. 

R e m a r k  4.3. Theorem 4.2 also generalizes Theorem 1.1 (i) of  [45], which considered 
the static algorithm 

with (1.1 !), (gi 6 I)  wi > 0, and ZiEI O3i = 1. It is worth pointing out that this result 
can also be deduced from Theorem 1 of [48], where the weak convergence of  the convex 
minimization algorithm 

(Vn EI~I) JAN+, = aN -- (o6,(Cb(an) -- ~min)/[ lVdP(an)II2)V~(an),  
[e  < ot~ < 2 -  e (4.2) 

to a minimizer of  q~ is demonstrated (take ~: a ~-+ Y-~i~, w id (a ,  Si) 2 and note that 
(¥i ~ I )  V d ( a ,  Si) 2 = 2(a - P,(a))  [55], qbmi n = 0, and S = qb-J ({qbmin})). 

4.3. Chaotic Control 

As shown below, without further assumptions o n  (Si)iEi, EMOPP may fail to converge 
weakly under chaotic control. However, some results are available for the special instance 
(1.1)-(1.2). Weak convergence to a point in S of  every orbit of  this algorithm is proved 
in [5] in the case of  a finite family of  closed vector subspaces. A nonlinear extension of  
this result is proposed in Theorem 5 of  [30], where it is shown to remain true for finitely 
many closed and convex subsets sharing a "weak internal point" (WIP). It is also shown 
in Theorem 2 of [30] that, in the presence of  three sets, the assumption of a WIP is not 
necessary to ensure weak convergence to a feasible point. 

Example  4.1. Take (0i)i>o C R+ with 0o = 0 and (Vi E N) 0 < Oi+l - 0i < 1. In the 
euclidean plane, let & be the ray emanating from the origin at an angle 0i with respect 
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to So. As shown in [14], the iterative process an+L = P,+l(an) with a0 = (1,0) leads 
~q 

to Ha~+l 1t = l~i=0 cos(0/+l - Oi) >_ l--IT=0(1 - (oi+l - oi)z/2) a= £n. Now, to make this 
process chaotic, we choose the (modulo 2zr) dyadic sequence 

(Oi)i>_o = (0, rr/4, 7r/2, 3rr/4, re, 5re/4, 3rr/2, 7rr/4, 0, 7r/8, rr/4, 3zr/8, rr/2 . . . . .  

15rr/8, 0, rr/16, rr/8, 3zr/16 . . . .  ). (4.3) 

We obtain a countable family of distinct sets (Si)iel w i t h  N i e l  Si = {0} .  However, 

y~i>o(Oi_t_l -- Oi) 2 = Jr 2 and therefore (3£ 6 IR~_) £~ --~ £. We conclude llan II ; 0. 

5. Strong Convergence 

In Hilbert spaces, strong convergence of projection algorithms requires some regularity 
conditions o n  (Si) iel .  Thus, in the early serial-periodic projection methods, properties 
such as linearity [34], [54], compactness [ 18], [51 ], uniform convexity, or Slater condition 
[33] were imposed. In this section we establish strong convergence of EMOPP under 
general regularity conditions and various control schemes. 

5.1. Quasi-Cyclic and Chaotically Coercive Controls 

Definition 5.1. The family (Si)iei is boundedly regular if, for every bounded sequence 

(a~)n>0 in E, sup/el d(a~, Si) ~ 0 =~ d(a~, S) ~ O. 

Remark 5.1, The concept of bounded regularity was first used extensively in [33] to 
prove the strong convergence of serial projections algorithms. Conditions for bounded 
regularity were previously discussed in [39] in the case of two sets. We use the termi- 
nology of [7] here. 

Lemma 5.1 [33]. Let (an)n>o be a Fejdr-monotone sequence with respect to S. If  
(sup/e/ d(a~, Si))~>0 converges to zero and (Si)iel is boundedly regular, then (a~)n>_o 
converges strongly to a point in S. 

Theorem 5.1. Under quasi-cyclic or chaotically coercive control, every orbit of 
EMOPP converges strongly to a point in S if (Si)i~l is boundedly regular. 

Proof. Take an arbitrary orbit (a,)n>0. According to Proposition 3.1(i) and (v), it 

contains a subsequence (an~)k>_O such that suPie/ d(a,~, Si) ~ 0. Moreover, Propo- 
sition 2.2(i) indicates that (a~k)k>_O is Fejrr-monotone with respect to S. Lemma 5.1 

k 
implies that there exists a point a ~ S such that a~ k ~ a. Proposition 2.2(i) then yields 
a ~ - ~ a .  [] 

Remark 5.2. The notion of bounded regularity appears explicitly or implicitly in the 
proofs of strong convergence of several projection algorithms. Thus, for the serial algo- 
rithm (1.13) with exact projections and either periodic or coercive control, Theorem 5.1 
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was obtained in Theorem 1 of  [33]. For the static algorithm (4.1), Theorem 5.1 is found 
as Theorem 1.1 (ii) of  [45]. Finally, for card I < + e c  and relaxation rule (1.10), related 
results are Theorem 5.2 of  [8] and Theorem 2 of  [24] for cyclic control, and Theorem 5.3 
of  [8] for most-remote set control. 

We now give more specific and conventional conditions for the strong convergence 
of EMOPP under quasi-cyclic and chaotically coercive controls. 

Definit ion 5.2 [39]. Let 5 t- be the class of  all nondecreasing functions from R+ to R+ 
that vanish only at zero. Then Si is f-uniformly convex if ( 3 f  6 ~-)(V(a, b) 6 S~) 
B((a + b)/2, f ( l la  - bll)) C Si and locally uniformly convex if (¥a E Si) (3 f  ~ ~ )  
(¥b ~ Si)B((a + b)/2, f ( l l a  - b[I)) C Si. 

R e m a r k  5.3. Since we assume Si =~ E, if Si is uniformly convex, then it is necessarily 
bounded [39]. However, locally uniformly convex sets need not be bounded. 

The following definition is motivated by [39]. 

Definit ion 5.3. Si is a Levitin-Polyak set if, for every sequence (an)n>_0 C E such that 
n n 

d(an, Si) ~ O, wehavean ~ aEOSi  ~ an -~ a. 

Corol lary  5.1. Under quasi-cyclic or chaotically coercive control, every orbit of 
EMOPP converges strongly to a point in S if any of the following conditions is 
satisfied: 

(i) 
(ii) 

(iii) 

(iv) 
(v) 

(vi) 

(vii) 
(viii) 

(ix) 

(x) 

(3j  E I) Sj f7 (Ai~l\(jl Si) ° ¢ ~" 
All, except possibly one, of the sets in (Si)iEI are f-uniformly convex. 
One of the sets in (Si)iel is boundedly compact (in particular compact or 
contained in a finite-dimensional affine subspace). 

has finite dimension. 
(Si)iel is a finite family and all, except possibly one, of its sets are Levitin- 
Polyak sets. 
(Si)icl is a finite family and all, except possibly one, of its sets are locally 
uniformly convex. 
( Si )iel is a finite family of closed affine subspaces such that ~)-~iel S~ is closed. 
( Si )iet is a finite family of closed affine subspaces, all of which, except possibly 
one, have finite codimension. 
( Si )i ~i is a fni te  family of closed affine subspaces, all of which, except possibly 
one, are affine hyperplanes. 
(Si)iet is a fni te  family of closed polyhedrons ([inite intersections of closed 
affine half-spaces). 

Proof. According to Theorem 5.1, it is enough to show that the families described in 
(i)-(x) are boundedly regular. This was done in [33] for cases (i), (ii), and (iv), in [8] and 
[1 l] for case (vii), and in [8] for case (x). Note that (iv) is a particular case of  (iii), (vi) is 
a particular case of (v) [39], and (viii) and (ix) are particular cases of (vii). It therefore 
remains to prove (iii) and (v). 
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Take any bounded sequence (an)~>_0 C U, such that supi61 d(a~, Si) --~ 0 and take 

any g 6 ®(d(a~, S))~>o, say d(a~, S) ~ g.. Thanks to the boundedness assumption 
and Lemma 4.1(iv), we can find a c ~!l(a~,)k>0 M S. It is sufficient to show that 
a 6 ®(an~)k_>0 for this will yield £ = 0. 

(iii) Suppose that, for some i ~ I, Si is boundedly compact. Then Lemma  4.1 (iii) 
entails a ~ ~(an~)k>_o, as desired. 

(v) Select j E I such that (Si)i6l\{j} a r e  Levit in-Polyak sets and note that S = 
Sj f] (~~iEl\{j~ Si ° LJ OSi). Now define A = Sj 0 (MiEI\{j} S~). I f a  E A, then (i) holds 
and (Si)i~l is boundedly regular [33]. Otherwise, a E S \ A  and, for some i ~ I \ { j } ,  

a E OSi. Therefore a ~ f~3(a~)k>_o M OSi. Since d(a~,  Si) k 0 and Si is a Levi t in-  
Polyak set, we conclude a E G(a~k)k>_0. [] 

R e m a r k  5.4. Under cyclic or coercive control with exact projections and relaxation 
rule (1.11), Corollary 5. l (i) and (ii) follows from Corollary 5.1 (i) of  [43]. Special cases 
of  Corollary 5.1 can also be found in [18], [27], [35], and [51]. 

5.2. Admissible Control 

T h e o r e m  5.2. Under admissible control, every orbit of EMOPP converges strongly to 
a point in S if(Si)iE 1 contains a boundedly compact set. 

Proof A direct consequence of Proposition 3.1(ii), Theorem 4.2, and L e m m a  
4.1 (iii). [] 

Corol la ry  5.2. If  E has finite dimension, every orbit of EMOPP converges to a point 
in S under admissible control. 

5.3. Chaotic Control 

Proposi t ion  5.1. Let (an),>_o be an arbitrary orbit of EMOPP under chaotic control. 
Then (an)n>_O converges strongly to a point in S if either of the following conditions holds: 

(i) (an)n>_O converges strongly; 
(ii) G(an)n>_O ~ ;~ andcardl  < +cx~. 

Proof (i) Suppose (3 a E E) an --~ a a n d f i x i  E l .  By Proposition 3.1(iii), there exists 
k 

a subsequence (an~)k>_0 of (a,,)n>_o such that d(a,~, Si) -~ O. Therefore Pi(a,,) --+ a 
and, since Si is (strongly) closed, a E Si. Since this argument is valid for any i 6 I ,  
a E S .  

(ii) Fix a 6 ®(an),_>0. According to Proposition 2.2(i) it suffices to show that a ~ S. 
Suppose to the contrary that a ~ S and define I + = {i ~ I I a ~ Si}, I -  = I \ I  +, 
/z = mini~l d(a, Si), and v = 6e2~ 2. A slight extension of Proposition 2.3(ii) yields 

(VnEI~) ( V e E N S i  I l iOn+l-file _< I la~-el lZ-v  max d(a~,Sj) 2. (5.1) 
\ / 
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Now fix j E I - ,  c E S, and y E ]0,/z[. As a E G(an)n>_0, there exists an integer p such 
that ap 6 B(a, V). Note that Ilap - cll _< y + Ila - cll andd(ap,  Sj) > d(a, Pj(ap)) - 
d(a,  ap) > d(a,  Sj) - d(a,  ap) > lz - g. Consequently, if we had j ~ Ip, (5.1) would 
imply 

Ilap+l - cll 2 _< (Y + Ila - ell) 2 - v(u~ - ×)2 (5.2) 

and, for g sufficiently small, we would obtain Ilap+l - c l l  < I la-c l l .  However, this would 
contradict Proposition 2.20) which implies (Vn 6 N)Ila - cll _< Ila, - cll. Therefore 
j ~ Ip. Since j is arbitrary, it follows that Ip f"l I -  ----- O and lp C I +. Hence, a c rlielp si 
and (5.1) =~ Ilap+l - a l l  _< Ilap-all ~ ap+l • B(a, g). Reiterating the same argument 
for index p + 1, gives j ¢ Ip+l and ap+2 E B(a,  g). Thus, by induction, we obtain 
(Vk E N) j ~ Ip+k, which violates (3.6). We conclude that a ~ S. [] 

Proposition 5.2. Suppose that the control is chaotic and that (SJ)i~z is a finite family. 
Then every orbit (an)n>_o o f  E M O P P  such that (an -ao)n>_o C W,  where W is a boundedly 
compact subset o f  U,, converges strongly to a point in S. 

Proof. By Proposition 2.2(i), (an)n>_0 C B(c, Ila0 - c l l )  n (la0} + W) & K. Since K 
is compact, Proposition 5.1 (ii) provides the announced result. [] 

Definition 5.4 [43]. A point c 6 S is a strongly regular point of (Si)iE I if 

(V(pl, /02) E ]1~+2)(3p E R+)(V(i, a, b) E I x F, x ,S) 

l l e i ( a ) - c l l  >_ pl 
lib - cll <_ p2 =* d(b, Hi(a)) < pd(c, Hi(a)), 

where Hi(a) = {h ~ E [ (h - Pi(a) I a - Pi(a)) = 0}. 

(5.3) 

Our main result on the strong convergence of  chaotic projection methods can now 
be stated. 

Theorem 
point in S 

(i) 
(ii) 

(iii) 
(iv) 

(v) 
(vi) 

(vii) 
(viii) 

5.3. Under chaotic control, every orbit o f  EMOPP converges strongly to a 
i f  any of  the following conditions is satisfied: 

(Si)iel is a Slaterfamily: (N/ct  Si) ° ¢ ;g. 
(Si)iel has a strongly regular point and exact projections are used. 
(Si)iel is a family  o f f -un i fo rmly  convex sets and exact projections are used. 
( Si )iel is a finite family  and one o f  its sets is boundedly compact (in particular 
compact or contained in a finite-dimensional affine subspace). 
(Si)iE I is a finite famUy and ~, has finite dimension. 
(Si)i~z is a f n i t e  family  o f  closed affine subspaces with finite codimensions 
(in particular affine hyperplanes). 
(Si)iel is a finite family  o f  closed affine half-spaces. 
( Si )iez is a finite family  of  closed polyhedrons and exact projections are used. 

Proof. Let (an)~>_0 be an arbitrary orbit of  EMOPR (i) In E, any sequence which is 
Fejdr-monotone with respect to a closed and convex set with nonempty interior converges 
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strongly [8, Theorem 2.16(iii)]. Hence, the result follows from Propositions 2.2(i) and 
5.1(i). 

(ii) From Propositions 2.3(ii) and 2.4, maxi~l,, d(an, Si) ~ O. Therefore, following 
the proof  of  Theorem 4.1(i) of  [43], (5.3) implies that, for n large enough, we can find 
p ~ R+ such that (¥i c I,~) d(an, Si) < (p + 1)(an - c [ an - Pi(an)). Hence, by 
invoking Proposition 2.3(iv), we get, for n large enough, 

Ilan+t - anll _< ~-n ~ Wi,nd(an, Si) 
i ~l,, 

< (p + 1)(an - c I an - an+t) < (P + 1)~-tfln. (5.4) 

It then follows from Proposition 2.4 that (llan+l --an [Dn_>0 is summable.  Whence, (an)n_>0 
is a Cauchy sequence and Proposition 5. I (i) gives the result. 

(iii) is a special case of  (it) [43, Theorem 5.1 (iii)]. 
(iv) Suppose that Sj is boundedly compact.  By Proposition 3.1(iii), there exists a 

subsequence (ank)k>0 of  (an)n_>0 such that d(ank, Sj) ~ 0 and, according to Propo- 
sition 5.1(it) and L e m m a  4.1(it), it is enough to show that G(ej(ank))k>_o 5 ~ 0 .  To 
this end, take c c S. Then c is a fixed point of  the nonexpansive operator Pj and 
Proposition 2.2(i) entails ('¢k 6 N)IIPj(ank) - cll _< [lank -- cll _< Ila0 -- cll. Hence 
(ej(ank))k>_O C B(c, Ila0 - cll) n Sj ~- Kj.  Since Kj is compact,  ~(Pj(ank))k>_O ~ 0 .  

(v) is a special case of (iv). 
(vi) Consider the finite-dimensional vector subspace W ---- ~-]i~l S~ and define 

(¥n E N) Pn = Xn ~_~ Wi.,, (Pi,n (an) - an). (5.5) 
iEln 

At every iteration n, the sets (Si,n)i~l~ are supersets of  the affine subspaces (Si)i~lo. 
Whence 

(Vn ~ N)(Vi ~ In) Pi,n(an) -- an ~ S~. (5.6) 

Consequently, (Pn)n>o C W. Clearly, ao - ao e W. Now suppose that, for some n e N, 
an - ao ~ W. Then, since an+l - ao = (an -- ao) + Pn, we obtain an+t - a0 E W. Thus, 
we have proved by induction that 

(an -- a0)n>_0 C W (5.7) 

and Proposition 5.2 ends the proof since W is boundedly compact.  
(vii) Let (¥i ~ I) Si = {a c E I (a I bi) < Ki} and define W as the vector subspace 

spanned by the finite family (bi)iEl. Notice that 

(Vn E N)(Vi c In) { sinPi',n(an)= {a_~anE (X[ (abi.[ bi) <- Ki,n}, (5.8) 

Therefore, repeating the same argument as in (vi), we observe that (5.7) holds. Proposition 
5.2 then gives the announced result. 

(viii) Let (¥i c I) Si Ji = ~ j = l { a  ~ c~ [ (a [ bi,j) <_ Ki,j} where (Ji)i¢:l C i~. Then 
the proof  is similar to that of  (vii) since, with exact projections, we can take W to be the 
vector subspace spanned by the finite family ( (b i , j ) l<j<J, ) i~ l .  [] 
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R e m a r k  5.5. For the relaxation rule (1.11) and exact projections, parts (i)-(iii) of Theo- 
rem 5.3 were given in Corollary 5.1 (iii) of [43]. Particular cases of Theorem 5.3(iv) appear 
in Example 6.1 of [8], which considered the relaxation rule (1.10), and in Corollary 1.2 
of [14], which considered (1.1)-( 1.2) with a compact set. Theorem 5.3(v) improves upon 
results of [2], [3], and [32]. 

Remark 5.6. Suppose that (Si)i~l is a finite family whose nonvoid subfamilies are 
all boundedly regular. Then strong convergence is achieved in the case of the chaotic 
iteration process (1.1)-(1.2) [7]. 

Remark 5.7. Suppose that -: is a euclidean space. According to Corollary 5.1 (iv) and 
Corollary 5.2, EMOPP converges to a feasible point for any countable family of sets 
under chaotically coercive and admissible controls. Theorem 5.3(v) states that under 
chaotic control convergence holds for finite families of sets, while Example 4.1 shows 
that the condition card I < + ~  cannot be eliminated. 
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