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Abstract. In this paper  we introduce a new class of  iterative methods for solving 
the monotone variational inequalities 

u* E f2, (u - u*)r F(u  *) >_ O, Yu ~ f2. 

Each iteration of the methods presented consists essentially only of  the computation 
of  F(u) ,  a projection to g2, v :=  P~[u - F(u) ] ,  and the mapping F(v) .  The distance 
of  the iterates to the solution set monotonical ly converges to zero. Both the methods 
and the convergence proof  are quite simple. 
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1. Introduction 

Let ~ be a nonempty subset of R n and let F be a mapping from R n into itself. The 
variational inequality problem, denoted by VI(f2, F) ,  is to find a vector u* E g2 such 
that 

VI(f2, F) F(u*)r  (u - u*) > O, Vu E ~ .  (1) 

Variational inequalities play a significant role in mathematical  programming and this 
subject has been studied by many researchers [1], [2], [9]-[11].  The interested reader 

* This research is supported by the National Natural Science Foundation of the People's Republic of 
China and the Natural Science Foundation of Province Jiangsu. 



70 Bingsheng He 

may consult the survey paper by Harker and Pang [4] and the papers cited therein. In the 
last several years we have developed some projection and contraction methods for solving 
monotone linear variational inequalities (see [5]-[7]). Our objective in this paper is to 
offer a new class o f  projection and contraction methods for solving monotone variational 
inequalities, in which f2 is a closed convex set and the mapping F is continuous and 
monotone, i.e., 

[F(u)  - F ( v ) ] r ( u  - v) > O, Y u ,  v • R n. (2) 

Throughout this paper we assume that the solution set, denoted by f2*, is nonempty 
and the projection on f2, denoted by Pa( ' ) ,  is simple to carry out. In the following the 
Euclidean norm is denoted by II • II, G denotes a symmetric positive definite matrix, and 
IlulIG denotes ( u r  G u )  1/2. 

2. Some Fundamental Inequalities 

Let Pa(.)  denote the projection to [2. A basic property of  the projection mapping is 

(v  - P a ( v ) ) T  ( P ~ ( v )  - u) > 0, Vv  • R n, Vu • [2. (3) 

It is well known [3] that the variational inequality VI([2, F)  is equivalent to the following 
projection equation: 

(PE) u = Pa[u  - F(u)] ,  (4) 

i.e., to solve VI(~2, F)  is equivalent to finding a zero point of  the residue function 

e ( u )  :=  u - e a [ u  - F(u)] .  (5) 

Let u* • f2* be a solution. For any u • R " ,  Pa[u  --  F(u)]  • £-2. It follows from (1) that 

F ( u * ) r l p a [ u  - F(u)]  - u*} > 0, Yu • R " .  (6) 

Setting v = u - F ( u )  in inequality (3), we obtain 

{e(u) - F ( u ) } r { p a [ u  - F(u)]  - u*} > 0, Yu • R". (7) 

Under the assumption that F is monotone we have 

{ F ( P a [ u  - F(u)])  - F ( u * ) } r { p n [ u  - F(u)]  - u*} > 0, Yu • R". (8) 

Inequalities (6)-(8) play an important role in projection and contraction methods. 

3. Methods for Monotone Variational Inequalities 

In this section we consider how to construct some projection and contraction methods 
for monotone variational inequalities. Adding (6), (7), and (8), we obtain 

{e(u) - [F(u)  - F ( P a [ u  - F ( u ) ] ) ] } V { ( u  -- u*) -- e(u)} > O, Vu • R" .  (9) 



A Class of Projection and Contraction Methods for Monotone Variational Inequalities 71 

Denote 

d(u )  : =  e(u)  - {F(u)  - F ( P a [ u  - F(u)])} .  (10) 

It follows from (9) that 

(u - u*)Vd(u)  > e ( u ) r d ( u ) .  (11) 

For convenience, first, we assume that 

[ F ( u )  -- F ( v ) ] r ( u  - v) < (l  - 8)llu - vlf 2, Vu, v ~_ R n, (12) 

with 3 ~ (0, I).  Under this assumption we have 

e ( u ) r  d (u )  = lle(u)ll 2 -- e ( u ) r  { F ( u )  - F ( P n [ u  - F(u)])}  

_> 611e(u)ll 2 (13) 

and via (11) it follows that 

(u - u * ) r d ( u )  > &lle(u)ll 2, Vu ~ R". (14) 

Based on inequality (11), we can construct a class of  projection and contraction (PC) 
methods as follows. 

PC M e t h o d s  for  M o n o t o n e  VI  (under assumption (12)). 
Let  y E (0, 2) be a constant and let G be a symmetric and positive definite matrix. 
Given an arbitrary u °. For  k = 0, 1 . . . . .  i f  u k ¢ ~*,  then 

u k+l = u k -- y p ( u ~ ) g ( u k ) ,  (15) 

where 

g(u  k) = G - l d ( u  k) (16) 

and 

p(uk)__ e ( u k ) T d ( u k )  

IIg(uk)ll~ 
(17) 

If  we take G = I ,  then each iteration of  the method consists essentially of  only the 
computation of  F ( u ) ,  a projection v : =  Pa[u - F(u) ] ,  and the mapping F ( v ) .  We call 
it a projection and contraction method because in each iteration a projection has to be 
carried out and the distance of  the iterates to the solution set monotonical ly converges 
to zero. 

T h e o r e m  1. The sequence  {u k } generated  by the P C  methods  f o r  monotone  variat ional  

inequali ty  satisf ies 

Ilu ~+1 - u * l l  2 < Ilu k - u *  2 - c - y ( 2  - y ) p ( u k ) e ( u k ) r d ( u k ) ,  VU* ~ ~2". (18) 
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Proof. Using (11), (13), and (14)-(17) by a simple computation. [] 

Note that, for fixed G, it is possible to prove that the steplength p is bounded below. 
Therefore, there is a constant r > 0 (depend on y, G, and 6), so that the sequence {u k} 
generated by each projection and contraction method satisfies 

Ilu k+l - u*ll 2 _< Iin k - u*ll 2 - r .  I[e(uk)ll 2, Yu* c: f2*. (19) 

As in [6], from inequality (19), it is easy to prove that the PC methods are globally 
convergent if the solution set is nonempty. 

For a general continuous monotone mapping F,  assumption (12) may not be sat- 
isfied. Note that the variational inequality VI(g2, F)  is invariant under multiplication F 
by some positive scalar/3. We denote 

and 

e(u, /3) = u - Pf2[u - / 3 F ( u ) ]  (20) 

and 

P C  Methods with Armijo's Linesearch (without assumption (12)). 
Let 2/ 6 (0, 2), c~, 3 E (0, 1), and/3 > 0 be constant. 
Given an arbitrary u °. For k = 0, 1 . . . . .  if u k ~ f2*, then 

/3k :=/3, 
While e(u k , /3k)rd(u  k,/3k) < ~lle(u k, &)ll 2 do/3k :=  or& end, 
/3 :=/3k, 
Set 

uk+l = U k _ ~/p(u k , /3)g(n  k,/3),  

where 

g(u k,/3) = G- I  d(u k,/3) 

e(u k , / 3 ) rd (n  k,/3) 
p(u  k,/3) : IIg(u k, 13)II 2 

(25) 

(26) 

(27) 

d(u,  /3) = e(u, /3) - / 3 I F ( u )  - F ( P a ( u  - / 3 F ( u ) ) ) ] .  (21) 

It follows that (see (11)) 

(u - u*)r d(u,  /3) > e(u, /3)r d(u,  /3). (22) 

Because the mapping F is continuous, we can use Armijo's rule to find a/3k > 0, such 
that 

/3k{F(u k) -- F (P~[u  k -- /3kF(uk)])}Te( uk, /3k) < (1 -- 6)lle(u k,/3k)ll 2. (23) 

An equivalent expression of  (23) is 

e( uk , /3k)rd(u  k ,/3k) > 611e(u k ,/3k) II z- (24) 

In practice, we use the following methods. 
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Corol lary  1. The sequence {u k} generated by the PC methods with linesearch for  
monotone variational inequality satisfies 

[lu k÷l  u* l l~  _< Ilu k , 2 - - u Ila - ? ' ( 2  - y ) 3 -  p(u  k , /~)  I le(u  k, /~k)l l  z, 

Proof. Using (22) and (24)-(27) by a simple computation. 

Vu* E if2*. 
(28)  

[] 

Because the sequence {u k } generated by any contraction method is bounded and the 
mapping F is continuous, it is possible to prove that there is a ~min > 0 such that, for 
all k, 

flk ~ ~min 

and the PC method with Armijo's linesearch is well defined. Based on Corollary 1 we 
can prove that the methods are globally convergent. 

4. Relationship to Some Existing PC Methods 

In the last several years we have developed some projection and contraction methods for 
monotone linear variational inequalities (see [5]-[7]). If  F is a monotone affine mapping, 
then F(u)  = Mu + q, q ~ R n, and M E R n×" is a positive semidefinite matrix. 

The method in [5] is based on using inequality (6), which can be rewritten as 

{(Mu + q) - M(u  - u*)}r {u - u* - e(u)} > 0. (29) 

It follows that 

(u - u*)r {Mr  e(u) + (Mu + q)} > e(u)r  (Mu + q). (30) 

Because 

e ( u ) r ( M u  + q )  >_ Ile(u)ll 2, ¥u ~ f2, 

the search direction of the method in [5] is based on 

d(u)  :=  M r  e(u) + (Mu + q). 

The methods in [6] and [7] are based on adding inequality (6) and (7), which yields 

{e(u) - M(u - u*)}r{(u - u*) - e(u)} > 0. (31) 

From (31) it follows that 

(u - u * ) r ( l  + M r ) e ( u )  > [le(u)ll 2 + (u - u *)r M(u  - u*), Yu ~ R n. (32) 

Based on inequality (32) we constructed a class of  projection and contraction methods 
[6], [7]. The search directions of  these methods are 

g,(u) = G -1 (I + M r ) e ( u ) ,  (33) 
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which can be viewed as straightforward extensions of  the directions in traditional methods 
for unconstrained optimization (see [7]). The recursion 

U k + l  = U  k - -  p,(uk)g,(u k) (34) 

with 

Ile(u)ll 2 

p, (u) --  IIg, (u)II-------~G (35) 

produces a sequence {uk}, which is n o t  n e c e s s a r i l y  contained in the feasible set ~ ,  but 
satisfies 

]]U k+l U* 2 * 2 - c -< II uk - u 116 - P , ( U k ) l l e ( u k ) l l  2" (36) 

All projection and contraction methods for monotone linear variational inequalities 
in [5]-[7] are minimization methods without linesearch and their implementations are 
very simple. In general, for monotone linear variational inequalities, instead of the meth- 
ods in Section 3 of  this paper, we prefer to use the methods presented in [5]-[7], which 
do not need linesearch. However, it seems that the methods in [5]-[7] are not applicable 
for general monotone variational inequalities. 

The extra gradient method, which was proposed by Korpelevich [8], is applicable 
for solving monotone variational inequalities. Under the assumption that 

IIF(u) - F(v)It 5 t l l u  - vii, (37) 

his iterative scheme is 

fik = p n [ u  k _ / 3 F ( u k ) ] ,  

U k + l  = P f 2 [ u  k - -  flF(fik)] 

with a constant 0 < /3 < 1/L. For convenience, we can assume that L < 1 and then 
take/3 = 1. In this case Korpelevich's scheme may be written as 

Uk+l = P n [  uk - gx  (uk)] (38) 

with 

gK (u)  = F ( P a [ u  - F(u)]) .  (39) 

Although the convergence analysis of  the extra gradient method in [8] is different from 
the one in our papers, we can see that Korpelevich's search direction is based on adding 
inequalities (6) and (8), which yields 

F ( P ~ [ u  - F ( u ) l ) r l ( u  - u*)  - e(u)} > 0 (40) 

and it follows that 

(u  - u * ) r F ( P n [ u  - F(u)] )  > e ( u ) r  F ( P ~ [ u  - -  F(u)]) .  (41) 



A Class of Projection and Contraction Methods for Monotone Variational Inequalities 75 

For u E f2, it follows from (3) that e ( u ) r F ( u )  > Ile(u)ll z and 

e ( u ) r  E ( P a [ u  - E(u)] )  : e (u )T  F ( u )  -- e ( u ) r  { E ( u )  -- E ( P a [ u  - E(u)])} 

> e ( u ) r E ( u )  - I l e ( u ) l l "  l iE(u) - F ( P n [ u  - E(u)])l[ 

_> (1 - L)lle(u)l[ 2. (42) 

Therefore, under the assumption L < 1, the direction - g ~  (u) is a descent direction of  
the function Ilu - u*[I  2 for u c f2. 

It is clear that the efficiency of  Korpelevich 's  method depends on the estimation 
of  the Lipschitz constant. Since a suitable estimation of  the Lipschitz constant even 
in the linear case is expensive, Sun's  modified method in [12], using Armi jo ' s  one- 
dimensional research, was a contribution to making Korpelevich 's  method applicable 
in practice. However, for i l l-condit ioned problems,  the direction based on extragradient 
may lead to very slow convergence, because we cannot expect  the extragradient method 
to be better than a method of  the steepest descent type. 

In the methods presented in this paper, we use the direction g(u ,  15) = G - l d ( u ,  15), 
which is based on adding the fundamental  inequalities (6), (7), and (8). We would like 
to point out that the computational amount of  

gK (u) = F(Pf2[u - F(u ) ] )  (in Korpelevich 's  method) 

and 

d(u )  : u - Ps~[u - F ( u ) ]  - F ( u )  + F(Pfz[u  - F ( u ) ] )  (in our method) 

is almost equal. Under assumption (37), the inequality 

( u -  u*)r  g~ (U) >_ e ( u ) r  E ( P a [ u -  E(u) ] )  > (1 - L ) l l e ( u ) ] ]  2 

is true only for u c ~2, and the sequence {u k} generated by Korpelevich 's  method (and 
the modified method by Sun [12]) must be contained in g2. However, the inequality 

(u - u*)r  d (u )  >__ e ( u ) r  d (u )  > (1 -- L)lle(u)[I 2 

is true for all u 6 R n, and the sequence {u k } generated by our methods is not  necessar i ly  
contained in f2. The direction - g ( u ,  15) = - G - t d ( u ,  15) is a descent direction of  the 
function Ilu • 2 R n. - u [Ic for all u e This offers us more possibil i t ies (by choosing 
different G) of  constructing better search directions and more efficient methods (see [7] 
for example).  
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