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NONLINEAR ELASTIC STATE OF THIN-WALLED TOROIDAL SHELLS 

MADE OF ORTHOTROPIC COMPOSITES 

V. A. Maksimyuk and I. S. Chernyshenko UDC 539.378:678 

A study is made of problems on the statics of circular toroidal shells made of nonlinear elastic orthotropic 
composites. The study is conducted on the basis of the method of successive approximation, the 
variational-difference method, and the method of Lagrangian multipliers. The parameters of the circular 
torus are varied within broad ranges of values in the calculations. Numerical results are presented in the 
form of tables and graphs and are analyzed. 

The theoretical principles which frame research into the stress and strain states of the load-bearing elements of modern 

thin-walled structures were developed mainly for the design of elastic isotropic and anisotropic toroidal shells; simplified 

approaches and more rigorous efficient analytical and numerical methods have been used to perform numerous calculations 

for one-layered and multi-layered segments of such shells with circular and noncircular cross sections [1, 2, 5, 9, 10, 13, 14, 

etc.]. In recent years, increasing attention has been given to investigation of the stress-strain state and stability of shells of 

the given type with allowance for geometric and physical nonlinearities. Specific numerical results on the strain and stress 

fields created by moderate and severe bending have been obtained for circular isotropic [3, 8] and orthotropic [4, 6] toroidal 

shells subjected to axisymmetric loading by internal or external pressure. A few numerical studies have been conducted for 

isotropic shells of  circular cross section with allowance for physical nonlinearity (plastic strains) of  their materials [ 10, 11 ]. 

It is also interesting to examine the distribution of the displacements, strains, and stresses in orthotropic toroidal 

shells made of nonlinearly elastic composites. The main theoretical principles guiding the study of the stress-strain state of 

shallow thin-walled shells of arbitrary form with allowance for the physical nonlinearity were presented in [7, 12], which 

included the main nonlinear resolvent equations and a method for solving them. The equations and the method were used to 

examine nonlinear problems tbr circular toroidal shells, obtain specific numerical results, and analyze those results. 

We examined thin nonshallow toroidal shells which in the general case have a cross section described by a closed 

smooth plane curve F (x, y) = 0. The case of such a shell with a circular cross section is depicted in Fig. 1, where a is the 

radius of the circle and c is the distance from the center of the cross section of the torus to the axis of  revolution. In this case, 

the equation of the curve takes the form 

F ( x , y ) = ~ ) 2 + / v / ~ -  1 = 0 .  (1) 

It is assumed that the shell is of variable (or constant) thickness h and is made of an orthotropic composite (glass- 

or organic-fiber-reinforced plastic) which has specified physico-mechanical characteristics and corresponding stress-strain 

curves [7]. The shell is subjected to a distributed surface load. The effect of edge forces and moments on the shell will also 

be considered when one of its segments is being studied. 

We note that the main geometric and physical relations for thin-walled shells of revolution of arbitrary form were 

obtained in [7] on the basis of the moment theory of orthotropic shells and the nonlinear theory of  elasticity ,and plasticity of 

anizotropic media. To obtain the system of resolvent equations, we used linear geometric and physically nonlinear relations 

from these theories and a variant of the variational-difference method in which the mixed functional has the form 
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Fig. I 

H(ut, u2, u3, q)l,q)2, T~,Tf )=IIA(ul, u2, u3, g?t,~2)d~-An-Ak 

where A is strain energy density such that 

5A=T11 5EII+T225E22+TI25Elt+Mll 5Kll  +M22 5K22+2M12 51r 

A,, and A k represent the work of the external surface tbrces and edge forces; { U r= {u,, u 2, u 3, q3 l, (I)2, Tlf3, T f  }is the vector of 

the unknown functions; in the given case, the Kirchhoff-Love hypotheses are realized in (2) by the method of undetermined 

Lagrangian multipliers (T f ,  T f ); in physical terms, the multipliers correspond to the longitudinal shearing forces. 

In the case of a plane stress state, the physical relations are determined by the equations 

e l l =  +t l lq l l l l  (~ll + ~22+Uflql122 r 

e 12---(~1 +4 W q1212 /~12 , G I  2 (3) 

where E l t, E22, G I2, and V l2 are the elastic constants of the composite; W (f) is the function describing the nonlinear deformation 

of the orthotropic material; ql 111 , q2222, q1122, q1212 is the tensor accounting fbr the anisotropy of the nonlinear properties of 

the composite;f is the quadratic stress thnction [7, 12]. 
We have the tbllowing equations as the geometric relations linking the components of the strain tensor 

eij (i = 1, 2 ; j = 1, 2, 3 and the displacement vector in the given system (t~ l, et 2, a3): 

ell = Ell + ~3 ~r el2 = E12 + 2 ~3 tr el3 =El3 (1 +--~2 ), (4) 

where the below equations are used to express the strains in the middle surface of the shell 

1 3Ul u2 ~AI 1 ~ 1 + _ . _ ~ 2  ~AI 
- + - - + k l  u3, ~ l  - - -  , Ell A1 ~)c~ 1 AIA2 O~ 2 1 At 00~1 AI A20~ 2 

AI 0 U(~l) A2 0 (u2) A' c3 tPl~ 1 +A2 ~---~-l~2 ] ,  
El2 = A"2 - 0 ~2 + ~1-1 ff"~l ~A--2 21<12 = A2 c30~ 2 A l ~o~ l (~_9_) 
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1 ~u3 
El3 =q~l + At ~)~l klU 1 , (1 +-) 2 ), (5) 

A i (i = 1, 2) are the coefficients of the first quadratic tbrm; k i represents the curvatures of the middle surface. 

Geometric relations (5) outwardly appear to be the same as the relations for hypotheses of  the Timoshenko type. 

However, in the case of  the Kirchhoff-Love hypotheses, the last expressions in (5) are used to determine the angles ~pj and 

q~2 from conditions specifying that the transverse shear strains are equal to zero 

el3 = E23 = 0  (6) 

with the functional (2) being varied over T l f ,  T f . 

Since the longitudinal shearing forces T f  and T2f3 are considered to be independent functions, we can treat them in 

a manner similar to the displacements and assign them values before we construct the functional on the part of the boundary 

of the shell where they are known for certain. However, hypothesis (6) will already be violated on this boundary, since here 

~i3 5 Ti;= O. Despite this, Ti; ~ Ei3 still contributes to the virtual work and the energy Ti f ~-i3" It is best to assign Tif= 0 on the 

line of symmetry ot i = const, since it is always the case that El3 = 0 on that line. 

We will use Lagrange's variational equation fi H = 0 with allowance for Eqs. (2)-(5). Then in accordance with the 

method being used to solve the given class of problems - -  which is based on the method of successive approximation in 

combination with the variational-difference approach - -  we assume that the linear parts of the main equations are known 

from the previous approximation and are not varied. We ultimately arrive at a system of linear algebraic equations [7] which 

we represent as follows at point (i, j ) in the next approximation: 

i+1 j + l  7 

E Z E Z m n ( k ' l ) U n ( k ' l ) = A V ( i ' j ) q m ( i , j ) + A s ( i , j ) T v m ( i ' J ) + ~ m (  i ' j ) '  
k=i-I  l = j - I  n=l 

m=~,7 ,  i = l , K  l, j = I , K  J, (7) 

where [A] is the symmetric band matrix of the variable coefficients;{ qb }is the vector of the nonlinear terms; {q} and I T v } are 

the vectors of the components of the surface load and the edge load: A V and A s are the discrete analogs of  the differentials of 

the surface and the arc; K t and K'I represent the number of nodes of the grid along the a x e s  0t l and ot 2, respectively. 

Negative numbers may appear on the diagonal in the case of  mixed functionals. The system is then solved by 

Kholetskii's method in a variant of the square-root method, since this method is more stable. The problem of the possible 

appearance of {-Z] - on the diagonal is circumvented algorithmically by reducing the equation by ~/ -1 .  Although the theorem 

on the stability of  Kholetskii 's method has been proven for positive-definite matrices, experience shows that the method also 

works in the case being discussed. 

To calculate the nonlinear terms {~} in (7), it is necessary to solve nonlinear physical relations (2) for the stresses. 

We represent them in the form 

Fi({O} , ie l )=O,  ( i=  1 , 3 ) ,  (8) 

where{ol={"  ,,,22, 121 T, lel=lell,e22, ,2} T 

We will solve nonlinear system (8) numerically by Newton's method 

}--I oil +I i, 
where the increments I A 13 j } lbr the jth step are found from the solution of the linear algebraic system of equations 

(9) 
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1 0.0 0.5 1. 196 0.4(11 148.1 49.6 
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F i , 
F i + - -  A(~J, =(I ,  (10) 

~ ' o J l  

with the stresses i ~ 1 L C f tot a linear elastic body being chosen as the initial approximation. Iteration process (91-(10) is 

continued until we obtain agreement between the maximum absolute values of the stress components in two successive iterations 

with a prescribed relative error. 

Thus. studies of the nonlinear elastic deformation of a shell of the specified form reduces to the solution of a sequence 

of systems of equations of type (7) with the corresponding edge (boundary) conditions and the initial geometric parameters 

of the shell expressed in terms of the physico-mechanical characteristics of its material. The algorithm that has been developed 

for numerically solving nonlinear problems and the program that was written to calculate the stress-strain state of shells of 

the given type make it possible to evaluate the components of the displacement vector, the angles of rotation and shearing 

forces i U i, the strain tensors eq ( i , j  = 1,2), and the stresses ~(i with allowance for changes in the parameters of the shell, the 

magnitude and nalure of lhe load, the propcrlies of the malerial, and the type of boundary conditions. 

We will present specific numerical results for a toroidal shell (Fig. 1 ) referred to a curvilinear coordinate system 

(s, 0 ,  y ) in which the orthotropy axis of the material coincides with the coordinate lines of the chosen system. The shell has 
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TABLE 2 

"fly Y ess" 11)2 e00  102 Os~ O00 

0 0.0 0.5 0.513 0.349 82.8 49.7 
1.048 -0.5 0.519 0.350 83.8 50.0 

0.1 -0.164 0.5 0.516 0.348 83.4 49.7 
1.029 -0.5 0.523 0.349 84.4 50.0 

0.2 -0.314 0.5 0.528 0,346 85.1 49.7 
0.975 -0.5 0.534 0.347 86.1 49.9 

0.3 -0.439 0.5 0.541 0.342 87.0 49.4 
0.902 -0.5 0.562 0.342 90.3 49.7 

0.4 -0.547 0.5 0.559 0.357 89.9 51.5 
0.968 -0.5 0.602 0.353 96.5 51.6 

0.5 --0.707 0.5 0.649 0.358 103.7 52.9 
1.238 -0.5 0.595 0.352 95.4 51.4 

0.6 -0.871 0.5 0.697 0.3139 110.3 47.6 
0.997 -0.5 0.675 0.313 106.9 47.8 

0.7 -0.867 0.5 0.750 0.315 l 18.4 49.2 
0.440 -0.5 0.776 0.318 122.4 49.8 

0.8 -0.687 0.5 0.844 0.309 132.5 49.7 
0.488 -0.5 0.857 0.308 134.5 49.9 

0.9 -0.380 0.5 0.919 0.30 i 143.9 49.9 
-0.205 -0.5 0.934 0.299 146.1 49.8 

1 0.0 0.5 0.951 0.297 148.7 49.9 
-0.296 -0.5 0.967 0.294 151.1 49.7 

the following parameters: ~ =  a / h =  100; "~=c/h= 125 ... 2000. The shell is made of a composite with the h)llowing 

characteristics: Ess = 15 GPa; E 0 0 = 12 GPa: v s 0 = 0.12. The stress-strain curves, the function W (f), and the other quantities 

in (3) were presented in [7]. The shell is subjected to a surface load (internal pressure) of specified intensity (q3 = const). 

To perform the calculations, the shell was divided into a series of nodal points along its meridian (K s = 200) and 

through its thickness (K~t= 9). Symmetry conditions were adopted at the points ~'= s/r~ a = 0 and ~'= 1 with allowance for 

T / i =  0. 

Below, we present specific numerical data from calculations of the stress-strain state of  a toroidal shell with the 

following parameters: ~'= 200 ; ( ~ = 100 ) : q3 = 1 MPa. The nonlinear problems were solved with the use of the main 

equations (2)-(7), in addition to the corresponding stress-strain curves and the strain-hardening function of the material. 

Table 1 shows numerical results on the distribution of components of the displacements ( KP = u p /h ,  p = s ,  y), strains 

(ess, eo 0 ), and stresses ~ss, ~o o (MPa) along the meridian of the shell T(I) < T< 1 ) with allowance for the nonlinear 

properties of  its material. The values of  the displacements ~s and ~y correspond to points of the middle surface of the shell, 

while the values of the strains and stresses are shown tbr points of the outside and inside surfaces ( y =  y/h  = + 0.5 ). Table 2 

shows the results of  the solution of the linearly elastic problem for the given orthotropic shell. 
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TABLE 3 

q3 

1.0 

1.5 

2.0 

0 
0.5 

1 

0 
0.5 

1 

0 
0.5 

l 

1.19 
1.51 

-0.39 

2.06 
2.76 

-0.78 

3.26 
4.56 

-1.38 

e~.~- I0  2 

0.57 
0.71 
1.21 

0.96 
1.23 
2.26 

1.47 
1.94 
3.82 

Coo.  10 2 

0.39 
0.42 
0.39 

0.68 
0.76 
0.78 

1.09 
1.25 
1.38 

(Yss 

83.3 
95.5 
149.1 

125.0 
149.0 
, ,3 .0  

166.6 
198.8 
295.8 

49.8 
52.3 
49.4 

74.7 
78.7 
73.8 

99.6 
105.2 
97.8 

A comparative analysis of the numerical data (Tables 1 and 2) shows that accounting for the physical nonlinearity 

of the orthotropic material of the circular toroidal shell has a negligible effect on the stress distribution Ibr the given type of 

loading. The largest nonlinear displacements ~, in the sections ( ~= 0; 0.5; 1 ) change by 13, 22, and 33 % respectively, while 

the maximum values of the strains ess and e 0 0 in the same sections on the inside surface of the shell ( y =  -0.5) increase by 

11.13. and 36 % (e~ 0 and 13. 18, and 34 % (e 0 0) compared to the solution of the problems in the linear formulation. 

The stress-strain state of the shell ( ~ = 100; ~:= 200) when there is a change in the acting load (q3) was studied on 

the basis of the nonlinear formulation of the problems; the results are shown in Table 3 in the fonn of values of the 

displacements  ~'7" strains eij, and s t resses  ~ij (i , j  = s ,  0 ) ca lcu la ted  at three charac te r i s t ic  po in ts  of  the mer id ian  

( s '= 0; 0.5; I) of the shell on its middle surface ( ~=  0). Here, the solutions of the nonlinear problems with the indicated 

values of the loads (q3 = 1.0; 1.5; 2.0) were obtained in 5, 8, and 11 approximations, respectively, tot a relative error of the 

strains ~: = 10 ". It is apparent thai the cross section of the shell changes disproportionately with an increase in the load; the 

deflection u7 at the point ~= 0.5 increases roughly threefold with a twofold change in the load. 
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It is interesting to study the laws which govern the distribution of the components of the displacement vector and 

the stress and strain tensors in a nonlinearly elastic shell with a change in the parameter ~', which is connected with an increase 

in the radius of the circular axis of the torus ( 1 O0 < ~ < 2000 ). The results of  solution of the nonlinear problems are shown in 

Figs. 2 and 3 for a specified load (q3 = 1 MPa). Data from calculations of the maximum stresses is presented in Fig. 2, which 

shows the changes in the meridional and hoop stresses (~p p, MPa, p = s ,  0) at three characteristic points of the shell 

(y=O)  with an increase in the parameter c. Curves 1, 2, and 3 correspond to the values of the stresses at the points A ( ~'= 

0). B ( ~= 0.5), and C ( ~'= 1). Figure 3 shows graphs of the distribution of the displacements ~7 at points A and C (curves 1,3). 

The data shows that the meridional stresses (c~ s ) in the shell are the largest stresses; their values are considerably 

greater than the values of  ~0 0 ; the value of o'~ s decreases sharply (100 < ~" < 250) with an increase in the parameter ~'. while 

these stresses change more slowly in the interval 250<~'< 2000 and approach the values characteristic of the circular 

cylindrical shell. At the same time, the stresses ~ss at point B do not change with an increase in the parameter ~', while they 

increase continuously at point A; a 0 0 = (76-97) MPa. The dependence of the displacements fi'7 on the parameter ~" is linear 

in character. 
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