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SOLUTION OF NONAXISYMMETRIC THREE-DIMENSIONAL THERMOPLASTICITY 

PROBLEM BY THE SECONDARY-STRESS METHOD 

V. G. Savchenko and M. E. Babeshkn UDC 539.374 

The nonaxisymmetric thermoplasticity problem for a laminar solid of revolution is ~dved by successive 
approximation. The theory of deformation along slightly curved trajectories linearized by the 
secondary-stress method is employed. Numerical examples show that the proposed procedure reduces 
the number of successive approximations by 20 % relative to the traditional approach. 

As a development of  [3-8, I0], we solve the nonaxisymmetric three-dimensional thermoplasticity problem for 

laminar solids of rew)lution by successive approximation, and evaluate the effectiveness of  this approach. 

Experience shows [4-8, 10] that numerical solution of three-dimensional nonaxisymmetric plasticity boundary 

problems for stepwise uniform solids of revo[ution in nonisothermal loading is a very laborious procedure, which involves 

reducing the dimensionality of  the problem, linearizing it, dividing the loading process into stages, and applying a grid to the 

meridional cross section. An important step in this procedure is organizing the successive-approximation process in 

accordance with the defining equations employed and the linearization method. In [ 1, 2], a method of constructing the 

successive-approximation process that converges more rapidly than the algorithms in [4-8,  101 was proposed and tested for 

representative problems of thin-shell theory. In the present work, the method in [1, 2] is applied to a nonaxisymmeTric 

three-dimensional boundary problem, and its convergence is compared with that of the traditional approach. The relations of 

the theory of small-curvature processes, linearized by the secondary-stress method, are employed here. 

1. Consider a nonaxisymmetric thermoelastoplastic stress state of a laminar solid of revolution made of various 

isotropic materials. The cylindrical coordinate system z, r, q~ is used: : is directed along the axis of revolution of the body, r 

is radial, and (p !s the azimuthal coordinate. Suppose that the layers of the body are attached without tension, and ideal contact 

is maintained at their connnon boundary during deformation. The body, which is initially in an unstressed and undeformed 

state at temperature T 0, is subjected to nonaxisymmetric bulk ~ (  K z . K r . g ~  ) and surface t ,7( tn- - , t n r ,  t,~,~ ) forces and a 

nonuniform heating. Under the action of these loads, the materials of the b(udy are deformed within and beyond the elastic 

limits over trajectories in the fonn of straight and slightly curved lines. The loads and their duration are such that creep 

deformation is negligible in comparison with the elastic and plastic defommlion. Suppose that the temperature field of the 

body at any time is known - -  for example, determined from the heat-conduction problem by the method of 13, 10]. The 

stress-strain state of the body is determined in a quasi-static formulation at small strain. The loading of the body is divided 

into a number of small stages over time. Within each stage, the defining equations of  the theory of deformation over 

small-curvature trajectories, linearized by the secondary-stress method, are used to describe the elastoplastic deformation of 

the materials [I0]. The temperature dependence of the shear modulus G and coefficient of  linear thermal expansion of the 

material ct l is taken into account: Poisson's ratio v does not depend on the temperature. The relations between the components 

of  the stress and strain tensors in any element of the body are given in the form of Hooke 's  law for an isotropic body witll 

additional terms 

o__ = ( 2 Go  + ;q) ) E__ + ~ )  ( ~,.,. + % , p  ) - o i*. . 

S. P. Timoshenko Institute of Mechanics. National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya 

Mekhanika. Vol. 35, No. 12, pp. 19-25, December, 1999, Original article submitted November 17, 1998. 

1063-7095/99/3512-1207522.00 �9 Kluwer Academic / Plenum Publishers 1207 



o:,. = 2 G 0 e:r - O2,., ( - .  r ,  ~p ), (1 .1 )  

where 

cYl)=2GE(P)+2G0to~/ e / j + ( K e r + 3 ~ q ~ o ~ ) ) 8 6  . 86=1 when i = j  ,and 8 / j=0  when i e j ,  

t o = l - G / G  o . ) ~ ) = ( K  o - 2 G  o ) / 3 .  K o = 2 G  o ( l + v ) / ( l - 2 v ) ,  

C0=(Ezz+e,.r+l~q~q~)/3. e T = O ~ T ( T - T o ) .  (1.2) 

In Eqs. ( 1.1 ) and ( 1.2), o::  . . . . .  o,.~0 and ~: : . . . . .  E r ~ are components of the stress and strain tensors, respectively; G o 

and K 0 are the shear modulus and bulk expansion modulus at the initial temperature T0; the function co reflects the temperature 

dependence of these moduli; G = G  0 ( 1 -  m ); K = K  o ( 1 -  c0 ); E!j p) are the plastic strain components. The plastic strain 

components in Eq. (1.2) take the following tonn at an arbitrary mth loading stage: 

tl'l 

(E}jP))m= E AkE} / ' )=(E l jP ) lm_ l+Ams  
k = l  

(1.3) 

A h r ~P ) = A t. e I p ) = < cij > ~. A I. F p .  

where < c 6 > k is the mean value at the kth stage of 

(1.4) 

c o =  s q / S .  (1.5) 

Sij = Oij - O0 ~)ij, O0 = ( 13= + Orr + Or tp ) / 3 ,  (1.6) 

S = ( sij sq /2  ) I/2 

is the intensity of the tangential stress; A t F 1, is the increment in the intensity of the accumulated plastic shear deformation F p 

at the kth stage 

HI 

( r ,  ),,, = ~ ,x k r p = ( r ,  )m - ~ + a~ r ~,. 
k = l  

(1.7) 

:r  

The functional relation between the intensity of the tangential stress S and the accumulated plastic shear strain F p 

and the temperature T is assumed not to depend on the type of stress state [9. 10]. In the case of negligible creep deformation, 

this dependence reduces to a function. To obtain a specific form of this dependence, we use the equation of the instantaneous 

thermomechanicai surface, which is a geometric locus of the tensional diagrams of the cylindrical samples obtained at various 

fixed temperatures and loading rates, within the range where the rate has no influence on the form of the tension diagram 

[9, 10]. The equation of the instantaneous thermomechanical surface takes the torm 

= f ( e .  T ) .  (1 .8 )  

where cy and s are the stress and longitudinal strain of the sample. 

The following formula converts the complex stress-strain state of an element of the Nxly to uniaxial tension of the 

sample [9] 

c = ' [ 3 3 S / [ 2 G ( l + v ) l + 2 F p / ' q ' - 3  , o= ' f33S .  (1.9) 
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where S and Vi; are given by Eqs. (1.6) and (1.7), respectively. 

The expressions in Eq. (1.2) for the secondary terms (r ij in Eq. (1.1) are of the same form for both active loading 

and unloading. In the latter case, the increment in the intensity of the accumulated plastic strain A k r p  is assumed to be zero 

: t :  . 

in the corresponding stage. Note that ~ ij ~s determined by successive approximation. 

2. The problem is solved by the finite-element method, using the variational 1.agrange equation. The basic unknowns 

are the components of the displacement, which are expressed as trigonometric series with respect to the ~imuthal coordinate. 

The finite elements in the meridional cross section of  the body are triangular finite elements with linear approximation of the 

displacement amplitudes. In constructing the solution, the secondary stresses ~ ij in Eq. (1.2) and the bulk and surface loads 

are expressed as trigonometric series in terms of the azimuthal coordinate. Then, to find each amplitude value of the 

displacement at the grid points, a system of 3N algebraic equations is obtained [ 10], where N is the number of grid points. 

The matrix elements of this system are calculated in terms of the coefficients of Eq. (1.1) and the vertex coordinates of the 

triangular elements in the meridional plane, while the right side of the system is expressed in terms of the amplitudes of the 

secondary terms (y i/in Eq. (1.2) and the bulk and surface loads at the corresponding points of the meridional cross section. 

This system of algebraic equations must be solved in each approximation at an arbitrary stage of loading, refining the right 

side on the basis of the results in the preceding approximation. The modification of the successive-approximation method 

here proposed involves the calculation of the increment of the intensity of the accumulated plastic shear strain At: FI~, 

determining the plastic strain components in Eq. (1_3), which appear on the right side of the resolving algebraic equations. 

Consider the determination of A t F ~i in an arbitrary Lth approximation of the ruth loading stage. Suppose that, at the 

beginning of the Lth approximation of the ruth stage, the plastic strain components ( e !j t' ) )L- I and the intensity of the 

accumulated plastic shear strain ( F j; )L-1 and hence ~ L(P] = 2 ( Fp )L-1/q-~3- are known. In addition, ( ~ ij )L-I  and the 

stress components ( (y i j ) m -  1 at the end of the preceding stage are known. In the first approximation of the ruth stage, 

-5: 

( e }J~ ) )L - I, ( F ;~ )t. - 1, and ( ~ ij )L - J are assumed to be equal to their values at the end of the preceding stage. The secondary 

terms ( c ij )L - 1 are used to calculate the right side of the resolving equations, which are then solved in the Lth approximation 

with load and temperature values corresponding to the end of the ruth loading stage. After obtaining the displacement wdues, 

we determine the components of the strain ( eij )L and stress ( (~ij)L �9 ]'he components of the stress deviator ( sij )L and their 

intensity S L in Eq. (l.6) are calculated. Using S L and ( F p ) L - 1 ,  we find the strain t:L in Eq. (1.9) (Fig. I). Using Eq. (1.8), 

we determine the pair of values ~ ,  ~ L, which (according to I21) must satisfy the equation of the instantaneous 

thermomechanical surface and the condition of equal areas of the triangles ABC and ADE in Fig. 1 

(~L = f (  eta" T,,, ). (2.1) 

3 (SL )2 / [  2 G (  1 + v  ) ] = a ~  (~ ~: - E (L/L)t). (2.2) 

~ :  r[ :  

Calculating ~ L and E L from Eqs. (2.1) and (2.2), we find the corresl:x)nding plastic strain (Fig. 1) 

which we use to calculate the diffcrence 

( e p ) I  = E  I - ~ L / [  2 G (  I + v  ) I .  (2.3) 

a L e ( P ~ =  ( a;', )L - c  r-i'(t') (2.4) 

This result is used to find the increment in the intensity of plastic shear strain 
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A L l~p = ~ f 3 A  L g ( p ) / 2 .  (2.5) 

Equation (2.5) refines the increment in the intensity of  the accumulated plastic shear strain at the ruth stage 

A m F p = zXl. F T' " (2.6) 

pn 

Calculating the coefficients in Eq. (1.5) and their means 

(,n-I IjL )/t~ L)/2 , <Cij>m = ~ (Sij )/(~m-I +S 

we must determine the increments in the plastic strain components and the corresponding values of these components in Eq. (1.3) 
e~ 

in the next approximation of  the given stage. Then the new values of  o ij in Eq. (1.2) may be determined and used to calculate 

the new value of the right side in the resolving system of  equations, which may hence be solved in the new approximation. In 

the ruth stage, successive approximation ends when 

I ' ~  SL-(~ L /OL <_K , (2.7) 

where S L is given by Eq. (1.6), and o L by Eqs. (2.1) and (2.2);)c is a specified number. 

Note that, when the increment in the intensity of  the plastic shear strain in Eq. (2.6) is nonnegative, active loading 

is assumed. If this increment is negative, however, unloading occurs in the corresponding element, and zero increment is 

assumed. 

Note that, in the proposed successive-approximation procedure, the increment in the intensity of  plastic shear strain 

in Eq. (2.5) is determined on the basis of  Eq. (2.4), rather than the expression A L ~ ( p ) = ( ~ S - o ) /[  2 G ( 1 + v ) ] adopted 

in the traditional procedure (Fig. 1). 

3. To evaluate the effectiveness of  the method proposed in specific nonaxisymmetric three-dimensional 

thermoplasticity problems, consider the following example. We will determine the themloelastoplastic stress-strain state of  

a three-layer solid of  revolution on heating from an initial temperature T = T 0 = 20 ~ on account of convective heat transfer 

with an atmosphere at a temperature O = O 0 ( 1 + 0.1 cos ~0 ), O 0 = 3000 ~ Half the meridional cross section o f  the body is 

shown in Fig. 2. The part of  the body within the covering shell (Fig. 2) is made of  a material whose tensional diagram at 

various temperatures is shown in Table 1. 

1210 



I ' ,  CFII 

12 
A 

B 

6 

01 I I I 1 
3 6 

D 

C 

9 12 z, cm 

Fig. 2 

TABLE 1 

T. ~ 

8=0% 1.0 1.5 

c. MPa 

2.0 2.5 3.0 1o.0 

0 0 30 41 48 50 51.5 58 

5(X) 0 32 43 50 54 56 64.5 

1000 0 35 49.5 56 60 62 72.5 

60 51 66 36 70 1500 90 

TABLE 2 

L ~ 
(L VIPa  

8 = 0 % 0.04 0. l (I.2 2.0 I1~ 

0 0 156 330 580 2080 8747 

2500 0 156 200 220 260 4378 

I 0 
I _ _  

156 159 3300 162 170  205.6 

The coefficient of linear thermal expansion of the material ~T = 0.95.10 -5 l /K;  Poisson 's  ratio v = 0.2; the thermal 

conduct ivi ty  9~ = 1.49 W/era-K; the product of the specific heat c and the density of the material p is c p = 2.93 J/cm3.K. 

The internal part of the body is covered by a shell of material whose (y - e tension diagram is shown for various 

temperatures T in Table 2, The coefficient of linear thermal expansion of the material ~,r = 0 . 1 2 - 1 0 -  4 l /K; the Poisson 's  

ratio v = 0.17; the thermal conductivi ty ?~ = 0.222 W/ohm.K; c p = 2.575 J/cm3.K. 

The external cylindrical shell is made of a strong material operating within the elastic range. The elastic modulus  of 

this material E = 2.105 MPa: the coefficient of linear thermal expansion of the material etl,= 0.4-10 -5 1/K; the Poisson ratio 

v = 0.23: the thermal conductivity X = 0.02 W/cm.K; c p = 2 J/cm3.K. Suppose that the body surface is heat-insulated in 
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section ADC (Fig. 2); the heat-transfer coefficient between the medium and the surface of the body at section AB varies 

linearly from 0 at point A to 0.35 W/cm 2 at point B and remains constant at 0.35 W/cm 2 over section BC. 

The temperature field of the body on heating is determined by solution of the heat-conduction problem using the 

method in 13, 10]. The meridional cross section of the body is divided into 1508 triangular finite elements with 797 grid 

points. Five terms, including those with sin q~, cos ~ ,  cos 2 ~, and cos 3 ~p, are retained in the trigonometric series, i.e., in 

each approximation at any loading stage, the stress-strain state of the body is determined by solving five linear systems of  

algebraic equations of order 2391, using the Gauss method. The problem is solved both by the method here proposed and by 

the traditional approach [3, 7, 9]. In Eq. (2.7), ~ = 0.01 is specified. The stress-strain state of the body is determined in 28 

loading stages with a variable time step: 0.05 sec in stages 1-4, O. 1 sec in stages 5-7, 0.25 sec in stages 8-17, 0.5 sec in stages 

1 8 - 2 5 ,  and 1 sec in the last three stages. The very small time step at the beginning of the process is chosen because the rate 

of temperature increase differs sharply in adjacent elements (for example, at points I and 2 in Fig. 2) at the internal surface 

of the body on account of contact with a very hot medium: this indicates considerable temperature gradients. Evidence of this 

is provided by the time dependence of the temperature at several points of the body in Fig. 3, where continuous curves I and 

2 correspond to points I and 2 of the meridional cross section (Fig. 2) at 9 = 0; the dashed curves to cp = 7t/2; and the dash-dot 

curves to cp = 7t. Analysis of the results for lhe stress-strain stale shows that considerable plastic strain develops in the shell 

covering the interior of the body: the intensity of the accumulated plastic shear strain in the vicinity of point 1 (Fig. 2) is 

1.5 % at the end of the process, and its increase keeps pace with the temperature rise. In the part of the body adjacent to the 

internal shell, the intensity of the accumulated plastic strain is lower (0.5 %). In Fig. 4, the number of successive 
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approximations M required to solve the problem by the two methods with specified accuracy is shown, as a function of the 

stage number m. The continuous curve corresponds to the modified approach, and the dash-dot curve to the traditional 

approach [10]. As is evident from Fig. 4, the modified approach reduces the total number of approximations in the 28 stages 

from 219 to 173, i.e.. by more than 20 %. Calculations of the themaoelastoplastic stress-strain state of solids of rew)lution 

with anisotropic layers of  the form in [4-71 indicate that the convergence is better for the modified method than for the 

traditional approach. 

Thus, comparison of the results given by the two methods suggests that the modified secondary-stress method may 

expediently be used to solve nonaxisymmetric three-dimensional themaoplasticity problems for l~uninar solids of revolution. 
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