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SPLINE-APPROXIMATION SOLUTION OF PROBLEMS OF THE STATICS OF 

ORTHOTROPIC SHALLOW SHELLS WITH VARIABLE PARAMETERS 

Ya. M. Grigorenko 1, N. N. Kryukov 1, and Yu. I. Ivanova 2 UDC 539.3 

An approach to the solution of problems of the statics of shallow orthotropic shells is proposed. It is based 
on reducing a two-dimenslonal boundary value problem to a one-dimensional one using the 
spline-collocation method and solution of the problem by the stable numerical method of discrete 
orthogonalization. Solutions are presented for problems on the stress state of orthotropic shells of double 
curvature for several values of the elastic constants of the material. 

Along with isotropic shallow shells [1, 9, 12], orthotropic shells [2, 5, 13, 14] are widely used as structural elements 
due to the use of composite materials. Moreover, ribbed shallow shells are reduced to a model of orthotropic shells upon 
smearing of ribs, i.e., as structurally orthotropic shells. 

In the present paper, an approach to the solution of two-dimensional problems of the statics of shallow shells made 
of orthotropic materials is described. The approach involves spline-collocation to reduce a two-dimensional problem to 
one-dimensional and the numerical solution of the problems by the method of discrete orthogonalization. Such an approach 
to solution of problems of the theory of plates and shells is proposed in [3, 4, 6-8]. The results of solution of some problems 
and estimates of their accuracy are presented in [2-4, 8]. 

Let us present the input equations of deformation of shallow orthotropic shells with a rectangular planform on the 
basis of the equations of the Mushtari-Donnell-Vlasov theory of shells [1, 5, 9, 11, 12]: 
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where 
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In relations (1)-(4), x and y are coordinates (0 < x < a, 0 < y _< b), u, v, and w are displacements in the plane and in 

the direction of the coordinate axes and along the normal to this plane, ~1, ~2, s and ~1, K2, KI2 are the tangential and bending 

deformations, N1, N2, S, Q1, Q2, M1, M2- and H are forces and moments, E l, E 2, Gt2, v l, and v 2 are the elastic and shear moduli 

and Poisson's ratios, R l and R 2 are the radii of curvature in two directions, and h = h (x, y) is the shell thickness. 

Eliminating the intersecting forces Q1 and Q2 in the equilibrium equations (2), expressing in relations of elasticity 

(3) the forces and moments in terms of displacements using expressions (1), and substituting them into the equilibrium 
equations (2), we obtain the three resolving differential equations in displacements: 
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Boundary conditions, which can be expressed in terms of displacements, are specified on the shell contours x = const 
and y = const. 

We will solve the system of differential equations (5) for the derivatives ~ - 2  u , ~ 2 V and ~ 2 w 
OX 2 OX 2 '  bX 4 "  

The solution of the boundary-value problem for the system of differential equations (5) will be searched for in the 

form of the expansions 

N 

u (x, y)= Z Ui( X )CPi(y ), 
i = 0  

N N 

V ( x , Y ) = Z V i ( X ) ~ p i ( y ) ,  w ( x , y ) = Z w i ( x ) ~ i ( y ) ,  
i = 0  i = 0  

(6) 

where ui, Vi, and w i ( i = O, N ) are unknown functions of the variable x, and 9i and ~gi (i = 0, N, N > 6) are functions constructed 

with the help of  B-splines of the third and fifth degrees, respectively, which allow us to construct their linear combinations so as 

to satisfy different conditions on the shell contours y = 0 and y = b [3, 6, 10]. 

On construction of finear combinations of  B-splines as functions ~Pi ( Y ) and ~i ( Y ) satisfying certain boundary 

conditions on the contours y = 0 and y = b, we substitute expressions (6) into resolved equations (5) and require that they be 

satisfied at the collocation points Yk ( k = 0, N ). Then we obtain a system of 3(N + 1) linear equations. We act similarly with 

the boundary conditions on the contours x = 0 and x = a. The obtained system of ordinary differential equations together with 

the boundary conditions will form a two-point boundary-value problem on the interval 0 < x < a. 

If we introduce the notation 

Y :  { Yl, Y2 ..... ys}T= { u, u ', v, v ', w, w ', w ", w ,,,}T, 

where Ym = Ym o, Yrn~ .. . . .  Yr% ( m = 1, 8 ), then the boundary-value problem obtained can be written as 

dP 
- A ( x ) Y + f ( x )  ( O < x < a ) ,  

dx 

(7) 

(8) 

(9) 

We solve the boundary-value problem for the system of equations (8) with the boundary conditions (9) by the stable 

numerical method of discrete orthogonalization [2]. Substituting the found values of the functions u i ( x ) ,  v i ( x ) ,  and 

w i ( x ) ( i = O, N ) into expressions (6), we obtain the solution of the initial problem for displacements and calculate all the 

factors of the stress-strain state of the shell. 

Let us present the results of solution of some problems obtained on the basis of the given approach. First, we will 

consider the problem on the stress-strain state of a shallow orthotropic shell of double curvature with radii R 1 and R 2. The 

shell has a rectangular planform, a constant thickness h, and legs a and b and is subject to the transversal surface load 

q = q0 sin ff-~ (0 _< x _< a, 0 _< y < b ). Moreover, the shell is rigidly fixed along the legs y = 0 and y = b and is hinged along the 

legs x = 0 and x = a, i.e., the following boundary conditions are given: 

O W = o  for y = O  and y = b ,  u = v = w =  Oy 

c) U t) 2 w  
- - = v = w - - - - 0  for x = 0  and x = a .  (10) 
0X 0X 2 
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Then, in expressions (6), the functions ~Pi and ~l/i ( i = 0, N ) are chosen in the form 

q~0=B0-4B31, 

(Pi= B~ 

1 0+B_l 
3 ,  

( i = 2 , N - 2 ) ,  

_BN-1 1 - N + n f + l ,  4B~V+I,  ~ N - I -  3 --~1:13 tJ (PN=Bf - 

165 B I 26B0+B51,  ~ Vl--  -SX 

~ 2 = B 2 - - ~ B O + B  2, ~Pi=B~ ( i = 3 ,  N - 3 ) ,  

N+2 1 BN+BN_2, 
CpN_z=B 3 - - ~  

N + I  26BN+BN-1 
(PN-1 = B 3  - - ~  3 

165 oN+ 2 ~ B N + I  f - 2 ,  I~tU = -"~--- o 5 + B  (11) 

where B 3 k (k = - 1, N + 1 ) and B ~ (1 = - 2, N + 2 ) are B-splines of  the third and fifth degrees, respectively, [8, 10]. Such a choice 

allows us to exactly satisfy the boundary conditions on the legs y = const. Let us consider orthotropic shells for five variants of  

the elastic constants of  the material. We assume that the elastic modulus E x preserves the constant value E x = E = const, and the 

elastic modulus Ey = ~t E, the shear modulus Gxy = X E, and Poisson's  ratio v x vary. The following values of  the elastic constants 

of  the shell material were considered [5]: 

( i )~ t=2 ,  X=0.3 ,  V x=0 .075 ,  

( i i)~t= 1.35, X=0.215,  Vx=0.122, 

(iii) t x = l ,  X=0.385,  v x=0 .3 ,  

( iv)~t=0.741,  ~ = 0 . 1 5 9 ,  Vx=0.165, 

(v) ~t = 0.5, ~ = 0.125, v x = 0.15. (12) 

The values of  the elastic constants of  variant (iii) correspond to the isotropic case. The problem was solved for  the 

following initial data: 

a = 1 2 ,  b = 1 0 ,  h = 0 . 4 ,  R 1=22.9 ,  R 2 = 1 3 ,  q = q 0  =c~  

The results of  solution of  the problem for a deflection are presented in Table 1. 

By virtue of  the symmetry  of  the problem, the table contains the values for x = 6 and 0 < y < 5 and for y = 5 and 

0 < x < 6. The results obtained for the third variant coincide with the exact analytical solution. 

From the table, it is seen that as the elastic modulus Ey decreases, the deflection at the center of  the shell increases 

1.4, 1.5, 2.4, and 3.5 times, respectively, as compared to the deflection of  a shell made of a material  corresponding to the first 

variant of  orthotropy. 
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TABLE 1 

w/__  e 
q0 

1 2 3 

x = 6  

0 0 0 0 

4 5 

0 0 

1 42.1 61.6 72.1 111.2 166.0 

2 125.5 182.3 205.0 321.8 472.4 

3 208.2 300.4 327.6 520.4 753.6 

4 265.6 381.4 407.8 652.7 936.5 

5 285.8 409.8 435.1 698.3 998.7 

x y = 5  

0.0 0 0 0 0 0 

1.2 88.3 126.6 134.5 215.8 308.6 

2.4 168.0 240.9 255.8 410.4 587.0 

3.6 231.2 331.5 352.0 564.9 808.0 

4.8 271.8 389.7 413.8 664.1 949.8 

6.0 285.8 409.8 435.1 698.3 998.7 

-t- Figures 1 and 2 show the distributions o f  the stresses o + and o y on the external surface o f  the shell o x and (~ y on 

the internal surface for y = 5 along the axis OX and for x = 6 along the axis OY for the fifth variant o f  orthotropy. It is seen 
+ 

that o y on the fastened contours of  the shell are the greatest stresses. The influence o f  orthotropy on the distribution and 

values of  stresses is not great. 

The problem on an orthotropic shell with the same geometrical parameters deformed under the action o f  the uniform 

transversal surface load q:. = qo is also considered. All the four legs o f  the shell are rigidly fastened, i.e., the following boundary 

conditions are given: 

~)W=o u = v = w =  for x : 0  and x=a,  
b x  

0 w = 0  for y = 0  and y = b .  (13) u = v = w =  Oy 

Table 2 presents the deflection distributions for x = 6 and 0 < y < 5 and for y = 5 and 0 < x < 6 for five variants of  

orthotropy (12). It is seen that as the elastic modulus Ey decreases, the deflection at the center of  the shell (x -- 6, y -- 5) 

increases 1.3, 1.4, 2.1, and 2.8 times as compared to the deflection of  a shell made of  a material corresponding to the first 

variant o f  orthotropy. 
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o / oy 
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0 1.2 2.4 3.6 4.8 x 0 1 2 3 4 y 

Fig. 3 Fig. 4 

+ o x' + and • v along the axis O X  for  y = 5 and along Figures 3 and 4 show the distr ibutions o f  the stresses cr x, ~Y y, . 

the axis O Y  for x = 6, respect ively,  for the fifth variant o f  the orthotropy of  the shell material.  The stresses o x on the 

short legs of  the shell are the greatest. The influence of  the orthotropy on the distr ibution and values of  the greatest 

stress ~r x is shown in Fig. 5. 

The numbers designate orthotropy variants. As the elastic modulus  E v decreases,  the max imum value of  the 

stress ~  increases 1.16, 1.24, 1.44, and 1 . 6 4  times, respectively.  
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TABLE 2 

0 

1 

2 

3 

4 

5 

X 

0.0 

1.2 

2.4 

3.6 

4.8 

6.0 

qo 

1 2 3 4 5 

x = 6  

0 

40.0 

120.9 

202.6 

259.9 

280.2 

0 

56.7 

169.0 

279.7 

353.9 

382.6 

0 

65.3 

188.0 

301.9 

376.3 

401.6 

0 

98.2 

282.0 

452.0 

562.7 

600.4 

y = 5  

89.5 

201.9 

259.7 

0 

105.1 

251.2 

339.3 

102.4 

250.4 

346.7 

133.8 

344.9 

398.5 

0 

141.7 

394.4 

614.9 

751.1 

795.8 

156.6 

422.4 

635.6 

277.5 374.6 390.2 577.5 757.6 

280.2 382.6 401.6 600.4 795.8 
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