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D E T E R M I N A T I O N  O F  T H E  N A T U R A L  F R E Q U E N C I E S  O F  V I B R A T I O N  

O F  N O N U N I F O R M  S L A B S  

A. V. Marchuk UDC 539.3 

The natural frequencies of vibrations of laminated plates are determined in a three-dimensional formu- 
lation by analytical separation of the sought functions for plate thickness. The system of differential 
equations which describes the natural vibrations of the plates is solved analytically. The solution makes 
it possible to study plates with a large number of layers, including orthotropic plates with elastic 
characteristics that vary through the thickness. Numerical experiments show that a step approximation 
can be used to approximate the variable elastic modulus. 

Introduction. Natural frequencies of vibration of nonuniform slabs were examined in [1-3, 6, 8, 9] in a 
three-dimensional formulation based on analytical separation of the variables. It was determined in [6, 8] that three-layer 
isotropic slabs undergo vibration in modes which are skew-symmetric relative to the middle plane. The general solution for 
laminated isotropic slabs was presented in 191, where a numerical calculation was performed to determine the fundamental 
frequency for symmetric three-layer slabs. Vibrations of a uniform slab were examined in [2]. The most complete solution 
to the problem of determining the natural frequencies of vibration of laminated structures in a three-dimensional formulation 
was obtained in [1] by the method of separation of variables. Orthotropic cylindrical shells and slabs comprise one area of 

current research. Boundary-value problems for systems of ordinary differential equations were solved in [1] by the highly 
accurate numerical method of orthogonal trial run. Results of the calculations were reported for bending vibrations of fltin 
slabs. The spectrum of frequencies of natural vibration for three-layer slabs was determined in [3] by an approach similar to 
that used in [1]. 

In this investigation, we obtain a three-dimensional solution to determine the natural frequencies of vibration of 
pinned shells. The solution is obtained on the basis of analytical separation of the sought functions. In contrast to [1], the 
system of differential equations that describes the natural vibrations is solved analytically. The proposed solution makes it 
possible to examine slabs with a large number of layers, including orthotropic slabs with variable elastic characteristics. The 
bottom surface of the slab can be rigidly fastened to the base. 

1. Initial Conditions. We use a rectangular Cartesian coordinate system to examine a flat laminated structure in 
wlfich the interfaces between the layers are parallel to the faces of the structure and the surface Oxy. The z axis is directed 
downward. The material of the layers may be an orthotropic material. For such a material, the column matrices 

{e} {ell, e22, o 3 3 , 2 e 1 2 , 2 e 2 3 , 2 e 1 3 }  T and {~} {~11,~22, e33,2~12,2c~23,2~13} 7 = = are connected to one another by 

well-known relations: {~}=[BI{~}. We are examining a special case of nonuniformity of the layers: 

E l ( z )  = E l e vz ,  E 2 ( z )  = E 2 e vz ,  E 3 ( z )  =E3 e vz, Gl 2 (z) = Gl2 e vz,  GI3 (2") = GI3 eVZ, G23 (Z) = G23 e 7z, p ( z )  = "p e z? (~[ 

is an assigned number). The Poisson ratios are constant within each layer. The number of the layer will be denoted by 
superscripts in parentheses. The structure has n layers. The coordinates of the kth layer along the z axis are designated as 
ck_ l and c k. 
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Summation is performed over dummy indices. The indices I, 2, and 3 after a cmmna denote differentiation with 
respect to the x, y, and z axes. In the matrix expressions, the matrix operations are performed before summation over the 
dmmny indices. 

2. Construction of the Solution. We represent the displacements and fl~e stresses in the form: 

where 

U(k) ( x , y , z , t  )= V i (x , y  )fiik) (z )ri(t  ) ; 

o i ( k ) ( x , y , z , t ) = x n ( x , y ) f i i k + ) ( z ) r i + 3 ( t )  (i= l, 2, 3). 

We use the Cauchy relations to obtain the strain tensor 

eii= Vi, i (x , y ) fii k) (z ) r i (i ) ; 

e33 = I/3 (x,Y)J~3, k) (,7,)/'3 ( t ) ,  

2 el2 = Vl, 2 (x,y)J~(l k) ( z ) r  I (t)+//'2,1 (x,y)f~2k)(z)r2 ( t ) ;  

2 el3 = V i (x, y )J~(ik3 ) (z) r i (t) +/I3, i (x, y )j~3 k) (z) r 3 (t) 

We find the missing components of the stress tensor from Hooke's law. 

We write the Reissner functional as follows: 

R=I fItu} I aJ l  aj/u} 
v 

{UI={UI, U2 ' U3 ,O13,O23,O33}T 

the nontrivial terms of the matrix [d] are 

d( l ,  l )=O/ax,  d (2 ,2  ) = O / 3 y ,  

d(6, 2 ) = O/cgx, d(7, 2 ) = c9/c9z, 

d ( l l ,  3 ) = O/Ox, 

the nontrivial terms of the symmetric matrix [D1 are 

d ( 3 , 3 ) = 0 / 0 z ,  d ( 4 , 6 ) = 1 ,  

d ( 8 , 3 ) = a / O y ,  d(9, 5) =1, 

d(12, 4 )  = 1; 

D (1, 1 ) = B t l  ; 

9 ( 3 , 4 ) =  1; 

D(7, 9 ) =  1; 

D (1, 2 ) = BI2 ; 

D ( 4 , 4 ) = - B 3 3  ; 

D(8, 9 ) =  1; 

The kinetic energy has the form 

D ( 1 , 4 ) = B I 3  ; 

D (5, 5 ) = B44 ; 

D(9, 9 ) = -  1/B55 ; 

D (2, 2 ) = B22 ; 

9 (5,6)=B44 ; 

9(1o,  12 )= 1; 

D (12, 12 ) = - 1/B66. 

r=I  IIlu} l aj jD_j I  jtu}av, 
V 

(i = 1, 2). 

d (5, 1 ) = O/Oy, 

d(10, I ) = O/c3z, 

D (2, 4 ) = B23 ; 

D (6, 6)=B44 ; 

D ( l l ,  1 2 ) = ] ;  

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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where the nontrivial terms of the matrix [ d ] '  D ( 1 , 1 )  = 0/(9 t, d ( 2 , 2 )  = 0 /0  t, _d(3,3 ) = 0/(9 t, d ( 4 , 4 )  = 1, _d ( 5 , 5 )  = 1, 
_d(6,6 ) = 1; 

the nontrivial terms of the matrix [D] 

D(l,])=p(z), D(2,2)=p(z), /D(3,3)=p(z). 

Inserting Eqs. (2.3) and (2.4) into Reissner's variational equation for dynamic problems with the condition that 
external loads are absent 

h 

8 I ( R -  T ) d t = O ,  
tl 

(2.5) 

we obtain the equations of free vibration of laminated structures. If the functions 

V l = C O S ( X m x / a ) s i n ( n n y / b  ) ,  V 2 = s i n ( n m x / a ) c o s ( u n y / b  ) ,  

V 3 = s i n ( r t m x / a ) s i n ( n n y / b  ) ,  X l 3 = C O S ( U m x / a ) s i n ( n n y / b  ) ,  

x23 = sin (rt m x / a  ) cos (rc n y / b  ) , x33 = sin (n m x / a  ) sin (n n y / b  ) , 

which corresponds to pinned support, r s = e -  I 0) t (s = 1 . . . . .  6 ), then by analogy with [4], these equations are transformed into 

the following system: 

C k 

I [ - ~  - ~ k )  ~ +f}4k) ( l/(G(3 ~) e z'(~) ) ) ]  d z = 0 ;  
ca_u 

C k 

I [ -f(~k3) -f~t)  b +f~st) ( 1/(G(3 k) e z"k) ) ) ]  d z = 0 ;  
ck_l 

ck 

t J l  13 -/2 ~  ~'--J3,3 
Ck-i 

c k  - -  - -  _ _ _  m - -  

C k -  I 

C k  

- - -  - -  z (k) r Ak) -~(k)-d ] d z  - O" I [(/l ~) (B~) + ~ ( 2 ) ~ + #  ) (~)- i  ~ + a ~ ) ~ - ~  ~))e , - ~ , , ~ - ~  . 2 3 .  j - , 
cl,-i 

(2.6) 

C k 

I [ - ~  k) p(o 2eZV(k)+~k)~ + f}k)-b-f~61k) ] d z = O  

ct_ l 

( -5 = n m / a ,  "b = ~t m / b  ) .  

Representing the solution of  system (2.6) in tile form: 

j~ = pq e (13 -~ )  z f 2 = P . 2 e ( P - ~ ' )  z f3  = p.3 e (13-y )z  f 4 = P , 4  e f j z  f s = P . s e  f~z f6=l. t6e f~z 

we arrive at a system of homogeneous algebraic equations (the superscript which indicates the layer has been omitted) 
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- g l  (13 - }' ) - I't3 ~ + P'4 ( l /G13)  = 0 ; 

- la2 (13 - Y )  - Ix3 ~ +  P'5 ( 1 / G 2 3 )  = 0  ; 

B 

I, tl B13 

ktl (Bll a 2 +U12 b 2 

I'tl (BI2 + GI2 ) ~ ~ + 

Equating the determinant to zero, we 
sought functions are represented in the form: 

+ ~ B~3  b - ix 3 (13 - 7 ) + ~t6 B33 = 0 ; 

- -pO 2 ) +  i.i. 2 (B12 +GI2 ) ~ - l't4 13 - 1"1'6 BI3 ~ = 0 ; 

(~22 b2 +GI2 a 2 - p 0 )  2 ) _  IA 5 13_ IA6B23 b = 0 ; 

(2.7) 

find the relationship between the parameters 13 and o). In the general case, the 

fl =Cle(f~t-~)z; f 2 = C l  ~le(13t-~')z; f3=CI P'3t e(13~-s)z; 

f4=Cll.t41ef3tz; fs=Clt.tSlef~lz; f6=Clt.t61ef~t z (1=1 .... 6). 

In the special case when V = 0 and the layer is isotropic, 

1312=(nm/a)2+(rtn/b)2-po~2/G12; 13~=(Ttm/a)2+(rtn/b)2-po2/Cll  . 

The same expressions were obtained in [6, 8, 9]. Here, the sought functions appear as: 

f l  =CI  ePlZ+C3ef~2z+C4e-f~lZ+Cte-P2z; 

f2=C2eP. Z +C3el~2Z +Cse-f~lZ +Cte-P2z ; 

f3 = C1 Ix31 ePlZ+ C2 g32 e13~ z+c3 Is33 eP2z+c4 P'34 e-131 z+c5 Ix35 e-fl '  z+ C6 [t36 e-[~2z ; 

J4= C1 P-41 e 13~ z + C2 rt42 e13~ z+ C3 i.t43 e P2z+ C 4 rt44 e -l~l z + (75 g45 e-13j z + C6 I-1"46 e-[32z ; 

J ~ = C  1 ISS1 eP~Z+C2 g52ef~lz+c3 I.t53 eP2Z+c 4 ~t54e-f31z+c5 t~55 e -pl Z+c6 P.56 e -  13~z ; 

j~ = Cl ].t61 efl~ z + C2 1x62 e P~ z + C3 1463 el~2z+ C4 I-t64 e -[~l z + C5 P'65 e-13~ z + C6 la66 e-1~2z 

The parameters 13 may be real or complex. It is more convenient to represent them in complex form and regard the 
real numbers as a special case of the complex values. 

We fonn a resolvent system of  equations of the order 6n by satisfying the interlaminar contact conditions and the 
conditions at the surface. Equating the detenninant of this system to zero, we obtain ,an equation to detennine the natural 
frequencies of vibration of the stmcture. 

3. Examples. As test problems, we compared our results with the analytical solution in [9] and the solution in Ill. 
It was found that the results agree fully with one another. Our solution differs only slightly from the tlu-ee-dimensional 
numerical solution obtained in [7] for lmninated orthotropic slabs. 

1. We calculated the natural frequencies of vibration of a thin square (a/h : 40 ) one-layer orthotropic slab having 

the following physico-mechanical characteristics: ~'1 eyz = 10 b72 e "~z = 10 ~73 e'~Z; p (z) = p e'CZ; 7 = I/h; v21 = 0.03; 

v31 = 0.03; v32 = 0.3; G12 = Gl3 = 0.48544E1; G23 = 0.48544E2/2; c o = - c I. Table 1 shows the frequencies of natural 
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TABLE 1 

T K T K T K 

0.030467 0.030643 0.46683 0.46683 1.0322 1.0323 

TABLE 2 

-0.5 
0.0 
0.5 

TI T2 

k I = 1.5359 3,1 = 1.5357 

0.3365 
0.0485 

-0.2462 

0.0906 
0.0140 

-0.0872 

1.0000 
1.0232 
1.0202 

0.3361 
0.0482 

-0.2466 

0.902 
0.0144 

-0.0875 

1.0000 

1.0232 
1.0201 

Z" G13 ~23 0"-33 ~13 ~23 033 

0.0 4.1592 1.6249 0.1399 4.1571 1.6238 0.1419 

7.9008 
1.9070 

- 16.765 

- 0 . 5  
0.0 
0.5 

-13.581 
-3.1601 
24.985 

-0.7366 
-0.1375 
1.6833 

--0.7657 
--0.1467 
1.6187 

-13.043 
-3.0465 
26.011 

8.2206 
1.9917 

-16.112 

TABLE 3 

TI T2 

kT. = 3,7337 L 2 = 3.7337 

- 0.5 8.2655 -17.909 1.0000 8.2718 -17.924 1.0000 
0.0 8.0865 -18.036 0.1545 8.0931 -18.051 0.1533 
0.5 8.1734 -17.947 0.6859 8.1806 -17.962 - 0.6874 

Z" ~13 023 G--33 ~!3 023 033 

0.0 0.4265 0.2029 -2.8136 0.4258 0.2029 - 2.8152 

Z" Gll 022 ~12 ~11 ~22 ~12 

- 0 . 5  
0.0 
0.5 

- 297.19 
- 479.50 
- 7 9 8 . 1 1  

59.335 
98.097 
161.98 

- 178.41 
- 303.48 
-491 .52  

-310.07 
-500.27 
-766.22 

61.913 
102.39 
155.49 

- 186.17 
- 316.66 
-471.82 
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T A B L E  4 

T1 T2 

z k 2 = 8.1827 X 2 = 8.1827 

-- 0 .5  - 2 .0733 -- 0 . 7 8 0 7  1.0000 - 2 . 0 7 2 7  - 0 .7804  1 .0000  

0 . 0  - 2 . 2 7 0 7  -- 1 .0876  0 .1394  - 2 . 2 6 9 8  - 1.0873 0 . 1 3 7 4  

0 .5  - 2 .1675 -- 0 . 8 8 4 3  - 0 .6604  - 2 .1663  - 0 .8836  -- 0 . 6 6 1 0  

z ~13 G23 ~33 GI3 ~23 ~33 

0 . 0  0 .2201 0 . 0 7 1 6  - 15.802 0 .2225  0 .0733 -- 15 .804  

- 0 . 5  

0 . 0  

0 . 5  

T A B L E  5 

80.629 

139.82 

229.34 

5 . 3 9 3 9  

6 . 2 8 7 5  

16 .041 

- 52.797 

- 102.43 

- 153.47 

8 4 . 0 3 5  

145 .97  

2 1 9 . 8 6  

5 .6218  

6 .7602  

15.375 

- 5 5 . 0 2 7  

- 106 .75  

- 147.11  

T I  T2 

~ ~'l = 6.6303 ~-i = 6.6238 

- 0 .5  0 .3064 0 . 5 8 1 1  1.0000 0 . 3 0 6 0  0 .5823 1 .0000  

0 . 0  0.0548 0 . 1 4 0 6  0 .6682  0 . 0 5 4 7  0 .1414  0 . 6 6 7 3  

0 .5  0.0 0 .0  0.0 0 ,0  0.0 0 . 0  

2" ~13 ~23 (533 ~13 ~23 ~33 

0 . 0  7.3772 0 . 8 3 5 2  - 2 1 . 3 8 6  7 .3991  0 .8242  - 2 1 , 3 5 9  

Z" ~l I ~22 ~ I  2 ~ l  I ~22  ~ l  2 

- 0 . 5  - 12.452 - 2 . 5881  16.418 - 12 .968  - 2 .7024  17 .132  

0 .0  - 9 .5198 - 5 . 5723  5 .9610 - 9 . 6 6 0 7  - 5 .6091 6 . 2 3 7 4  

0 .5  - 8 .4164 - 6 . 6 6 8 4  0.0 - 8 . 4 0 5 7  - 6 . 6599  0 . 0  

T A B L E  6 

h ( t ) /h ,  10 -2 10 -4 10 -6 10 -$ 0 

T 0 .48610  0 . 2 5 8 2 7  0 .21271  0 .21214  0 . 2 1 2 1 4  

[5] 0 .48593  0 . 2 5 6 9 6  0 .21113  0 .21056  0 . 2 1 0 5 6  
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vibration L = 10 co ~ h 2/E l ) 1/2 obtained on the basis of the proposed solution (7) and the classical mode (K). The results 

agree well with one another. 

2. We used two design variants to obtain the same slab but with a/h = 5. In the first case (TI), we examined a one-layer 
slab with a variable elastic modulus. In the second case (T2), we examined a 12-layer slab with layers of equal tlfickness. The 
elastic characteristics of the second slab, which were constant witlfin each layer, were approximated by a step function. Tables 

2, 3, and 4 show the results of calculations of the natural frequencies of vibration L = 10 co ( p  h 2 /E  1 ) 1/2 with m = n = 1. 

The modes corresponding to those frequencies are also shown. Nearly complete agreement between the frequencies and the 

displacements obtained by the first two design variants is seen for the first tluee types of vibrations. The errors are somewhat 
higher for the stresses but are still negligible. Table 5 shows the fundamental mode of vibration for the same slab when its 
bottom surface is rigidly fastened. As in the case of a freely sagging slab, the results obtained by the two variants are found 
to agree with each other. 

3. Now we perform calculations for a thiee-layer slab tlmt is symmetric tlwough its thickness and has the following 

physico-mechanical characteristics: EO)/E(2) =1000; v (1) = v (2) = 0.3; p 0) /p  (2) = 10; a/h = 5. Table 6 shows the 

fundamental frequencies of free vibration of such a slab ( Z. = co ( p (2) h 2/E(2) ) !/2 ) with variation of h (l)/h. The results 

shown were obtainedby using the method proposed here and by adapting the model in [5] to the solution of dynamic problems. 

The proposed method makes it possible to reduce the thickness of  the outer layers to zero without loss of accuracy in the 

calculations. The result obtained with h (1)/h = 0 is for a one-layer slab. 
Thus, a method has been developed for determining the natural frequencies of vibration in a three-dimensional 

formulation on the basis of analytical separation of the variables. In contrast to [1], analytical means are used to solve 

boundary-value problems for systems of differential equations describing free vibrations of a slab. Using an analytical method 
makes it possible to accurately determine the natural frequencies and modes for slabs with layers differing significantly in 
tlfickness. The examples of slab design presented here add to the literature data and can be used to test applied models. 
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