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To the Beginning of  the Third Millennium 

N O N L I N E A R  P R O B L E M S  O F  T H E  D Y N A M I C S  O F  E L A S T I C  S H E L L S  P A R T I A L L Y  F I L L E D  

W I T H  A L I Q U I D  

V. D. Kubenko and P. S. Koval'chuk UDC 539.3:533.6.013.42 

Theoretical and experimental investigations of the nonlinear vibrations and dynamic stability of thin 
shells partially filled with a liquid are reviewed. The paper deals with the basic laws governing the dynamic 
high-deflection deformation of carrying shell structures and the considerable vibrations of the free liquid 
surface due to the natural, forced, and parametrically excited vibrations of the combined system and also 
due to impulse loads acting on the carrying object. The nonlinear dynamic interaction of shells with a 
liquid filler is analyzed with allowance for the wave motions of the free liquid surface. 

Introduction. Problems on the nonlinear dynamic interaction of elastic shells with liquids filling them pertain to 

scientific and technical problems of continuum mechanics that during a long time (more than four decades) have attracted 

considerable attention of researchers, engineers, and designers. This is, first of all, due to the needs of aeronautical and 

space-rocket engineering whose creation and reliable operation is impossible without a preliminary and profound (with the 

use of strict calculation models) study of the mobility of large liquid masses (fuel) on the stress-strain state (SSS) and the 

stability of carrying elastic tanks (compartments) and, consequently, on the stability and controllability of the structure as a 

whole. Nonlinear problems of the dynamics of shells carrying a liquid are also important for the strength and stability analysis of: 

(a) bulky water reservoirs under the action of intensive periodic or impulse (for example, wind or seismic) loads, (b) different 

piping systems, and (c) ground and water transport intended for carrying liquid cargo, etc. 
An extremely important domain of application of the problems under consideration is also biomechanics, in 

particular, those of its parts where the hydroelasticity of blood systems is studied. 
The necessity of studying nonlinear problems of the dynamics of elastic liquid objects became obvious in the 50-60s 

owing to several experimentally revealed unusual physical effects that could not be accounted for using linear mathematical 

models. At that time, however, an appropriate strict theoretical basis for solution of these problems was absent. Nonlinear 

problems have some specific features that severely hamper the derivation and analysis of solutions. One of them, in particular, 

is that the boundary conditions specified on the wet surface of a carrying elastic body and on the free liquid surface are 

generally essentially nonlinear. Moreover, the strain state of an elastic shell as well as the shape of the perturbed free liquid 

surface are not known beforehand (and evolve in time): therefore, the domain of the velocity potential of the liquid turns out 

to be unknown. One more, equally important feature is associated with the necessity of matching frames of references in the 

analytical formulation of the matching conditions on the shell-liquid interface. As is known, the Euler variables are usually 

used to describe the equations of liquid motion [92, 96], while it is expedient to study the dynamics of shells in the Lagrange 

variables. Matching both systems is not difficult if the displacements of the points of the shell are small, which allows us to 

neglect the spatial deformation of the boundaries and, thus, to consider the Euler and Lagrange variables coincident. A 

difficulty arises in the presence of finite deflections, since, in this case, Euler's technique does not allow us to automatically 

determine the coordinates of the deformed boundaries of the liquid (i.e., the liquid-shell interface) [27, 28, 49, 50, 120]. 

Thus, the case in point is complex nonclassical boundary-value problems of mathematical physics arising at the 

interfaces between different knowledge domains (the mechanics of deformable solids, fluid mechanics, and nonlinear 

mechanics). The nonlinear and nonclassical nature of these problems, which constitute the class of complex problems of 
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mechanics [42], necessitated the development of special approaches to their solution. It is these approaches and the related 
results of studies that are briefly discussed in the present paper. It should be noted that this review does not claim to be an 

exhausting and complete review of all the aspects of the complex problem on nonlinear liquid-shell interaction and reflects 

only some, the most typical (in the authors' opinion), trends in the present-day studies on this matter. Here, emphasis (with 

the basic analytical dependences and plots) is on the investigations that have been carried out at the S. P. Timoshenko Institute 

of Mechanics of the National Academy of Sciences of Ukraine, where the well-known scientific schools on the mechanics 

of hydroelastic and aerohydroelastic systems were created and have been successfully functioning for a long time. A 

distinctive feature of these studies is the use of  multiparametric models of shell-liquid systems ~with several modes of  the 

carrying body and the liquid filler taken into account simultaneously) in solving nonlinear problems, which allows us to obtain 

a more real pattern of the dynamic interaction between the shell and the liquid. 

The Background of the Nonlinear Theory.  A methodological basis in the development of the nonlinear theory of 
the dynamic interaction of elastic shells with a liquid partially filling them was the fundamental principles used for 

constructing: (a) the linear theory of vibrations of shell-liquid systems and (b) the nonlinear theory of vibrations of a bounded 

volume of a liquid contained in fixed (or mobile) cavities of solids. The linearity of problems of hydroelasticity (internal 

problems associated with the dynamic analysis of a deformable shell filled with a liquid will be considered hereafter) assumes 

that one uses the linear equations of motion (vibrations) of  the carrying object and the liquid filler and linear boundary 

conditions at the interface and on the free liquid surface. Since the principle of superposition is true for linear systems (i.e., 

an additive action leads to an additive response), methods for solving problems on the small vibrations of a shell-liquid system 

have been thoroughly developed and applied to date. The most commonly encountered among them are the variable separation 

methods (Fourier's), variation methods, etc. The results obtained in these studies were described in many publications and 

reviewed in detail in [7, 13, 34, 35,137, 164, etc.]. The fullest bibliography (consisting of more than a hundred sources) on 

linear problems of the dynamics of elastic bodies carrying a liquid is presented in the fundamental monograph [107] by G. 

N. Mikishev and B. I. Rabinovich. It and other known monographs [1, 25, 26, 74, 75, 93, 99, 105, 113, 122, 136, 139, 140, 

152, 165 ] contain numerous specific solutions of linear problems on the vibrations of shell-liquid systems. The basic objective 

of these problems was to determine the fundamental frequencies and modes of vibrations of these systems, which allows us 

to predict dangerous resonance regimes that may occur under external periodic loads and to reveal the laws governing the 

deformation of both the carrying shell itself and the free liquid boundary under resonance conditions. Considerable attention 

was also focused on the substantiation of the truncated hierarchy, i.e., selection of the necessary number of degrees of freedom 

that correctly reflect the response characteristics of the initial system (within some specified frequency range), consideration 

of problems concerning the applicability domain of  the linear theory, the effect of the wave movement of liquids on the 

fundamental frequencies, and other problems directly related to nonlinear problems. 

A great many studies are also devoted to the nonlinear vibrations of a liquid filling rigid vessels. The most significant 

results obtained in this domain were described in the generalizing monographs [9. 10, 30, 47, 94, 95, 97, 98, 106, 110, 112, 

113, 118, 153, 165, 167, etc.]. In solving nonlinear problems, the original technique developed by G. S. Narimanov and 

published in his papers [116, 117] is mainly used. By this method, the unknown perturbed free liquid surface Y is represented 

by a Fourier series in terms of some complete system of functions that is orthogonal to the nonperturbed surfaceZ 0 and has 

the generalized coordinates of the perturbed surface as coefficients. The special recursion scheme proposed by Narimanov 

allows us to reduce the initial nonlinear problem to some sequence of inhomogeneous boundary-value problems for domains 

with fixed boundary conditions (specified, in particular, on the surface E 0 ). 

Many authors solve nonlinear problems of the dynamics of a liquid and bodies containing a liquid by using direct 
methods based on variation principles [21, 94, 95, 98, 106, 112, 113, 151, etc.]. 

Theoretical studies carried out on the basis of different approaches have accounted for many nonlinear effects 
revealed in the vibrations of  solids containing a liquid. Among them are the anisochronism of the vibrations of the free liquid 

surface, quenching in the resonance regions with changing over to qualitatively new dynamic conditions (in particular, liquid 

whirling), the asymmetry of the wave profile (the hump height is greater than the trough depth), splashing of the liquid near 

the walls, etc. [4, 43,105,106, 165,166, 169, 173, etc.]. It was established that, for cylindrical bodies, these effects are clearly 

manifested for the vibration amplitudes of the liquid b > 0.25 R (R is the radius of the body). For b --- 0.15 R, the linear theory 
yields satisfactory results [ 105, 106]. 
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Afterwards, all these approaches were extended to the case where objects partially filled with a liquid are thin-walled 

shell structures. 

Formula t ion  of Nonlinear Problems. The "nonlinear" period in the development of studies of the vibrations of 

shells with a liquid originates from the works of the following American scientists: Lindholm, Chu, Kana, Abramson, Dodge, 

and Craig [165,170, 171,174, 175, 177, 178, etc.]. They described and discussed experimentally revealed specific effects 

that are due to the complex essentially nonlinear mechanisms of dynamic interaction and energy interchange between the 

elastic, usually flexural vibrations of a carrying solid and the wave motions of the liquid free surface. Some of the effects 

were manifested even for very small vibration amplitudes (having, for example, the order of the wall thickness) of the solid. 
Among the most abundant effects are: 

(i) the steady-state low-frequency high-amplitude axisymmetric and nonaxisymmetric motions (of the plane-wave 

type) of the free liquid surface excited by the high-frequency forced vibrations of the elastic shell walls; 

(ii) excitation of the axisymmetric and nonaxisymmetric subharmonic vibrations of the free liquid surface having 
the order of half the excitation frequency of the shell: 

(iii) excitation of the low-frequency large-amplitude rotary movements of the free liquid surface (of an axisymmetric 

form) under the conditions of the high-frequency small-amplitude vibrations (of the circumferential-wave type, i.e., 

propagating in the circumferential direction) of a cylindrical shell, which, in tuna, cause the low-frequency vibrations of the 
shell walls. 

It is obvious that all of these effects can be accounted for only through the analysis of the corresponding nonlinear 

multiparameter mathematical models, since the linear levels of relations between the shell and the liquid, which are 
schematized by models, and simplified ones (in particular, one- or two-parameter models), do not allow us to describe the 

complex energy transfer in a bound elastic liquid system from its elastic component to the liquid and vice versa. Moreover, 

specific nonlinear effects were revealed in the studies carried out in the 70s and later [2, 22, 168, etc.]. Approximate theoretical 

justification of some nonlinear phenomena (mentioned above) using the nonlinear theory of the second and third orders was 

attempted in [39, 165, 168, 170, etc.]. The monographs [90, 118] present (in the introductions) a more detailed review of 

theoretical and experimental investigations (mainly conducted in the 60-80s) of the nonlinear vibrations of elastic shells filled 

with a liquid with a free surface. Hereafter, emphasis will be on the theoretical studies on the subjects being discussed. These 

investigations have been conducted during the last two decades. These years constitute a period of intensive development of 

effective analytical and numerical-analytical approaches to the solution of multiparameter problems of the nonlinear dynamics 

of a shell-liquid system. A number of interesting scientific and practically important results have been obtained using those 
approaches. 

It should be noted that nonlinear formulations of problems of the dynamics of thin elastic shells containing a liquid 

are abundunt. It is natural that each such formulation wii1 dictate which method for solving these problems to choose. Of 

abundance are also studies of the mutual motion and interaction of the carrying shell and the carried liquid (which is usually 

assumed ideal and incompressible) under the action of some specified forces. Let us briefly formulate this problem as applied 

to circular cylindrical shells bearing in mind that it is precisely these shells that are most often the subject of inquiry in 

nonlinear problems of hydroelasticity and that possess many properties characteristic of shells of arbitrary type. 

Assume that a shell partially filled (up to a level h 0) with a liquid is subject to external radial pressure nonuniformly 

distributed over the lateral surface of the liquid q = qo (x, y) S 1 (t) and is compressed along the edges by dynamic forces of 

the form N r = N o + N t (t) (Fig. 1) (N o = const, q0 (x, y), S l (t), and N l ( t ) are some given functions of spatial coordinates and 

time). The direct axis of the shell x is oriented along the field of bulk forces (the origin 0 is at the center of the flat bottom). 

The dynamic equations of the shells correspond to the well-known equations of the theory of shallow finite-deflection 

shells [23, 24, 39, 48, 115, 123, 172, etc.], i.e., they have the following form with allowance for the load hydrodynamic term: 

D V 4  1 321~ 32w 02w 32~ 32. , 02qb 

h W = R  c7x----ff~ - P ~ t  2 + a x  ~- 03,2 k ay2Ox2-- - -  

32!4, 32q~ Ph S Nr" 32w 3w 
2 + ~'n - + EO p ~ t '  3 x b y O x O y  h 3x  2 
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Fig. 1 
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Here, w = w (x, y, t) is the transversal deflection (positive if directed toward the center of the curvature), D is the cylindrical 

rigidity, E is the elastic modulus, h is the thickness of the shell, 0 is the function of stresses on the median surface, e 0 is the integral 

damping factor, 9 is the density of the shell material, and Ph is the transversal hydrodynamic pressure acting on the wet lateral 

surface S of the shell and determined on the basis of the Lagrange-Cauchy integral [92, 96] 

+-~ (V q0)2 + U =0, (2) 

s 

where cp is the velocity potential of the liquid, Po is the stress at the liquid-gas interface, Po is the density of the liquid, and U is 

the potential of the bulk forces. 

The boundary-value problem for determination of the potential tp in cylindrical coordinates x r 0 is formulated as 

follows [118, 136]: 

02 Cp. + l _~rr + O__~_~ + 1 O 2 . q~ 0 inQ 
0 r  2 r b x "  r 2 302 

(3) 

(Q is the volume occupied by the liquid, 0 < r < R + w ; 0 < 0 < 2 n ; 0 < x < h 0 + ~), 

Ow 

Or Ox So Or  =0, a t  
r=O S 

- V ~ V w ,  

0 ~ - V  ~ V t p = - ~ t  o n E .  (4) 
0x 

Here, S O is the bottom of the shell and ~ is the vertical displacements of the points of the free liquid surface relative to the 

nonperturbed plain Z 0 (x = h0). 

Except for kinematic conditions (4), the potential tp must also satisfy the dynamic condition on the free surface s 
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--~t + 1 ( V go )2 + g ~ = 0 (5) 

(g is the acceleration of gravity). 

The mathematical complexity of system (1)-(5) necessitates using different hypotheses and assumptions to 

maximally simplify the formulation of the initial problem, keeping its practical importance. The simplifications concern both 

the equations of motion of the shell (or the liquid) and the boundary conditions on the boundary of the domain Q. However, 

these simplifications are not always justified and logically substantiated. In many cases, their selection is more likely to 

depend on the availability of methods for solving problems of the nonlinear dynamics of elastic liquid systems than on their 
practicability and importance. 

Many authors believe that in order to reliably describe the dynamic interaction of shells and a liquid filling them, it 

is sufficient to use a calculation model that takes into account small (linear) vibrations of a carrying elastic body and nonlinear 

(with high amplitudes) vibrations of the free liquid surface. Such an approach is valid, since the domain of nonlinear 

perturbations is much wider for the liquid than for the shell [15, 17, 29, 121, etc.]. 

Other authors, in reverse, consider the nonlinear equations of deformation of a shell and the related linear equations 

of a liquid flow, i.e., they use the hypothesis on small wave motions of a liquid. Such an assumption might be considered 

valid for rather flexible carrying shells. At the same time, the wave motions of the liquid surface are sometimes neglected 

altogether in the calculation models [90, 124, 128, etc.]. The authors of some papers suppose that the energy of a shell-liquid 

system substantially exceeds the energy of the wave motions of the liquid, which, in G. N. Mikishev's and B. I. Rabinovich's 

opinion [107], is justified in problems on the longitudinal vibrations of shells containing a liquid (as opposed to lateral 
vibrations). 

In other authors' opinion, this assumption may be considered acceptable for relatively high vibration modes of shells 

(with many nodal lines). In this case, the vibration modes of a dry shell and the same shell containing a liquid differ little (at 

the same time, for the lowest vibration modes, the kinetic energy of the liquid can considerably exceed that of the shell [161, 

177], which, naturally, results in a considerable difference in the modes). 

The boundary conditions were also simplified. So, in the overwhelming majority of cases, a linear variant of these 

conditions was used at the interface between the liquid mad the shell walls, i.e., 

_ ~ r r  = _ b w (6) 
3 t "  R 

The boundary conditions on the free liquid surface were usually as follows: 

- • x  x=h0 ~ t  3 t  x = - g ~  

= , 3~0 

= h 0 + 

(7) 

or (if the waves in the liquid were not taken into account) 

OOxCp., = h0 = 0 (go Is= h0 = 0). 
(8) 

Despite the mentioned simplifications, the initial system (1)-(5) will possess nonlinear properties with all the ensuing 

consequences (since nonlinearity in one link, i.e., in an individual equation or boundary condition, will spread to the whole 

system during concurrent vibrations). 

Approximate solutions of the above-mentioned system (with allowance for the simplifications formulated) are 
usually constructed by the following scheme. 

The Bubnov-Galerkin variation method (or the Hamilton-Ostrogradskii principle of least action) is used to reduce 

a continuous system described by partial differential equations to a system with a countable number of degrees of freedom 

described by ordinary differential equations. To determine the velocity potential go, different strict and approximate 

approaches, which are, in particular, stated in the establishing studies [38, 135,155,156, 161,162] and also in [90, 104, etc.], 
are used. In this case, the well-known Lain6 principle of superposition is mostly applied [176], namely, it is assumed that 
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~0 = cpl + cp2, where the function q01 characterizes the velocity field of the liquid with a still free surface in a deformable shell, 

and ~02 describes the wave motions of the liquid in a rigid shell and, together with cpl, provides satisfaction of dynamic 

condition (5) or (7) on E .  

To construct the equations corresponding to the hydrodynamic part of the problem, the dynamic condition on the 
liquid surface (5) is used in some cases (which, in particular, is characteristic of Narimanov's technique), and, in other cases, 

the functional L=T-V is determined first (T is the kinetic energy of the vibrating shell and liquid and V is the potential energy) 

and is then used to derive the Lagrange equations (the dynamic condition is satisfied by appropriate selection of the velocity 

potential q~ of the liquid [179]). 

If we represent the deflection of the shell w by the traditional two-parameter expansion [24, 88, 89] 

w =  Z Z [ f l n ' m c o s s n Y + f 2 n ' m s i n s n y l X m ( X )  (9) 

n=O m= l 

t/ (here, X m are axial coordinate functions, s n = -~, and n is the number of full circumferential waves) and use the corresponding 

mode to disturb the free liquid boundary [89, 118] 

n=O k=l  

(10) 

(Jn is a Bessel function of the nth order of the real argument and Pnk are the eigenvalues determined from the equations 

Jn' ( B ) = 0 ), then we obtain the following system of connected equations for determination of the unknown functions f/n, m and 

~i n, k [58, 89, 90]: 

f in 'm + r m f i n ' m + Z  qm,n'm f i n ' m ' + E ~ 7 " m ~ i n ' J = E F i n ' m (  "'" )' 

mj j= 1 
m I ~m 

~in, k+v~l .~ in ,  k + ~ , ~ n ,  e e=Eai  n ' k ( ' ' ' ) '  
e 

(n=O, 1,2 . . . . .  m, ml, k , e = l , 2  . . . . .  i = 1 , 2 ) .  (11) 

Here, O~n. m and Vn, k are the fundamental frequencies of the shell (with the effect of the apparent additional masses of the liquid 

taken into account) and the free liquid surface (in a rigid tank), respectively, q~jm, ~ ,  m, and ~e' k are constant coefficients 

depending on the physical and geometrical parameters of the shell and the liquid, e Fi n" m and e G n' k are time-dependent functions 

nonlinear with respect to the generalized displacements {fin'm } and {~i n'k } and their derivatives, and E is a small parameter 

(e > 0). 
As a special case, based on system (11), we can derive the equations of nonlinear vibrations of shells carrying a liquid 

that correspond to the simplified formulations mentioned above. Equations (1 I) may be used to analyze both steady-state 

(periodic) processes and transients. In this case, periodic solutions can be constructed and analyzed for stability using different 

approximate methods of nonlinear mechanics [8, 101-103, 108, 111,182, etc.]. 

It should be noted that many problems associated with the creation of reliable nonlinear dynamic models of 

shell-liquid systems are still open. Their solution necessitates special fundamental investigations that would allow us to work 

out certain scientifically justified recommendations as for the use in calculations of one simplification and hypothesis or 

another. Note that even general scientific discussions of this extremely important problem have not been organized yet. 

426 



Free Vibrations. The first theoretical studies of the nonlinear vibrations of shells partially filled with a liquid were 

carried out in the middle 60s by Yu. S. Shkenev [154] and E. T. Grigor'ev [40]. In the former case [154], the calculation 

model was based on the linear equations of vibrations of a liquid and the nonlinear dynamic equations of a shell, and in the 

latter case [40], vice versa, the vibration amplitudes of the liquid surface were assumed considerable, and the elastic 

displacements of the shell (longitudinal and radial) and the bottom were assumed small (axisymmetric vibrations were 

considered). The approach described in [40] was then developed in [41] and other studies. The solution of the problem was 

usually constructed using Narimanov's technique in combination with the Bubnov-Galerkin variation method. The potential 

q) was selected in the form [161]. Among the important results of this period is revealing the asymmetry of the vibrations of 

the free liquid surface relative to the surface Z 0 (i.e., the dynamic-equilibrium position about which vibrations occur somewhat 

shifts). 

The refined technique for calculation of the free vibrations of a liquid in a cylindrical tank with an elastic spherical 

bottom (a shallow model) was proposed by M. P. Petrenko [132-134, etc.]. This method allows us to examine the dynamics 

h0 ~ .  
of an elastic liquid system for arbitrary values of the parameter h0 = "~-- lms is due to the fact that the boundary conditions on 

the free liquid surface were satisfied exactly, as opposed to the previous studies. 

It should be noted that one of the central problems in studying the free nonlinear vibrations of a shell-liquid system 

is determination of its fundamental frequencies as functions of the vibration amplitudes. Such problems have been studied in 

detail for special cases where the wave motions of a liquid in rigid cylindrical tanks are considered or the vibrations of empty 

cylindrical shells are analyzed. In the former case, as shown in many studies [4, 46, 47, 87, 1t8, etc.], the fundamental 

frequencies of the liquid increase with increase in the amplitudes if the tanks are filled to relatively small depths 

"0 < tl o ~ 0 45 - 0 49 and decrease for large depths ~ > h0 Both weak and strong amplitude-frequency dependences 
R " 

also cterlst d char ' "c o ry elastic shells (without a liquid) [86]. 

A similar situation will naturally arise upon the mutual influence of both factors - -  the elasticity of a carrying body 

and the mobility of a liquid filling it. Let us consider an illustrative example where the wave motions of a liquid in a freely 

vibrating hinged cylindrical shell are not taken into account. Approximating the deflection w by the binomial expression [89] 

w = (fl cos s n y +f2 sin s. y ) sin ~'m x +f~ sin 2 ~'m x 

l ' m is the number of longitudinal half-waves (12) 

we obtain the following system to determine the dominant generalized displacementsfl and f2 (the function f3 was found from 
the quasistatic variant of the problem [24]): 

"~ "~ 2 2 2 2 
f l + c O ~ f l + ~ l l ( f f + f  ~ ) f l + g l ( f i  +f4 ) f l = O ,  

Here, 

f2  + 60~f2 + 71 ( f?  +f~ )f2 + gl (fl 2 +~-  )2f2 = 0.  (13) 

m(0)2 
9 --rim ']tOt got 

, , = , ( 1 4 )  

COY=l+m01 Y t - l + m 0 1  gt l+m01 

~0 (0) nm are the fundamental frequencies of the small (linear) vibrations of the empty shell, •0l and g01 are constant parameters 

describing the nonlinear (up to the fifth order) elastic properties of this shell, and m0t are the parameters of the reduced mass 

( m m > 0 ). As is seen from (14), the presence of the liquid, apart from decreasing the fundamental frequencies of the shell, 

somewhat smooths out the effect of geometrical nonlinearity (the amplitude-frequency responses (AFR) become more steep and 

come nearer to the corresponding linear curves). However, the qualitative nature of the geometrical nonlinearity of a shell (weak 
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or strong) does not vary in this case. If we represent the solution of Eqs. (13) as [8] f /=  a i cos ( C~ t + 0 i ) ( i = 1, 2 ), then it is 

easy to obtain from the averaged equations the two first integrals [87, 91,182] 

a ~ + a f = C 1 ,  ~ ( 1 - ~ ) ( 1 - c o s 2 0 ) = C  2 (15) 

that completely describe the nonlinear relationship between the amplitude and the phase characteristics of a freely vibrating shell 
2 

a I - 
containing a liquid. In (15), ~ = -C-T' 0 = 02 - 01, and C i = const. 

The functions ~ and 0 are determined from the equations 

d _ d _ _ ~ = 2 _ ~ ( l _ ; ) s i n 2 ~  ' d___~= ) ~ - - ( 2 ~ - 1 ) ( 1 - c o s 2 0 ) ,  
d t o31 d t o31 

(yl  + g l  CI )C!  
X - 8 (16) 

Integrals similar to (15) were also obtained in studying the nonlinear energy exchange between the natural modes of 

a liquid contained in a cylindrical vessel, which may be fixed on elastic supports [56, 73]. Integrals of the same type will be 

characteristic of the free vibrations of an elastic shell containing a liquid with its wave motions taken into account. To construct 

them, it is first necessary to transform a system of resolvent equations of the form (11) to normal (or, more precisely, 

quasinormal) coordinates and then to apply the methods of nonlinear mechanics. It is important to emphasize that integrals 

of  the type (15) are due to the natural resonances in a shell-liquid system. In the general case, they cannot serve as a strict 

basis (as is sometimes aff'm-ned) for reducing the number of degrees of freedom of this system, since they do not answer the 

basic question on the hierarchy of the influence of each of the degrees of freedom on the total energy of the system. 

Note that the free (due to the initial conditions) vibration modes of shells and their filler gradually damp in time 

because of inevitable energy losses due to the dissipative forces. In theoretical analysis, the damping properties of such systems 

are not usually considered. Occasionally, they are conventionally allowed for by using the well-known hypothesis of viscous 

friction [12, 87, 90, 105,107, etc.]. In this case, the damping factor is quite often assumed the same for modes with different 

wave parameters and for vibrations with arbitrary (including considerable) amplitudes, which cannot always be justified. As 

for experimental investigations of the damping properties of full-scale structures with a liquid, very few results were obtained 

in this subject area. Moreover, the experimental techniques developed to date allow us to determine only the general (integral) 

characteristics of damping, whereas the actual laws governing the formation of dissipative forces, which could be allowed 

for directly in the nonlinear dynamic equations of a shell and a liquid, remain, as a rule, unknown. 

Some decrement characteristics obtained in vibration tests by the method of free vibrations of cylindrical and 

spherical shells filled with a liquid are presented in [33, 145-147]. Yu. A. Gorbunov [33] was the first to notice that with 

increase in the vibration amplitudes of a carrying shell the logarithmic decrements not only can increase (which seems to be 

natural), but also decrease. It was also established that different structural and force factors (reinforcing elements, axial 

compression loads, etc.) contribute considerably to the dissipation of energy. V. F. Sivak and A. I. Telalov [145-147] showed, 

in particular, that the damping capacity of longitudinally reinforced cylindrical shells carrying a liquid heavily depends on 

both the amplitudes of their flexural vibrations (in the case of small amplitudes, this dependence is nearly linear) and the 
presence of contact of the liquid with the stringers. The logarithmic decrements tend to increase upon approaching any 

resonance state of the system. It was also established that, as a ftrst approximation, there exists a proportional dependence 

between the level (depth h0) of the filling of the shell and the corresponding logarithmic decrement of vibrations (as h 0 
increases, the decrement increases too). 

Periodically Excited Vibrat ions.  In parallel with the studies of free vibrations, nonlinear problems of the dynamics 

of shell-liquid objects under external periodic forces were solved. The early stage is characterized by using simplified models 
of the system (basically, the unimodal vibrations of shells were studied, the wave motions of the liquid-gas interface were 

neglected, the geometrical nonlinearities in the dynamic equations of the shell or the free liquid surface were not taken into 

account, the nonlinearities in the boundary conditions were neglected, etc.). Principal attention was drawn to the analysis of 
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the resonance modes of vibrations usually corresponding to the principal harmonic or parametric resonances. The basic studies 

in this subject area are briefly reviewed in the monographs [90, 118]. 

The most significant results in studies of the nonlinear forced vibrations of cylindrical shells partially filled with a 

liquid were obtained by F. N. Shklyarchuk, E. I. Obraztsova, V. S. Pavlovskii and V. G. Filin, L. G. Boyarshina, and other 

authors [62, 87, 90, 124, 129, 160]. 

If the wave motions of a liquid are neglected and approximation of the deflection of a shell in the double-mode form 

(12) is used, then its forced bending high-deflection vibrations will be described by Eqs. (13) with the right-hand sides 

Qo, Q02 containing the periodic functions of time ~ cos f~ t and cos ~2 t, where ~ is the frequency of transversal 
1 + m 0, 1 + too2 

excitation and Qo i are constant parameters determining the level of this excitation for each of the modes involved. Let us 

take into account nonlinearity of the third order in these equations and assume that Q02 = 0. Therefore, we obtain the equations 

"~ "> "~ QOl 
]1 + t~ +~1 ( f f + f 2 ) f l  - l + m o ~  c~ f2 t ,  

+ @ 2  + vl ( I?  = 0.  (17> 

Thus, the model of the forced vibrations of a shell with a liquid is a system of two nonlinearly coupled oscillators, 

one of which is subject to a periodic action, and the other is excited indirectly [32] due to the nonlinear connection and the 

natural resonance (oJ t = co 2 ). 

In the case of single-mode vibrations (when f2 = 0 and f ,  • 0), the AFR will correspond to the equation 

Qm (18) f22=~ +371 a f~  ( 1 +m0, ) a , 0 '  

From here, it follows that the presence of a liquid somewhat narrows down the resonance band (in comparison with 

the case of an empty shell), since both branches (cophased and antiphased) of the AFR approach each other. 

An analysis of the equations in variations shows that the solutions a,0 = al0 ( f2 ) of Eq. (18) are stable outside the 

~ 2  ") "~ frequency band ~d, < f2 ~ < f25, where 

9 4 Q(~I ~/1 )2 ' 
f212 = 0)'~ + ~ 9 ( 1 + m01 

n"  ~ 1 ~ /  4Qo171 
( l + m 0 t ) 2  , ( 7 , < 0 ) .  (19) 

The bimodal vibrations with amplitudes a t and a ,  that are determined from the following equations [89] are stable 
in that band: 

a2 1.5 Q0~ 

( 1 +m01 ) a I 

. ;4Io, (20) 
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Figure 2 demonstrates the positional relationship of the frequency curves a 1 ( f22 ) and a 2 ( f~2 ) plotted based on 

system (20) with allowance for the conditions ~'l < 0 and indication of stable sections (solid lines). The AFR for the 

single-mode regime al0 ( f~2 ) is shown for comparison. 

In [90, 129], the influence of the initial deflection w of a carrying shell on its forced nonlinear vibrations is examined 

with allowance for variation of the filling depth h 0 . In this case, the fundamental frequencies of the shell co I and 

corresponding to the conjugate bending modes will differ slightly from each other, which will cause some transformation of 

the instability region of the steady-state regimes and will have an effect on the amplitudes of these regimes. Only single-mode 

resonance regimes of the vibrations of a standing-wave-type system were numerically analyzed in [90, 129]. 
T. S. Krasnopol'skaya and N. P. Podchasov [79, 80] studied the nonlinear forced vibrations of a liquid contained 

between two coaxial cylindrical shells, one of which (outer) is rigid and the other (inner) is elastic with a specified law of 

deformation in time, namely, corresponding to a bending wave propagating in the circumferential direction. They carried out 

the theoretical and experimental investigations in parallel. The dynamic equations of the free liquid surface were derived 

using the approach proposed by J. Miles [ 179]. These equations differ somewhat from those of Narimanov's method. It was 

shown that, apart from the traditional forced resonance vibrations of a liquid with a frequency f2 w (f~w is the frequency of a 

f~w 
traveling wave), transversal (corrugated) waves with the multiple frequency v 1 --- - - ~  can be excited. 

Problems on the stability and parametrically excited vibrations of liquid-containing shells subject to axial periodic 

excitation were first analyzed by Yu. S. Shkenev [154], B. N. Bublik and V. I. Merkulov [20], E. T. Grigor'ev [40, 41], Kana 

and Craig [174], and other authors. They reduced the stability problem to equations with periodic coefficients. Primary 

attention in these studies was drawn to the construction, usually using Bolotin's technique [ 11 ], of dynamic-instability regions 

(DIR) and to the analysis of the influence of the filling depth on those regions. 
The cycle of studies performed by Shklyarchuk [157-160, etc.] was devoted to the effect of compressibility of a 

liquid on the parametric instability of cylindrical shells. The stability problem is solved in two stages. The axisymmetric 

vibrations of a shell filled with a liquid (the gravitation waves were not taken into account) are considered at the first stage, 

and the perturbed (nonaxisymmetric) motions caused by periodic forces N o acting in the median surface due to changes in 

the hydrodynamic pressure are studied at the second stage. It was established that allowance for the compressibility of the 

liquid decreases substantially the frequencies of the axisymmetric vibrations of shells. Simultaneously, the coefficient of 

apparent additional masses increases, which may result in some transformation of the DIR for the vibrations at the 

axisymmetric and nonaxisymmetric stages of deformation. 
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Problems on the parametric vibrations of a cylindrical shell with a liquid filled to different depths (h 0 = h 0 (t)) were 

solved by G. E. Bagdasaryan and V. Ts. Gnuni [5] and G. M. Ulitin [150]. In [5], the problem was solved based on the 

quasistationary theory, which allowed the authors to restrict the study to small rates of change in the filling depth. Ulitin 

presents in [150] a technique for deriving the exact solution for the velocity potential of a liquid in a shell with a variable 

filling depth (the Green-function method and the apparatus of distributions were used [131]). 

The next step in the studies of the parametric vibrations of cylindrical shells filled with a liquid was the nonlinear 

problems examined by E. I. Obraztsova and F. N. Shklyarchuk [125-127]. In vibration analysis, the deformation processes 

were divided into two stages - -  axisymmetric and nonaxisymmetric. The cases of both the rigid and elastic bottom of a shell 
were considered. 

When the conjugate modes (12) (with an additional axisymmetric term f4 (t) [24]) are allowed for, the nonlinear 

problem on the parametric vibrations of a cylindrical shell with a liquid is reduced to the system of equations with periodic 
coefficients [53, 64] 

'~ 9 ") 

f l  + ( ( 0 i -  H1 c~ v t ) f l  +Tt ( f l + . f 2 " ) f l  =0,  

f2  + ( W~ - HI cos v t )f2 + Y1 (fff +f~ )f2 = 0.  (21) 

-) 

N 1 kT. 
Here, v is the frequency ot' parametric excitation, H~ - and N 1 is the amplitude of this excitation. 

p ( 1 + m01 )' 

The amplitudes of parametric vibrations for single-mode regimes are determined by the dependences 

V ~ "~ 4 0 ) ~ - " - ~  , aj=O, 
ai- = 3 ~t 1 

( i , j = l , 2 ,  i . j ) .  (22) 

In the instability regions of these regimes, a double-mode regime with the following amplitudes is realized: 

.~ A Y H  l A + H  l v 2 .~ 
a ~ - = ~ ,  a 2 = - ,  A = T -  ~ (23) 

(here, the subscripts and superscripts must agree). The domain of its existence is the frequency band v < v* = 2 ~ - H l . 

V. S. Pavlovskii and V. G. Filin [90, 130] investigated the nonlinear double-mode parametric vibrations of an 

imperfect (with a small initial deflection) cylindrical shell partially filled with a liquid (the gravitation waves were not taken 

into account). The AFRs corresponding to the principal parametric resonance were plotted, and their dependence on the filling 

depth of the shell and on the amplitude parameters of the initial deflection was studied. The resonance modes of vibrations 
were analyzed for stability. 

Krasnopol'skaya and Lavrov attempted in [78] to allow for the wave motions of liquid in studying the nonlinear 

parametric vibrations of an elastic cylindrical shell. The case of kinematic excitation of the system with an excitation source 

of limited intensity is considered [76]. To approximate the dynamic deflection w, the beam Krylov functions obeying the 

conditions of cantilever fixation of the shell are used [ 149] in combination with conjugate (circumferential) modes. As a result 

of approximate solutions of the problem (taking into account two (out of four) principal coordinates of the system directly 

resonating with the external excitation), the effects of braking the shaft of an electromotor and changes in the characteristics 

of steady-state vibration processes in a hydroelastic system (as compared to the case of ideal excitation) were revealed. 

The interaction of the wave motions of the free liquid boundary with the bending bimodal vibrations of a cylindrical 

shell under resonance condition was examined by L. G. Boyarshin in [14] (nonlinearity was allowed for in the hydrodynamic 

part of the problem, and the equations of the shell corresponded to a linear model). 

In several studies [54, 64, 70, etc.], features of the nonlinear dynamic deformation of cylindrical liquid-containing 

shells subject to combined (transversally longitudinal) periodic loading (the waves on the liquid surface are neglected) were 
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considered in a simplified formulation. Figure 3 illustrates a typical AFR of a carrying shell [64] corresponding to its 

deformation in the form of a standing wave (when co I = ~2 = v /2  ) under specified loading. Here, boundaries 1 limit the 
, . )  

stability of the frequency curves AM and A 1 S characteristic of purely forced vibrations (Fig. 2), and fl~l = co l -  H l, 

f)]2 = ~ + HI; and boundaries 2 limit the stability of the curve RB characteristic of parametric vibrations. In the instability 

regions of the standing wave, bimodal vibrations will be realized, whose amplitudes a I and a 2 are determined from equations 

similar to (20) 

f2- = toi + 71 a ] - 2 H  t +-- 
1.5 Q01 

( 1 +m01 ) a  I ' 

/ (24) 

It was shown in [64] that the presence of the initial deflection w 0 changes a little the amplitudes of resonance 

vibrations and influences substantially the stability region of steady-state regimes. 

Nonlinear Wave Processes. All the above-discussed theoretical approaches to the investigation of the nonlinear 

vibrations of a shell-liquid system are traditional and based on the classical representation of the sought-for deflection of the 

shell and the profile of the free liquid surface. In this representation, the unknown functions of time ~. ( t ) and fk ( t ) 

(generalized coordinates) and the functions of spatial coordinates (natural modes) are separated termwise. Meanwhile, to 

calculate wave processes in the mentioned systems, it is expedient to use the mixed (space-time) mode (in the class of traveling 

waves), since it allows us to reduce the determination of the deformation parameters of the shell and the liquid surface to the 

solution of a system of nonlinear equations without natural-resonance-type singularities [58, 87], which considerably 
simplifies the investigations. This is achieved by using special wave coordinates (amplitude-phase) that have different 

physical dimensions (as is known, the conventional coordinates ~k and fk are equidimensional). It should be noted that the 

wave processes (mainly unsteady) in shells with a liquid considered within the framework of linear and nonlinear models 

were studied earlier by many authors [25, 26, 36, 37, 44--46, 49, 84, 109, 143, 144, 148, etc.]. A. M. Bagno and A. N. Guz' 

present in [6] a rather detailed review of studies of wave propagation in prestressed elastic bodies interacting with a viscous 

compressible liquid. 

A special technique for calculation of periodic nonlinear waves in shells carrying a liquid was developed and has 

been employed during the last decade mainly by the experts of the S. P. Timoshenko Institute of Mechanics of the Academy 

of Sciences of Ukraine [ 15, 16, 19, 55, 57, 58, 62, 63, 68, 69, 71,85, 87, 89, etc.]. At the initial stage, it was used in examining 
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the nonlinear free waves in a liquid contained in rigid cylindrical vessels [18, 87]. The equation of a perturbed surface had 
the following form, characteristic of  wave decompositions: 

n =0 k= 1 

(25) 

Here, b,7 k and ~,~h- are the amplitude and phase characteristics of a wave process. To determine them, based on dynamic condition 

(5), the following system of equations was obtained: 

0 "o 
b',~. + ( vT~k - ~7~. ) b,,k = E G,Ik 1 ) ( b ,  b, ~ , ~ ). 

�9 G ( 2 ) ( b , b , ~  ~)  bnk ~ + 2 bna. ~nl,- = e ,,l,. 

(n = 0, 1, 2 . . . . .  k = 1, 2 .... ), (26) 

where vnk are the natural frequencies of the liquid, G,~! ) are nonlinear analytical functions of the components { bnt I' I i~nk }, 

113nt " }, and I ~.k } of the vectors b, b, ~, and ~ ,  and ~ is a small parameter (e > 0). The special change of variables [58, 66, 71, 87] 

bnk = "~ Unk + Vnk sin ~nk , bnk = vnk vnk COS ~lnk  , 

~nk = (Pnk + arctan 
ttnk tan--'~- + Vnk Mn k Vn k 

MiTk ' [~nk = o 
b ,Tk 

Mnk = ~/u,~k - vn~'' ~,,k = 2 ( v,, k t + O,,~- ) (27) 

has allowed transforming system (26) to a standard form relative to the functions Un~., Vnk, (Pnk ' and Ont. 

d t e bnk ~ bnk Vnk J,  

d Vnk 
d t  

(~) 
Gill,) ) Unk Gnff Mnk . 

cos ~tnk + - -  san ~nk 
bnk Vnk bnk 

{ ~ ( 1 )  (sin~gnk cos / d Cpn k I_rnk Vnk ~ltnk 
t 

Gn{~2) / ( s in  ~nk + unk Vnk It + 
- -  cos L[tnk + - -  , 

2 bnk Vnk ~ Vnk Unk 

d t  
{ G(k I ) ( unk sin ~tnt. + Vnk ) 

2 bnk Vnk Vnk 

Gn~ 
) 1 Mnk 

cos ~nk ~" (28) 
+ 2 bnk Vnk Vnk J 
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From the averaged equations (28), the phase velocities Vph of a circumferential wave in a liquid (in the case of 

approximation (25)) were determined depending on the amplitudes of this wave. It was shown that with increase in the 

amplitudes bnk those velocities can both increase (for ho/R > 0.49) and decrease (for ho/R < 0.49). 

The next step in the development of the wave approach was its use for calculation of periodically excited waves in 

cylindrical shells containing a liquid when the energy of wave motions of the liquid is low [58, 63, 87, 89]. The dynamic 

deflection w was represented in a form similar to (25) 

n = 0 m = l  

(29) 

In the case of one-wave approximation (29) (n = m = 1) (with allowance for a complementary axisymmetric mode), 

the AFRs were constructed for transversally and longitudinally excited waves. For radial excitation with frequency f~, these 

characteristics correspond to the equations 

3Y1 Q I  Q?  
A = - - - ' ~ - u l  + , , Ul = u  + 9--"W (30) 

2 71 v~ 71" vi  

'~ 2 (( u 1 = Unm, Vl = Vnm, A = r -- ~ , Q1 is the amplitude parameter of an extemal force, o) 1 = O~nm is the fundamental frequency 

of a shell with a liquid, and 71 = Ynm is the parameter of nonlinear elasticity (14)). These AFRs are shown in Fig. 4 [63]. Here, 
9 - -  9 

-Ul = Ul/h 2, ~1 = Vl /h  " , A  = A/~I" , the superscripts correspond to u I and v~, and the subscripts to u 2 and v 2. The following 

values of the parameters were used: 

E = 2 . 1 0  l lPa ,  190 = l . 1 0 3 k g / m  3, P = 7 . 8 p 0 ,  

h 1 2.5, /a=0.3, h 0 =0 .2 5 1 ,  ~ = 3 . 1 2 5 . 1 0  -3  , ~ =  

R = 0 . 1 6 m ,  r e = l ,  n = 6 ,  Q0=31 .1Pa .  (31) 

The frequency curves u 0 ( A ) characterizing a standing wave in a shell (its stability is limited by the curves O K 1 and 

O M 1) are presented for comparison. The curves KP and KL correspond to the shell deformation in the form of a traveling 

wave. 

When the shell is parametrically (axially) excited with frequency v, the AFR of the wave process has the simpler 
form 
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3 Y1 HI ul 
A1 = - ---~'-- Ul u 

4 0 " ") ,3 a . . ,  ( ) %-~ (0) ~ v "  
~:0, A1 = 0 ) t ' - - ~ -  (32) C l - 0)~ 

(H 1 is the level of longitudinal excitation). 

If  a shell is subject to the simultaneous action of both loads q and Nx, then the frequency curves for the case of a 

complex resonance 0)1 = v / 2  = f2 are determined by the system of equations 

A = A  1 =----5--  ul u HI---L---- _~ 
- 2 v  I 

Q? 
u~ - , u v I (33) 

(either superscripts or subscripts should be used here). 

Problems on the nonlinear interaction of  several bending waves in shells carrying liquid masses are more complicated. 

They are encountered when the shells have close fundamental frequencies (practice testifies that the number of such 

frequencies may be two or three). Figure 5 illustrates, for example, the process of  convergence of  two fundamental frequencies 

of  a simply supported orthotropic cylindrical shell when the depth h 0 of  filling it with a liquid is varied [57] (an orthotropic 

shell with the parameters E 1 = 2.12.109 Pa, E 2 = 1.23.109 Pa, p = 1.65 �9 103 k g / m  3, h = 3 �9 10 -3 m was considered; it was 

filled with water, and the wave parameters n i and m corresponded to the values n I = 3, m = 1; n 2 = 4, m = 1; 0)1 =03him, 

0)2  = (On 2 m )" Koval 'chuk and Kruk [57] were the first to obtain a number of the first integrals that describe the interaction of two 

bending waves in cylindrical liquid-containing shells performing free vibrations (waves in the liquid were not taken into account). 

The first three integrals relate the amplitude parameters of waves 

+ = C l ,  u ?  - v? = c 2 ,  - = c 3 ,  

(C 1 = const,  U l  = Un I m , u 2  = Un 2 m , V l  = Vnj  m , V2 = Vn 2 rn ) .  (34) 
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Here, the wave parameters n i and m satisfy the resonance condition 0)1 -- (o2 �9 The fourth integral determines the energy 

relationship between the amplitude and phase parameters of both waves 

G 2 u~ ~l 
- -  L l L 2 cos 0 = C 4 = const .  (35) GI ui 2 2 0)1 

Here, G 1 and G 2 are constant coefficients depending on the nonlinearity of the shell and frequency detuning A = 0)~ - 0) 2, 

L l = X [ ( U l / a � 9 4  Cl )2a~  C 3 , L  2 ~[ 9 a - _ - = u~ - C 2 , ~)i = , mOi are the parameters of the apparent additional masses of the 
1 + moi 

liquid, 8 is the parameter of the nonlinear relationship between the interacting waves, and 0 = 2 ('On2 m - "Onj m )" 

The periodic functions u I and 0 are determined by the equations 

d u l  81 K ( u l ) s i n ~ ,  d 0  ~ l  - -  "d7 = Gl - G2 ul - 90) S ( u l ) cos 0, (36) 
d t 2 o )  1 - t 

where 

d K  
K ( u t ) = L I L 2 ,  S ( U l ) = d u  1 .  

If a shell with a liquid having close frequencies 0) 1 = o)2_ is under radial harmonic pressure with frequency f2 --- 0)i, 

then the averaged equations admit four qualitatively different groups of solutions for the amplitudes of  the wave parameters 

u i and vi, namely [19, 68, 69]: (i) u I = vt, u 2 = v 2 , (ii) u I r Vl, u 2 = v 2 , (iii) u 1 = v 1, u 2 ;e v2,  and (iv) u t ~ Vl, u 2 ~ v 2. The 

first group corresponds to the interaction of two standing waves, the second and third groups describe the more complex 

nature of energy redistribution in the shell with the liquid, when a standing (traveling) wave excited by an external force can, 

under some conditions (in particular, for particular filling depths), indirectly excite a traveling (standing) wave. Finally, the 

fourth group characterizes the interaction of two travelling bending waves with the parameters m, n I and m, n2, respectively 

(n I ~ n 2 ). 

Problems on the interaction of bending waves excited in cylindrical shells with circumferential waves in a liquid 

were considered in [15, 58, 87, 89, etc.]. The interaction processes were investigated in the cases of free vibrations of the 

system and its external periodic excitation. In [58, 89], these processes were analyzed in detail based on linear formulations 

of problems of hydrodynamics and hydroelasticity. A general system of connected wave equations was obtained, and the 

solutions of these equations were constructed. Not only do these solutions contain the traditional harmonics with principal 

frequencies )~1 and )"2_ of the shell-liquid object, but also harmonics with multiple (2 E l, 2 L2_ ) and combination (E L +_ ~'2 ) 

frequencies. It was established that when a carrying shell is under an external harmonic (with frequency ~ ) action, the regime 

of dynamic extinction of  a bending wave realized at f2 = v,, k is possible. In this case, the energy introduced to the shell-liquid 

system is completely spent to realize a circumferential wave in the liquid, whose amplitudes reach maximum values. The 

carrying shell remains still (within the framework of the accepted model), though, under the conditions of the problem, an 
external load is applied to it. 

In [15], the dependences of the phase velocities of nonlinear waves excited in a shell with a liquid on the amplitudes 

of these waves are constructed and the criteria of instability of forced traveling waves in a carrying shell (its dynamics is 

described by linear equations) are established. Figure 6 demonstrates the AFR a = a (A) (a is the amplitude of  the wave process, 
n 2 A = 0)~ - f~ , f~ is the frequency of the external excitation) with stable (A, B) and unstable (S) domains indicated. Here, 

A1,2 = u 4 Q~ 711 (Q1 is the amplitude parameter of excitation and 7t t is a parameter characterizing the nonlinear relationship 

between the vibrations of the liquid and the shell). In the domainsA and B, the standard forced bending waves in the carrying 

shell are realized (the liquid surface remains still). In the domain S, in Boyarshina's  opinion [15], the 

circumferential-wave-type motion of the liquid excited by the circumferential waves traveling in the shell can be realized. 
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A similar problem was considered in [16], where the interaction of circumferential waves in a liquid contained in a 

cylindrical vessel with bending waves excited in its elastic bottom was studied. 

The last two decades are characterized by growth of interest in the study of nonlinear wave processes in shell-liquid 

systems in the instability regions of regular periodic regimes. As in-depth studies testify, the specific effect of chaotization 

of the wave motions can be observed in these regions. The case in point is excitation of nonregular (of chaotic nature) motions 
in a deterministic system. 

It is well known that dynamic chaos, which recently seemed improbable, is a widespread phenomenon encountered 

in some domains of science and engineering [114, 119, 163] and, in the opinion of many specialists, can be classed as one of 

the most significant scientific discoveries in mathematics at the end of the 20th century. As applied to bodies with a liquid, 

this phenomenon has been studied theoretically in sufficient detail to date [81-83, 87, 179-181, etc.]. As for experimental 

investigations of chaotic regimes of liquid motion in a vibrating cylindrical body, they were described as early as 1955 by G. 

N. Mikishev [ 105]. The author called these unsteady regimes beatings. They exist only in some narrow part of the resonance 

region, outside which regular plane or spatial waves take place. 

The basic properties of the chaotic vibrations of a liquid in cylindrical bodies subject to transversal periodic excitation 

by an energy source of limited intensity are studied in [82, 83, 87]. The evolutionary equations were supplemented here by 

an equation describing the rotation of the shaft of an electromotor. The studies [55, 58, 87] were the first to theoretically 

obtain the domains of the parameters of a system consisting of a cylindrical vessel and a liquid moving chaotically. 

The effect of dynamic chaos is also naturally observed when an elastic cylindrical shell carrying a liquid is 

periodically excited [58, 81]. Figure 7 presents typical AFRs Ul(A ) and vl(A ) plotted for a hinged cylindrical shell with a 

liquid in the specific case where the theoretical model of the general system allows for the nonlinearities due to considerable 

displacements of the free liquid surface. The shell deformation corresponds to beam vibrations (n = 1), and the first 

antisymmetric modes can be excited on the liquid surface. The shell is under radial periodic pressure (with a period of 

27t 
T = "---~, ff2 -- ~q, where ~.] is one of the principal frequencies of the shell-liquid system, which was determined from the 

characteristic equation of the linear parts of system (11)). The dynamic-chaos domain is the frequency domain 

A R < a < AS, where 

A = ~ ' ~ - a 2 '  AR=2--'7-~- 72 7 2 - 9 ~ 1 ) '  
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3 4 3  2 -  Q ~1 (37) AS=--~ 

and 

Q 1 ( "~1 + k A ) k'~ - o)'~ 2 b I ~'~ 
, A = - - ,  "~1- 2 ' Q - ( l + k a 2 ) p h  81 3 ( l + k A  ) 

~ 2 - 1 + k A 2 ( b l - 2 b 2 ) ,  k -  81 

("/1 ="/111 andS1 1! �9 . �9 = 81 are the coefficients m the hnear parts of Eqs. (11) and b I and b 2 are constant parameters of hydrodynamic 

nonlinearities [87]). It was assumed that ~1 < 0. The curves MIR 1 and M2R 2 characterize the traveling-wave regime both in the 

shell and on the liquid surface, and standing-wave regimes are realized on the sections QK and SE. The existence of chaotic 

regimes in the region (A R , A S ) was proved by analyzing the system of evolutionary equations by the technique stated in [87, 

179-181]. It was established, in particular, that local instability and global-compression conditions are characteristic of this system 
[119]. 

Note that in the case of longitudinal (axial) periodic excitation of a shell with a liquid, chaotic regimes are not 

observed. As studies testify, the evolutionary equations fall into the class of coarse dynamic systems [3] (the topological 

structure of their phase paths does not vary for small changes in the parameters of these equations). The mentioned feature 

was pointed out earlier in [80, 81]. 

In summary, note that the above-mentioned wave processes in shells are related to the form of the solution of 

Eqs. (1) (which, as is known, are not hyperbolic), i.e., these processes are some analog of dispersive waves [138, 141]. They 

differ from the classic harmonic waves characterized by constant amplitudes and phase velocities. The formation of these 

waves is due to the complex process of nonlinear interaction of conjugate bending modes, one of which is directly excited 

by an external periodic force, and the other is indirectly involved in the process due to the nonlinear relationships between 
the modes and the natural resonance. 

Vibration Stabil i ty under Complex Resonance Conditions, A special class of problems on the dynamics of a 

shell-liquid system consists of problems on the stability and vibrations of these systems under the conditions of complex (in 

particular, combination) resonances. Among them also are problems on the spatial vibrations of shells carrying a liquid, where 

the above-mentioned resonances are frequently encountered, creating premises for radical energy redistribution between 

different generalized coordinates of the whole system. 

Nonlinear problems on vibration stability of shells carrying a liquid under complex-resonance conditions were 
analyzed in [14, 29, 30, 87, 128, etc.]. General  theoretical  premises for solving such problems were worked out by 

V. O. Kononenko and R. F. Ganiev [29, 32]. 

V. S. Pavlovskii and V. G. Filin [90, 128, etc.], using Narimanov's technique in combination with the 

Bubnov-Galerkin method, performed a stability analysis of steady-state regimes of the axisymmetric vibrations of a 

liquid-containing cylindrical shell subject to longitudinal periodic excitation under complex-resonance conditions. The 

nonlinearity of the problem was taken into account only in its hydrodynamic part. Criteria establishing necessary and sufficient 
conditions of the stability of forced vibrations with excitation frequency were constructed. 

L. G. Boyarshina [ 14, 87, etc.] also examined problems on the stability of shells with a liquid when complex resonance 

relations (linking the fundamental frequencies of the shell and the free liquid surface with the external excitation frequency) 
are realized. 

As for investigations of the spatial vibrations of shells with a liquid under resonance conditions, special approaches 

to the solution of such problems were developed at the Institute of Mechanics of the Academy of Sciences of Ukraine by 

R. F. Ganiev and his colleagues [17, 29-32, etc.]. In constructing the dynamic equations of the general system, the concept 

of the theory of relative motion [100] is used in this case. According to this concept, the basic (translational or translationally 

angular) oscillating motion of a carrying rigid skeleton is considered with the elastic (bending and tangential) vibrations of 

the shell and the vibrations of the free liquid surface superimposed on it. The theoretical model takes into account both the 
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considerable deviations of the free liquid surface from the nonperturbed state and the same (considerable) displacements of 

the rigid skeleton in space. The geometrical nonlinearities of the shell itself are not considered. On the basis of the 

Hamilton-Ostrogradskii variation principle, an infinite system of connected nonlinear equations was obtained, which is used 

to consider some mechanisms of spatial instability under the nonlinear-resonance conditions. The mechanism determining 

the low-frequency vibrations of the free liquid surface under high-frequency excitation of the carrying shell (this phenomenon 

was mentioned earlier in [171]) is of primary interest. 

It should be noted that problems of the theory of spatial resonance vibrations of deformed bodies with a liquid have 

not been fully investigated yet, and, therefore, further development is needed. This undoubtedly important domain of nonlinear 

mechanics is characterized by a significant gap between the general initial statement of the problem and numerical solution 

of specific problems. On the other hand, it is inexpedient that the same model allows for nonlinearities of different orders 

that are due to, for example, the considerable amplitudes of the flexural and tangential vibrations of a carrying shell, or the 

flexural vibrations of the shell and the wave motions of the free liquid boundary, or the tangential vibrations of the shell and 

the angular motion of the rigid skeleton, etc. Urgent questions that may be the subject of future studies are as follows: which 

nonlinearities and when should be taken into consideration in constructing models of spatial motions of shell-liquid objects 

and what is the degree of influence of these nonlinearities on the resonance situations in these systems? 

Nonstationary Processes. One of the important aspects of the problems being discussed is investigation of transients 

of the dynamic interaction of liquid-containing shells when the carrying object (or the free liquid surface) is acted upon by 

aperiodic (impulse and other nonstationary) loads. To effectively solve such problems, it is expedient in the overwhelming 

majority of cases to use numerical-analytical approaches: at the first stage, variation methods are used to construct a nonlinear 

discrete (of certain dimension) dynamic model of a continual shell-liquid system, and at the second stage, the equations 

obtained are numerically integrated. The modes of the natural vibrations of this system obtained by solving the respective 

linear boundary-value eigenvalue problems are usually selected as basis functions. 

The first problems on the stability and the nonstationary vibrations of liquid-containing shells subject to aperiodic 

loading were analyzed by A. V. Sevast'yanov [142], N. A. Kil 'chevskii and his disciples [104], and other authors. In 

approximating the deflection w, one dominating mode in combination with some multiple harmonics was allowed for. The 

liquid surface waves were neglected. 

Afterwards, nonstationary problems of the dynamics of elastic shells interacting with a liquid were solved by many 

authors [25-28, 36, 37, 109, 120, 143, 144, etc.] using computational approaches. 

Nikitin [121] has undertaken extended studies of the nonstationary wave processes in differently shaped shells of 

revolution partially filled with a liquid. These wave processes were due to the action of intensive loads promptly varying both 

in time and in space. In calculating the dynamic variable fields of stresses and strains in a carrying body, Nikitin used nonlinear 

models. The behavior of the liquid medium was described only in a nonlinear formulation (the deformation of the shell was 
determined by linear equations of hyperbolic type). 

Among other studies on this matter, we may point out those by A. V. Kochetkov [77], where he discussed different 

nonlinear models (with both geometrical and physical nonlinearities taken into account) of the nonstationary interaction of 

shell structures with a compressible liquid and proposed effective numerical methods to analyze them. 
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The laws governing the nonlinear wave (as traveling bending waves) deformation of cylindrical liquid-containing 

shells under transversal and longitudinal impulse loads were studied in [59-62, 65, etc.]. One-wave models of shells were 

considered, and the energy of vibrations of the liquid surface was assumed low. Figures 8-11 present some results of the 

integration of the equations derived by the Bubnov-Galerkin method and composed in the amplitude a and phase velocity 

ct of the waves. 

The calculations were carried out for shells with the following parameters: E=2 .1011  Pa, p = 7 . 8 p 0 ,  

P0 = 1 �9 103 k g / m  3, la = 0.1, R = 0.16 m, R / h  = 0.32-103, l /R = 2.5, and m = 1. Figures 8 and 9 illustrate amplitude-time 

curves ( ~ = a /h  ) plotted for a given shell with different parameters n of circumferential waves (Fig. 8) and depths 7=  ho/l  

of filling with a liquid (for n = 6) (9) and subject to the action of a transversal triangular impulse having a duration of 

t I = 2 �9 10-  3 sec and an amplitude of S m = 7.8 �9 103 k g / m  �9 c 2. In both cases, it was assumed that a ( 0 ) = h /10  and & = 0. If 

(0) ~ 0, in particular, & (0) = co 1, then the results of the studies correspond to Figs. 10 and 11 ( ~ = &/o~l). 

Some nonstationary problems on the dynamic interaction of shells of revolution with a viscous and incompressible 

liquid filling them were considered by Ya. F. Kayuk and his colleagues [51, 52]. To describe the deformation processes of 

both shells and the free liquid surface, the unified Lagrange coordinates were used. Methods of numerical integration were 

used in [67, 72] to investigate the nonstationary processes of passing the basic harmonic (co 1 ---f~ ) and parametric 

(o) 1 --- v /2)  resonances of the free boundary of an ideal incompressible liquid contained in oscillating cylindrical bodies. It 

was assumed that the frequencies of radial ~ and axial v excitations vary slowly in time by a linear law. 

It should be noted that in analyzing nonstationary processes in shell-liquid systems, a principal problem is to select 

a system of basis functions that approximate quite well the anticipated deflection of the shell and the perturbed surface of the 

liquid. In the overwhelming majority of cases, the modes of the natural linear vibrations of the dry shell and the modes of the 

liquid calculated regardless of the effect of the elastic walls of the carrying body are usually used as basis functions. In this 

case, one or two modes are considered, which may lead to significant errors in the determination of the actual SSS of 

shell-liquid structures and in the prediction of resonance situations that can arise when a system is subject to external periodic 
forces. 

A new (multimodal), apparently promising, approach to the study of the nonlinear vibrations of shells carrying a 

liquid was proposed in [58, 89]. As the flu'st stage of this approach, the natural modes of the flexural vibrations of a shell are 
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determined with allowance for the effect of hydrodynamic pressure. For example, in the case of a hinged cylindrical shell, 

these modes have the form 

N 

.,~k : c,,~- cos n y  ~ Zkm sin Z., , ,  
R 

m = t  

N 

wnk= C~ tk sin ~ ~.~ Xkm sin ~'m X, 

m = l  

(38) 

where Ci nk are constants and ~km are the components of the eigenvectors of the linear part of system (11), which are used to make 

the general system (11 ) quasinormal (N is the number of axial modes of the shell that are taken into account). At the second stage, 

the modes found are allowed for in the function approximating the nonlinear deflection and the Bubnov-Galerkin method and 

methods of nonlinear mechanics are applied. 

Conclusion. The present review allows us to conclude that wide experience in the approximate solution of complex 
nonlinear problems of the dynamics of shell-liquid systems has been accumulated to date. The numerous and most significant 

results in this subject area have been obtained for simplified formulations of the mentioned problems corresponding, in 

particular, to the following two characteristic cases: (i) the elastic displacements of a carrying object are small (corresponding 

to the linear theory of shells) and (ii) the energy of the dynamic deformation of a shell with a liquid considerably exceeds 

that of the wave motions of the liquid filler. In the former case, the dominating factor is the incommensurability of the 

smallness concept for the vibrations of the free liquid surface and the elastic (beading and tangential) vibrations of the shell. 

The latter case is characterized by neglecting the effect of the liquid filler on the natural modes of the carrying shell. The 

liquid is usually assumed to be ideal and incompressible. 

Other, more complex formulations of the problems, despite their urgency and practical importance, were considered 

in publications that are not numerous in number. This fact is indicative of fundamental mathematical difficulties in solving 

such problems. Note that to date there is no generalizing monograph that is devoted to nonlinear problems of the dynamics 

of shell-liquid objects (at least, the authors of the review are not aware of such monographs). Compare: about two dozen such 

monographs [95] concern problems of the nonlinear vibrations of solids partially or completely filled with a liquid. 

Publications devoted to problems on the nonlinear dynamic interaction of shells with a viscous liquid are very limited 

in number. Such problems, as is known, are specific and considerably more complicated than the corresponding problems 
stated for an ideal liquid [9]. 

Among little-investigated problems in the scientific area being discussed are problems on the nonlinear vibrations 

of liquid-containing shells in a gentle gravitational field or in a field of random forces, on the interaction of liquid-containing 

shells with separation of the liquid from the elastic walls and formation of cavitational caverns, on the nonlinear vibrations 

of shells carrying a bubble (with gas inclusions) or a stratified liquid, on the interaction of rotating shells with a liquid filler, 

etc. Nonlinear problems of the dynamics of inclined, including horizontal, cylindrical shells partially filled with a liquid have 

not been sufficiently examined. Methods for solving nonlinear problems on the vibrations of shell-liquid objects with 

allowance for different design features such as damping baffles, rigid or elastic covers (restricting the motion of the free liquid 

boundaries), displacing flexible diaphragms, etc. have not been developed in sufficient detail. Still urgent are general problems 

of the dynamics of an elastic liquid system associated with the selection and justification of expedient techniques for 

description of the nonlinear motion of a continuous system consisting of an elastic body and a liquid. 
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