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To the Beginning o f  the Third Mi l lennium 

C O M P R E S S I B L E ,  V I S C O U S  F L U I D  D Y N A M I C S  ( R E V I E W ) .  P A R T  I 

A. N. Guz '  UDC 532.516/539.3 

The article is the first part of a survey of problems in compressible, viscous fluid dynamics as related to 
the dynamics of rigid and elastic bodies in a compressible, viscous fluid in the linearized formulation. The 
formulation of basic problems is discussed, along with a method of solution based on general solutions of 
the Navier-Stokes equations in vector and scalar form in dynamical problems. Forced harmonic 
vibrations of rigid bodies in rest and moving compressible, viscous fluids are discussed. Publications 
relevant to the stated problems are analyzed. 

Brief Historical Summary. Fluid dynamics together with rigid and deformable bodies interacting with fluids 

constitutes one of the fundamental classical problems of mechanics, physics, and applied mathematics; the development of 

this problem has a long history and is identified with classical names in the natural sciences. Specific results obtained in the 

investigation of the problem are of major practical significance in regard to various aspects of science and engineering, 

including the latest technological processes. Initial research efforts addressed fluid dynamics in interaction with rigid bodies; 

at a much later date research began to be extended to the dynamics of elastic bodies in a fluid, motivated by the interests of  

related trends in science and various engineering applications. It is also important to mention the significance of results on 

the dynamics of rigid and elastic bodies in a fluid as applied to biology, bearing in mind the development of biomechanics 

(problems in the dynamics of bodies in the bloodstream, the propagation of disturbances in blood vessels, etc.). The 

development of topics in fluid dynamics in conjunction with fluid-interacting rigid and elastic bodies therefore poses a timely 

problem in science and engineering by virtue of the heightened concern of specialists in various scientific disciplines. 

To adequately describe the dynamics of rigid and elastic bodies in a fluid, it is necessary to devise suitable fluid 

models, because rigid or elastic solid models are predetermined by the initial statement of the specific problem. Quite a broad 

range of possibilities for describing the indicated dynamical processes is afforded by classical fluid models (ideal 

incompressible, ideal compressible, viscous incompressible, and compressible viscous fluids), each of which is limited to the 

capability of describing only certain dynamical processes. The earliest research progressed using the simplest model: an 

incompressible, ideal fluid; as the investigation probed more deeply into dynamical processes and explored new physical 

phenomena, and also with the refinement of research techniques, more sophisticated fluid models came into play. The 

transition to the analysis of problems requiring the incorporation of damping of dynamical processes (vibrations) made it 

necessary to discard the ideal incompressible fluid model and go over to an ideal compressible fluid model. In this sense the 

model of a compressible, viscous fluid is the most general of the classical fluid models, because its mission is to combine the 

property of compressibility, which permits the wave character of the propagation of disturbances to be described within the 

framework of  an ideal compressible fluid, and the property of viscosity, which permits the damping of  dynamical processes 

to be described on the basis of the viscous incompressible fluid model. 

When the viscous fluid model is used to describe the dynamics of rigid and elastic bodies in a fluid, the most important 

information can be obtained by means of the Navier-Stokes equations. In this case, however, major mathematical difficulties 

are encountered in solving the corresponding problems, and at the present time they are overcome in each specific situation 

by the application of modem numerical methods and computers. Nonetheless, simplifications of  the kind usually found in 

mechanics are used in the analysis of individual problems (involving the viscous fluid model to describe the dynamics of 
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rigid and elastic bodies in a fluid). For example, the Stokes [96] or Oseen [95] approximations are customarily used in the 

case of low Reynolds numbers [74, 76, 78, 83]; an extensive literature has been devoted to this scientific approach, including 

publications in periodicals and books, for example, [85]. Boundary-layer theory is normally used at higher Reynolds numbers 

[74, 76, 78, 83]. 

It is essential to note that the Stokes and Oseen approximations are essentially obtained by linearization (which may 

or may not be sufficiently consistent) with the Navier-Stokes equations for steady (time-invariant) fluid motion, whereupon 

the results obtained by means of these approximations can be used to describe low-frequency processes. Since the Stokes 

[96] and Oseen [95] approximations (when applied consistently) refer to steady fluid motions, their context is such that only 

the convection derivative in the total derivative of the velocity vector is retained in the Navier-Stokes equations. The Stokes 

approximation in this case completely rejects the convection derivative of  the velocity vector (as a nonlinear term in the 

linearization operation); the Oseen approximation, on the other hand, linearizes the convection derivative of  the velocity 

vector (as a nonlinear term in the linearization operation), taking into account the constant-velocity uniformity of  the flow 

"at infinity" (i.e., the freestream flow). 

There is another class of  viscous fluid problems in which the Navier-Stokes equations can be greatly simplified. 

This class encompasses dynamical processes in which the disturbances are small, and the Navier-Stokes equations can be 

consistently linearized using the exact expression for the total derivative of the velocity vector; these cases are also fully 

consistent with the theory of small vibrations of mechanical systems in the customary terminology used in mechanics. In 

Landau and Lifshitz's well-known course in theoretical physics [76] (p. 125) this situation is treated as the motion of bodies 

in a fluid when the amplitude of the vibrations of the body is much smaller than its dimensions. Consequently, the 

above-mentioned class of problems includes problems in the dynamics (small vibrations or motions) of  rigid bodies in a 

compressible, viscous fluid and in the propagation of small disturbances (small-amplitude waves) in elastic bodies interacting 

with a compressible, viscous fluid. 

We note that problems in the dynamics of  rigid and elastic bodies in a viscous fluid are currently investigated 

primarily for the model of an incompressible, viscous fluid; the results of  such investigations can be found in numerous 

publications in the periodical and monograph literature, for example, [84] and [77] (in part). The compressible, viscous fluid 

model, on the other hand, appears only in isolated publications, for example, [87]; only in the last two decades, beginning in 

1980 [24], members of the S. P. Timoshenko Institute of  Mechanics of  the National Academy of Sciences of Ukraine have 

published the results of studies in compressible, viscous fluid dynamics [1-22, 24-43, 45-68, 70, 73, 86, 89-91, 97] 

(formulated in the linearized version for fluids at rest and in motion); the present author has published a book on the same 

subject [44]. 

In the above-cited studies, the author and his students have developed the basic principles of  the dynamics of  rigid 

and elastic bodies in a compressible, viscous fluid in application to the theory of small vibrations or motions of  rigid bodies 

in a compressible, viscous fluid, and also to the theory of the propagation of small disturbances (small-amplitude waves) in 

elastic bodies interacting with a compressible, viscous fluid. These studies have been carried out on the basis of  the linearized 

Navier-Stokes equations resulting from their linearization for the cases of unsteady (time-dependent) and harmonic motions. 

The cited investigations cover the following topics: statement of the problems, general questions, and the representation of 

general solutions of the linearized Navier-Stokes equations for compressible, viscous fluids at rest and in motion; forced 

harmonic vibrations of rigid bodies in moving and rest compressible, viscous fluids; unsteady motions of rigid bodies in a 

rest compressible, viscous fluid; the dynamics of rigid bodies in a compressible, viscous fluid under the influence of radiation 

forces generated in the interaction of acoustic waves in the fluid and in the rigid bodies; the dynamics of thin-walled shells 

interacting with a compressible, viscous fluid; hydroelasticity problems for initially stressed elastic bodies and a compressible, 

viscous fluid. These problems define the subsequent structure of the present survey, which is devoted to a brief analysis of  

the main results obtained in the indicated scientific directions. It is important to note that the mathematical apparatus used in 

studying the specific problems stated above rests on the application of general solutions constructed for the linearized 

Navier-Stokes equations for moving and nonmoving (at rest) compressible, viscous fluids. The scientific results analyzed in 

the article have the following characteristic features in common: rigorous and consistent application of  the linearized theory 

of compressible, viscous fluids, which provides a means for describing the wave nature of  the propagation of disturbances 

and their damping; the derivation of fundamental results in the model of a piecewise-homogeneous medium in a 

three-dimensional setting, thereby ensuring that specific results will be obtained in general form without restrictions on the 

wavelength relative to the linear dimensions of the bodies or on the degree of viscosity of  the fluid; systematic passage to 
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limits for simpler fluid models in the majority of the specific problems considered; an analysis of  mechanical phenomena 

associated with the wave nature of  the propagation and damping of disturbances. 

An essential undercurrent in the present survey, as in the author's book [44], is frequent mention and emphasis of  

the fact that the linearized theory of compressible, viscous fluids can be used to describe the wave nature of  the propagation 

and damping of disturbances. This remark is a reflection of the understanding that in simpler models the wave nature of the 

propagation of disturbances can be described only if compressibility is taken into account (ideal compressible fluid model), 

and the damping of disturbances can be described, of course, only if viscosity is taken into account (incompressible, viscous 

fluid model); the compressible, viscous fluid model, on the other hand, treats the properties of compressibility and viscosity 

concurrently. 

The survey is divided more or less conditionally into two parts to accommodate the character of the problems analyzed 

in each part. Thus, the first part covers information with a historical slant and results obtained mainly by methods of an 

analytical nature, along with a bibliography that covers both parts of  the survey. The second part is dedicated to results also 

obtained by analytical methods, but with the application of numerical methods in the final stage of analysis. 

Within the guidelines of the foregoing brief historical and formulative outline we can now proceed with an analysis 

of the fundamental results. 

1. Basic Relations and Genera l  Solutions. In this section, we analyze results pertaining to the basic relations and 

their linearization, the identification of Lagrangian and Eulerian coordinates, the representation of general solutions in vector 

and scalar forms in application to moving and rest fluids, certain analogies in continuum mechanics, and limiting transitions 

from the general solutions to simpler fluid models. 

1.1. Basic Relations. We write the basic relations for a compressible, viscous fluid in Eulerian coordinates, using the 

notation of [35, 36, 44]. In this notation, the breve over a variable or differential operator indicates that the variable or operator 

is being used in the Eulerian description of motion based on Eulerian coordinates. In the Eulerian description, according to 

[74-76, 78, 83], the Navier-Stokes equations can be written in the form 

v V V v ~_~.v v v 
v D v--.) g ( 1 ) z ~ V - - ) _ ( ~ ( 1 ) + l d ( 1 ) ) ~ - - )  ( v - - . ) )_ t_~-~p=O.  ( 1 . 1 )  PDx 

The equation of continuity, also in Eulerian coordinates, has the form 

V ~ V V 

3 p +  -pv---~=0. (1.2) 

V V V 
In Eqs. (1.1) and (1.2) and below, p ,  p, and ~ denote the pressure, density, and velocity vector in the Eulerian 

description, v (1) is the kinematic viscosity coefficient, p(1) is the viscosity coefficient, and ~(1) is the second viscosity 

coefficient. The superscript "(1)" is attached to the quantities X (1) g (t), and v (1) for the fluid, because the analogous quantities 

without the superscript refer to an elastic body. In Eqs. (1.1) and (1.2), we have also introduced the differential operators 

v 

- V ,  A = �9 . ( 1 . 3 )  
D x  3 x  

Thermal effects will be ignored below, and we shall assume that the fluid is barotropic; accordingly, we write the 

equation of state for a compressible, viscous fluid in the form 

V V 

p = f ( p  ) .  (1.4) 

In the terminology of [78], a compressible, viscous fluid characterized by an equation of state in the form (1.4) is 

called an "elastic" fluid. 

In the Eulerian description, a symmetric Euler or Cauchy stress tensor is defined for the fluid by the following 

relations for the covariant components: 
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V V V V V V V V 

Ti j = _ p  Gi j + ~(i) Gi j Vn v n + ~t (1) (Vi v j+  Vj v i ). (1.5) 

It is important to note that the bulk viscosity coefficient is often set equal to zero for rapidly evolving processes: 

(l) 2 .  O) ~, + ~- g = 0, (1.6) 

whereupon one of the viscosity coefficients can be eliminated. The above relations (1.1)-(1.6) are basic in compressible, viscous 

fluid dynamics as long as thermal processes are ignored. It is a foregone conclusion that in the formulation of specific problems 

these relations must be augmented with initial conditions; also, if the fluid is bounded or if rigid or elastic bodies are moving 

through it, the relations must be further augmented with boundary conditions at the surface of the fluid or at its interfaces with 

the inclusions. 

1,2 Linearization and Remarks on the Identification of  Lagrangian attd Eulerian Coordinates in Continuum 

Mechanics, In the ensuing paragraphs we discuss dynamical processes in which the disturbances are small, and the basic 

relations (I,  1 ), (t.2), (1.4), and (1.5) of  compressible, viscous fluid dynamics can be successively linearized in application 

to the dynamics of rigid and elastic bodies interacting with a compressible, viscous fluid. As mentioned, in the terminology 

of Landau and Lifshitz's eminent course in theoretical physics ([76], p. 125), these phenomena are regarded as motions of 

bodies in a fluid (a compressible, viscous fluid in our situation) when the amplitudes of the vibrations of  the body are much 

smaller than its dimensions. 

A generally accepted principle in continuum mechanics is the practicality of  using different coordinates in application 

to different models for deriving the basic relations in the simplest and most compact form in the description of motion of a 

continuous medium. To achieve this goal, it is customary to use Eulerian coordinates and the Eulerian description of motion 

in the mechanics of  liquids and gases and to use Lagrangian coordinates and the Lagrangian description of motion or various 

generalizations (such as counting methods or method of comoving coordinates) in the mechanics of  deformable solids. 

Accordingly, a major issue in the investigation of  the combined motions of  a liquid, a gas, and deformable and rigid bodies 

is the choice of  coordinates, again so that the basic relations of  the compound (general) problem can be written in a simple 

form. Naturally, the resolution of this issue is most successful when general coordinates can be introduced in application to 

the given class of problems with the property that they go over to Eulerian coordinates in application to a liquid or a gas and 

to Lagrangian coordinates in application to a deformable body. We thus encounter the problem of identifying Lagrangian and 

Eulerian coordinates in application to specific classes of problems in continuum mechanics. We note that the problem of 

identifying Lagrangian and Eulerian coordinates can only be considered when such coordinates fall within the same 

curvilinear coordinate system, i.e., when the same basis covariant and contravariant vectors and metric tensors are used. This 

approach has been used, for example, in three books [35, 36, 44]. In the general case, as in the book [83] for example, 

Lagrangian and Eulerian coordinates can be introduced with different covariant and contravariant vectors and metric tensors; 

it is probably meaningless to even consider the problem of identifying Lagrangian and Eulerian coordinates in this case. 

Aspects of identification of specially chosen Lagrangian and Eulerian coordinates in application to fluid dynamics 

(including compressible, viscous fluids) and deformable bodies have been investigated [36, 43, 44] within the context of the 

foregoing considerations in a linearized setting for the following classes of  problems: a fluid at rest and an elastic body without 

initial stresses; a moving fluid with uniform freestream ("at infinity") flow and an elastic body without initial stresses; a fluid 

at rest and an initially stressed elastic body; a moving fluid with uniform freestream flow and an initially stressed elastic body. 

These results are presented in the most compact form in [43]; it should be noted that in most publications the first of the 

indicated four classes of problems is usually analyzed in application to various models of a fluid and deformable bodies. 

Further on in the article we analyze results obtained with [43] taken into account in specially chosen coordinates, 

which go over to Eulerian coordinates in application to a compressible, viscous fluid and to Lagrangian coordinates in 

application to an elastic body. 

1.3. Linearized Relations for  a Compressible Viscous Fluid (at Rest and Moving). For a rest compressible, viscous 

fluid, as a result of linearization, from Eq. (1.1) we obtain linearized Navier-Stokes equations in the form 

v--~- ~ (1) A v---~- (X (I) + ~t (1)) V-~(~- v--~) + V--~p (1) 0 (1.7) PO ~ = " 
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From Eq. (1.2), in this case we obtain linearized continuity condition for a homogeneous fluid 

3 
3x  P (1)+ P~ V" v--->= 0" (1.8) 

Analogously, from Eq. (1.5) we obtain linearized relations for the covariant components of a symmetric stress tensor 

T i j = - p  (1) gij+ ~.(1) gij Vn v n + ~  (1) (Vi v j+ Vj vi ) .  (1.9) 

Again, as a result of linearization, from Eq. (1.4) we obtain a closing equation in the form 

3 p  O) 
O) = at2 " (1.10) 

3 9  

In Eqs. (1.7)-(1.10), p (l), p O), ~ and Tij are perturbations of  the density, pressure, velocity vector, and covariant 

components of  the stress tensor, respectively, P0, P0, and a 0 are the density, pressure, and sound velocity for the fluid at rest. 

Equations (1.7)-(1.10) are standard. 

In the case of  a moving.fluid, we assume that the compressible, viscous fluid occupies unbounded space. We then 

consider unperturbed motion of the fluid along the x 3 axis, corresponding to uniform flow with a constant velocity U = const. 

In the vicinity of an elastic or rigid body in the fluid, we can write the following expression for the components of  the velocity 

vector: 

U 8,~ 3 + % (x m , z ), (1.11 ) 

where v n (x m , "t ) denotes the components of the perturbation of the velocity vector. From now on we label all quantities pertaining 

to unperturbed motion with a constant velocity U by the subscript "0". For a moving compressible, viscous fluid, owing to 

linearization, from Eqs. (1.1) and (1.11 ) we obtain a linearized Nav ier-Stokes equation in the form 

PO ~ 3  v--->+ P0 U~--~---v-~-O(I)Av-->-(~'(I)+I'I(I))v->(V-)'v-~+V'>P(I)=0"3 x 3 (1.12) 

From Eqs. (1.2) and (1.11), in this case we obtain a linearized equation of continuity, which appears as follows for 

a homogeneous fluid: 

a (~)+v a_..~_ (~ ~ . ~ =  -~xP 3 x  3 P +P0 0. (1.13) 

As a result of  linearization, from Eq. (1.4) we obtain a closing equation in the form (1.10). It is important to note 

that for the given situation of a moving fluid, Eqs (1.10) and ( 1.12)--(1.14) already incorporate the notation: P0, P0, and a 0 for 

the density, pressure, and sound velocity in a fluid moving with a constant velocity U along the x 3 axis; p (1), P (1), ~ and 

Tij are perturbations of the density, pressure, velocity vector, and covariant components of  the stress tensor. It should be noted 

that the boundary conditions for the fluid or the conditions at the fluid-solid interfaces can involve components of the total 

stress tensor (not just perturbations); in this case the following relations must be used instead of Eq. (1.9): 

Ti}) + T i j=- (pO + p (l) ) gij + ~.(1) gij Vn v n + ~t (l) (V i v j + Vj v i ). (1.14) 

Equations (1.12)-(1.14) and (1.10) are sufficiently rigorous in the setting of the linearized theory for a moving 

compressible, viscous fluid when thermal processes are ignored. 

If  Eq. (1.12) is used for steady motions (with the partial time derivatives equal to zero), we obtain the classical Oseen 

approximation [95]. If  we also set U = 0 in this equation, we obtain the classical Stokes approximation [96]. 
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1.4. An Analog), in Continuum Mechanics. In the solution of specific problems in continuum mechanics, a major 

simplification is achieved when analogies between dissimilar problems are known, including analogies between different 

models. In this event, solving methods developed for a particular model can be transferred to other models with the indicated 

analogies taken into account. In application to the linearized theory for a compressible, viscous fluid at rest without regard 

for thermal processes (Eqs. (1.7)-(1.10)), an analogy has been established [33] with a specific rheological model of a 
deformable solid; the same analogy has been investigated and exploited in later papers [65-68]. Its details are described in 

the book [44]; consequently, only brief information will be covered below. 

It has been proved [33, 44] that for the case in question (linearized theory for a compressible, viscous fluid at rest) 

the governing equations in continuum mechanics (relations between the stress and strain tensors) can be characterized as 

follows: The governing equations for the spherical part correspond to a Voigt body; the governing relations for  the deviator 

part correspond to a Newtonian body. With regard for the above-indicated property, along with the appropriate boundary 

and initial conditions, an analogy has been established [33, 44] between dynamical problems for the above-indicated 

rheological body (with the spherical part characterized by a Voigt body, and the deviator part by a Newtonian body) and 

problems in compressible, viscous fluid dynamics (in the context of the linearized theory). 

1.5. General Solution for  a Fluid at Rest; Vector and Scalar Potentials. The solutions of the basic equations (1.7), 

(1.8), and (1.10) for a compressible, viscous fluid at rest in terms of the vector potential W (l) and the scalar potential ~ (I) 

can be written in the form 

"--> ~->. --) --->1 = v--)=V-~(I)(1)+V-~• (1), WO)-=divW ( ) 0, 

( ~ - ( l ) + 2 ~ ( l ) A _  0_~_)(i)(1) ' 
P (1) = PO D0 0 "C 

p(1)= po (x (1) + 2 (" ) 
L P() A - (1) (1) " (1.15) 

We note that the second equation in (1.15) is standard and applies solely to the vector potential. In the representation 

(1.15), the scalar and vector potentials are determined from the equations 

+ A ] ~ ( 1 ) = 0 ,  
L~ a( 2 Po a( 2 0 x 2 J 

(1, 0 x )  0, p0 v (1.16) 

The representation of the general solution for a viscous fluid at rest in the form (1.15) and (1.16) (in the linearized 

theory) has been obtained previously in [25, 27] with a slightly different notation; the above results are written in the notation 

of the book [44] without the additional condition (1.6). 
1.6. General Solution for  a Moving Fluid; Vector and Scalar Potentials. The solutions of the basic equations (1.12), 

(1.13), and (1.10) for a movi~_g compressible, viscous fluid (in uniform flow with a constant velocity U along the x 3 axis) in 

o (t )  (1) terms of the vect r potential qJ and the scalar potential (I) can be written in the form 

[ ~.(1) + 2 la (1) 
P (l) = P0 P0 

9(1)= Pt__L) I~. (1) + 2 p (1) 

age po 

~..>. -.-) ---) 
qj (1) = div ~ (1) = 0, 

(1.17) 
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The second equation in (1.17) is a standard condition and applies solely to the vector potential. In the representation 
(1.17) the scalar and vector potentials are determined from the equations 

2 
{[1 + ~v(1)+2 ~ t(1) _ _ L  

_ ~ p ( l ) = 0 .  
03 x 3 

} O(1)=0,  

(1.18) 

A representation of the general solution for a moving compressible, viscous fluid in the form (1.17) and (1.18) (in 
the linearized theory) has been obtained previously [26, 32] with a slightly different notation; the above results are written 
in the notation of the book [44] without the additional condition (1.6). 

It is important to note thai for a compressible, viscous fluid at rest the representation of the general solution in terms 

of the vector polential W ( 1 ) and the scalar potential �9 (I) in the form (1.15) and (1.16) is valid for arbitrary coordinate syslems. 
In the case of a m o v i ~  compressible, viscous fluid, on the other hand, the representation of the general solution in lerms of 

the vector potential W 0) and the scalar potential �9 (1) in the form (1.17) and (1.18) is confined to arbitrary cylindrical 
coordinates whose axis coincides with the x 3 axis; this situation is discussed in detail in [44]. 

1.7. Representation of the General Solution for a Fluid at Rest in Terms of Scalar Potentials. We now consider the 
representation of the general solution (1.15), (1.16) for a compressible, viscous fluid at rest in terms of scalar potentials in 
rectangular, circular cylindrical, and spherical coordinates; these results have been discussed in various forms in several papers 
[25-27, 29, 31, 37, 89]; they are partially covered in books [36, 58, 60] and in complete form with corresponding proofs in 
the book [44]. 

Rectangular Cartesian Coordinates Ym with Unit Vectors ~ .  In this case, lhe vector potential �9 (1) (1.15) is written 

in the form 

~( l )  .=-~ Win(l) =Ym (yl,Y2, Y3,'c), m = 1 , 2 , 3  (1.19) 

and the second condition (1.15) now assumes the form 

03 u'(') + 03 + a  
OYl  2(1) 03Y3 (1,20) 

Taking Eqs. (1.19) and (1.20) into account, from Eqs. (t.15) we obtain a general solution in the form 

V 1 ~ - -~0(1 )+  0 3 wi t ( l )  03 ~iJ2(1) 
= 03Yl ~ 1 Oy 3 , 

03 0 ( 1 )  03 ~3(1)+ 03 
v2 = ~Y2 03Yl ~Y3 t'Ij(l) ' 

v3=_~v30(1 )+  ~_._~...V(I) - 03 ~(1) 
03 2 ay2 ' 

(~.(U + 2 p(1) 03 10(1) 
PO)=  P~  Po A - ~--~x ) " 

p(l) P0 (~(1)+2g(1) 03 ] 
=---2[a 0 Po A-~---~ �9 (1). (1.21) 
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The general solution (1.21 ) is written in terms of scalar potentials which, according to Eqs. (1.19), (1.15), and (1.16), 
are determined from separate equations 

[( ~.{1}+2~t(1) 03 1 1 2} 2 ] 
i + A {I} {]) = O, 

. o 3 ~ tI~ (1) _ 0, o 3 {) - -  n, m = 1, 2, 3. (1.22) v{'zx-5-7) . - A=ay., 03y,,' 

Simplifications of the representation (1.21), (1.22) are discussed in [44] in application to plane and antiplane 
problems. 

Circu lar  Cylindrical.  Coord ina tes  r , % and  )'3 with Uni t  Vec tors  e,. ---+, ecp, --+ and  e-'~. In this case, the vector potential 

(1) (1.15) is written in the form 
.._> 

(1) _-- e-~ t]/(1 ) + V-'~• c3~---') tlt__2(I) (1.23) 

in terms of the scalar potentials q* (1) and ~]~2(1); this result together with the first equation in (1.15) yields the representanon of 

the velocity vector 

V--+= ~(l} (,) + V-+x e-~tIl~ 1) + V-+• V-)x e3~--+~t* (1)_2 �9 (1.24) 

Consequently, taking Eqs. (1.19) and (1.23) into account, we obtain the representation of the general solution 

{3 {~)+1 03 
v,- = ~-7. ~ ,,ff-~ '-r'X'> + - 

032 

03 r 03y 3 
{)) 

~l't 2 , 

1 03 {I}(l) ~ l ) + ,  ).tj2 , v ~ -  _ qj~ 1 032 ([} 
r {3{p r 03 q}OY3 

03 (,) ( 
V3=~--'-~3qb -- A--03y 2 ] 2 , 

[X (1} + 2 ~ (1) ~ ] 
A -  0 (1) 

(1) = PO P0 

pO) Po (X(D+2 (D ] 
='~202 l pO p- A - ~-~-~ (~(1) (1.25) 

in terms of the scalar potentials (I) (1} , qJ ~l), and qJ2 (1), which, according to Eqs. (I. 16) and (1.23), are determined from separate 

equations 

I 1 + A {I) (1) 
EL ag P0 ag 03 ~2 

v ~ / q  J ( i } -  j -0, j=l,2, 

/}2 1 3 +  1 3 2 0 2 
A = - - + - - - -  (1)2 + 1  . oBr 2 i" o31- 1.2 03 2 0),2 

=0,  

(1.26) 
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Simplifications of the representation (1.25), (1.26) are discussed in [44] in application to plane and antiplane 
problems and also for the axisymmetric problem and the rotation problem. However, when the vector potential is represented 

in the form (1.23), it may appear at first glance that the second condition in (1.15) (div W O) = 0) is not satisfied; this problem 
is solved in [44] using the approaches discussed on pp. 705-707 of the eminent course in theoretical physics [79]. It should 
be mentioned that the methods in [79] refer to a vector potential that satisfies the wave equation (a hyperbolic equation); in 
[44], the methods of [79] are applied to a vector potential that satisfies the second equation in (t. t6) (a parabolic equation). 

Spherical Coordinates r ,  O, and cp with Unit Vectors e-~r , e~, and e~ , where the angle 0 is measured from the Y3 axis, 

and the angle tp is measured from the plane Y2 = 0. In this case, the vector potential (1.15) is written in the form 

,.,(]) "1" = e,.," w(l) + V-'>x e--~r r W2 (1) 1.27) 

in terms of the scalar potentials q' (1) and hu2(l); this result together with the first equation in (1.15) yields the representation of 

the velocity vector 

~-+__ ~-'~O (1) + V X e---~r 1" II.l(l) + V">• ~-->;< -'='+ ,., (1) e r r "1" 2 . (1.28) 

Consequently, from Eqs. (1.15) and (1.27) we obtain the representation of the general solution 

v a 0(1) I r A _  1 a r 2 ~ ~ ( I  r = a ,  I - 7  - -_  1 -.7 at --'-7 ~rr) 2 )' 

l a (1) 1 ~ t i~ �91  ,9 () t]/(1), 
ve = 7 a - o  a' + sin e a,4, b-Tr r b-O 

vq, rs inO a~0 r sin o a;- r a--~ %u) '  

( I)  

(1) 

_ (X'(1) + 2 [t({) P0 ~ ~ 1  = Po ~ A - �9 (1), 

= - -  A -  O (1) 
a( 2 P0 

(1.29) 

, " (]). which, according to Eqs. (1.16) and (1.27), are determined from separate in terms of the scalar potentials el) (]) W (1) and 't" 2 , 

equations 

1 + ~ ( 1 ) + 2 ~  0) 1 0) 2 
A O(1)=0, 

ao po ag a j 

a ~ hv (j) v (1)A-~--~z) j =0,  j =  1,2, 

. 3 0 ,  Z ~ - r ~ s i n 0  r sin0 .+  s i n 0 - ~ - Z + ~ t p s i n 0 ~  ~ . 

Simplifications of the representation (1.29), (1.30) are discussed in [44] in application to the axisymmetric problem 
and the rotation problem. However, when the vector potential is represented in the form (1.27), it may appear at first glance 

that the second condition in (l.15) (div ~ ( l ) = 0  ) is not satisfied; the solution of this problem is given in [441 using the 
approaches discussed on pp. 705-707 of Landau and Lifshitz [79]. It should be mentioned that the methods in [79] refer to a 
vector potential that satisfies the wave equation (a hyperbolic equation); in [44], the methods of [79] are applied to a vector 
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potential that satisfies the second equation in (1.16) (a parabolic equation). Another important consideration is the fact that 

in spherical coordinates investigations can also be carried out in vector form; in application to a compressible, viscous fluid 

at rest the representation of the general solution in vector form is discussed in several papers [29, 31, 89] and in comparative 

detail in the book [44]. In the vector formulation [29, 31, 36, 44, 89] of problems for a compressible, viscous fluid at rest in 
. . ~ _--) ~ 

spherical coordinates, following [79], an orthogonal system of vector functions { Pmn ; Bran ; Cmn I' which is complete for 

r = const, is constructed on the basis of spherical harmonics. 

1.8. Representation of the General Solution for a Moving Fluid in Terms of Scalar Potentials. As mentioned after 

Eqs. (1.18), the general solution formulated for a moving compressible, viscous fluid in the form (1.17), (1.18) refers to 

arbitrary cylindrical coordinates whose axis coincides with the x 3 --Y3 axis (the direction of the unperturbed flow velocity); 

of course, this general solution also applies to an arbitrary corresponding rectangular coordinate system. A general solution 

in terms of scalar potentials has been obtained for the above-indicated cases; the main results are briefly summarized in two 

papers [26, 32] and in more complete form in the book [44]. In the present article, we give these results in their final form. 

Invoking the representation (1.23) for the longitudinal and transverse components of the vector potential in the 

above-indicated arbitrary cylindrical coordinate system, along with Eqs. (1.18), and making a number of transformations by 

analogy with [79], we obtain the representation of the general solution for the given situation in the form 

-- ~3 --2 ' 

= _ u A + (I) , 
P (]) P0 Po O x 3 

= - -  A - + (1.31) 
a 2 [ PO a.,-3 

in terms of the scalar potentials (I) (I), hu ~ ] ), and W2 (j), which are determined from separate equations 

2 

Ox 3 = 0 ,  j = 1 , 2 .  (1.32) 

Simplifications of the representation (1.31), (1.32) are discussed in [44] for the axisymmetric problem and the rotation 

problem in circular cylindrical coordinates; in addition, the representation (1.31), (1.32) is also considered in [44] for the 

axisymmetric problem in spherical coordinates (with the angle 0 measured from the direction of the unperturbed flow 

velocity). For this case, in spherical coordinates it is assumed that 

o ( l ) = ( p ( l ) ( r ,  0 ,~) ,  14/(1)_0 ' t l j ( l )=-  (1) r, "t" 2 ( 0, "C ) .  (1.33) 

Taking Eqs. (1.33) into account, from (1.31) we obtain the following equations for the components of the velocity 

vector: 

= + a ( a  0,,(~) U a 
Vr ~ r  (I) ~ / . / ~ x 3  2 - - c o s 0  V(I) Ox 3 

1 ( ) )  2(1), - - +  W 
VO) O'c 

1 O cI)(I)_F 1 O ( _  
vo - ,: a o v2 " 

( U  a 1 a 
+ sin 0 ~ + (l---S a-~ 

V ( l )  0x3 V 
L 

tt~(l). (1.34) 
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The representation of the general solution in the given spherical coordinate system for the axisymmetric problem 

involves, together with Eqs. (1.33) and (1.34), the expressions for p(l) and P (1) and Eqs. (1.32). For the rotation problem [44] 

in the indicated spherical coordinates it is assumed that 

(1.35) 

where the following relations for the components of the velocity vector are obtained from Eqs. ( 1.31 ): 

( 0 cos0 0 ILp~l ) (1.36) 
v r=0 ,  v0=0,  v ~ = -  s i n 0 ~ r +  1" 0 0  

where the scalar potential W(1) is determined from the corresponding equation (1.32). 

Equations (1.31)-(1,36) cannot be applied to problems involving flow around a vibrating cylinder or sphere in an 

arbitrary direction. Representations of the general solutions for these cases have been discussed in brief form in several papers 

[34, 38, 40] in several cases taking Eq. (1.6) into account; a fairly complete representation of these general solutions are given 

in general form in [44] without regard for Eq. (1.6). 

1.9. Limiting Cases. The representations of the general solution in the form (1.15)-(1.36) apply to the general case 

of a compressible, viscous fluid (without thermal effects) in the linearized theory and subsume a number of limiting cases for 

simpler fluid models (an incompressible, viscous fluid; a compressible, ideal fluid; and an incompressible, ideal fluid). These 

limiting transitions in the general solutions for a compressible, viscous fluid (at rest or in motion) are considered briefly in 

two papers [27, 37] and in greater detail in the book [44]; here we give information about these results in very concise form. 

Inasmuch as Eqs. (1.17), (1.18), and (1.31 )-(1.36) represent general solutions for a moving fluid, we begin with the limiting 

transition to general solutions for a fluid at rest. 

Compressible, Viscous Fluid at Rest. To make the transition to general solutions for this case of a compressible, 

viscous fluid at rest, it must be assumed that the following condition holds in the expressions for a moving compressible, 

viscous fluid (1.17), (1.18), and (1.31)-(1.36): 

U ---) 0. (1.37) 

In this case, for example, from Eqs. (1.17) and (1.18) we obtain a general solution in the form (1.15), (1.16) for a 

compressible, viscous fluid at rest. Accordingly, in the ensuing discussion we consider only limiting transitions from the 

general solutions for a compressible, viscous fluid at rest. 

Incompressible, Viscous Fluid. To make the transition to general solutions for an incompressible, viscous fluid at 

rest, it must be assumed that the following condition holds in the expressions (1.15), (1.16), and (1.21)-(1.30) for a 

compressible, viscous fluid at rest: 

ao--+oo. (1.38) 

In this case, taking condition (1.38) into account, from (I. 16) we obtain equations for the scalar potential �9 (1) and 
_-.) 

the vector potential W (1) 

A (I~ (I) = 0 ,  (1) A - ff--~ tIJ (1) = 0 .  (1.39) 

Taking Eq. (1.38) and the first equation in (1.39) into account, from Eqs. (1.15) we obtain representations for the 

velocity vector and the pressure in terms of the vector and scalar potentials in the form 

+ V x ~  ( 1 ) ,  W ( 1 ) - d i v q J ( l ) = 0 ,  p ( l ) = - p o ~ - - ~  . (1.40) 
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Also, from Eqs. (1.15) in conjunction with (1.38) we obtain p (1)= 0, which characterizes the incompressibility of 

the fluid. We note that the representation of the general solution in the form (1.39), (1.40) is well-known in the mechanics of 

incompressible, viscous fluids. 
Compressible, Ideal Fluid. To make the transition to general solutions for a compressible, ideal fluid at rest, the 

following conditions must be assumed: 

g 0), )~ (1), v (1) _._) 0 .  (1.41) 

Substituting expression (1.41) into Eqs (1.16), we obtain equations for determining the scalar and vector potentials 

/A 1 02 l(1)(l)=0, 2 ---) 
a(~ 0"{ 2 ~'-~ ~ (1) = 0 " (1.42) 

The second equation in (1.42) is satisfied if the vector potential is assumed to be 
..._) 

hu (l) = 0. (1.43) 

Taking Eqs. (1.41 )-( 1.43) into account, from Eqs. (1.15 ) and (l.  16) we obtain a representation of the general solution 

for a compressible, ideal fluid at rest in the form 

~) ..,,(,) /A 1 ~2 / O ( 1 ) _  v-'>= V-~o (l) -= grad (l) (1), p (l) = -  p() ~--~ ,a, , a(~2~--2j - 0 .  (1.44) 

The representation of the solution in the form (1.44) is classical and well known in the mechanics of compressible, 

ideal fluids in application to the linearized theory describing the propagation of small disturbances in a compressible, ideal 

fluid at rest (small vibrations, small motions). 
Incompressible, Ideal Fluid. To make the transition to general solutions for an incompressible, ideal fluid at rest, it 

must be assumed that conditions (1.38) and (1.41 ) hold in the expressions (1.15), (1.16), and (1.21)-(1.30) for a compressible, 

viscous fluid at rest; as a result, we obtain the well-known relations 

v-'*= V-~qb (l) --- grad (I) (it, A q b ( l ) = 0 .  (1.45) 

Mention should be made of partial results published in [41, 42] on the construction of general solutions in the 

incompressible, viscous fluid model. To summarize, all previously known general solutions for simpler fluid models (an 

incompressible, viscous fluid; a compressible, ideal fluid; and an incompressible, ideal fluid) are obtained as the above-noted 

limiting cases from the general solutions for compressible, viscous fluids at rest and in motion. It must be noted that additional 

considerations arise in application to the limiting transitions in the solutions of specific problems obtained in the linearized 

theory for a compressible, viscous fluid; they are discussed, for example, in [39] and in the book [44] and will be mentioned 

below in part in analyzing the results for individual classes of problems. 

2. Forced Harmonic  Vibrations of Rigid Bodies in a Compressible,  Viscous Fluid, In this section, we analyze 

results pertaining to the formulation and special aspects of the theory of forced harmonic vibrations of spherical and circular 

cylindrical rigid bodies in a compressible fluid at rest and in motion; the main results refer to the determination of the reaction 

of moving and rest compressible, viscous fluids. The analysis is based on results published in several papers [30-32, 34, 

39--41, 90] and in the book [44]. 
2.1. Formulation of Problems. In the interest of brevity we shall assume that a compressible, viscous fluid occupies 

"infinite" space; when the fluid occupies a bounded volume, boundary conditions must be additionally supplied at the 

boundary of the fluid volume. We consider the case of K perfectly rigid bodies situated in the fluid. The relations given below 

are equally applicable to transient and harmonic motions of perfectly rigid bodies in a compressible, viscous fluid; these 

results have been published previously in abbreviated form in [30-32] and in more complete form in the book [44]. 

We now introduce notation associated with the kth perfectly rigid body (k~ 1, 2 ..... K):  u ---) (k) denotes the 

displacement vector of the center of inertia of the body; ~ (k) is the instantaneous angular velocity vector of the body; L -~(k) 
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is the angular momentum vector in relative motion about the center of inertia; V (~:), S (k), and P(k) are the volume, surface, and 

density of the body; r --~(k) is the radius vector drawn from the center of inertia to an arbitrary point of the body; ~ (k) is the 

velocity of an arbitrary point of the body; v~ (k) is the velocity of an arbitrary point on the surface of the body; ~(k)  is the 

principal vector of forces acting on the body; &] (k) is the principal moment (about the center of inertia) of forces acting on 

the body; R-)S (k) is the force exerted on the fluid by the body at the point on its surface defined by the radius vector r-->s (k). In 

this notation, the velocity of an arbitrary point of the body is given by the expression 

v---~(k) = ~-~ (k) + ~-~ (~) x r --~ (~). (2.1) 

Analogously, the velocity of an arbitrary point on the surface of the body is given by the expression 

v~k) = ~-~ (k) + ~ (k) x ~(k) .  (2.2) 

The other quantities listed above are also given by conventional equations 

L'*(k) = 9(k) ~ r--~(~) • (~(k)  x r "r+(t) ) d V (k), 

V(,(I 

S~t~ S~t) 

In the given notation, the equations of motion of the kth perfectly rigid body can be written in the form 

(2.3) 

(2.4) 

(p(k) V(k))~"~=F -->(k), ~-*(t)=~i~ (k), k= 1 ..... K .  (2.5) 

It is important to note that interaction between the kth perfectly rigid body and the compressible, viscous fluid and 

mutual interaction of the perfectly rigid bodies are driven by the reaction R->~) of the fluid to the motion of the ~lh body in 

Eq. (2.4). The reaction ~-)(k) is determined at the interface of the perfectly rigid body with the compressible, viscous fluid; 

we therefore formulate the force and kinematic conditions at this interface. To do so, in the fluid we investigate an arbitrary 

surface S, denoting its outward unit normal by N:~. On this surface S (with outward normal ~ ) in the fluid we can define the 

stress vector ~N, whose components are expressed in the linearized theory in terms of the covariant components (1.9) or 

(1.14) of the stress tensor in the compressible, viscous fluid. In addition to the one side of the surface S (with its outward 

normal ~ ), we can also investigate its other side (the surface S with outward normal - ~ ); in the latter case we can introduce 

the stress tensor ~-N in application to the compressible, viscous fluid and write the following equation on the basis of the 

equilibrium condition: 

~N + ~-  N ----- 0 .  (2.6) 

Using the notation introduced above along with Eq. (2.6), we can determine the force exerted on the body by the 

fluid, specifically the force R-~S (~) acting at the point on the surface defined by the radius vector ~(k) for the kah body, in the 

form 

R')S (k) = - ~ N 'kl = ~N,k). (2.7) 

In Eq. (2.7) and below, we denote by ~(k)  the outward unit normal to the surface of the kth perfectly rigid body. 

Substituting Eq. (2.7) into (2.4), we obtain expressions for the principal vector of forces and the principal moment (about the 

center of inertia) of forces acting on the kth perfectly rigid body in the form 
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(2.8) 

S ~ S ~k~ 

Equations (2.8) completely characterize the force conditions at the interface between the compressible, viscous fluid 
and the perfectly rigid body, their right hand sides containing the stress vector in the compressible, viscous fluid. 

The kinematic conditions at an interface between media, one of which is a compressible, viscous fluid, can vary: 
complete no-slip conditions with continuity of  the velocity vector; partial no-slip conditions with continuity of individual 

components of the velocity vector; partial no-slip conditions on selective parts of the interface, or so-called mixed boundary 

conditions. The conditions of continuity of the velocity vector (complete no-slip) on the surface S (k) of the kth perfectly rigid 

body can be written in the form 

v--+ [ S ~ = v~ (k), (2.9) 

where v --+ is the velocity vector of the compressible, viscous fluid as defined by the equations in the preceding section, and 

v~ (k) is the velocity vector (2.2) of an arbitrary point on the surface of the kth body. Other kinematic conditions at the interface 

(for different problems) can be formulated analogously. 
Equations (2.1)-(2.8) apply in equal measure to a compressible, viscous fluid at rest and to a moving compressible, 

viscous fluid; in the latter case, Eqs. (1.14) must be used instead of Eqs. (1.9) to determine the covariant components of the 

stress tensor. The kinematic conditions at the interface for a moving compressible, viscous fluid, taking (1.11) into account, 

now assumes the following form instead of Eq. (2.9): 

e--~U+ v-+[s,~, = v~ (k). (2.10) 

Equations (2.1)-(2.10) completely define the statement of the problems of the dynamics of a system of K perfectly 

rigid bodies in compressible, viscous fluids at rest and in motion within the framework of the linearized relations; for transient 

(time-dependent) problems, on the other hand, it is required to tie in with appropriate initial conditions. 
Forced vibrations of, say, the kth perfectly rigid body can be characterized by specifying the velocity of the center 

of inertia in Eq. (2.2) in the form 

~-~k) = v---~ff) exp ( -  i ~1 x ), v--~0 k) = const, f21 = const (2.11) 

or by specifying the instantaneous angular velocity in Eq. (2.2) in the form 

~-~ (~) = ~-~}k) exp ( -  i f22 �9 ), ~--~0 (k) = const, if22 = const. (2.12) 

In the cases of forced motions of the kth body in the forms (2.11) and (2.12), the velocity of an arbitrary point of the 

body on the right-hand sides of the kinematic conditions (2.9) and (2.10) can be determined from Eqs. (2.2), (2.11), and (2.12). 
The kinematic conditions (2,9) and (2.10) therefore acquire the significance of boundary conditions for the compressible, 

viscous fluid dynamics equations treated in the preceding section. Once the problems formulated by the above-described 

method have been solved, the reaction of the compressible, viscous fluid to forced vibrations of the rigid bodies can be 

determined in the form (2.11) and (2.12). Investigations have been carried out in the above-described formulation, with brief 

results published in several papers [30-32, 34, 39--41, 90] and in greater detail in the book [44]. 

2.2. Limiting Cases in the Exact Solutions. Exact solutions of problems involving the vibrations of a circular cylinder 

(of radius a) and a sphere (of radius a) in a compressible, viscous fluid have been obtained [30-32, 34, 39-41, 90] on the 

basis of the formulation given in this section using the general solutions set forth in the preceding section. These exact 

solutions, in turn, have been used to find exact expressions for the resisting (drag) forces as functions of cylindrical and 

spherical Hankel functions, whose arguments are the parameters 
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a ~ (  ~.(1) + 2 Id (1) j -  1/2 ' 
1 - -  i ~2 r 2 = ~ / i  f2 a 2 / v  (l) (2.13) 

r l = - ~ 0  ~ ag  P0 ) 

Accordingly, the transition to various special cases in the exact expressions for the resisting forces can be made by 

letting the quantities (2.13) tend to various limiting values. To facilitate the analysis of the limiting cases in question, we 

introduce the auxiliary parameters 

? = a  D = a] v (1)/(a 2 f ) a  2 1 - - ,  e if2) , R =  e =  (2.14) 
a0 V (1) ' ~ -  

In Eqs. (2.14), ~ denotes the dimensionless velocity, e is a parameter characterizing the influence of viscosity, where 

in the case of a low-viscosity fluid or in the limiting case attained by transition to an ideal fluid with condition (1.4 l) taken 

into account we have e --) 0, and R is a parameter of the Reynolds number type. It is important to note that R resembles the 

Reynolds number in structure, but is not the same; consequently, following [44], from now on we refer to R as a parameter 

of the Reynolds number type, but sometimes for brevity we shall also call it the Reynolds number. Indeed, in [76], p. 123, 

the Reynolds number R for the investigated vibratory motions is defined as 

u o ~ a R = , (2.15) 
V (1) 

where u 0 is the amplitude of the vibrations, and a represents a characteristic dimension of the body or, specifically in application 

to a sphere or a cylinder, a is the radius. Inasmuch as the velocity for vibratory motions is of the order of u 0 fL the parameter 

(2.15) has the conventional significance. From Eqs. (2.14) and (2.15), we obtain the functional relations 

~=Ra, R=u0~, ~_f~a 2 - -  (2.16)  
u 0 a v (1) 

Since u 0 and a are bounded, nonzero quantities, R and R can tend to zero simultaneously. Consequently, if we consider 

cases involving low Reynolds numbers (R << 1) and calculate the first terms of the expansion in the limit R --+ 0, this procedure 

is equivalent to the one used when small values o f f  are considered, and the first terms of the expansion are calculated in the 

limit R --+ 0. This special attribute must be taken into account in the ensuing analysis. In the notation (2.14), we can write the 

parameters (2.13) in the form 

K ( l ) + 2  ~ tO) ] -1 /2  
rl = a o  1 - i f 2  --=r 2 

a~ ~ a, 2 Po ) 

lJ2f /lj2 
o) ] ,2 2 

1 -~--2 ~ (l) (l) 
K ( I ) + 2 ~  O) ) ~ +2p .  ) 

4-  no ,  2 
= - - -  ' R =  (1) (2.17) 

E V 

We now consider the distinctive characteristics of  limiting transitions in the exact equations for the resisting forces, 

bearing all the foregoing information in mind. 

1. Transition to a Low-Viscosi~ Fluid (and to an Ideal Fluid in the Limit). Equation (1.41) must be used in this case, 

where for finite values of f~ and a 0 we obtain the following from Eqs. (2.17): 

e--->0, R-->oo, r2--->~t' .oo ' rl---> af2- (2.18) 
a 0 

If  the short-wavelength (high-frequency) approximation (f2 --+ oo) is considered here, the last expression in (2.18) 

becomes invalid by virtue of the first expression in (2.17). If  the long-wavelength (low-frequency) approximation (f2 --+ 0) 

is considered, the first three expressions in (2.18) become invalid by virtue of Eqs. (2.17). Consequently, if the transition is 
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made to a low-viscosity fluid (and to an ideal fluid in the limit) by means of Eqs. (2.18), it is impossible to obtain results that 

also apply to both the high-frequency and the low-frequency approximation; the results obtained by means of Eqs. (2.18) are 

therefore applicable to a low-viscosity fluid only for ~ :~ 0 and for finite values of  if2. From Eqs. (2.17) in conjunction with 

conditions (2.18) we deduce the conditions 

Iml" 1>0,  I m r  2>0 ,  (2.19) 

which are characteristic of an ideal fluid. 

2. Incompressible, Viscous Fluid. Here it is required to use Eq. (1.38), where the following expressions are obtained 

from Eqs. (2.17) and (2.14) for a finite value of if2: 

a f2  
i" 1 -+ -+ O, 7 -40 .  (2.20) 

a 0 

If  the short-wavelength (high-frequency) approximation (f2 -4 oo) is considered here, Eqs. (2.20) become invalid by 

virtue of  Eqs. (2.17) and (2.14). Consequently, if the transition is made to an incompressible, viscous fluid by means of Eqs. 

(2.20), it is impossible to obtain results that also apply to the high-frequency approximation; the results obtained by means 

of Eqs. (2.20) are therefore applicable to an incompressible, viscous fluid for finite values of if2. Note that conditions (2.19) 

are also satisfied for Eqs. (2.20). 

3. Long-Wavelength (Low-Frequency) Approximation. In this case, it must be assumed that 

f2 ~ 0, (2.21) 

where for finite values of v (1) the following expressions are obtained from Eqs. (2.17): 

a f2  
r I - 4 - -  --+ O, 1" 2 --+ x~t'. O. (2.22) 

a o 

If the transition is now made to an ideal fluid ( v (1) ___) 0), the second expression in (2.22) becomes invalid by virtue 

of  Eqs. (2.17). Consequently, if the transition is made to the long-wavelength (low-frequency) approximation for a 

compressible, viscous fluid by means of Eqs. (2.22), it is impossible to obtain results that also apply to a compressible, ideal 

fluid; the results obtained by the indicated procedure are therefore applicable to a compressible, viscous fluid for finite values 

of  v (1). Note that conditions (2.19) are also satisfied for Eqs. (2.22). 

4. Short-Wavelength (High-Frequeno') Approximation. In this case it must be assumed that 

--+ ~ ,  (2.23) 

where for v (t) ~: 0 the following expressions are obtained from Eqs. (2.17): 

# ( l )  1 /2  

-+ r2 [ }.t r 2 -4 ~ - .  ~, (2.24) r I 
v) v (1) + 2 g (1) ' 

If  the transition is now made to an ideal fluid (in accordance with (1.41), v ( 1 ) ~  0), the first expression in (2.24) 

becomes invalid by virtue of  Eqs. (2.17) and (2.14). Consequently, if the transition is made to the short-wavelength 

(high-frequency) approximation for a compressible, viscous fluid by means of Eqs. (2.24), it is impossible to obtain results 

that also apply to a compressible, ideal fluid; the results obtained by the indicated procedure are therefore applicable to a 

compressible, viscous fluid for finite values of  v (!). 

5. Low Reynolds Number Fluid. In this case it must be assumed that 

-4 O, (2.25) 
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where for finite values o f a  0 and f2 44 0 the following expressions are obtained from Eqs. (2.17) and (2.14): 

t" 1 ~ r 2 1- 2 = ~ ---) ~rT- 0 (2.26) 
~(1) 2 la (J) 

If the transition is now made to an incompressible, viscous fluid (in accordance with (1.38), a 0 --+ o~) or to the 

long-wavelength (low-frequency) approximation (in accordance with (2.21), ~ ~ 0), the first expression in (2.26) becomes 

invalid by virtue of Eqs. (2.17) and (2.14). Consequently, if the transition is made to a fluid with a low Reynolds number (in 

accordance with (2.25), R ---) 0) by means of Eqs. (2.26), it is impossible to obtain results that also apply to an incompressible, 

viscous fluid (a o ---)~ ) or to the long-wavelength (low-frequency) approximation (f2 ~ 0); the results obtained by the 

indicated procedure are therefore applicable only to a compressible, viscous fluid for finite values o f a  0 and f2 44 0. It should 

be noted that when conditions (2.26) are used to go over to a compressible, viscous fluid with a low Reynolds number, 

conditions (2.19) are satisfied. 

It is important to mention that the established results for low Reynolds number fluids [74-76, 83-85] have been 

obtained for an incompressible, viscous fluid and therefore, in light of the foregoing analysis, cannot be obtained from the 

corresponding results for a compressible, viscous fluid with a low Reynolds number by passing to the limit a 0 ~ ~ .  

The preceding information as to limiting transitions in the exact solutions tbr a compressible, viscous fluid is necessary 

in analyzing the results and corresponding conclusions of a physical character obtained on the basis of the given compressible, 

viscous fluid model. The indicated results pertaining to the limiting transitions are briefly covered in the paper [39] and in greater 

detail in the book [44]; misprints occurring in [44] have been eliminated from the presentation of the stated results in this section. 

2.3. Forced Harmonic Vibrations of Spherical and Circular Cylindrical Rigid Bodies in a Compressible, Viscous 
Fluid at Rest. Results pertaining to the exact solution of the stated problems in the formulation described in this section, based 

on the general solutions set forth in the preceding section, have been published in journals [31, 90] and in the book [44]. 

Below, for forced vibrations in the form (2.11 ) or (2.12) we shall give only the final results associated with calculating the 

resisting force (reaction) of  the fluid in the form of the principal vector F (2.8) in the presence of  the excitation (2.11) or in 

the form of the principal moment &](2.8) in the presence of the excitation (2.12). These quantities are written as components 

along the jth axis in the form 

Fj= (Fjl + i Fj2 ) exp ( -  i f2 x ), Mj = (Mjl + i Mj2 ) exp (-  i f2 x ) . (2.27) 

In Eq. (2.27) and below, we have introduced the following notation: Fjl and Mjl are the values of  the components 

of the principal vector and principal moment (about the center of gravity of the body) of forces along the jth axis at the 

beginning of each period; Fj2 and mj2 are the values of the components of  the principal vector and principal moment (about 

the center of gravity of  the body) of forces along the jth axis after a quarter-period. Below we give specific results for two 

problems, whose solutions for an incompressible, viscous fluid on the basis of the Oseen [95] and Stokes [96] approximations 

are classical and are used to investigate various problems in physics and mechanics. 

1. Transverse Vibrations of a Circular Cylinder in a Compressible, Viscous Fluid [31, 44]. We consider a perfectly 

rigid (infinite in the direction of the Y3 axis with unit vector e--~) cylinder having a circular cross section of radius a. In the 

cross-sectional plane, the cylinder executes forced vibrations along the Yl axis with unit vector e-~; in this case, according to 

Eqs. (2.11), the velocity of  the center of inertia is written in the form 

v-'-~= e~lv0 exp ( -  i f2 x ), v 0 = const, (2.28) 

and the boundary conditions for the fluid have the form (2.9) with Eqs. (2.28) taken into account. We give the final result [31, 

44] only for low Reynolds numbers, taking Eqs. (2.25) and (2.26) into account, and we restrict the expansions in the parameter 

of Eqs. (2.14) and (2.16) to a single term. Using the notation (2.27), we can write the result in the form 

FI1 = -  4 ~ t.t _ l  ~,(l)+ 3 p 0) in ~ 
(1) v0 ~ k ( l ) +  2 p(1) 

- 1  

, F l 2 - - 0 .  (2.29) 
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We note that the corresponding results for an incompressible, viscous fluid (a simpler model) have been obtained in 

the Oseen approximation [95], which is a refinement of the Stokes approximation [96]; this result is represented by Eq. (26.27) 

on p. 534 of [74] or by Eq. (20.19) in [76], which is still known [74] as the Lamb equation. It should also be mentioned that 

the above-stated result for an incompressible, viscous fluid corresponds to steady flow about a cylinder; consequently, it can 

only be applied approximately to vibrations of a cylinder at comparatively low frequencies (long-wavelength approximation) 

to estimate the maximum reaction of the fluid. If the first term of the expansion for low Reynolds numbers (R << 1) is 

calculated in the above-cited result [74, 76], we obtain the following expression (taking into account the direction of motion 

assumed in Eq. (2.28)): 

F11 4 ~p (1 )  -1 - - v 0 ( -  In R ) (2.30) 

It follows from a comparison of Eqs. (2.29) and (2.30) that these results (2.29) (compressible, viscous fluid, forced 

vibrations of a cylinder, first term of the expansion of (2.14) and (2.16) in the parameter R, consistent with low Reynolds 

numbers) and (2.30) (incompressible, viscous fluid, steady flow around a body based on the Oseen approximation [95], first 

term of the expansion for low Reynolds numbers) are, to a certain extent, mutually consistent. We also note that in analyzing 

the physical significance of Eq. (2.29), it is necessary to take into account the results described in the preceding subsection 

regarding limiting transitions in the exact solutions for a compressible, viscous fluid. 

2. Longitudinal Vibrations o f  a Sphere [31, 44], We consider a perfectly rigid sphere of radius a executing forced 

vibrations (motions) along the Y3 axis with unit vector e~3; the investigations are carried out within the framework of the 

axisymmetric problem in spherical coordinates r ,  0, and % where the angle 0 is measured from the Y3 axis. According to 

Eqs. (2.11), the velocity of the center of inertia is written in the form 

v--~=e-]v0exp(-if~'~ ), v0=const,  (2.31) 

and the boundary conditions for the fluid have the form (2.9) with Eq. (2.31) taken into account. It is important to note that in 

this situation a final result of the type given by the first expression (2.27) can be written in a very compact form by means of the 

representations of cylindrical Hankel functions of { integer + 1/2 } order; therefore, taking Eq. (2.27) into account, we obtain 

[31,441 

[ 1 ( r ? + r 2 2 ) + l i r l l " 2 ( l " 1 + l " 2 ) l  F 3 1 + i F 3 2 = 8 r t a 3 ~ P o V o  i 1 - i ( r  l + r 2 ) - r  l r 2 -  ~ 

x [ _  (,.2 + 21 .2 )+  i r  I r2 (r I + 2 r  2 )+  1.( ,.2 ] - I  (2.32) 

The notation in (2.13) and (2.17) is used for r! and r 2 in Eq. (2.32). The result (2.32) using the notation in (2.13) and 

(2.17) is obtained from the exact solution without any assumptions as to limiting cases, and it subsumes several special cases. 

As one such special case, we give the results of [31, 34] for low Reynolds numbers, taking Eqs. (2.25) and (2.26) into account 

and restricting the discussion to the first terms of the expansions of (2.14) and (2.16) in the parameter R. Using the notation 

(2.27), we write this result in the form 

.. (t)  ( 4  ~(1) 
F31 = - 6 ~ a ~  v0 l  3 

We note that the corresponding results for an incompressible, viscous fluid (a simpler model) have been obtained in 

the Stokes approximation [96], and the corresponding equation is known as the Stokes equation. It should also be mentioned 

that the indicated Stokes equation for an incompressible, viscous fluid corresponds to the case of  steady flow around a sphere; 

hence, it can be applied only approximately to the case of vibrations of a sphere at comparatively low frequencies 

(long-wavelength approximation) to estimate the maximum reaction of the fluid. Taking into consideration the assumed 

direction of motion in Eq. (2.31), we can write the Stokes equation in the form 

F31 = - 6 n a g (1) v0. (2.34) 
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It follows from a comparison of Eqs. (2.33) and (2.34) that the results (2.33) (compressible, viscous fluid, forced 

vibrations of a sphere, first term of the expansion of Eqs. (2.14) and (2.16) in the parameter R, corresponding to a low Reynolds 

number) and (2.34) (incompressible, viscous fluid, steady flow around a body in the Stokes approximation [96], first term of 

the expansion in low Reynolds numbers) are mutually consistent in a certain sense. We also note that the results given in the 

preceding subsection on limiting transitions in the exact solutions for a compressible, viscous fluid must be taken into account 

in analyzing the physical significance of Eq. (2.33). 

We infer from these considerations that in the compressible, viscous fluid model, Eq. (2.29) corresponds, in a certain 

sense, to the Lamb equation obtained on the basis of the incompressible, viscous fluid model in the Oseen approximation [95] 

(first term of the expansion in the Reynolds number), and Eq. (2.33) corresponds to the Stokes equation obtained on the basis 

of the incompressible, viscous fluid model in the Stokes approximation [96] (first term of the expansion in the Reynolds 

number). We should also mention that other problems concerning forced vibrations of cylindrical and spherical bodies in a 

compressible, viscous fluid have been investigated in [31, 44] as well as in several other publications, complete with the 

derivation of corresponding exact solutions. 
2.4. Forced Harmonic Vibrations of Spherical and Circular Cylindrical Rigid Bodies in a Moving Compressible, 

Viscous Fluid. Results pertaining to the exact solution of the stated problems in the formulation set forth in this section on 

the basis of the general solutions given in the preceding section have been published in several papers [30, 32, 34, 38, 40] 

and in the book [44]. A significant feature of the cited papers is the formulation of general problems involving vibrations of 

a circular cylinder and a sphere in a compressible, viscous fluid flow and the separation of the general problems into simpler 

special problems with the basic equations written in appropriate coordinate systems for determining the scalar potentials; 

these results are equally applicable to harmonic vibrations and to transient problems. We give the final results only in 

application to calculations of the resistance (reaction) of the fluid in the form of the principal vector F--~(2.8) and the principal 

moment ~ (2.8) about the center of gravity of the cross section; the corresponding expressions for the indicated principal 

force vector and principal moment along thej th  axis are written in the form (2.27) in this case. 

1. Dynamics of a Circular Cylinder in a Transverse Flow. We consider a perfectly rigid (infinite in the direction of 

the Y3 axis with unit vector e-"~) circular cylinder of radius a. A compressible, viscous fluid flows around the cylinder in the 

direction perpendicular to its axis (along the Yl axis with unit vector e--~) with a constant freestream velocity U "at infinity" 

(far from the cylinder). Bearing in mind the preceding discussion, in the vicinity of the rigid body in the fluid we can assume 

that the components of the vector are given by the following equations instead of (1. I 1) in the linearized formulation: 

U 8  l + v n (x re,x), n , m = l , 2 , 3 ,  (2.35) 

where v n (Xm, "C ) or v n ( Ym, "~ ) denotes the perturbations of the components of the velocity vector in Cartesian coordinates. We 

assume that in addition to the velocity ~ o f  the center of inertia of the cross section we can also consider rotational motion about 

the Y3 axis (unit vector e~3 ) with angular velocity o~. In this case, the kinematic conditions (2.10) on the surface of the cylinder 

for a compressible, viscous fluid can be written in the form 

(e--~U + v --)) [ r=a=~+toae-~ ,  ~=e-~Vl +e--~V2+e~3 V3 . (2.36) 

In this formulation, the conditions for the fluid in the form (2.36) on the surface of the cylinder must be augmented 

with the basic equations (1.12)-(1.14), in which the x 3 axis must now be replaced by the x 1 axis in accordance with Eq. (2.35); 

the given formulation is therefore governed by Eqs. (1.12)-(1.14) with the indicated substitution, the boundary conditions 

(2.36), and corresponding extinction conditions at infinity. 

According to a Proposition proved in [34] and reconstructed in the book [44], in the general case the 

above-formulated problem of small forced motions (vibrations) of a circular cylinder in uniform transverse flow 

(perpendicular to the axis of the infinite cylinder) of a compressible, viscous fluid can be separated into the following 

dissociated problems: the steady-state problem of flow around a stationary cylinder and four dynamical (transient or involving 

harmonic vibrations) problems. The corresponding parts of the reaction of the fluid for each of the stated problems are 

determined independently. As mentioned, an essential feature of the above-cited results [34, 44] is the principle that for each 

of the stated problems the basic equations are written in terms of scalar potentials, each determined from separate equations. 
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It is also important to note that one or more (not four) of the stated problems can arise, depending on the type of kinematic 

excitation (2.36), in application to the four dynamical problems indicated above (transient or involving harmonic vibrations). 

One of the indicated four dynamical problems comprises forced harmonic vibrations of a circular cylinder along its 
axis in transverse flow; specific results have been obtained in [34, 44] on the basis of the exact solution of this problem. The 
basic relations for the given problem in this case have been formulated [34, 44] within the framework of the antiplane problem 

in the XlX 2 plane (in the transverse cross-sectional plane); according to these relations, the only nonzero component of the 

velocity vector is the one along the axis of the cylinder (v3). Accordingly, the kinematic excitation (boundary conditions for 

the fluid) (2.36) is now written in the form 

v3 I,.= a = V~ ~ exp ( -  i f2 "c ), V30= const. (2.37) 

The given problem is characterized by the two parameters [34, 44] 

Roo Ua - ~ _ ~ a  2 = ~ (2.38) V(I) ' V ( I )  

In Eqs. (2.38) and below, R~ denotes the Reynolds number associated with the freestream flow velocity (the velocity 

at infinity), and R is a parameter of the Reynolds number type (2.14)-(2.16) associated with vibrations of the cylinder and 

expressed in terms of this Reynolds number by Eqs. (2.16). For the given situation, the exact solution [34, 44] is found in 

terms of cylinder functions with the following parameter as their argument: 

- 1 2 9 
"2" = i R - -~ R~o. (2.39) 

From the foregoing discussion, we infer the existence of three distinct regimes of motion, which are defined by the 

inequalities 

1 ~2>-g 1 2 1 2 - 
1 ) ~ - t %  ix, 2)~-Roo<R, 3 ) ~ R o o = R .  (2.40) 

Based on considerations of a physical nature, the first regime in (2.40) is the most preferable and consistent with the 
formulation of linearized problems. We therefore consider [34, 44] the limiting transition to the case of low Reynolds numbers, 

bearing in mind the reasoning set forth in the second subsection of this section. Consequently, in accordance with Eqs. (2.25), 

(2.38), and (2.40) we investigate the case 

1 2 R < < I ,  R--+0, R ~ < < I ,  R~--+0, s R ~ > R .  (2.41) 

In [34, 44], the expansion of (2,38) in the parameters R~ and R is restricted to the first term for the case (2.41), and 

the following result is obtained in accordance with the notation (2.27): 

3 In ( R +  R 2 )  (2.42) 

If we set U = 0 (i.e., assume zero freestream velocity) in Eq, (2.42) and use the notation (2.38), we obtain the following 

result from Eq. (2.43): 

F31 + i F32 = 4 rt bt (1) V30 (In R ) - 1 (2.43) 

which has also been obtained independently in [44] using the model of a compressible, viscous fluid at rest. It must be understood 
by virtue of the previously discussed Proposition [34, 44] that Eqs. (2.42) and (2.43) correspond only to the reaction (resisting 

force) in application to the investigated dynamical problem; to derive the complete equation for the resisting force, these 

expressions must be augmented with the fluid reaction corresponding to the steady-state problem. Moreover, it should be noted 
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that Eqs. (2.42) and (2.43) can also be obtained on the basis of the incompressible, viscous fluid model; this situation is attributable 

to the invariance of the fluid volume in the antiplane problem. 

2. Dynamics of a Sphere in a Flow. We consider a perfectly rigid sphere of  radius a immersed in a compressible, 

viscous fluid flow (along the Y3 axis with unit vector e--~) with a constant freestream ("at infinity," i.e., far from the sphere) 

velocity U; in accordance with the preceding discussion, the components of  the velocity vector obey Eqs. (1.11). We assume 

that together with the velocity ~ o f  the center of the sphere we can also specify rotational motion of the sphere with an 

instantaneous angular velocity ~-), In this case, the kinematic conditions (2.10) on the surface of the sphere for a compressible, 

viscous fluid can be written in the form 

(e--]U + ~ ) I ,  =, = ~ + a ~ x ~ ,  (2.44) 

where @ is the velocity vector of the compressible, viscous fluid. In the given formulation, the boundary conditions for the fluid 

in the form (2.44) must be augmented with the basic equations (1.12)-(1.14), which are analyzed in spherical coordinates (the 

angle 0 is measured from the unit vector e--~, i.e., from the direction of the freestream velocity) or in circular cylindrical coordinates 

(whose axis is aligned with the unit vector e--]). 

The stated problem is therefore governed by Eqs. (1.12)--(1.14), by boundary conditions for the fluid in the form 

(2.44), whose right-hand sides characterize the kinematic excitation, and by appropriate extinction conditions at infinity; 

results obtained in this formulation have been published briefly in several papers [30, 32, 38, 40] and more completely in the 

book [44]. 

According to a Proposition proved in [40] and given in [44], in the general case the above-stated problem of small 

forced motions (vibrations) of  a sphere in a uniform flow (with a constant freestream - -  far from the sphere - -  velocity U in 

the direction of the unit vector e--~) can be separated into the following dissociated problems: the steady-state problem of flow 

around a stationary sphere and six dynamical (transient or involving harmonic vibrations) problems. The corresponding parts 

of  the fluid reaction for each of these seven problems are determined independently. As mentioned, a significant result [40, 

44] is the principle that, for each of the seven problems, the basic equations are written in terms of  scalar potentials, each 

determined from separate equations. It is also important to note that one or more (not six) of the stated problems can arise, 

depending on the type of kinematic excitation (2.44), in application to the six dynamical problems indicated above (transient 

or involving harmonic vibrations). 

One of the indicated six dynamical problems comprises forced harmonic rotational vibrations of a sphere in a flow; 

specific results have been obtained in [30, 32, 44] on the basis of the exact solution of this problem. The kinematic excitation 

of rotational vibrations of the sphere is investigated according to Eq. (2.44) with the angular velocity vector directed along 

the unit vector e 3 - -  see Eqs. (1.11) and (2.4) - -  i.e., along the freestream velocity 

~--)= o~ 0 e--~exp ( -  i f~ x ), co o = const,  (o 3 = o~ 0 exp ( -  i f2 "~ ) .  (2.45) 

This problem has been investigated [30, 32, 44] using the basic equations of  the theory of rotational vibrations 

(Eqs. (1.35) and (1.36)), which imply that the only nonzero component of the velocity vector is the component v~0. For this 

case, in accordance with Eqs. (2.44) and (2.45), we obtain boundary conditions for the fluid in the form 

Vq ~ [ r = a = (sin 0 ) a o~ 0 exp ( -  i ~ x ). (2.46) 

Equations (2.38) and (2.40) hold for the given problem; therefore, as in the preceding problem for a cylinder 

(Eqs. (2.37)-(2.43)), we consider the limiting case of low Reynolds numbers, bearing in mind the reasoning set forth in the 

second subsection of this section. Here also we limit the discussion to the case (2.41), which, based on physical considerations, 

is the most preferable and consistent with the formulation of linearized problems. Initially, following [30, 32, 44] and to 

facilitate comparison with earlier results [74], we introduce the following notation in place of (2.27) for the component of 

the principal moment (about the center of the sphere) of reaction forces of the fluid (resisting forces): 

M = - ~ -  e--~= (M 1 + i M 2 ) exp ( -  i f~ ~ ) .  (2.47) 
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In (2.47), the following additional notation is introduced in accordance with Eqs. (2.27): 

M = - M  3, M I = - M 3 1 ,  M 2 = - M 3 2 ,  (2.48) 

where the physical significance of the quantities M31 and M32 is explained in the text following Eqs. (2.27). We confine the 
ensuing discussion to the linear approximation in the parameter R~ (2.38) and take inequalities (2.41) into account; this case 

corresponds to the investigation of slow vibrations of the sphere, so that the fluid velocity induced by these rotational vibrations 

is an order of magnitude smaller than the freestream velocity of the fluid at infinity. The following expression has been obtained 

in [30, 32, 44] using the above-described approach: 

Ml+iM2=8gg( l )a3mo 1 - t ~ 7  1 - - I U I 2 v  (1) . (2.49) 

It follows from Eq. (2.49) that the presence of a flow with the velocity U ostensibly makes the fluid more "rigid" in 

keeping with physical considerations. If we set U = 0 in Eq. (2.49) (i.e., go over to the case of a fluid at rest), we obtain the 

following expression from Eq. (2.49): 

I 1 ~ a  2 
M l+iM2=8rtlaO)a3o3o 1 - i  3 v (1) (2.50) 

It must be understood by virtue of the previously discussed Proposition [40, 44] that Eqs. (2.49) and (2.50) correspond 

only to the reaction (resisting force) for the investigated dynamical problem; to derive the complete equation for the resisting 

force, these expressions must be augmented with the fluid reaction corresponding to the steady-state problem. Moreover, Eqs. 

(2.49) and (2.50) can also be obtained on the basis of the incompressible, viscous fluid model; this situation is attributable to 

the invariance of  the fluid volume in the rotational vibration problem. 

We note that the quantity M 1 (2.50) exactly coincides with Eq. (22.7) on p. 503 in the book [74], which is obtained 

in the Stokes approximation [96] in the problem of slow rotation of a sphere of radius a with a constant angular velocity. For 

rotational vibrations of a sphere, the quantity M l in Eqs. (2.49) and (2.50) corresponds to the reaction of the fluid at the 

beginning of each period, and the quantity M 2 in Eqs. (2.49) and (2.50) corresponds to the reaction of the fluid after a 

quarter-period. Although M 2 in Eq. (2.50) is much smaller than M! in Eq. (2.50), the quantity M 2 (2.50) still cannot be 

calculated in the Stokes approximation [96]. 

In summary, the foregoing example reveals that even for slow vibrations (low-frequency approximation) the Stokes 

theory or Stokes approximation [96] cannot predict or determine the reaction of the fluid at an arbitrary time. This situation 

underscores the potential benefits of research on the theory of forced vibrations of rigid bodies in a compressible (and, as a 

special case, incompressible), viscous fluid. 

Conclusion. In closing, we have only analyzed characteristic problems in somewhat abridged form. Publications 

devoted to investigations of other problems and questions pertinent to the scientific subject discussed in the article are listed 

in the bibliographic references. 
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