UNBOUNDED SEMIDISTRIBUTIVE LATTICES

J. B. Nation UDC 512.565

In memory of Viktor A. Gorbunov

We consider two properties which are close to being lower bounded in the class of finite join semidistributive lattices. An example is constructed in which a finite join semidistributive lattice has both these two properties, but it is not lower bounded.

The purpose of this account is to illustrate a construction technique which has proved useful, and apply it to solve an interesting problem. Namely, we answer in the negative the question as to whether a finite lattice satisfying properties (P) and (Q) , which are close to boundedness, is bounded. For a more complete discussion of the theory of bounded homomorphisms and lattices, see [1, Ch. II].

1. UNBOUNDED LATTICES

We begin with a well known criterion for meet semidistributivity. If L is a finite lattice and $a \in J(L)$, let $\kappa(a)$ be the largest element above a_* but not above a, if such an element exists. We regard $\kappa : J(L) \to M(L)$ as a partial map.

LEMMA 1. Let L be a finite lattice. Then L satisfies SD_{\wedge} if and only if $\kappa(a)$ exists for each $a \in J(L)$. Moreover, if a finite lattice L satisfies SD_{\wedge} , then κ maps J(L) onto M(L). If L also satisfies SD_{\vee} , then κ is one-to-one, and the dual map $\kappa^d : M(L) \to J(L)$ is its inverse.

We define the standard dependency relations on $J(L)$ as follows (assuming SD_{\wedge} for the first three):

 $aAb \Leftrightarrow b < a < \kappa(b)^{*};$

 $aBb \Leftrightarrow a \neq b, b \nleq \kappa(a)$, and $b_* \leq \kappa(a)$;

 $aCb \Leftrightarrow aAb$ or aBb ;

 $aDb \Leftrightarrow$ there exists $x \in L$ such that $a \leq b \vee x$ but $a \nleq b_* \vee x$.

Thus $A \cup B = C \subseteq D$.

The dual relations are defined on $M(L)$. In semidistributive lattices, they behave particularly nicely, as is shown by the following result.

LEMMA 2 (see [2]). Let **L** be a finite semidistributive lattice and let $a, b \in J(L)$. We have:

(1) aAb if and only if $\kappa(a)B^d\kappa(b)$.

(2) aBb if and only if $\kappa(a)A^d\kappa(b)$.

Recall the basic results on boundedness (in the sense of McKenzie) and D-cycles.

THEOREM 3. A finite lattice **L** is lower bounded if and only if **L** contains no D-cycle. Moreover, every lower bounded lattice satisfies SD_{\vee} .

THEOREM 4. A finite semidistributive lattice L is bounded if and only if L contains no C-cycle.

Translated from *Algebra i Logika,* Vol. 39, No. l, pp. 87-92, January-February, 2000. Original article submitted July 21, 1999.

Fig. 1

We will be interested in semidistributive lattices which satisfy the condition

(P) if
$$
a, b \in J(L)
$$
 and $b < a$, then aAb

and its dual

(Q) if
$$
p, q \in M(L)
$$
 and $q > p$, then pA^dq .

Note that pA^dq is equivalent to $\kappa^d(p)B\kappa^d(q)$.

In [3], Caspard proved that the lattice S_n of all permutations of an *n*-element set is bounded. In [4], she proved that these lattices satisfy (P) and (Q) , and used this to give a nice characterization of the linear orders on $J(S_n)$ which are consistent with the dependency relation D. Thus it seems natural to ask the following:

If a finite semidistributive lattice satisfies (P) and (Q) , must it be bounded?

We will show that the answer is 'no.'

2. SEMIDISTRIBUTIVE LATTICES

LEMMA 5. If **L** is a finite lattice which fails SD_{\vee} , then there exist distinct elements $a, b \in J(L)$ and $c \in L$ such that $a \vee c = b \vee c \succ c$, $a_* \leq c$, and $b_* \leq c$.

Proof. Suppose $a_0 \vee c_0 = b_0 \vee c_0 > (a_0 \wedge b_0) \vee c_0$ in **L**. Choose c such that $a_0 \vee b_0 \succ c \ge (a_0 \wedge b_0) \vee c_0$. Then choose a minimal such that $a \le a_0$, but $a \nleq c$, and choose b minimal such that $b \le b_0$ but $b \nleq c$.

As an immediate application, we have the following results, which characterize join semidistributivity as a sort of weak lower boundedness.

THEOREM 6. Let L be a finite lattice. Then L fails SD_V if and only if there exist distinct elements $a, b \in J(L)$ and $x \in L$ such that $a \vee x = b \vee x$, $a \nleq b_* \vee x$, and $b \nleq a_* \vee x$.

COROLLARY 7. If **L** is a finite lattice which fails SD_{\vee} , then **L** is not lower bounded. In fact, there exist $a, b \in J(L)$ such that $aDbDa$ via the same element x.

Figure 1 gives a lattice which satisfies SD_v but which contains a short cycle $aDbDa$, via distinct elements x and y .

THEOREM 8. Let **L** be a finite lattice which satisfies SD_{\wedge} . Then **L** fails SD_{\vee} if and only if there exist $a, b \in J(L)$ such that $aBbBa$.

Proof. If **L** fails SD_{\vee} , then we can obtain elements $a, b \in J(L)$ and $c \in L$ as in Lemma 5. Now $a \leq b \vee c$ implies that at least one of b, c is not below $\kappa(a)$. Since $a_* \leq c$ and $a \nleq c$, we have $c \leq \kappa(a)$, and so $b \nleq \kappa(a)$. However, $b_* \leq c \leq \kappa(a)$, whence *aBb*. Similarly, *bBa*.

3. A COUNTEREXAMPLE

In this section we will construct an example of a lattice which is semidistributive, satisfies properties (P) and (Q), but which is not bounded.

Let K be the join semilattice with 0 generated by the set

$$
G=\{a_0,a_1,a_2,b_0,b_1,b_2,c_0,c_1,c_2,x,y,z\}
$$

subject to the following relations:

We have implemented this construction using LISP, and it turns out that \bf{K} has 198 elements. We claim that K has the desired properties.

By construction, $J(K) = G$, and each element of K can be represented as a join of these elements using at most one a_i , one b_i , and one c_i . Moreover, $a_2 \succ a_1 \succ a_0 \succ 0$, and similarly for the b_i 's and c_i 's, while x, y and z are atoms. In order to check that **K** satisfies SD_\wedge , we must find $\kappa(a)$ for each $a \in G$. It is not hard to verify that the following list is correct:

$$
\kappa(a_2) = a_1 \vee b_2 \vee c_2 \vee y \vee z, \quad \kappa(c_2) = a_2 \vee b_2 \vee c_1 \vee x \vee y,
$$
\n
$$
\kappa(a_1) = a_0 \vee b_1 \vee c_2 \vee x \vee z, \quad \kappa(c_1) = a_1 \vee b_2 \vee c_0 \vee y \vee z,
$$
\n
$$
\kappa(a_0) = b_2 \vee c_2 \vee x \vee y \vee z, \quad \kappa(c_0) = a_2 \vee b_2 \vee x \vee y \vee z,
$$
\n
$$
\kappa(b_2) = a_2 \vee b_1 \vee c_2 \vee x \vee z, \quad \kappa(x) = a_2 \vee b_2 \vee c_2 \vee y \vee z,
$$
\n
$$
\kappa(b_1) = a_2 \vee b_0 \vee c_1 \vee x \vee y, \quad \kappa(y) = a_2 \vee b_2 \vee c_2 \vee x \vee z,
$$
\n
$$
\kappa(b_0) = a_2 \vee c_2 \vee x \vee y \vee z, \quad \kappa(z) = a_2 \vee b_2 \vee c_2 \vee x \vee y.
$$

Using this, we can check that all the A and B relations holding in K are contained in the following list:

(These axe just the relations you would expect from the defining relations. There are three more nontrivial join covers implied by them, viz., $a_1 \le a_0 \vee b_1 \vee y$ and symmetrically, but these do not introduce any new dependency relation.)

Now we see that K satisfies SD_v because there is no cycle of the form $dBeBd$. However, K is unbounded because of the cycle

$$
a_2Aa_1Bb_2Ab_1Bc_2Ac_1Ba_2.
$$

It is easy to check property (P), and we verify (Q) in the form $\kappa(e) > \kappa(d)$ implies dBe .

REFERENCES

- 1. R. Freese, J. Je2ek, and J. B. Nation, *Free Lattices, Math. Surv. Mon.,* Vol. 42, Am. Math. Soc., Providence, R.I. (1995).
- 2. J. B. Nation, "Bounded finite lattices," in *Universal Algebra, Colt. Math. Soc. Jdnos Bolyai,* Vol. 29, North-Holland, Amsterdam (1977), pp. 531-533.
- 3. N. Caspard, "The lattice of permutations is bounded," to appear in *Discr. Math. Th. Comp. Sc.*
- 4. N. Caspard, "A characterization theorem for all interval doubling schemes of the lattice of permutations," to appear in *Discr. Math. Th. Comp. Sc.*