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We consider two properties which are close to being lower bounded in the class of finite join 

semidistributive lattices. An example is constructed in which a finite join semidistributive lattice 

has both these two properties, but it is not lower bounded. 

The  purpose of this account is to illustrate a construction technique which has proved useful, and apply 

it to solve an interesting problem. Namely, we answer in the negative the question as to whether a finite 

lattice satisfying properties (P) and (Q), which are close to boundedness,  is bounded. For a more complete 

discussion of the theory of bounded homomorphisms and lattices, see [1, Ch. II]. 

1. U N B O U N D E D  L A T T I C E S  

We begin with a well known criterion for meet semidistributivity. I f  L is a finite lattice and a E J(L),  let 

g(a) be the largest element above a .  but  not above a, if such an e lement  exists. We regard a : J(L) -~ M(L) 

as a part ial  map. 

L E M M A  1. Let L be a finite lattice. Then L satisfies SDA if and  only if g(a) exists for each a C J(L).  

Moreover, if ~ finite lattice L satisfies SD^, then g maps J (L)  onto M(L). If L also satisfies SDv, then 

,~ is one-to-one, and the dual m a p  ~d : M(L) ~ J(L) is its inverse. 

We define the standard dependency relations on J(L)  as follows (assuming SDA for the first three): 

aAb ¢~ b < a < ~(b)*; 

aBb ~=> a ~ b, b ~ ,~(a), and b. _< n(a); 

aCb ¢=~ aAb or aBb; 

aDb ¢=~ there exists x C L such tha t  a < b V x but a ~ b. V x. 

Thus A U  B = C c D. 

The  dual relations are defined on M(L).  In semidistributive lattices, they behave particularly nicely, as 

is shown by the following result. 

L E M M A  2 (see [2]). Let L be a finite semidistributive lat t ice and let a, b E J (L) .  We have: 

(1) aAb if and only if n(a)Bd,~(b). 

(2) aBb if and only if n(a)Adn(b). 

Recall the basic results on boundedness (in the sense of McKenzie)  and D-cycles. 

T H E O R E M  3. A finite latt ice L is lower bouuded if and only if L contains no D-cycle. Moreover, 

every lower bounded lattice satisfies SDv. 

T H E O R E M  4. A finite semidistributive lattice L is bounded if and only if L contains no C-cycle. 
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Fig. 1 

We will be  interested in semidistributive lattices which satisfy the condition 

(P) if a, b E J(L) and b < a, then  aAb 

and its dual 

(Q) if p, q E M(L) and q > p, then pAdq. 

Note that  pAdq is equivalent to nd(p)Bgd(q). 
In [3], Caspard  proved that  the lattice Sn of all permutat ions  of an n-element set is bounded. In [4], 

she proved tha t  these lattices satisfy (P) and (Q), and used this to give a nice characterization of the linear 

orders on J(Sn)  which are consistent with the dependency relation D. Thus it seems natural  to ask the 

following: 

If a finite semidistributive lattice satisfies (P) and (Q), must  it be  bounded? 

We will show that  the answer is 'no. '  

2. S E M I D I S T R I B U T I V E  L A T T I C E S  

L E M M A  5. If  L is a finite lattice which fails SDv, then there exist distinct elements a, b E J(L) and 

c E L s u c h t h a t a V c = b V c ~ - c , a .  < c ,  a n d b .  < c .  

P r o o f .  Suppose a0 V co = bo V co > (a0 A b0) V co in L. Choose c such that  a0 V b0 ~- c > (ao A b0) V co. 

Then choose a minimal such that  a < a0, but a ;~ c, and choose b minimal  such that  b < b0 but  b ;~ c. 

As an immediate  application, we have the following results, which characterize join semidistributivity 

as a sort of weak lower boundedness. 

T H E O R E M  6. Let L be a finite lattice. Then L fails SDv if and only if there exist distinct elements 

a, b E J ( L )  a n d x E L s u c h t h a t a V x = b V x ,  a ; ~ b .  Vx,  a n d b ~ a .  Vx .  

C O R O L L A R Y  7. If L is a finite lattice which fails SDv, then L is not lower bounded. In fact, there 

exist a, b E J (L)  such that  aDbDa via the same element x. 

Figure 1 gives a lattice which satisfies SDv but which contains a short  cycle aDbDa, via distinct elements 

x and y. 

T H E O R E M  8. Let L be a finite lattice which satisfies SDA. Then  L fails SDv if and only if there 

exist a, b E J (L)  such that  aBbBa. 
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P r o o f .  I f L  fails SDv, then we can obtain  elements a,b E J(L) and c E L as in Lemma 5. Now a < b V c  

implies that  at least one of b, c is not below a(a) .  Since a.  <_ c and a ~ c, we have c < n(a) ,  and so b ~ g(a). 

However, b. < c < n(a),  whence aBb.  Similarly, bBa.  

3. A C O U N T E R E X A M P L E  

In this section we will construct an example  of a lattice which is semidistributive, satisfies properties 

(P) and (Q), but  which is not bounded. 

Let K be the join semilattice with 0 generated by the set 

G = {a0, a l ,  a2, b0, bx, b2, co, Cl, C2, X, y, Z} 

subject to the following relations: 

ao < al < a2, bo < bl < b2, Co < cl < c2, 

a2 <_ al V x, a l  <_ ao v b2, a t  <_ ao V y, 

b : < b l V y ,  bl ~ b o V c 2 ,  bl <_boVz,  

C 2 __~ C 1 V Z, Cl ~ Co V a2, Cl ~ co V x. 

We have implemented this construction using LISP, and it turns out tha t  K has 198 elements. We claim 

that K has the desired properties. 

By construction, J (K)  = G, and each element  of K can be represented as a join of these elements using 

at most one ai, one bi, and one ci. Moreover, a2 >- al ~- ao ~- 0, and similarly for the bi's and ci's, while 

x, y and z are atoms. In order to check tha t  K satisfies SD^, we must  find n(a) for each a E G. I t  is not 

hard to verify tha t  the following list is correct: 

~(a2) = al V b2 V c2 V y V z, n(c2) = a2 V b2 V cl V x V y, 

a(a l )  = a o V b l V c 2 V x V z ,  g(Cl) -- a l V b 2 V c o V y V z ,  

a(ao) = b 2 V c 2 V x V y V z ,  g(co) = a 2 V b 2 V x V y V z ,  

a(b2) = a2 V bl V c2 V x V z, a (x )  = a2 V b2 V c2 V y V z, 

g(bl) = a 2 V b o V c l V x V y ,  n(y)  = a 2 V b 2 V c 2 V x V z ,  

n(bo) = a 2 V c 2 V x V y V z ,  g(z )  = a 2 V b 2 V c 2 V x V y .  

Using this, we can check that  all the A 

a2 A a l ,  

a2 B x ,  al  B b2, al  B y ,  

b2 A bl, bl A bo, b2 A bo 

b2 B y ,  bl B c2, bl B z,  

c2 A c l ,  cl A co, c2 A Co, 

C 2 B z ,  C 1 B a2, C 1 B X. 

and B relations holding in K axe contained in the following list: 

al A ao, a2 A ao, 

(These axe just  the relations you would expect  from the defining relations. There are three more nontrivial 

join <overs implied by them, viz., al  ~ ao V bl V y and symmetrically, but  these do not introduce any new 

dependency relation.) 

Now we see tha t  K satisfies SDv because there is no cycle of the form d B e B d .  However, K is unbounded 

bc('aus(' of the cycle 

a2 A a l  Bb2 Abl Bc2 Ac l  Ba2. 
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It is easy to check property (P), and we verify (Q) in the form t~(e) > ~(d) implies dBe. 
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