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Abstract 

We consider two-stage stochastic programming problems with integer recourse. The 
L-shaped method of stochastic linear programming is generalized to these problems by using 
generalized Benders decomposition. Nonlinear feasibility and optimality cuts are determined 
via general duality theory and can be generated when the second stage problem is solved by 
standard techniques. Finite convergence of the method is established when Gomory's fraction- 
al cutting plane algorithm or a branch-and-bound algorithm is applied. �9 1998 The 
Mathematical Programming Society, Inc. Published by Elsevier Science B.V. 
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1. Introduction 

A stochastic programming problem arises when parameters of a deterministic 
mathematical programming problem are replaced by random variables. A common 
way of modelling uncertainty in mathematicai programs is via a two-stage stochastic 
program where a long-term anticipatory decision must be made prior to full infor- 
mation about random parameters o/"the problem and short-term decisions are avail- 
able as recourse actions once the uncertainty has been revealed. The aim is to 
determine a here-and-now decision which minimizes the total expected costs associ- 
ated with both the long-term and the short-term decisions. 

Stochastic programming problems are well known for being challenging both 
from theoretical and computational points of view. Stochastic programs with integer 
recourse are problems for which the recourse decision is required to be integer. Add- 
ing integrality restrictions to the constraints that define the second stage problem 
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significantly increases the complexity of the problem and only few results have been 
obtained for this type of problem. The reason for this is that given any first stage de- 
cision and outcome of the random variable, the resulting decision problem is an in- 
teger programming problem which is NP-hard, and together with a large number of 
outcomes of the random variables this makes the problem very difficult to solve. For 
an overview of stochastic integer programming we refer to [1,2]. In [3], a branch-and- 
cut algorithm called the integer L-shaped method is developed for problems with 
binary first stage variables and arbitrary second stage variables. In this paper we pro- 
pose a general framework for L-shaped decomposition of stochastic programs with 
integer recourse. The method is based on general Benders (resource) decomposition 
and general duality theory, see [4,5], and the integer L-shaped algorithm of Laporte 
and Louveaux [3] appears as a special case of this framework. A main issue in sto- 
chastic programming is whether first stage decisions give rise to infeasible second 
stage problems, This is also handled by the method. 

The paper is divided in sections as follows. In Section 2 we give a mathematical 
description of the problem and collect some results from integer programming dua- 
lity which are needed in subsequent sections. In Section 3 we state the L-shaped de- 
composition method and Section 4 deals with the case where cutting plane 
procedures are applied to solve the second stage problem, Use of branch-and-bound 
techniques is discussed in Section 5 and Section 6 contains some final remarks. 

2. Two-stage stochastic programs with integer recourse 

We consider the following problem: 

min cx+Ecmin{qy  [ T(~)x+ Wy >~ h(~), y E ZT} (2.1) 
s.t. Ax >l b, x E R~+ ~, 

where c is a known n~-vector, q a known he-vector, b a known m~-vector and A and 
W are known matrices of sizes rnl x n1 and m2 x nz, respectively. Furthermore, ~ is a 
random variable having support E C ~k and for each ~ the variables T(~) and h(~) 
have conformable sizes. Transposes have been eIiminated for simplicity. We suppose 
throughout that W and q are rational. The part of the objective and the constraints 
that are only related to the first stage decision variable x constitute here a linear pro- 
gramming problem, This formulation has been selected for simplicity of exposition. 
In particular the first stage decision variable could be restricted to be integers as well. 
For later use we define X := {x E ~ '  [Ax ~> b}. 

The challenge of (2.1) lies in the multivariate integration of a function, which is 
only given implicitly as the value function of a parametric integer programming 
problem. In many integer programming problems with an underlying combinatorial 
structure the uncertainty must necessarily be of discrete nature. A continuous prob- 
ability distribution on the random variable ~ will cause severe difficulties when eva- 
luating the integral in (2,1). Moreover, in [6] it is shown that if ~ follows a continuous 
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distribution, solutions to (2.1) can under mild conditions be approximated within 
any given accuracy by discrete distributions. This motivates the following assump- 
tion: 

(A1) The random variable ~ has a discrete distribution with finite support, say 
E = {~l , . . . ,~r} and P(~ = ~J) = / / .  

Problem (2.1) is then equivalent to the following mixed-integer program, where 
the constraints have a dual blockangular structure or L-shaped form, 

min cx + ~f~piqyi 
j = l  

s.t. Ax >T b, T(~J)x + Wy >l h(r j =  1 , . . . , r ,  x E ~_,  yJ E 7/7 . 

(2.2) 

The decision variables yJ and constraints are very large in number in this formulation 
but since we are primarily interested in the optimal first stage decision, we rewrite 
problem (2.2) in terms of the first stage variables only, 

min{cx + O(x) I x E X}, (2.3) 

where the expected recourse function Q is defined by 

r 

O(x) := Er - T(r = . ~ d ~ ( h ( r  J) - r(~J)x) 
j=l 

and �9 is the value function of the second stage problem, 

4~(d) = min{qy I Wy/> d, y E ZT}, d E R m'-. (2.4) 

In order to have (2.3) well defined we make the following standard assumption: 
rtl~ (A2) There exists a u E ~+- such that uW ~< q. 

Indeed, this assumption implies ~ b ( d ) > - ~ o  for all d E Nm, and hence 
Q(x) > -oo.  Assumption (A2) is independent of { since W and q are fixed. How- 
ever, no assumptions on primal feasibility will be made in this paper. Thus it 
might happen that Q(x) = +oo for some x E X. Particular attention should there- 
fore be devoted to first stage decisions that satisfy the induced constraint x E K, 
where K = {x E R+ ~ t Q(x) < oo}. One is therefore lead to study the properties of 
the value function (b. The function ~b is nondecreasing and subadditive on its do- 
main of definition, i.e., ~(d ~) + ~(d 2) > /~(d  ~ + d 2) for d i E R "= with ~(d i) < oc, 
i = 1,2, see [7]. For a full characterization we shall consider the following two 
classes of Chv~ital and Gomory functions, respectively. For a function F the in- 
teger round-up IF] is defined by IF] ( d ) =  FF(d)], where FF(d)] is the smallest 
integer which is larger than F(d). 

Definition 2.1. The class (~m of m-dimensional Chvdtal-functions is the smallest class 
of' of functions satisfying (i) F E o~' i fF(d)  = 2d and 2 E Qm, (ii) F, G E a f  and c~,/3 
nonnegative rationals implies ctF + fiG E a f ,  (iii) F Eaf '  implies IF] E a((. 

The class cg of all Chv~ital functions is cg = U,,~ cg,-. 
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The class ~"  of m-dimensional Gomory-functions is the smallest class J f  of func- 
tions satisfying (i)-(iii) and (iv) F, G E Jg implies max{F, G} E Jr .  

The class f# of all Gomory-functions is f# = UnClOg". 

By definition, a function F : R m: --+ N is a Chv~ital-function if it can be written as 
F(d) = u[M, fMt_l ... [M2IM1d]I "--]], where Mt, . . . ,M: are nonnegative rational 
matrices of conformable sizes and u is a nonnegative rational vector. It is easily prov- 
en that every Gomory-function is the maximum of a finite number of Chv~.tal-func- 
tions. 

Theorem 2.2 (Blair and Jeroslow [8]). Let W = (Wl, . . . ,  w,~.) be a rational matrix and 
q a rational vector. Assuming (A2) there exists Gomory-functions F, G : Q": ~ ~ with 
G(wj) <<. O,F(wj) <~ qj, j = 1,... ,n2, such that for each d E Nm2 

(i) {y E 7/7 [ Wy >1 d} ~ 0 if and only if G(d) <~ O. 
(ii) I fG(d)  <.0 then F(d) = min{qy [ Wy/> d, y E 7/+}. 

In other words, feasibility of the second stage problem is determined by the 
consistency tester G and when consistent the value function is a Gomory function. 
Note that except for the rounding-up operation, this is in exact analogy with lin- 
ear programming. The value function is on its domain of definition the maximum 
of a finite number of Chv~ital functions. The Chv~ital functions constituting the 
value function can be thought of as the "slopes" or "facets" of the value func- 
tion. The expected recourse function is thus nonconvex and discontinuous. By 
Fatous Lemma it is lower semicontinuous even for arbitrary probability distribu- 
tions. 

The idea in the L-shaped method for stochastic linear programming [9] is to use 
dual information of the second stage program to represent the recourse function, 
which is known to be a polyhedral function. In the integer case the recourse func- 
tion is nonconvex and cannot be supported by hyperplanes. Due to the integrality 
gap "nonlinear dual variables" must be considered, which in Theorem 2.2 take the 
form of  Chv~taI functions. This is formalized in the setting of general duality the- 
ory. The presentation here will be adapted to our setting and we refer to [4] for a 
general survey. A more thorough discussion of duality in integer programming is 
given in Wolsey [I0]. We denote the extended real line by N =  N U { - o c }  
U{+cc} and consider the set o~ of all functions F : R m2 --+ R that satisfy F(0) 
= 0  and are nondecreasing, i.e., F(dl)<~F(d 2) whenever d~ ~<d~ 2, i =  1 , . . . ,m2.  
The set ~ is the set of dual price functions. Consider also a subset J of ~ together 
with the maximization problem 

W max F(d) 
F 

s.t. F(Wy) <~ qy for all y E Z+ z, (2.5) 
F E ,.~. 
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Problem (2.5) is the (o~-)dual of (2.4). By construction it follows that w ,%< q~(d), since 
y feasible in (2.4) and F dual feasible implies F(d) <<. F(IVy) <~ qy. Moreover, we have 
the following version of the Duality Theorem and Farkas' Lemma [4,11]: 

Theorem 2.3. I f  the function class ~.~ is suitably large then (2.4) is infeasible i f  and only 
i f  there exists G E o~ with G(Wy) <~ O for a l ly  E l ~  and G(d) > O. The function G is 
then called a dual ray. If(2.4) is feasible, then fi is optimal in (2.4) i f  and only i f  there 
exists P E o~ feasible in (2.5) such that q:f = F(d). 

The meaning of suitably large is that the duality gap between (2.4) and (2.5) 
should be closed. This is always the case if q5 E o ~ because then �9 is feasible in 
(2.5). Thus Theorem 2.3 is of practical value only if it is possible to employ price 
functions that are more simple than tlae value function itself. One such class of func- 
tions is given by the Chv~ital functions, cf. Theorem 2.2. Also note that due to the 
nonconvexity of the primal problem, we will have to work with nonlinear price func- 
tions. The selection of a particular class of functions is determined by the algorithmic 
context. Below we shall be concerned with the choice of ~ when (2.4) is solved by 
cutting plane technique or branch-and-bound, respectively. 

3. Generalized L-shaped decomposition 

We now give a procedure for solving stochastic programming problems with in- 
teger recourse. The idea is to rewrite (2.3) in the following way: 

min{cx+ 0 I 0 ~> O(x), x EX} (3.1) 

and then represent the constraint 0 ~> Q(x) by means of dual price functions. For 
each outcome ~J E E we have a second stage problem, 

min{qy [ Wy >>. h(~ j) - T(r y E 2~ }, (3.2) 

and an associated dual problem, 

n2 mFax{F(h(r - T(r x) I F(Wy) <. qy for alt y E 7/+ ,F  E ~-}. (3.3) 

We suppose that the algorithm applied to solve (3.2) simultaneously generates an op- 
timal solution of (3.3) when both problems have optimal solutions. This assumption 
holds for all standard algorithms. Note that dual feasibility is independent of the re- 
alization of the random variable. 

Definition 3.1. Let g : ~m2 ....+ ~. The inequality g(x) <<. 0 is said to be a feasibility cut 
for Q at x* if (i) x* E X \ K, (ii) g(x) <~ 0 for all x E X r K, (iii) g(x*) > O. 

If  for some r problem (3.2) is infeasible at x*, we add a "valid inequality" g(x) <<. 0, 
which is satisfied by any feasible x but violated by x*. To detect infeasibility and gene- 
rate a feasibility cut we perform the following variant of a Phase I procedure: 
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Minimize v = et 
subject to IVy + It >~ h(~ j) - T(~J)x *, 

y E Z ? ,  t E Z +  2, 

where e is the m2-dimensional row vector (1 , . . . ,  1). 

(3.4) 

Proposition 3.2. I f  the optimal value o f  problem (3.4) /s positive, then the inequality 
G(h(~ j) - T(~J)x) <~ 0 is a feasibility cut for  O at x*, where G is an optimal dual 
solution of  (3.4). 

Proof. The optimal value is always nonnegative and finite and x* belongs to X A K if 
and only if the optimal value is zero. Otherwise a dual price function G has been 
determined which satisfies G(h(~ j) - T(~J)x *) > 0 and G(Wy + It) <~ et for all y E Z~ 
and all t E Z+ ~. Letting t = 0 we obtain the desired property. Moreover, ifx E X 71K 
then G(h(~ j) - T(~J)x) <. O, since G is a feasible (but not necessarily optimal) solution 
of the problem 

max{G(h(~ j) - T(~J)x) [ G(Wy+It)  <<.et VCv, t ) E Z~ x Z+ ~, G E ~-}. 
G 

The function G thus has the desired properties. [] 

Remark 3.3. The requirement that t is integral can be replaced by t/> 0, in which case 
(3.4) becomes a mixed integer programming problem. The result remains valid, but is 
then based on the duality theory for mixed integer programming. 

Definition 3.4. L e t f  : ~m2 . . . .+ ~. The inequality f(x)  ~< 0 is said to be an optimality cut 
for O at x* if (i) x* E x n K, (ii) f (x)  <~ O(x) Vx E X,  (iii) f(x*) = Q(x*). 

Proposition 3.5. Suppose FJ, j = 1 , . . . ,  r are optimal dual price functions obtained by 
solving (3.3) with x = x* for each ~J E ~ Then an optimality cut for  Q at x* is given by 
the inequality 0 ~ Y~=l piFJ ( h( r j) - T( ~J)x). 

Proof. For every j E {1 . . . .  ,r} optimal solutions )7 and FJ of (3.2) and (3.3) 
corresponding to x = x *  satisfy qY =FJ(h(~ j ) -  T(r *) as well as 
F(h(~ 2) - T(~J)x *) <~PJ(h(r }) - T(~J)x *) = qfd <~ qy for all feasible y E Z~? and all 
feasible F E ~ .  Hence for x E X M K and corresponding optimal dual price functions 
FJ we have 

r r 

Q(x) = ~__jCFJ(h(~ j) - T(~J)x) >1 ~ j F J ( h ( ~  j) - T(~J)x) 
j=l j=l 

with equality for x = x*. [] 

The procedure can be summarized as follows: At each iteration of the method we 
consider a current problem, which is a relaxation of (2.3). For  each outcome ~J let s(j) 
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be the number  of feasibility cuts added solar  and let t be the number  of  optimality 
cuts added solar. The  current probiem is: 

min cx + 0 
s.t. O>>.Gk/(h(~ j)-T(~j)x) ,  k j ~  1 , . . . , s ( j ) ,  j =  1 , . . . , r ,  

0 >>. Ep@[(h(~ j) - T(r k = 1 , . . . ,  t, (3.5) 
j = l  

x E X ,  

In multilevel planning (3.5) is referred to as the relaxed master problem or the 
supremal subproblem, whereas the second stage problem(s) (3.2) is referred to 
as the infimal subproblem(s). The LP-relaxat ion of  (3.2) can provide linear feasi- 
bility cuts and optimality cuts for  the recourse functions, in which case the cur- 
rent problem will have linear constraints too. In general, these cuts will not  be 
tight. 

Algorithm I 
Step 0: Set n := t := 0 and s(j) := 0 for all j = 1 , . . . ,  r and ~,t = o~ (or any upper 

bound  on the value of  (2.3)). 
Step 1: Set n := n + 1. Solve the current  problem. If  the current problem is infea- 

sible, then (2.3) is infeasible; stop. Otherwise let (x", 0 n) be an optimal solution if it 
exists; if the current problem is unbounded ,  then let (:d, 0") be a feasible solution 
with cx" + 0" < 2". 

Step 2: I f  cx-" + 0 ~ = 2" t/~en (:c", O") is optima/;  stop. Otherwise solve (3.2) and 
(3.3) for  all CJ 6 E with x = x ~. 

Step 3: (i) Suppose the second stage problem is infeasible for some ~J~,.. . ,  Cjv 
Then  add the feasibility cuts 0 >t G/'(h(~ j') - T ( ~ i ' ) x ) ,  i =  1 . . . .  ,v, to the current  

^ .  

problem, where G'; is the dual ray obta ined f rom the Phase I problem (3.4) with 
x -= x-" and ~ = ~J'. Let s(j'~) := s(j;) + 1, i = 1 , . . . ,  v, and g,+l = ~,. Return to Step 
1. (ii) Suppose the second stage problem for each ~J E E has a finite opt imum. De- 
note the corresponding optima! duaI price functions by F J, j ~- 1 , . . . ,  r. Add the op- 

t 
timality cut 0 1> ~ j= t  P ( h ( ~  j) - T(r x) to the current  problem and update  ~' as 

N+' = rain ~', cx ~ + FJ(h(~ j) - T(~-/)x ~) . 
j=l 

Let l := l + 1 and return to step 1. 

Theorem 3.6. The L-shaped algorithm does not cycle and termination in Step 2 implies 
that a global optimum has been reached. 

Proof. We first show that (x", 0") is infeasible at i teration n + 1. If  a feasibility cut 
O>>.GV(h(~J)-T(~i)x), is generated f rom x ~ then x" is cut off since 
~ ( h ( ~  j) - T(~J)x ~) > 0 by construction.  I f  terminat ion in Step 2 is implied then 
the upper  bound ~' has been reached. Otherwise 0 n < Y~j~l/~PJ(h(~ j) - T(~J) x~) and 
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hence an optimality cut 0 ~> ~ = l  P@J(h(~ j) - T(~J) x) is generated which cuts off 
(x ~, 0"). To prove optimality we note that cx ~ + O n is always an upper bound on the 
value z of (3.1). [] 

Remark 3.7. Following the lines of [12] we can use a muIticut approach for (2.3). The 
objective of (3.5) is then replaced by c x +  ~ = l p J 0  j and the corresponding 
optimality cuts take the form 0 / ~>FJ(h(~ j) -T(~J)x),  j = 1 , . . . , r ,  where the 
functions FJ are obtained as above. 

Remark 3.8. As noted in [5], the performance of this method depends heavily on the 
class of dual price functions applied. At one extreme we can consider the value 
function itself or some class of functions which contains the value function and at 
another extreme we can consider point estimates, viz. functions of the type 

f ~(d) for d >1 h(~) - T(~)x*, 
F(d)  I l(d) otherwise, 

where l(d) is any lower bound on ~b(d). This is the type of price functions employed 
by Laporte and Louveaux in their branch-and-cut procedure for integer recourse 
problems. This yields a finite procedure if X is finite, but the number of constraints 
needed is in general exponential in hi. With binary first stage variables linear opti- 
mality cuts can be obtained in this way, see [3]. 

Definition 3.9 (Laporte and Louveaux [3]). A set of feasibility cuts is said to be valid if 
there exists some finite number s, such that x E X N K if and only if 0 >~ gk(x), 
k = 1, . . .  ,s. A set of t optimality cuts is said to be valid if for all x E X M K it holds 
that (x, 0) E {(x, 0) t 0 >~ gs(x), l = 1 , . . . ,  t} implies 0 ~> Q(x). 

Obviously, if a valid set of feasibility cuts and a valid set of optimality cuts is gene- 
rated in the L-shaped method, then the procedure converges in a finite number of 
steps. Note that finiteness here only means that the relaxed master problem and 
the subproblems have to be solved a finite number of times. We have not addressed 
the question of how to solve the current problem. The form of the constraints in the 
current problem will depend on the class of price functions employed and thereby the 
algorithm applied to solve (3.2). 

A precise description of constraints of the master problem is available when the 
rank of the polyhedron conv{y E Z~ [ Wy >~ h(~) - T(~)x} is known (see [7] for a 
definition of the rank of a polyhedron). 

Example 3.10. Let G = (V,E) be a graph with vertices V and edges E. Let n be the 
number of vertices and denote by E(i) the set of  edges incident to vertex i E V. 
The first stage problem is a knapsack problem, where a set of vertices has to be 
selected such that total weight is maximized without exceeding the capacity b 
(b < n). 
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m a x  ~'~ CiX i 
iEV 

s.t. ~xi~<b, xiE{0,1}.  
i~v 

The resulting subgraph is given by the set of vertices i having xi = 1 and the set of 
edges incident to these vertices. In the second stage a b-matching of maximum weight 
on this subgraph has to be determined. The number of edges that can be assigned to 
vertex i on the subgraph is ~, where ~ is a random variable with nonnegative, integer 
values ~] , . . . ,  ~7" The second stage problem hence is 

max ~ q~y~ 
eEE 

s.t. ~ y~ ~< ~,xi, i E V, (3.6) 
e~E(i) 

Ye >>" 0 and integer. 

The optimal solution of the subadditive dual of problem (3.6) is of the form 

F(d)  = S u i d i  + VU~ 
iEg 

where u~, vu/> 0 for all i E V and all U C_ V. The optimality cuts have the form 

o.< + 
j=l \ i6V iEU 

where the multipliers ~,  i E V and @, U C_ V and }-~i~u ~f Xi odd, are determined by 
solving for each outcome ~, i E V, j = 1, . . .  , r  the problem (cf. [10]) 

min ~-~ui~ixi + ~ixi vu 
iEV 

s.t. u i + u j +  ~ Vu/>qe, for a l l e = ( i , j )  E E  
E(U)ge 

u~ >7 0, vu/> 0 for all i E V, U c_ V. 

4. Cutting plane techniques 

We now explain how the generalized L-shaped method works when the second 
stage problem is solved by cutting plane techniques. In this section o~ will denote 
the class of  functions F : R'~ --+ N that are nondecreasing, subadditive and satisfy 
F(0) = 0. Using these properties of  the price functions, the dual problem (3.3) is 
equivalent to the following problem, see [7], where the constraints are independent 
of the primal variable: 

max F(h(~ j) - T(~J)x) (4.1) 
s.t. F(wj)<<.qj, j =  1 , . . . ,n2 ,  F E o ~ .  
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The subadditive dual of (3.4) can similarly be written 

max G(h(~ j) - T(~J)x) 
s.t. G(wj) <~ O, G(e,) <~ 1, j = 1 , . . . ,  n2, i = 1 , . . . ,  m2, (4.2) 

G E .~-, 

where ei is the ith unit vector of Rm2. The constraints G(ei) ~ 1, i = 1 , . . . ,  rn2, ensure 
that the problem is bounded. 

In a standard cutting plane procedure valid inequalities are successively generated 
and added to the constraints defining the feasibility set. The resulting problem is then 
solved by linear programming without integrality restrictions. This procedure is re- 
peated until the current LP-solution is integral. The cuts can be written in the form 

n2 

EFC')(wj)yj  >1 F(')(q), l = 1 , . . . , z ,  (4.3) 
j=l  

where F It) E ~@, l = 1 , . . . ,  T. See e.g., [7] or [13]. At termination of  the cutting plane 

procedure dual variables (u j , . . . ,  u,, z, u,,z+],... ,  u,~,+r >1 0 are obtained from the LP- 
soIution. We then define a function F : ~,z ~ I/~ by 

0/2 r 

F(d) := E u ,  di 4-Zu~:+iF(il(d).  (4.4) 
t=L ~=L 

By construction it foLLows that F E o~ and by LP-duality we see that F is a feasible 
solution of  (4.1). Moreover, it is an optimal solution of (4.1) and the duality gap be 
tween (4.1) and (3_2) is closed. For details see [10,13]. 

As an example consider the case where the cutting planes are generated using 
Gomory 's  Fractional Cutting Plane Algorithm (Gomory FCPA). Gomory  cuts have 
long been disfavoured due to poor computational experience in the sixties and early 
seventies of implementations. However, recent experiments with Gomory cuts shows 
that it can be a very efficient way of solving integer programs. This success is largely 
due to the greatly improved LP-codes now available, together with a branch-and-cut 
framework. The Gomory cut generated from a source row of  the final Simplex tab- 
leau of  the LP-relaxation of the second stage problem is (see, e.g., [7]) 
~-~j"2= l F(wj)yj >>. F(q), whereF(d) = VY-~m~ 1 2~d~] and 2~ = [#v A - #vp;. Here/.t is some 
parameter and vp, are the elements of the current inverse basis matrix corresponding 
to the source row. The successive cuts are of  the form ~ 1 F ( z )  (wj)y: >1 F (~) (q) where 

- ~-")(t-])F(O(d) l = 1 , . . .  z, (4.5) F(I)(d) = 2 1 l)d, + Z.../'~z+i ' : ' 
i= ] 

F (~ - 9 and the vector 2 (r >/0 is obtained from the coefficients of  the slack vari- 
ables ~n the (l - l) th iteration. We see that F (t/ E ~ ,  l = t , . . .  ,t, and that they are 
Chv~ital functions too. Introducing auxiliary variables and representing the round- 
up operations in (4.5) by integrality requirements, the current problem (3.5) can 
be rewritten as a mixed-integer linear program. However, the number of auxiliary 
variables will equal the total number of nested round-up operations in the price func- 

tions. 
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Gomory has shown that upon further specification of the Gomory FCPA, lexico- 
graphic dual feasibility and a known lower bound on the sequence of optimal values 
of the LP-relaxation, finite convergence is guaranteed. As Theorem 2 reveals, the 
class of dual price functions can indeed be tightened to the class cgm2 of m2-dimen- 
sional Chv~ital-functions. The dual price functions generated by the Gomory FCPA 
will not necessarily correspond to the Chv~ital functions constituting the value func- 
tions, but finiteness can still be guaranteed. The following assumption is necessary to 
bound the number of Gomory cuts uniformly in x and 4: 

(A3) Suppose that for some suitably large a E Z+ we have 

y E Z ~  W y ) h ( ~ J ) - T ( ~ J ) x  C y E N ~  ~_,yj<~a 
j=l 

for all ~J E E and all x E X. 
In particular assumption (A3) implies that the recourse function is bounded from 

below. 

Theorem 4.1. Suppose assumption (A3) is fulfilled. Then valid sets o f  feasibility cuts 
and optimality cuts are generated in finitely many step and the L-shaped method 
converges finitely. 

Proof. We show that only a finite number of dual price functions can be generated 
from the second stage problems. This implies finiteness since eventually the value 
function will be generated. Consider first the generation of optimality cuts. In the 

n~ first step a Gomory cut ~ j -  1F 1 (wj)yj >~ F 1 (q) is generated from a source row and 
added to the LP-relaxation of (3.2). A dual price function is then obtained by solving 
the resulting dual LP-problem. Only a finite number of dual price functions can be 
obtained by this procedure, because we can restrict attention (cf. (4.4)) to basic 
solutions of the system 

u E ~,~,.+t uiwij + u,~2+tF 1 (wj) <~ qj 
i=1  

which are independent of the right-hand side of the second stage problem (3.2). In 
each step of the FCPA, only a finite number of dual price functions can be obtained, 
since the number of source rows and the number of basic feasible solutions of the 
dual LP-problem both are finite. By a result from integer programming (see e.g., 
Theorem II.4.3.8 in [7]), the maximum number of cuts needed by the Gomory FCPA 
to solve the second stage problem to optimality or detect infeasibility is independent 
of the right-hand side. Thus the number of optimality cuts is finite. 

Consider now the generation of feasibility cuts. Feasibility cuts are generated by 
solving the problem 

min {et I Wy + It >>. h(~ j) - T(~Ox, (y, t) E g~ x Z+ 2 } (4.6) 
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for right-hand sides h(~ j) -T(~J)x, j = 1 , . . . ,  r. I f  we denote the value of (4.6) by 
q~(x, ~J) we see that feasibility cuts are simply optimality cuts for the functions 
r ~J). The argument above applies and the number of feasibility cuts is also fi- 
nite. [] 

5. Branch-and-bound 

In this section we discuss the generalized L-shaped method when branch-and- 
bound is employed for solving the second stage problem. A branch-and-bound algo- 
rithm generates a branching tree during the solution process. At each node of  the tree 
integer upper and lower bounds (possibly -oo  or +oo) are stated for the integer vari- 
ables and the LP-relaxation of the resulting problem is considered. The goal is to 
solve the second stage problem (3.2) completely by generating a tree such that the 
optimum of (3.2) is found as an integer solution to an LP-problem at one of the 
nodes. The class of price functions appropriate for this type of algorithm was shown 
in [10] to be price functions of the form 

F(d)  := min {uid q- bi}, u i = (u i l , . . . , u i2 )  >~ 0 
i=l,...,P 

for some finite P E ~, i.e., the class of all nondecreasing, concave, polyhedral func- 
tions. These dual price functions are generated as follows. Let i = 1 , . . . ,  P index the 
terminal nodes of a current tree and let d E R mz be some right-hand side. Denoting 
upper and lower bounds for the ith node by l g and k i, the problem corresponding to 
the ith node is: 

min qy 
s.t. Wy>>.d, (5.1) 

k i ~ Y <~ l i. 

dual variables u and ~ for the lower and upper bounds, the dual problem Introducing 
of  (5.1) is 

max ud + uk ~ - ~l ~ 
s.t. u W + u_ - -ff <~ q ,  (5.2) 

u,u,~/> O. 

If  (5.2) is unbounded a dual ray (r~,~,~/) t> 0 satisfying ? W + ~ - P ~ < O  and 
? d + ~ k  s - ~ l i >  0 is obtained from the usual Phase I problem and we put 
(u i, u i, ~i) := (u, u, ~) + 2(r ~, _?, ~), where (u, u, ~) is a feasible solution of some previ- 
ously solved subproblem and 2/> 0. Otherwise, (5.2) has an optimal solution 
(ui, ui,~i). In both cases we define the function f i ( d ) : =  uid .-F uik i -  ~ili = uid-1-b i. 
Then f ( d )  equals the optimal value of (5.1) and (5.2) if finite; otherwise J~(d) can 
be made arbitrary large by letting 2 tend to +oc. Performing these operations for 
all terminal nodes we then define the price function F by 

F(d)  := i=ml,!.n./.(d) = i=lmin,...,p{uid + bg}. (5.3) 
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I fy  is integer then F(Wy) <~ mini=~,...,e{uiWy + u_ik i -- -ffili} <~ qy by LP-duality and this 
implies that F is dual feasible in (3.3). Moreover, if the minimum is taken over all end 
nodes of the branching tree at termination, then F is an optimal solution of (3.3). 

When the dual price functions are obtained by branch-and-bound technique the 
current problem (3.5) becomes a disjunctive program. Consider again the multicut 
version. The optimality cut 0 / >~ FJ(h(~ j) - T(~J)x) where F j has the form (5.3) is 
then equal to the requirement that 0 / be greater than or equal at least one of the 
terms ul(h(r j) -T(r  uP(h(~ j) -T(r  A similar and somewhat stronger 
dual function, using also dual multipliers from nonterminal nodes, was suggested 
in [14] and applied there to integer programming sensitivity analysis. 

Theorem 5.1. Suppose a branch-and-bound algorithm terminates finitely when applied 
to problem (3.2) and that Assumption (A3) is fulfilled. Then valid sets o f feasibility cuts 
and optimality cuts are generated in finitely many steps and the L-shaped method 
converges finitely. 

Proof. The support E of ~ is finite so at most a finite number of feasibility cuts are 
generated for a given x. The L-shaped method does not cycle by Theorem 3.6 and by 
Assumption (A3) the number of possible branching trees is finite, hence valid sets of 
feasibility cuts and optimality cuts are generated in a finite number of steps. [] 

Remark 5.2. If first stage decision variables are restricted to integers, then 
Assumption (A3) is implied by the stronger assumption that {x E Z~J lAx >1 b} is 
finite. The number of possible branching trees is finite due to Assumption (A3) but 
grows exponential with n2. 

6. Concluding remarks 

The contribution of this paper is to show how the classical L-shaped method can 
be generalized to stochastic programs with integer recourse. The procedure leads to 
nonlinear master problems where the constraints depend on the algorithm employed 
for solving integer programs. Two particular cases have been examined where the 
procedure has finite convergence provided the master problem can be solved by a fi- 
nite method. Moreover, in the first case the master problem can be transformed into 
a mixed-integer program, whereas in the second case the master problem is equiva- 
lent to a disjunctive program. The generalized L-shaped procedure above stresses the 
fact that decomposition of stochastic programs with respect to time stages can not be 
separated from the gathering of dual information via appropriate dual price func- 
tions. The nonlinearity of the master problem is also reflected by the difficulty of per- 
forming sensitivity analysis in integer programming, where dual price functions enter 
naturally, see e.g., [14]. However, the master problem obtained from either of the 
two approaches is not in general computationally attractive. In order to become 
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efficient, more structure on problem (2.1) should be imposed and attention should be 
limited to a restricted class of dual price functions, e.g., by Lagrangian relaxation of 
(part of) the second stage constraints, by considering only price functions separable 
in their arguments, or by considering only price functions with one level of round-up 
operations. In this way more tractable master problems can be obtained at the ex- 
pense of optimality. 
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