
Mathematical Programming 83 (1998) 159-185 

Merit functions for semi-definite complementarity 
problems 1 

Paul Tseng 2 
Department of Mathematics, University of Washington Seattle, WA 98195, USA 

Received 5 September 1996; revised manuscript received 4 August 1997 

Abstract 

Merit functions such as the gap function, the regularized gap function, the implicit 
Lagrangian, and the norm squared of the Fischer-Burmeister function have played an important 
role in the solution of complementarity problems defined over the cone of nonnegative real 
vectors. We study the extension of these merit functions to complementarity problems defined 
over the cone of block-diagonal symmetric positive semi-definite real matrices. The extension 
suggests new solution methods for the latter problems. �9 1998 The Mathematical Program- 
ming Society, Inc. Published by Elsevier Science B.V. 
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1. Introduction 

There recently has been very active research on semi-definite linear programs 
(SDLP) and, more generally, semi-definite linear complementarity problems 
(SDLCP), which are extensions of  LP and LCP, respectively, whereby the cone of 
nonnegative real vectors is replaced by the cone of  symmetric positive semi-definite 
real matrices. These problems have important  applications in engineering [5] and in 
combinatorial  optimization [1,23,25], where the SDLP relaxation can yield a much 
better approximation of the original problem than does the LP relaxation [23]. Al- 

though SDLP are special cases of  convex programs, difficulties with representing 
the positive semi-definiteness constraint algebraically and with the possible presence 
of  a duality gap have thus far rendered conventional solution methods for convex 
programs ineffective for SDLP. Instead, research efforts have focussed on interior- 
point methods, for SDLP (see [1,2,27,35,46,47,54,62] and references therein) and, 
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to a lesser extent, for SDLCP [35,60] and for semi-definite (nonlinear) complemen-  
tarity problems (SDCP) [57]. There have also been preliminary efforts to develop 
simplex type methods for SDLP [51]. While interior-point methods have been suc- 
cessful at solving SDLP, it is worthwhile to explore other solution approaches for 
SDLP and for the more general problems of  SDLCP and SDCP. In particular, there 

recently has been active research on the use of  merit functions to solve LCP and  NCP 
[8,10,13-16,18,20,29,30,32,44,50] and the solution methods thus developed, such as 
the Newton-type methods based on the Fischer-Burmeister function, appear  to be 
more effective than interior-point methods. Motivated by these developments, we 
study in this paper  the extension of merit functions for LCP/NCP to its semi-definite 
counterpart,  SDCP. As we shall see, this extension is easy for some merit functions, 
namely the gap function, th~ regularized gap function, and the implicit Lagrangian,  
but is highly nontrivial for other merit functions, namely those based on the Fischer-  

Burmeister function (see Sections 6 and 7). 
We formally describe the semi-definite complementarity problem (SDCP) below. 

Let X denote the space of n x n block-diagonal real matrices with m blocks of  sizes 
nl, .  �9 nm, respectively (the blocks are fixed). Thus, Y" is closed under matrix addition 
x + y, multiplication xy, transposition x a', and inversion x -1 , where x ,y  E Y'. We en- 
dow ~r with the inner product and norm. 

(x,y) := tr[xTy], [IX[[ := "v/(X,X), 

where x , y  E W and tr[.] denotes the matrix trace (i.e., tr[x] = Y~i"---1 xii). ([[x[[ is the Fro- 
benius-norm of x and := means "define".) Let 50 denote the subspace comprising 
those x E ~r that are symmetric, i.e., x T = x. Let • denote the closed convex cone 

comprising those elements of 50 that are positive semi-definite (abbreviated as 
"psd").  Our problem is to find, for given mappings F:  50 ~ 50 and G: ~9 ~ ~ 5 ~ 

an x E 50 satisfying 

F(x) E J l ,  G(x) E 9if, (F(x), G(x)) = 0. (1) 

This problem contains as special cases the SDLP (for which n~_ . . . . .  nm = 1, G =- I 
and F is affine and skew-symmetric in the sense that (x - x', F(x)  - F(x')) = 0 for all 
x,x '  E 50) and LCP/NCP (for which nl . . . . .  n,, = 1 and G - I ) .  Notice that 

(50, (., .), [I �9 II) forms a Hilbert space. In fact, each matrix x E 50 may be associated 
m 

with the vector 2 := ( . . .  ,xij, . .  ")i~1 E ~R v, where v := ~-']~k=l nk(nk + 1)/2. According- 
ly, the inner product on 50 is associated with the weighted Euclidean inner product  

m Eni+...+nk ~"~nl +'--+nk 2X \ on ~v: (~,3~)~ := ~-]k=l i=.,+-.-+.k_,+l ( xiiyii -~ 2-~j=i+1 uYij), and X corresponds 
to a certain closed convex cone in ~W. While X has a complicated geometrical struc- 
ture compared to the nonnegative orthant in 9~ v, it does share the proper ty  that 

~ff~ = -~ff ,  where JC ~ := {y E 50: (x,y) <~ 0 Vx E JY'}. 
We say that a function f :  ~g ~ [0, ~ )  is a merit function (for the SDCP) on a set 
c 50 (typically cg = 50 or ~ = G-l(oU)), provided that x satisfies Eq. (1) if and 

only if f (x) = 0. Then we may reformulate the SDCP as the following minimization 

problem: 
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minimize f ( x )  subject to x E E, 

and apply a feasible descent method to solve this minimization problem. There are 
many choices for a merit function. The earliest choices is the gap function 

f ( x )  := maxx{(F(x), G(x) - ~) } (2) 

proposed by Auslender [4] and Hearn [24], which is a merit function on G -1 (X)  (see 
Proposition 3.1). There is also a "dual" version of this gap function, given by 

f ( x )  := ~ax{(F(G-l(~)), G(x) - ~)}, (3) 

which is a merit function on G -~ (Y{-) provided that F and G are relatively pseudo- 
monotone on G-I(Yt) and F is continuous on G-I (Y)  and G -l is defined and con- 
tinuous on Y (see Proposition 3.2). A second choice is the regularized gap function, 
parameterized by a scalar c~ > 0, 

f~(x) := max [ (F(x), G(x) - ~) - 1 , , G ( x )  - 5H 2 ) (4) 

proposed independently by Fukushima [20] and Auchmuty [3], which is a merit func- 
tion on G -l ( S )  (see Proposition 4.1). (See [21,36] and references therein for surveys 
and extensions of gap and regularized gap functions.) A third choice is the implicit 
Lagrangian function, parameterized by a scalar ~ > 1, 

f~(x) :=max ~ (F(x), G(x) - ~) - (~, G(x)) - l ( I ] F ( x  ) - ~ll 2 + IlG(x) - ~l[ 2); 
z ~  J 

(5) 

proposed by Mangasarian and Solodov [44] in the context of NCP and further stud- 
ied in [11,28,38,52,53,61,64,65], which is a merit function on 5 ~ (see Proposition 5.1). 
A fourth choice is the function 

f(x) := IIG(x)- [G(x)-  X(x)]+ll z (6) 

studied in [7,37,39,41,45,48,50], which is a merit function on 5 a (see Proposition 2.1). 
(Here [-]+ denotes orthogonal projection onto Yd: [xJ+ = arg minr - 411-) A fifth 
choice is 

f ( x )  := �89 G(N))I[ 2, (7) 

where 4) : 5 p x 5e ~ 5 e is the function 

b) := (o + b') - + b) (8) 

attributed by Fischer to Burmeister (see [15,17,18]). This choice o f f ,  which is a merit 
function on 5" (see Proposition 6.1), has been much studied in the context of NCP 
(see [8,12-14,19,22,28,29,31-34,59]; also see [16] for a survey). In the case of NCP, 
other choices of the function q5 in Eq. (7) have been proposed, with the earliest 
one given by Mangasarian [43], followed by other proposals [9,30-32,59]. However, 



162 P. Tseng / Mathematical Programming 83 (1998) 159-185 

it is unclear whether these other choices can be extended to SDCP (see the discussion 
following Lemma 2.1). A sixth choice is 

f ( x )  := •o( (F(x), G(x)) ) + ~(F(x) ,  G(x) ), (9) 

where ~k0: ~R ~ [0, oo) satisfies ~0(t) = 0 if and only if t ~< 0 and ~: 5 e x 5e ~ [0, oc) 
satisfies 

~ ( a , b ) = 0 ,  (a,b)<<.O if and only if (a,b) EaVfxJ{  ", ( a , b ) = 0 .  (10) 

This function, studied by Luo and the author [42] in the context of NCP, is a merit 
function on 50 (see Proposition 7.1). For each of the above six choices o f f ,  we will 
derive conditions for f to be convex and/or differentiable, and for the stationary 
point o f f  to be a solution of SDCP. We will also study, to a lesser extent, growth 
properties o f f  and the generation of feasible descent directions for f .  

In what follows, we denote by (.9 the set of orthogonal p E ~r (i.e., pT = p-i) .  We 
say that F and G are relatively pseudo-monotone on cg c 5 a if 

<F(x), G(x) - G(x')) <. 0 ~ <F(x'), G(x) - a(x')> ~< 0 Vx, x' E cg. 

More restrictively, F and G are relatively monotone on ~g if 

(F(x) - F ( x ' ) ,  G(x) - G(x')> >~ 0 Vx, x' E cg 

and F and G are relatively strongly monotone on c~ if there exists a 7 E (0, oo) such 
that 

(F(x) - F(x'), G(x) - G(x')) >~ yt]x - x'll 2 Vx, x' E cg. 

(In the case where G - I, the above three conditions reduce to F being, respectively, 
pseudo-monotone, monotone, and strongly monotone.) When F is differentiable (in 
the Frdchet sense) on cg, we denote by V F ( x )  the Jacobian o f F  at each x E oK, viewed 
as a linear mapping from 5 ~ to 5 p. When a function f :  cg ~ ~R is differentiable (in the 
Frrchet sense) on g,  we denote by ~7f the gradient o f f ,  viewed as a mapping from cg 
to 0% We say that a linear mapping M: St ~ 5" is positive semi-definite (respective- 
ly, positive definite) if {x, Mx) >1 0 (respectively, (x, Mx) > 0) for all x E 5" with x r 0, 
and we denote the adjoint of M by M* (i.e., (y, Mx) = (M*y,x) for all x , y  E 5e). For 
any x E 5 p, we denote by x~j the (i,j)th entry o f x  and, for any I , J  C {1, . . .  ,n}, we 
denote by xu the submatrix ofx  with rows i ~ I and columns j ~ J removed. For any 
2 t , . . . ,  2, E !R, we denote by diag[21,..., 2,] the n x n diagonal matrix with diagonal 
entries 21, . . . ,  2,. We will freely use the following facts about trace [26]: For  any 
x , y  E 5r and any p E (9, tr[x] = tr[x T] = tr[pxpT], tr[xy] -= tr[yx], and t r [x+y]  = 
tr[x] + tr[y]. Also, II" II is a norm on y" and, in particular, the triangle inequality 
and the Cauchy-Schwarz inequality hold for [[. II. Lastly, we have from 
Jr~ = - a T  that, for any a E 5 e, 

a E J f  r (a,b)>~O g b E J { "  (11) 

and (see Lemma 2.1(a) and [66], Lemma 2.2) 



P. Tseng I Ma themat i ca l  P r o g r a m m i n g  83 (1998)  159-185 

a --  [a]+ + [a]_, [a]+[a]_ = 0, [aL - -  - [ - a ] + ,  

a[a]+ ---- [a]+a ---- Ca]+) ~, 

where [.]_ denotes the orthogonal  project ion on to o~ "~ 

163 

(12) 

2. Projection residual function 

In this section, we study the merit funct ion f given by Eq. (6), which has a rela- 
tively simple structure and is related to the growth rate of  many other merit func- 
tions. We begin with the following lemma, part  (a) o f  which gives a way to 
compute  the projection [a]+ via the spectral decomposi t ion of  a. 

Lemma 2.1. (a) For any a E 5 a, we have [a]+ = pT diag[max{0, 21 } , . . . ,  max{0, 2,}]p, 
where p E (9 and 21 , . . . ,  An E 9~ satisfy a = pTdiag[21 , . . . ,  2,1p. 

(b) For any (a, b) E 5 a x 5e, we have a, b E ~ ,  (a, b> = 0 i f  and only i fa  = [a - b]+. 

Proof.  (a). We have, for any c E W that  

Ila - c[[ 2 -- Ilpap v - pcp-<][ 2 --- [Idiag[2~,.. . ,  2,] - p c p T l [  2 

= 2i - -  ii + ij ' 

where the third equality also uses the symmetry  of  pcp ~. Since pcp r E o~ff so that 
~vcpT]u >>.0 for  all i, the r ight-hand side is minimized by the c with 
[pcpX],i = max{0, 2,} and [pcpr]ij = 0 for all i :~ j ,  i.e., c = p-C diag[max{0, 2t } , . . . ,  
max{0, 2n}]p. 

(b). This result is well known [66] and the p r o o f  is included for completeness. Con- 
sider any (a, b) E oU • ~ l  satisfying (a, b) = 0. For  any c E a~f ", 

[[(a - b) - ell 2 = [[a - ell 2 + 2<c - a,b> + Ilbl[ 2 =l ta  - ell z + 2(c,b> + Ilblt 2. 

Since b E ~ff so, by Eq. (11), (c, b) ~> 0, the r ight-hand side attains its minimum at 
c = a  so a = [ a - b ] + .  Conversely, consider any (a,b) E S e •  a satisfying 
a = [a - b]+. Then a E X and 

0~< II(a - b )  - c l l  2 - llbll 2 --  Ila - ell = + 2 ( e  - a,b) Vc E o,Y'. (13) 

F or  any z E X and any t E (0, oe), we have c := a + tz E ~ and so Eq. (13) yields 
0 ~< t211zll 2 + 2t(z, b). Dividing both  sides by t and letting t ~ 0 yields 0 ~< (z, b> for 
all z EJ{-.  By E q . ( l l ) ,  b E.Cg'. Similarly, for  any t E(0 ,1 ] ,  we have 
c : :  (1 - t ) a  E ~ff and so Eq. (13) yields 0 <~ t21lall 2 -  2t<a, b). Dividing both  sides 
by t and letting t -* 0 yields 0 ~< - (a, b). Since a, b E ~ so (a, b) >i 0 by Eq. (11), 
this implies <a, b) : 0. [ ]  

Just as in the N C P  case, the residual [a - b]+ - a may  be written equivalently in 
Mangasar ian 's  f ramework [43] as � 8 9  b l -  a -  b), where Ixl :=  (x2) I/2 for  any 



164 P. Tseng I Mathematical Programming 83 (1998) 159-185 

x E 5  ~. This is because l a -b l=Sd iag[[ ,~ l l , . . . , IAn[]p ,  where p E C  and 
21, . . . ,  2, E 91 satisfy a - b = p'rdiag[21,.. . ,  2,]p, so that 

la - bl - a - b = la - b] + (a - b) - 2a = pTdiag[12tl + ).1,. . . ,  I2,l + 4,] 

p - 2a = 2pT diag[max{0, 21}, . . . ,  max{0, 2,}]p - 2a = 2[a - b]+ - 2a, 

where the last equality uses Lemma 2.1(a). Thus, there is some hope that perhaps 
Mangasarian's general formula of O(la - bl) - O(a) - O(b) can also be extended to 
SDCP (assuming 0 : 5  e ~ 5 p is strictly monotone and satisfies 0(0) = 0?) 

It follows from Lemma 2.1(b) that an x E 5 e satisfies Eq. (1) if and only if 

a(x)  - [G(x) - F(x)]+ = 0. 

The left-hand side, which, by Eq. (12), is equal to F(x) - IF(x) - G(x)]+, is some- 
times called the "projection residual". Thus f given by Eq. (6) is a merit function 
on 5 p, which we state formally in the following proposition along with a condition 
for f to have a quadratic growth rate. 

Proposition 2.1. Let  f :  5/' ~-+ 9t be given by Eq. (6). Then the following hold." (a) 

f ( x )  >~ O for  all x E 5/', and f ( x )  = 0 i f  and only i f  x satisfies Eq. (1). (b) I f  F and G are 
Lipschitz continuous and relatively strongly monotone on 5 p, then there exists a 
constant c > 0 such that f ( x )  >>. c[Ix - x *  II 2 for all x ~ se, where x* denotes the unique 
solution to Eq. (1). 

Proof. (a) follows from Lemma 2.1(b). (b) follows from an argument similar to the 
proof  of [48], Theorem. 3.1. [] 

A drawback o f f  given by Eq. (6), due in part to its nondifferentiability, is the dif- 
ficulty of finding descent directions for it. In the case of NCP, the NE/SQP approach 
of Pang and Gabriel [50] finds descent directions, but this approach does not appear 
to extend to SDCP since the computation of each direction uses the Cartesian pro- 
duct structure of the nonnegative orthant as well as the solution of a certain convex 
quadratic program. Nonetheless, the projection residual motivates iterative methods 
of the form 

G(x new) ,~ [G(x) - aF(x)]+, 

where c~ E (0, oc) is some suitably chosen stepsize. Although such methods are not 
descent methods for f given by Eq. (6), in the case where G - I and F is continuous 
and monotone, it has been shown that these methods are convergent (see [58] and 
references therein) and, in particular, are descent methods for the square of the dis- 
tance (measured in the norm [[. [D to the solution set. However, these methods are 
first-order methods and, as such, are better suited for large-scale problems where sec- 
ond-order methods have difficulty. 

3. Gap functions 

In this section, we study the merit function f given by Eq. (2) and Eq. (3). Due to 
the correspondence between (5e, (., .)) and (91v, (., . )~)  with v := Ekml nk(nk + 1)/2 
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(see the discussion in Section 1), most of the results are easy extensions of known re- 
sults [4,24]. For completeness, we have included the proofs, which are short. 

Proposition 3.1. Let f :  G -l (X)  ~ 9~ U {0o} be given by Eq. (2). Then the following 
hold: 

(a) For any x E G- I (~ ) ,  we have f (x )  >1 0 with f ( x )  = 0 if and only if  x satisfies 
Eq. (1). 

(b) I f  F and G are affine and relatively monotone on G -1 (Jr"), then f is convex on 
G-'(sc). 

Proof. (a). Fix anyx  E G-I(X) .  By Eq. (11), if F(x) E X ,  then (F(x),#) >>. 0 for all 
( E  s ( ,  implying f(x)=(F(x),G(x))>>.O (the nonnegativity follows from 
F(x),G(x) E X);  otherwise, there exists a ~ E Y with (F(x) ,#)< 0, implying 
f ( x )  = ee. Thus, / (x)  >~ 0 andf(x)  --- 0 if and only ifF(x) E ~f  and (F(x), G(x)) = O_ 

(b). Consider any ~ E X and let J)(x) := (F(x), G(x) - ~). For any x,x' E G-I (Jr) 
and any t E [0,1], by using the affine property of F and G, we obtain 
fc(tx + (1 - t)x') = tf~(x) + (1 - t)J)(x') + t(1 - t)(F(x) - F(x'), G(x') - G(x)). Then 
the relative monotonicity o f F  and G yields that fr is convex on G -I ()g'), so f ,  being 
the pointwise maximum offr ~ E Y{', is also convex on G-I(X) .  [] 

Proposition 3.2. Assume F and G are relatively pseudo-monotone on G - t ( ~ ) ,  F is 
continuous on G- l (J l ) ,  and G -l i s  defined and continuous on JU. Let 
f :  G-l(~((") ~ ~RU {ec} be given by Eq. (3). Then the following hold: 

(a) For any x E G- I (~ ) ,  we have f ( x )  >~ 0 with f ( x )  = 0 i f  and only i f  x satisfies 
Eq. (1). 

(b) I f  #~ addition G is affine on G-I(oU), then f is convex on G-l(af) .  

Proof. (a). Fix any x E G -l(~ff). Then, ~ = G(x) is included in the max of Eq. (3), so 
f ( x )  >10. If F(x) ~ ~5 and (F(x), G(x)) = 0 so, by Eq. (11), (g(x), G(x) - ~) <<. 0 for 
all ~ E ~r, the relative pseudo-monotonicity of F and G would imply 
(F(G-l(~)),G(x)-~)<<.O for all ~ E X  and hence f ( x ) = 0 .  Conversely, if 
f ( x )  = 0 so that (F(G-I(~)) ,G(x)-  ~)<~0 for all ~ E oW, then, for any ~'E Y ,  we 
would have, upon letting x(t) := G-l(t~ ' + (1 - t)G(x)) for all t E (0, 1), that 

(F(x(t)), 6(x) - ~') = l (F(x(t)), G(x) - (t~' + (1 - t)G(x))) <~ 0 

and, upon letting t ~ 0  and using the continuity of F and G -l, that 
(F (x ) ,G(x ) -  ~') <~0. Then, Eq. (11) would imply that F(x) E X and 
<F(x), G(x))  = O. 

(b). Since G is affine on G-L(~) ,  then, for each #Eo,~, the function 
f~(x) := (F(G-t(~)), G(x) - ~) is affine on G-l(~f) ,  so f ,  being the pointwise maxi- 
mum off~, ~ E ~ ,  is convex on G-I(~f). [] 

Under the hypothesis of Proposition 3.2, the SDCP is equivalent to the variational 
inequality problem of finding an z* E • satisfying 
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>.o 

and, moreover, F o G -1 is pseudo-monotone and continuous on X .  Accordingly, 
Proposition 3.2 may alternatively be proven by suitably applying the results in [4], 
p. 121 or [24]. It should be noted that the two gap functions Eq. (2) and Eq. (3) 
are mainly of theoretical interest since, due in part to their nondifferentiability, there 
is no efficient method for minimizing them. For further discussions of these func- 
tions, see [21,36]. 

4. Regularized gap function 

In this section, we study the merit function f~ given by Eq. (4). As with the gap 
functions of Section 3, most of the results are easy extensions of known results 
[3,20,61]. We begin with the following lemma based on [61], Proposition 2. I. 

Lemma 4.1. For any c~ E (0, oo), define the function t~  : 6e x 5 e ~-+ 9t by 

t~ (a ,b )  := m a x [ ( a , b  - ~) 1 } / - l i b  - Gl l  = �9 

Then the following hold: 

(a) For all (a, b) E 5 e x aT', we have 

1 
~ ( a , b )  >~  llb - [b - c~a]+]l z, 

and t~=(a,b) = 0 i f  and only i f  in addition a E Jt ~ and (a,b) = O. 

(b) O~ is differentiable at every (a, b) E 5 ~ x 5 ~, with 

1 
~Ta~l~(a , b) = b - [b - aa]+, ~br b) = a - - (b - [b - aa]+). 

ProoL This can be seen by following the proof  of [61], Proposition 2.1, with 
u = b, v = - a  and with ~ replaced by 1/ce. Also, we use the correspondence between 
(So,(-,.)) and (91v,(.,.)~,) with v : = ~ = l n k ( n k + l ) / 2 ,  as discussed in 
Section 1. []  

Following [61], we will relate f~ to the norm of the projection residual functions 
R~ : 5 e ~ 5 e (e E (0, oo)) defined by 

R (x) : =  G ( x )  - [G(x)  - 

By Lemma 2.1(b), we have that x satisfies Eq. (1) if and only if R,(x) = 0. By using 
Lemma 4.1, we obtain the following proposition which estimates the growth rate of 
f ,  in terms of [IR=II, and gives formulas for Vf~ and a certain descent direction for f ,  
at any nonglobal minimum x E G -1 ( ~ )  with VG(x) -1VF(x) positive definite. These 
results are similar to [61], Theorem 3.1, and [20], Theorem 3.2, Proposition 4.1. 

Proposition 4.1. Fix any ~ E (0, co) and let f~ : G -1 ( i f )  ~-+ 91 be given by Eq. (4). Then 

the following hold: 
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(a) For all x E G-I(~;,U), we have 
1 

A(x) >~ ~llR=(x)ll -, 

and f~(x) = 0 if and only if x satisfies Eq. (1). 
(b) I f  F and G are differentiable on G -1 (ffl), then so is f~ and 

Vf~(x) = ~7F(x)R~(x) + ~7G(x)(F(x) - 1 R ~ ( x ) )  

for all x E G -l ( J{'). 
(c) 

where 
or (ii) 

167 

Assume F and G are differentiable on G -1 (J~ff). Then, for every x E G -1 (:~U) 
VG(x) is invertible and ~7G(x)-IVF(x) is positive definite, either (i) f~(x) = 0 
Vf~(x) 7 ~ 0 with (d(x), Vf,(x)) < O, where 

d(x)  :=  - ( V G ( x ) - I ) ' R ,  (x). 

Proof. (a) and (b) follow from Lemma 4.1 (also see [61], Theorem. 3.1 for essentially 
the same result). The proof of (c) is similar that of  [20], Proposition 4.1, for the case 
G = I :  Fix any x E G-l(ff() with VG(x) invertible and VG(x)-IVF(x)  positive 
definite. Then 

<d(x), Vf,(x)> = -<R~(x), VG(x)-lVF(x)R~(x) + F(x) - ! R=(x)) 

<~ - (R~(x), VG(x)-IVF(x)R~(x)>, 

where the inequality follows from the fact that ( ( -  [a]+, a - [a]+) ~< 0 for all a E 5 e 
and ~ E oU (and, in particularly, for a = G ( x ) - ~ F ( x )  and ~ = G(x)). Since 
X7G(x)-IVF(x) is positive definite, then either R,(x) = 0 or (d(x), Vf,(x)> < 0. The 
former is equivalent to f~(x) = O. [] 

In the further special case where G is affine, it can be seen that x + d(x) E G -1 (oU) 
so that, by Proposition 4.1(c), d(x) is a feasible descent direction for f ,  over G -1 (~,r) 
at x (cf. [20], Proposition 4.1) whenever f~(x) > 0 and VG(x)-IVF(x)  is positive defi- 
nite. In general, we can use a gradient projection method 

x n~w ~ Ix - tVf~(x)]+ 

with t E (0, oo) a stepsize, to minimize f~. A drawback o f f ,  is that, without an as- 
sumption such as ~7G(x)-l~7F(x) be positive definite for all x E G-t(Jff), finding a 
global minimum of f ,  is difficult. Additional growth properties of  f ,  are discussed 
in [63], Lemma 4.1. 

5. Implicit Lagrangian function 

In this section, we study the merit function f ,  given by Eq. (5). As with the gap 
functions and the regularized gap function of Sections 3 and 4, most of the results 
are easy extensions of known results, particularly [61,64]. We begin with the follow- 
ing lemma based on [61], Proposition 2.2. 
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Lemma 5.1. For any ~ E (0, ~ ) ,  define the function tp~ : 5 ~ • 5 p ~-~ 9~ by 

O, (a ,b) := max f ( a b - ~ ) - ( ~ , b )  1 } r  - ~ ( l l a  - ~112 + lib - ~112) 

Then the following hold: 
(a) Fix any ~ E (1, ~ ) .  For all (a, b) E 50 • 5 p, we have 

(cz- 1 ) l i b - [ b - a ] + l l  z >1 ~O~(a,b) = -t~l/~(a,b ) >>. (1 - 1 / ~ ) l i b - [ b  - a]+[I 2 

and ~O~(a,b) = 0 if  and only if in addition a,b E ~ and (a,b) = O. 
(b) Fix any ~ E (0, oc). tp~ is differentiable at every (a, b) E 5P • 5e, with 

v o q , ~ ( a ,  b) : b - [b - ~ ] +  - J - ( a  - [a - ~b]+) ,  
~X 

v ~ ( a ,  b) = a - [a - ~b]+  - 1 (b  - [b - ~ a ] + ) .  

Proof. Apply [61], Proposition 2.2 with the correspondence ~ - -~9~, u = a, v = -b ,  
and use the fact ~ ~  = - X  and the third identity in Eq. (12). Also, we use the 
correspondence between (5 e, (., .)) and ( ~ ,  (-,-),~,) with v := ~--~kml nk(nk + 1)/2, as 
discussed in Section 1. (Correction Note: The term 1 / ( ~ - 1 )  appearing in [61] 
Eq. (5) should be 1/(c~- 1). []  

Following [61], we define the projection residual function S~ : .Se H 5 p (~ E (0, o~)) 
by 

S~(x) := F(x) - IF(x) - aG(x)]+. 

Since, by the  first and the third identity in Eq. (12), we have b - [ b - a ] +  = 
a - [a - hi+ for any (a, b) E 5 p x 5 e, it follows that R1 - S1 on 5 e. However, in gen- 
eral R~ ~ S, for a # 1. By using Lemma 5.1, we obtain the following proposition 
which estimates the growth rate o f f ,  in terms of IIRI II, and gives formulas for Vf:  
and a certain descent direction for f~ at any nonglobal minimum x with 
VG(x) - IVF(x )  positive definite. These results are based on [61], Theorem. 3.2 and 
[64], Theorem. 2.2 and Lemma 3.1. 

Proposition 5.1. Fix any ~ E (1, ~ )  and let f~: 5 e ~ 9t be given by Eq. (5). Then the 
following hoM: 

(a) For all x E 5 a, we have 

( ~ -  1 ) l l R , ( x ) l l  2 ~ > A ( x )  = -A/~(x) >1 (1 - 1 / ~ ) l l R l ( x ) l l  2 

and f~(x) = 0 if  and only if x satisfies Eq. (1). 
(b) I f  F is different~able on 5e, then so is f~ and 

~7f~ (x) = X T F ( x ) ( R ~ ( x ) - 1 S , ( x ) ) +  ~ 7 G ( x ) ( S ~ ( x ) - 1 R , ( x ) )  

for all x E 5 ~. 
(e) Assume F and G are differentiable on 5e. Then, for every x E 5 a where VG(x) is 

invertible and VG(x) - IVF(x)  is positive definite, either (i) f~(x) = 0 or (ii) Vf~(x) :# 0 
with (d(x), Vf , (x) )  <~ - (d(x), Va (x ) - 'VF(x )d ( x ) ) ,  where 
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d(x) :=-(~TG(x)-')*(R~(x)-!S~(x)). 
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Proof. (a) and (b) follow from Lemma 5.1 (also see [61], Theorem. 3.2). The proof of 
(c) is somewhat different than that given in [64] for the NCP case: Fix any x E 5 e with 
VG(x) invertible and V G ( x ) - I V F ( x )  positive definite. (We will drop (x) for simpli- 
city.) By the first identity in Eq. (12), we have R~ - (1/c~)S~ = G - [ G -  eF]+ - 1/e 
( F -  I F -  c~G]+) = - [ G -  ~']~ + (1/c~)[F- c~G]_ and, similarly, S~ - (1/e)R~ 
= - [ F  - c~G]+ + (1/~)[G - ~F]_. Thus 

([G c~g]+,[F ~G]__)+ 1 = - - ~2 ([X - c~G]_, [G - ~F]_) /> 0, 

where the second equality uses the second identity in Eq. (12) and the inequality uses 
Eq. (11) and the third identity in Eq. (12). Thus, 

(d, g f = } = - R = - - S = , V G - ~ V F  R= - S= + S, - R~ c( 

If Vf~(x) = 0, then d(x) = 0 or, equivalently, R~(x) - ~S~(x) = 0, which together with 
Vf~(x) = 0 and the formula for Vf~(x) in (b) and the nonsingularity of VG(x) would 
imply S ~ ( x ) -  (1/c~)R~(x)= 0. Since c~ r 1, the latter two equations would yield 
R~(x) = S~(x) = 0 or, equivalently, f~(x) = O. [] 

The implicit Lagrangian f~ given by Eq. (5), in contrast to the gap functions and 
the regularized gap function, is a merit function on all of 5 e and has nice differentia- 
bility properties. However, it suffers the same drawback as the regularized gap func- 
tion in that, without an assumption such as VG(x) -1VF(x) be positive definite for all 
x c G-l(gf) ,  finding a global minimum off~ is difficult. 

6. Norm squared of the Fischer-Burmeister function 

In this section, we study the merit function f given by Eq. (6), with ~b given by 
Eq. (8). In contrast to the merit function of Sections 3-5, it is not easy to extend 
the analysis of this merit function from the NCP case [8,14,16,22,29,32,33,59] to 
SDCP. In particular, q5 involves taking the square root of the sum of two symmetric 
psd matrices, which significantly complicates the analysis and necessitates the deve- 
lopment of new arguments. In fact, it is surprising that many properties of f in the 
NCP case do indeed extend to SDCP. We begin with the following lemma stating 
some key properties of q5 and of matrix square root. 
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L e m m a  6.1. (a) For any (a, b) �9 JY" • J{', (a, b) = 0 if  and only if, for  p E (9 and 
) .k , . . . , ) . ,  �9 (0, e~) satisfying pap T = diag[O, . . . ,  O, ) .k , . . . , ) . , ] ,  we have ~bpT]~j = 0 

for  all i ~ k or j >. k. 
(b) For dp given by Eq. (8) and any (a, b) �9 50 x 50, we have qb(a, b) = 0 i f  and  only 

i f  a, b �9 J{" and (a, b) = 0. 
(c) For any a �9 Jt ~ and b �9 50, i f  a z - b 2 �9 J~f', then a - b �9 J{'. 

Proofi  (a). Fix any (a, b) �9 ~"  x X and let p �9 (9 and 2k . . . .  ,2 ,  �9 (0, oc) satisfy 
pap T = d i ag [0 , . . . ,  0, 2k , . . . ,  2,]. Then 

(a, b) = tr[ab] = tr[papTpbp T] 
n 

= t r [d iag[0 , . . . ,  0, 2k , . . . ,  2,]pbp T] = Z2i[pbpT]ir  
i = k  

Since p b p T � 9  X so [pbpT], >i 0 for  i = k , . . . , n ,  then ( a , b ) =  0 if and only if 
[pbpZ]gs = 0 for  all i >~ k. Sincepbp T is symmetr ic  and psd, the latter holds if a n d  only 
if [pbpT]ij = 0 for  i >t k or j t> k. 

(b). Fix any  (a, b) �9 50 x 5 ~ I f  a, b �9 X and (a, b) = 0, then, by par t  (a), f o r  p �9 (9 
and 2 k , . . . , 2 ,  �9 (0, oc) satisfying pap T = d i a g [ 0 , . . . , 0 , 2 k , . . . , 2 , ] ,  we  have 
[pbpT]ij = 0 for  i >~ k or j >1 k. Thus,  pabp T =- papTpbp T = d i ag [0 , . . . ,  0, 2 k , . . . ,  2,] 
pbp v = 0, implying ab = 0. Similarly, ba = 0. Hence  a z + b 2 = (a + b) z or, equiva-  
lently, ( a Z + b 2 ) l / Z = a + b ,  i.e., q S ( a , b ) = 0 .  Conversely,  if q ~ ( a , b ) = 0 ,  then 
a + b = (a 2 + b2) 1/2 �9 if{" and (a + b) 2 = a 2 + b 2 or, equivalently,  ab + ba = 0. F o r  

p �9 6) and 2 1 , . . . ,  2, �9 ffl (ordered so 2 1 , . . . ,  2k-i are zero, 2 k , . . . ,  2t-1 are posi t ive,  
and ) . t , . . . , 2 ,  are negative for some l < ~ k < ~ l < ~ n + l )  satisfying p a p T =  
diag[21 , . . . ,  ).,], we have 0 = p(ab + ba)p T = paprpbp T + pbp T pap "r = diag 

[ ) . | , . . . , ) . , ]pbp  T +pbpTdiag[21,. . . , ) . ,] ,  implying ().g + 2j)[pbpT]~j = 0 for all i and  j .  

Thus,  [pbpT]ij = 0 except possibly when ).g = ).j = 0 or  ).i).j < 0, so that  

" LpbpT]~ 0 0 ] 

p(a + b)p T = pap T + pbp T = 0 diag[) .k, . . . ,  )-t-l] [pbpT]k~</, ] . 

0 [pbp T] ~>.,. diag[) . t , . . .  2,] 
k < ~ j < l  

Since this mat r ix  is in ~ so its diagonal  entries are all nonnegat ive,  we m u s t  have 
l = n + 1 and  the submatr ix  [pbpa'],<k. mus t  be psd. Hence,  p a p  a  ̀ and pbpa` are  bo th  

�9 �9 j < k  

in off, implying a and b are bo th  m ,Y'. Moreover ,  a and b satisfy the condi t ion  fol- 
lowing " i f  and  only if" in (a), so, by pa r t  (a), (a, b) = 0. 

(c). Fix any  a �9 J{" and b �9 5" with a 2 - b E �9 X .  We will show that  a - Ib] is psd 
(recall Ibl : =  (b2)1/2), which would imply a - b is psd (since [b[ - b is psd). Suppose  

a - [ b  I is no t  psd so there exists nonzero  v � 9  ~fl" and  2 � 9  ( - o e , 0 )  with 

(a - Ibl)v = 2v. Since a �9 Jg', then 

pap  ~ 
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for some p E (9, some I C {1 , . . . ,  n}, and some positive definite (abbreviated as pd) 
submatrix fizz. Since a z - b 2 is psd, we must also have 

, 00] 
for some psd submatrix bl~. Thus, 

[ ( a t 1 -  DH)~vv]I ] = p(a - [bl)prpv = p(a  - ]bl)v = 

implying [pvtr # 0. Since (a + tbl)(a - lbl) + (a - I?)l)(a + lbl) = 2a 2 - 2b z E JU, we 
obtain 

0 <~ vT((a + Ibl)(a - Ib[) + (a - Ibl)(a + Ibl))v = 22vT(a + Ibl)~ 

22(pv)Vp(a + [bi)pTpv r - = = 2 @ 4  (~,, + { , , , ) ~ ] ,  < 0, 

where the last inequality follows from a / /+  b//being pd, [pv]z ~ 0 and 2 < 0. This is 
clearly a contradiction. []  

For any c E aU, let 5ec denote the subspace of  6 e comprising those x E 6 p whose 
nullspace contains the nullspace of c. It is readily seen that 

5 a c = { x E S a : p x p r = [ O  f ~ ] for some submatrix 2~t } (14) 

for any p E (9 and I C { 1 , . . . ,  n} such that 

00] 
for some pd submatrix ~z. Define the linear mapping Lc : Yc ~ ~c  by 

Lc[x] :=  cx + xc.  

It can be seen that Lc is positive definite (i.e., (x,L~[x]) = 2tr[Ol1~l] > 0 whenever 
~tJ ~ 0) and so has an inverse L~ -~, i.e., for any x E 5ec, L~I[xl is the unique d E 5~c 
satisfying cd + dc = x. [L~ 1 can be obtained in closed form by choosing p so czi is dia- 
gonal, so that 

L]~[ x] ..~_pT[[.~ij/(cii-~Cjj)]~, O] 
0 0 p'  

where 211 is given by Eq. (14).] Moreover, for any x , y  E 5e~, we have 

(y,L~[x]) = (L~] , x } ,  xL-;' [c] = L-~ ~ [c]x = x/Z,  

xL-~'[x] = 0 =~ x = 0. (16) 

By replacing x and y in the first identity of  Eq[ (16) with L~ -~ Ix] and L~ -j L v] respective- 
ly, we see that this identity also holds when Lc is replaced with L~ -~, 
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Lemma 6.2 derives a formula for the first-order term in perturbing c E oU to 
(c ~ + w) ~/2. A key part of the formula involves the mapping L~,, t. In what follows, 
we will use "O(t)"  (respectively, "o(t)") as a shorthand to denote an element of  5* 
that depends on t and whose norm tends to 0 at least as fast as (respectively, faster 

than) t, i.e., lim supt_ollO(t)ll/t < oo (respectively, lira sup~_ollO(t)ll/t = 0). 

or, equivalently: 

Lemma 6.2. Fix any c E ;,U and any p E (9 such that Eq. (15) holds f o r  some 
1 c {1, . . .  ,n} and some pd  submatrix CH. For each w E 50 with c x + w E SU, upon 
letting z := (c 2 + w) U2 - c and 

L#TI J #JJJ :----pwp T, 5---- L5 T 5 j j J  : = p z p T '  (17) 

where J := { 1 , . . . ,  n} \ I, we have II~jjII <~ nl/4H~JJIl'/2, fu  = ~)}l~tJ + o(llwl{), and 

5,  -- cf~] [~,,] + o(llwll). 

Proof. Squaring both sides of (c 2 + w) 1/2 = c + z and multiplying left and right by p 
and pT (also using Eqs. (15) and (17)) gives 

17f H = gllC H At- CHZH Jr- 2711 + ZIJZIj , 

I771j = CIIZIJ + ZHZIJ + ZIJZJJ, 

~j j  = 2~fu + ~jj. (18) 

The last equation in Eq. (18) yields llf,j[I 2 + ll~JjII 2 = tr[~j]  ~< v~II~jjN [26], p. 43. 
We claim that, as I1~1i]] ~ 0 and II~jjII -+ 0, we must have 11full --~ 0. If  not,  then 
the first equation in Eq. (18) together with II~'u]l --~ 0 would yield in the limit (and 
using the continuity of matrix multiplication) that 0 = fu3u + fufn + ~l has a non- 
zero solution zlt. Adding f~l to both sides gives 52i = (Su + f/l) 2 and, since clz and 
f t t +  ~u are both psd, this implies 5n = 0, a contradiction. Now, the second equation 
in Eq. (18) yields 

and since CH is pd and II~HII --' 0 as Ilwll --, 0, the implicit function theorem yields 
that fu  = 6~l~u + o(llwll). Then the first equation yields 

~VII = Zs,i [zII] + ~11 + O ( l l w l 1 2 )  - 

Since 5~1 is pd so that Le~ is an invertible linear mapping and I1~,,11 ~ 0 as Ilwll ~ 0, 
we obtain from the implicit function theorem that 

~,, = C~,~[~,,] + o(llwll) + O(llwll 2) =C~Ir  D 
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By using Lemmas 6.1 and 6.2, we obtain the following lemma which extends some 
results of  Kanzow [32] and Geiger and Kanzow [22] for the NCP case and is the key 
to analyzing f given by Eq. (6), with ~b given by Eq. (8). In what follows, we define, 
for any x E W, 

sym [x] := x + x x. 

Lemma 6.3. L e t  (o be given by Eq. (8) and define the f unc t ion  ~ : 5 p x J ~ ~R by 

~(a,b)  := �89 
Then the f o l l o w i n g  hold: 

(a) For all  (a, b) e ~ • 5C we have $(a, b) >~ 0 and ~(a, b) = 0 / f  and only  i f  in 

addition a, b E ~ff and (a, b) = Oi 

(b) ~ is differentiable at  every  (a, b) E 5: x 50, with 

~7~$(a, b) = sym [L~ -l [c - a - b](a - c)], 

XTb~b(a,b) = sym[L~-l [c -- a -- b](b - c)], 

where c := (a 2 + be) 1/2. 

(c) For  every  (a, b) E 5:  • 5:,  we have (Va~b(a, b), XTb@(a, b)) >~ I I ( c  - a - b ) g l l  2 ,  

where c := (a 2 + b2) I/2 and g := L~ -I [c - a - b]. 

Proof. (a) follows from Lemma 6.t(b). To show (b), we note that 

~,(a, b) = �89 2 + b2) ~/2 - a - b[l 2 = �89 (a 2 + b2) 1/2 - a - b 

= t r [ a  2 + a b +  b 2 - ( a  2 + b 2 ) l / 2 ( a + b ) ] .  (19) 

Fix any (a, b) r 50 x 5: and let e :-- (a 2 + b2) 1/2. Since c E dU, we have that  Eq. (15) 
holds for some p E (9, some I c {1 , . . .  ,n} and some pd submatrix c:i. Then 

(papT) 2 + ~vbpT) 2 = pc2p T = 

Since both (papT) 2 and (pbpT) 2 are psd, it is readily seen that  

001 0j papT = ' pbpT = 0 

for some submatrices ~t~ and bii. Thus, a, b E 5:c (see Eq. (14)). Fix any u E 5 e and 
let w := au + ua + u 2 and z := (c 2 + w)1/2 _ c. By Lemma 6.2, we have ~,~z = L~,: [~1] 
+o([[w[[), where w:i and z'tl (as well as z'iJ and ~,:j) are given by Eq. (17). Thus, 

tr [((c 2 + w) 1 / 2 -  c)(a + b)] = t r[p((c  2 + w) 1/2- c)p T(pap T ~- pbpT)] 

= tr  / [ - T  
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= tr[ztl(ai1 + 61l)] = tr[(L~)[#ii] +o(]lwll))(?lZl+ /~zz)] 

= tr [L~] [[p(au +ua)pr]zz](&l +/~zz)] + o(liul]) 

= tr [L~,) [fizz + [~i~][p(au + ua)pr]n] + o(ilu[I ) 

= t r [ [ ~  I ~ ] p ( a u + u a ) p T ] + ~ 1 7 6  

= tr[L~ -1 [a + b](au + ua)] + o(ltull), (21) 

where the sixth equality uses the first identity in Eq. (16) (see the remark below it), 
the seventh and eighth equalities follow from letting 

cIII := L~] [(III + ~)It] and d := p'r [ ~ t 0] 0 P E S ~ c ;  

the last equality follows from gltdiz + daCl~ = fi• +/~li or, equivalently, 

cd+dc:pT[C:I 0] TF(tll OJ [~1 0] [C:1 0] 
0J  [0 0 0 

0 0 p = a + b ,  

so d = L-j1[a + b]. Thus, Eq. (19) and Eq. (21) yield 

+ u, b)  - b)  

= t r [ ( a + u )  2 + ( a + u ) b + b  z - ( ( a + u )  z + b 2 ) l / z ( a + b +  u) 

- a  2 -  a b -  b 2 + c ( a  + b ) ]  

= t r [ 2 a u + u b - c u - ( ( c Z + w ) t / Z - c ) ( a + b +  u)] 

= tr [2au + ub - cu - L ; ' [a  + b] (au + ua)] + o([[ull) 

= (2a + b - c - L ;  1 [a + bin - aL;  l [a + b], u) + o(llull), 

where the first and second equalities also use a 2 + b 2 = c 2, so that 

V ~ ( a ,  b) = 2a + b - c - L ;  ~ [a + b]a - aL-j I [a + b] 

= (L~-' [c] - L-jl[a + b])(a - c) + (a - c)(L-~ ~ [el - L;-' [a + b]) 

= L-~'[c - a - b](a - c) + (a - c)Lct[c - a - b], 

where the second equality uses the fact x = L-~ 1 [x]c + cLc 1 [x] with x = a + b and the 
fact x / 2  = L-~[c]x = xL~l[c] (see Eq. (16)) with x = a -  c; the last equality uses the 
linearity of L~ -I. A similar argument gives the formula for ~Tb~(a,b).  For  any 
u ,v  E 5 a, a similar argument as the one above (with w : = a u + u a +  u2+  bv 
+vb  + v 2 instead, etc.) yields 

~k(a + u, b + v) - ~b(a, b) = (Va~l(a, b), u) + (Vb~(a, b), v) + o(llu[I) + o(llvl[), 
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so 0 is differentiable at (a, b). 
(c). Fix any (a,b) E 5  a x S C  U p o n  letting x : = c - a ,  y : = c - b ,  g : =  

L21[c  - a - b], we have 

<V~O(a, b), VbO(a, b)) 

= tr[(gx + x g ) ( g y  + yg)]  = 2 t r [ x g y g  + gxyg]  

-= 2 tr[x l /2gyl /2y l /2gxl /2  -1-g(c -- a ) ( c  -- b)g] 

= 2lly~/2gx~/2ll z + t r [ g ( 2 a b  - 2 a c  - 2 c b  + c 2 + a 2 + bZ)g] 

= 211ya/~gxa/2112 + t r [ g ( a b  + b a  - a c  - ca  - cb  - bc  + c 2 + a 2 + bZ)g] 

2[lyl /2 gxl /2 [[2 + tr [g(c - a - b)2g] -= 2]]yV2gxV2[[ 2 + [[(c - a - b)gl[ 2, 

where the third equality uses the fact c 2 - a 2 and c 2 - b 2 and c are all in Jr" so that,  

by L e m m a  6.1 (c), x = c - a and y = c - b are bo th  in Js  the four th  equality uses 
c 2 = a 2 + b2; the fifth equality uses tr[w] = tr[w a'] for  any w ~ Y'. [~ 

The  funct ion ~ defined in L e m m a  6.3 is not  twice differentiable everywhere on 

x 5" but,  analogous to the N C P  case, O is twice differentiabte at  every 
(a, b) E 5" x 5" with a 2 + b 2 pd, Moreover ,  we can compu te  the Hessian explicitly: 
Fo r  any (u, v) ~ 5" x 5e, we have 

V2a~k(a ,  b ) u  = sym[L~ -~ [Z~[u] - u - . Z a [ U ] g  -- gZa[ul](a - c) - g(Za[u]  - u)], 

V~bqJ (a~ b ) u  = sym [L~ -~ [Z, [u] - u - Zo [u]g - gZ~ [u]] (b  - c)  - gZo [u]], 

V~oO(a, b ) v  = sym[L~ -l [Zb[v] - v - Zb[V]g --  gZb[v]](a  --  c)  --  gZb[v]],  

V~bO(a, b ) v  = sym[L~ -I [Zb[v] - v - Zo[v]g  - gZb[Vl](b  --  c)  - -  g(Zb[v] --  v)], (22) 

where c : =  (a2 + b2) u2 ,  g := L-~l[c - a - b] and Z~[u] :=  L 2 l [ a u  + ua],  Zb[v] :=L~ -1 

[bv + vb]. To see this, note that  when we per turb  a by some u E 5 a to a + u, both  
c and g are per turbed accordingly by some z, h E 5 p to c + z and g + h, respectively. 
Since c is pd, L e m m a  6.2 with w := a u  + u a  + u 2 yields 

Z = Lcl[abl -tw Ua] "~ o(llull) = Zo[u] + o ( l l u l l ) .  

Also, g and h satisfy the equations c g  + g c  = c - a - b and ( c + z)  ( g  + h)  + ( g  + h ) ) 

(c + z) = (c + z) - (a + u) - b which together yield ch + he  + zh  + hz  = z - u - z g  - g z  

s o  

h = L ; ' [ z  - u - z g  - gz] + o(ll~ll). 

Using the above  two equations for  z and h and  the formula  for  V ~  given in L e m m a  
6.3(b), we find 

V~ g,(a + u, b) - V,q*(a, b) = sym [L~ -~ [Za [u] - u - Z~ [u]g - gZ~ [u]] (a - c) 

-g (Za[u]  - u)]  q- o ( l l u l l ) ,  

and the first formula  in Eq. (22) follows. The  other  formulas  follow by similar argu- 
ments.  In the case when c is not  pd, the formulas  (22) still hold, provided that  

u, v E ~ c .  
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By using Lemma 6.3, we readily obtain the following proposition which shows f 
given by Eqs. (7) and (8) to be a merit function on 5O, and gives formulas for V f  and 
a certain descent direction for f at any nonglobal minimum x with VG(x)-IVF(x)  
positive semi-definite. This proposition is motivated by analogous results for the 
NCP case obtained by Geiger and Kanzow [22], Theorem 2.5, Lemma 4.1 and others 
[8,14,29]. 

Proposition 6.1. Let f :  5`, ~ ~tt be given by Eq. (7) with 0 given by Eq. (8). Then the 
following hold: 

(a) For all x E 50, we have f (x )  >~ 0 and f ( x )  = 0 i f  and only i f  x satisfies Eq, (1). 
(b) I f  F and G are differentiable on 5O, then so is f and 

Vf(x)  = VF(x)V~O(F(x), G(x)) + VG(x)VbO(F(x), G(x)) 

for all x E 5O, where ~ is defined as in Lemma 6.3. 
(c) Assume F and G are differentiable on 5`,. Then, for every x E 5`, where VG(x) is 

invertible and VG(x)-IVF(x) is positive semi-definite, either (i) f (x )  = 0 or (ii) 
Vf(x)  r 0 with (d(x), Vf(x))  < O, where 

d(x) := -(VG(x)-I)*Va~(F(x),  G(x)). 

Proof. (a) and (b) follow from Lemma 6.3(a) and (b). To see (c), fix any x E 5`, with 
VG(x) invertible and VG(x)-IVF(x)  positive semi-definite. We have, upon using 
Lemma 6.3(c) (and dropping (x) for simplicity), 

(d, Vf )  = - (VaO(F,  G), VG-~VFV~O(F, G) + VbO(F, G)) 

<~ - I[(c - a - b)gll 2, 
where a := F(x), b := G(x), c := (a 2 + b2) U2, g := L~ -I [c - a - b]. Thus, (d(x), Vf(x))  

< 0 unless (c - a - b)L21 [c - a - b] = 0 or, by (6.3), c - a - b = 0. The latter, by 
Lemma 6.1 (b), implies x satisfies Eq. (1) or, equivalently, f ( x )  = O. [] 

By using the chain rule, we can find explicit formula for the Hessian VZf(x) at 
every x E 5`, with F(x) 2 + G(x) 2 pd. For  example (and simplicity), suppose F and 
G are affine so that F(x) = Ax + a and G(x) = Bx + b for some linear mappings A 
and B from 5`, to 5" and some a, b E s ` .  (so V F ( x ) = A * ,  V G ( x ) = B *  for all 
x E 5`,). Then straightforward calculation yields that, for any d E 5", 

V f ( x  + d) - Vf(x )  = A*(V]a~(F(x), G(x))Ad + vZO(F(x) ,  G(x))Bd) 

+ B*(V2bt~(F(x), G(x))Ad + V2aO(F(x), G(x))Bd) + o(lIdll) 

= V2f(x)d + o([Idll), 

where 2 V~aq,. . .  ,Vbzb~k are given by Eq. (22). To solve an equation of the form 
V2f(x)d = r, with r E 5`, given, as is needed by Newton-type methods for minimizing 
f (see, e.g., [14,16,29,30]), we can either seek to develop special factorization schemes 
or, more directly, express d as a linear combination of  some basis vectors for 5`, and 
solve for the coefficients in the combination. I fF (x )  2 + G(x) 2 is not pd, then we can 
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replace ~2f(x)  in the Newton-type methods by either a generalized Hessian or a 
positive definite linear mapping. 

7. A function of Luo and Tseng 

In this section, we study the merit function f given by Eq. (9) with ~0 satisfying 
~0(t) = 0 if and only if t ~< 0 and ~ satisfying Eq. (10). For much of our analysis, we 
will further restrict the choice of @. Let ku+ denote the collection of 

: S e • 60 ~ [0, oo) satisfying Eq. (10) that are differentiable and satisfy the follow- 
ing conditions: 

b), Vb (a, b;>/> o, vo (a, b)) + <b, a)> >/o 
V(a, b) E Y x 5 p. (23) 

(See [42], Eq. (13) for related conditions in the context of NCP.) The lemma below 
provides one choice of ~ belonging to 7J+. Moreover, this choice of r is convex. 

Lemma 7.1. Let  r 5 p x 5 ~ ~-~ [0, oo) be given by 

~(a ,b)  := �89 2 + II[b]_ll2). (24) 

Then the following hold: 

(a) tp satisfies Eq. (10). 
(b) ~ is convex and differentiable at every (a, b) E ~ x ~ with ~'a~'(a, b) = [a]_ and 

Vb~(a, b) = [b]_. 
(c) For every (a,b) E 5 p • Y ,  we have (Votp(a ,b) ,Ub~(a ,b) )  >10. 
(d) For every (a,b) C Sr • 5 P, we have (a, ~7a~(a,b)) + (b, ~TbO(a,b)} = Illa]_[t 2 

+ll [b]_ II 2 

Proofl (a) and (b)_ By the decomposition a = [a]_ + [a]+ (see Eq. (12)), we have 
II[a]_ll 2 = Ila - [a]+ll z = min~,.~x JJa - wlJ 2 which is differentiable convex in a with 
~7a~0(a, b) = [a]_ [56], p. 255 and equals 0 if and only i fa  E X .  Similarly for ]][b]_]] 2. 
Thus, ~9(a, b) is differentiable convex in (a, b) and equals 0 if and only if a, b E f .  
Since a,b E J {  implies (a,b) >1 O, it follows that Eq. (10) holds. 

(c) and (d). We have from (b) that ( V ~ ( a ,  b), XYb~0(a, b)) = ([a]_, [b]_) >~ 0, where 
the inequality uses Eq. (11) and the third identity in Eq. (12). Also, we have 
(a, XTa~(a, b)) = {a, [a]_)= tr[a[a]_] = tr[([a]_) 2] = [][a]_H 2, where the third equality 
uses Eq. (12). A similar argument shows (b, Vb~(a, b)) = ]1[b]-[12. [] 

Next, we consider a further restriction on ~. Let ~++ denote the collection of 
~b E ku+ satisfying the following condition: 

~,(a, b) = 0 V(a, b) E 5 a • St with (~7~r b), VbqJ(a, b)) = 0. (25) 

(See [42], Eq. (14) for a related condition in the context of NCP.) The lemma below 
provides one choice of a r based on the Fischer-Burmeister function Eq. (8), be- 
longing to ~++. Note that the choice (24) does not belong to ~++. 
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Lemma 7.2. Let qJ be given by 

O(a, b) := �89 b)]+ll 2 (26) 

with 49 given by Eq. (8). Then the following hold: 
(a) ~k satisfies Eq. (10). 
(b) ~ is differentiable at every (a, b) E 5 a • 5 r with 

Va~(a, b) = sym [L~ -l [[c - a - b]+] (a - c)], 

Vb~O(a, b) = sym[L~ -~ [[c - a -b]+]  (b - c)], 

where c := (a 2 + b2) 1/2. 

(c) For every (a,b) E 5 p x 5e, we have (Vatp(a,b),Vb~O(a,b)) >1 II(c - a - b)gI[ 2, 
where c := (a 2 + b2) 1/2 and g := L~ -2 [[c - a - hi+]. Consequently, ~ satisfies 
Eq. (25). 

(d) For every (a,b) E 5e x 5 a, we have (a, Va~(a,b))  + (b, Vbr  = 
II[e  - a - h ] + l l  z ,  where c := (a 2 + b2) 1/2. 

Proof .  (a). Fix any (a, b) E 5e • 6e with r  b) = 0 and (a, b) <~ 0. Let  z := -q~(a, b). 

Then  [-z]+ = [49(a, b)]+ = 0, so z E X .  Since a + b = (a 2 + b2) 1/2 + z, squaring both 
sides and simplifying yields 

ab + ba = (a 2 + b2)t/:z + z(a: + b2) 1/2 + zL 

Taking  the trace of  both sides gives 

2(a, b) = 2tr[zl/2(a 2 + b2)l/2z 1/2] + Ilzll z 

Since z~/Z(a: + b2)t/Zz 1/2 is in ~ff so its trace is nonnegative,  the r ight-hand side is 
nonnegative,  which together with (a,b)<<. 0 implies z = 0. Then  49(a,b)= 0 and 
Lemm a  6.1(b) yields a,b E Jr,  (a,b) = 0. Conversely, if a,b E a~ff and (a,b) = O, 
then Lemma 6.1(b) yields 49(a,b) = 0, so t~(a,b) = 0 and (a,b) 4 0 .  

(b). Fix any (a,b) E 5 a x ~ and let c := (a 2 + b2) 1/2 and r := c - a - b. F o r  any 
u E ~ ,  we have upon letting w := au + ua + u ~ and / := (c ~ + w) l/2 - a - b - u that  

1 1 ] 
IO(a+u,b)  - t p ( a , b ) -  ( [ r ] + , r ' - r ) [  = II[r']+ll = -~ l l [ r ]+ l l  z - ( [ r ] + , r ' - r )  

= I(V']+ - H + , / -  r~l 
I I [ / ' ] +  - [ r ] + l l l l / -  vii  

l i t '  - vii 2, (27) 
where r" = (1 - t)r + tr' for  some t E [0, 1] and the second equality follows f rom the 
differentiabitity o f  ll[.l+II 2 and the mean-value theorem; the last inequality uses the 
nonexpansive proper ty  o f  [-]+ [66]. We now bound  the r ight-hand side. We have that  
Eq. (15) holds for s o m e p  E (9, s o m e / C  { 1 , . . . ,  n} and some pd submatr ix  ctz, which 
implies that  Eq. (20) holds for some submatrices fitl and/~11. Then  
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and it is readily seen that 

Thus, [r]+ E ~q~c (see Eq. (14)). Also, upon  defining # and ~ by Eq. (17), with 
z := (c 2 + w) t/2 - c, Lemma 6.2 yields 

([r]+, r' - r) = ([r]+,z - u) = tr [ p [ r ] + p T p ~ p  T - -  [r]+u] 
= tr[[Sll--Sll--[~z,]+s [r]+u] 

= tr [L~] [[ca - 5a - / ~ z ] + ] ~ ( a u  + ua)pV], -[r]+u] + o(]]u]]) 

= t r[L; '  [[r]+] (au + ua) - [r]+u] + o([lull), (28) 

where the fourth equality uses # = pwp r = p(au + ua + u2)pr; the last two equalities 
follow by the same argument as in the p roo f  of  Eq. (21). Also, by letting fi := pup T, 
we have from Eqs. (17) and (20) that 

~ #JJ = pwp T = p(au + ua + u2)p r 

[ aIIlgII -~ fillfflH alIfilJ 1 
= L fi~a" 0 + puZpT' 

where S:=  {1, . . . ,n}\I .  Thus,  H=o(I]ull),  ,J=O(llul]), =o(llullZ), so 
Lemma 6.2 yields that ~H,-~U, and 5Js are all O([lu[I ) or, equivalently, z = O(I]ull). 
This implies 

r' - r = z - u = O([[u[[). (29) 

(This fact can alternatively be shown by using Lemma 6.3(b).) Using Eqs. (28) and 
(29) to bound  the right-hand side of  Eq. (27) yields 

ip(a + u,b) - ~(a,b) = (L;' [[r]+]a + aL-~' [[r]+] - Jr]+, u) + o(llull) 

implying 

Vamp(a, b) = L[ '  [[r]+] a + aL;'  [[r]+] - [r]+ 

= L~ -I [[r]+]a + aL: ~ [[r]+] - (L~ -I [[r]+]c + cL-~ I [[r]+]) 

= L c' [[r]+] (a - c) + (a - c)L: '  [[r]+], 

where the second equality uses the definition of  Lc; the last equality uses the linearity 
of  L[ I. An analogous argument yields the formula for ~7b~(a,b) and shows that 
~(a + u,b + v) - ~b(a,b) = (Va~(a ,b) ,u )  + (~7b~b(a,b),v) + o(]]uI] ) + o(Hv]] ) for any 
u, v E 5 ~, so ~p is differentiable at (a, b). 
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(C). The proof  of the first part is identical to that  of  Lemma 6.3(c) bu t  with 
g : = L ; 1 [ [ c - a - b ] + ]  instead. To see that  ~ satisfies Eq. (25), suppose 
(~Taff(a, b), ~Taff(a, b)) = 0. Then the first part  implies (e - a - b)g = 0 or, equiva- 
lently, rL[ 1 [Jr]+] = 0, where r := c - a - b. Thus, 

0 = tr[L:l[[r]+][r]+rL:'[[r]+]] = tr [L~-I [[r]+] ([r]+)-Lc~-I r 11 L[r]+j j 

= IlIr]+L:' [Irl+] II, 
where the second equality uses the fourth identity in Eq. (12). Thus, [r]+L; ~ [[r]+] = 0 
which, by the third identity in Eq.(16) ,  implies [ r ] + = 0  and hence 
~(a, b) = �89 [[[r]+[I 2 -- 0. 

(d). By (b), we have 

(a,Vat~(a, b)) + (b, Vb~(a,  b)) 

= tr [L~-' [[c - a - b]+] ((a - c)a + a(a - c) + (b - c)b + b(b - c))] 

= tr [L;' [[c - a - b]+]Lc[c - a - b]] 

= tr[[c - a - b]+(c - a - b)] 

= N [ c  - a - b ] + l l  2 ,  

where the second equality uses a 2 + b 2 = c2; the third equality uses the first identity 
in Eq. (16); and the last equality uses the fourth identity in Eq. (12). []  

The following proposition, patterned after [42], Theorem 2.3 for the N C P  case, 
shows f given by Eqs. (9) and (10) to be a merit  function on 5 a, and gives formulas  
for V f  and, assuming ~ E T+ (respectively, ~k E T++), a certain descent direction for 
f at any non global minimum x with V G ( x ) - I V F ( x )  positive definite (respectively, 
positive semi-definite). 

Proposition 7.1. Let f :  5 a ~ 9~ be given by Eq. (9) with ~O0: 9~ ~ [0, oc) satisfying 
~o(t) = 0 i f  and only i f  t<<, O and ff :6 e x 5 e ~ [0, oc) satisfying Eq. (10). Then the 

following hold: 

(a) For all x E 5 p, we have f ( x )  >1 0 and f ( x )  = 0 i f  and only i f  x satisfies Eq. (1). 
(b) I f  ~b0, r and F, G are differentiable, then so is f and 

V f ( x )  =V~O0((F(x), G(x)) ) (VF(x)G(x)  + VG(x)F(x)  ) 

+ VF(x)Vat~(F(x) ,  G(x)) + VG(X)Vb~(F(x) ,  G(x)) 

for  all x E he. 

(c) I f  ~o, ~ are convex and F and G are affine and relatively monotone, then f is 
convex. 

(d) Assume F and G are differentiable on 5 a and ~k belongs to T+ (respectively, T++) 
and ~b o is differentiable and strictly increasing on [0, co). Then, for  every x E 9 ~ where 
~T G(x) is invertible and ~T G(x) -1 ~TF(x) is positive definite (respectively, positive semi- 
definite), either (i) f ( x )  = 0 or (ii) V f ( x )  ~ 0 with (d(x), ~Tf(x)) < O, where 
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d(x) := -(VG(x)-')'(Vt~o((F(x), G(x)))G(x) + VaO(F(x), a(x))). 
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ProoL (a) follows from the Eq. (9) and the assumptions on ~0, ~b. (b) follows from 
the chain rule. (c) follows from the observations that, under the given hypothesis, 
x ~ (F(x), G(x)) is convex (see the proof of Proposition 3.1(b)) and if0 is convex 
nondecreasing, so their composition is convex. Also, x ~ ff(F(x), G(x)), being the 
composition of the affine mapping x ~ (F(x), G(x)) with the convex function ~, is 
convex. To prove (d), consider the case ~b E 7~++ and fix any x c 5 e with VG(x) 
invertible and VG(x)-IVF(x) positive semi-definite. We have upon letting 

:= V~0((F(x), G(x))) (and dropping (x) for simplicity) that 

(d, Vf )  = -(coG + VaO(F, G), VG-1VF(~G + V,O(F, G)) + ~.F + VbO(F, G)) 

~< - (c~G + V~t~(F, G), c~F + Vb~(F, G)) 

= -c~2<F, G> - ~r VbO(F, a)> + <F, V=@(F, G)>) 

- <V~f(F, G), Vb0(F, G)> 

~< - c~Z<F, G> - <V.0(X, G), Vb@(X, G)>, 

where the last inequality follows from a >/0 (since ~O 0 is increasing) and Eq. (23). 
Since ~0 is strictly increasing on [0, ~ )  so that tVt~o(t ) > 0 if and only if t > 0, 
the first term on the right-hand side is nonpositive and equals zero only if 
(F, G) ~< 0. By Eqs. (23) and (25), the second term on the right-hand side is nonpos- 
itive and equals zero only if t~(F,G)=0. Thus, (d(x),Vf(x)) < 0  unless 
(F(x), G(x)) <<. 0 and ~(F(x), G(x)) = 0, in which case Eq. (10) implies x satisfies 
Eq. (1) or, equivalently, f(x) = 0. The case of @ 6 7J+ and VG(x)-IVF(x) being 
positive definite may be treated similarly. []  

As in the case of the merit function Eqs. (7) and (8), f given by Eqs. (9) and (10) is 
typically not twice differentiable everywhere on 5 e. Still, in the case where ~k is given 
by either Eq. (24) or Eq. (26) and vz~k ~ is known, we can find explicit formula for 
VZf(x) at every x E 5 ~ where f is twice differentiable, and use this formula to develop 
Newton-type methods for minimizing f .  

8. Topics for future research 

The results of  the previous sections in a sense only begin the study of merit func- 
tions for SDCP, with many topics remaining to be studied. On the numerical side, 
one major topic is the implementation and testing of merit-function-based methods 
for solving SDLP and SDCP. On the theoretical side, some specific open questions 
are: 

QI: In the NCP case, it is known that VG(x) -~ VF(x) being a P-matrix (respective- 
ly, P0-matrix) is sufficient to ensure that a stationary point x of f given by Eq. (5) 
(respectively, Eqs. (7) and (8)) satisfies Eq. (1) [8,14,28]. For SDCP, we have shown 
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analogous results with ~7G(x)-lVF(x) being positive definite (respectively, positive 
semi-definite). Can this be extended to involve some notion of  P-matrix and P0-ma- 

trix in the semi-definite setting? (Although ~ does not have a Cartesian product  
structure, it may still be possible to work with the eigenvalues.) 

Q2: In the NCP case, it is known that f ( x )  given by Eqs. (7) and (8), like the im- 
plicit Lagrangian (5), is bounded above and below by a constant multiple of  I[RI (x)I[ 2 

[59], Lemma 3.2. Also, V f  is 1-order semi-smooth [14,29]. Are these still true for 
SDCP? 

Q3: In the NCP case, it is known that ~, given by Eq. (26) is convex [42]. Is this 
still true for SDCP? 

(A recent work by Qi and Chen [55] answers Q1 in the positive and Q3 in the nega- 
tive.) There are also issues such as the boundedness of  level sets for a merit function 

f and regularity conditions that characterize when a stationary point o f f  is a solu- 
tion of the SDCP, etc. For some of  these issues, the analysis readily extend f rom the 
NCP case while, for others, the extension appears to be more difficult. Lastly, we 
note that, in addition to the interior-point and the merit-function approach,  there 
exist other approaches such as those based on the generalized-equation formulation, 
as studied by Robinson and others (see [49] for a survey), and that based on smooth-  
ing the complementarity conditions, as studied by Chen and Mangasarian [6]. Can 
these approaches be extended to SDCP? 
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