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Abstract 

In this paper, we give a descent algorithm for solving quadratic bUevel programming prob- 

lento. It is proved that the descent algorithm finds a locally optimal solution to a quadratic 

bilevel programming problem in a finite number of iterations. Two numerical examples are given 

to illustrate this algorithm. 
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1. I n t r o d u c t i o n  

A bilevel programming problem (BLPP) involves two sequential optimization prob- 
lems where the constraint region of the upper one is implicitly determined by the solution 
of the lower. It is proved in [1] that even to find an approximate solution of a linear 
BLPP is strongly NP-hard. A number of algorithms have been proposed to solve BLPPs. 
Among them, the descent algorithms constitute an important class of algorithms for nonlin- 
ear BLPPs. However, it is assumed for almost all those descent algorithms that the solution 
set of the lower level problem is a singleton for any given value of the upper level variables. 
Under this assumption, a BLPP can be transformed into a single level optimization problem 
where the lower level variables are taken as a function of the upper level variables. Those 
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descent algorithms heavily depend on the information about this implicit function. On 
the basis of the gradient information generated from the lower level optimization problem, 
Kolstad and Lasdon [2] proposed a heuristic descent algorithm for BLPPs. Friesz et al.[3] an- 
alyzed some heuristic algorithms based on sensitivity analysis and suggested some rules to 
determine the step length along the descent directions. The computational results showed 
that the heuristic algorithms are quite efficient in computing an approximate solution of 
BLPPs, especially for nonlinear BLPPs. Unfortunately these algorithms do not  necessarily 
converge, even to a locally optimal solution of a BLPP. Under some other assumptions, 
Dempe [4], Outrata, Zowe [5], and Falk, Liu[ 6] proposed three different methods to compute 
a subgradlent of the implicit function determined by the lower level optimization problem 
respectively. Hence, the bundle method can be applied to compute a locally optimal solution 
of a BLPP. Pang et al.[~] proposed a method with a linear search scheme to solve nonsmooth 
unconstrained optimization problems and also applied it to solve BLPPs. It was mentioned 
in [8] that this method requires that the objective function of the problem is pseudo-regular. 
However, the objective function Of the nonsmooth optimization problem converted from a 
nonlinear BLPP is generally not pseudo-regular. A few descent methods have been recently 
developed for some particular cases of BLPPs. Chen [9] designed a descent method to solve a 
BLPP appearing in transportation networks. Vicente et al.[10] presented a descent method 
for solving quadratic BLPPs. The descent direction is computed by solving a sequence 
of linear complementary problems, and an interesting technique was also introduced for 
determining the exact search.step size along the descent direction in the induced region. 
Unfortunately, this method also lacks any convergence. 

In this paper, we propose a new descent method for quadratic BLPPs. This method is 
finitely convergent and can be also applied to solve a BLPP where the upper level constraints 
is linear and the lower level programming problem is quadratic. The paper is organized as 
follows. Some preliminaries are introduced in Section 2. In Section 3, we discuss convergence 
of the steepest descent algorithm for quadratic BLPPs and explain why most of the descent 
algorithms appearing in the literature can not be applied to solve a quadratic BLPP, even for 
finding a locally optimal solution. A new descent algorithm for solving quadratic BLPPs is 
presented in Section 4. The convergence of this algorithm is analyzed in Sections 5. Finally, 
we give a few conclusions in Section 6. 

2. P r e l i m i n a r i e s  

In this paper, we consider the following quadratic bilevel programming problem (QBP): 

mm >0 5 CL 
s.t. AlX + Bly  <_ bl, 

where y is a solution of 

m m  
y>oll~ 
s.-t. 

f(w, y) = �89 + y T s x  + dTy 

A2x § B2y <_ b2, 

where Cl e R n, c2,d e R m, bl �9 R p, b2 E R q, C1 e R '~x'~, Q, C2 �9 R '~x'~, S ,C  T E 

R re• A1 e R p• A2 e R q• B1 E R p• B2 e R q• "llx" stands for "when x is 
fixed". 
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The above (QBP) can be reformulated as the following single level programming prob- 
lem (NP): 

F(x,y) 
x~y 

s.t. A l x  + Bxy <_ bx, 
y E R ( x ) ,  x>_O, 

Denote 

where 
R(x)  = axg ram{f  (x, y) I A2x + B2y <_ b2, y ~ 0}. 

Y 

9 =  {(x,y)l xx+sly < bl, y e R(x), x > 0 } .  

On the basis of this reformulation, we can introduce the concept of an optimal solution to 
(BLPP). 

Def in i t ion  2.1. �9 is called the induced region of (BLPP). (4, ~) E �9 is called an 
optimal solution to (BLPP) if F(~, ~) < F(x ,  y) for any (x, y) E 9.  (4, ~) E �9 is called 
a locally optimal solution to (BLPP) if there is a neighborhood N(2, ~) of (2, ~) such that  
F(~, ~) <_ F(x ,  y) for any (x, y) E �9 N N(~, ~). 

Denote 

A =  A2 ' B2 , C =  C3T, C2 ' b2 , c =  c2 " 

In the sequel, we assume that  both C and Q are symmetric and positive semi-definite. 
For simplicity, we also assume that  the set 

{(x,y) l A x + B y < b ,  x >_O, y >_O} 

is compact. Replacing the lower level optimization problem in (QBP) by the K-K-T opti- 
mality condition, we have the following equivalent single level programming problem (SLP): 

-'x " l f x ] T  c f x  x]  
J 

s.t. Qy + Sx  -~ d § B~ Ul - us -= O, 
Ax  + By  < b, x > O, y > O, 
uT (b2 -- A2x - B2y) = O, ul >_ O, 
uTy = 0, u2 _> 0, 

where u T T T = (ux, u 2 ). Denote by D the feasible set of (SLP). An interesting property of D 
can be given if we denote the relaxed feasible set of (SLP) by D, i.e., 

-D= { (x ,y ,u )  l Q y +  Sx  + d  + B T I l u -  I2u=O,  Ax + S y <  b, x >_O, y > O, u>_0}, 

where Ix = (I~,0), /2 = (0,I~), I~ and I~ being the q • q unit matrix and the m • m unit 
matrix respectively. 

T h e o r e m  2.1. The feasible set D of (SLP) is the union of some faces of D. 
Proof. It is obvious that  D C D and D is a polyhedral set in R n+2m+q. For any fixed 

(4, ~, ~) e D, there is a smallest face F of D satisfying (4, ~, ~2) e F.  We axe only required 
to show that  F C D. Let the set of all the vertices of F be {(xX,y~,u~), . . .  , (xk ,yk ,uk)} ,  

k 

where k ~ 1. There are Ai > 0, i = 1 , . - . ,  k satisfying ~ )~i = i such that  

k 

= 
i----1 
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Because (Z, 9, u) 6 D, we have 

k k k 

i = 1  i =1  i =1  

Since (x i , y i ,u  ~) 6 "D, for i = 1 , . . - , k ,  by the definition of D,  

- B  i (u~)T(b2-  A2x i 2 y )  ~ 0, j = l , . . . , k ,  i =  l , . . . , k .  

Hence, 

----0. 

k k k 

i=1 i=1 i=I 

k k k 

= _ A i (u l )  ( b : - A 2 x  - 2Y)>_O. 
i=I j = l  i=I 

Therefore, 
- B  (u~)T(b2 -- A2x i 2Y ) = 0, for i = 1 , . . - , k .  

By a similar analysis, we can prove 

(ui2)Ty i = 0, for i = 1 , . . - ,  k. 

So 
(x l ,y i ,u i )  6 D, for i = l , . . . , k .  

This implies tha t  F C D. The  proof is completed. 
Before ending this section, we introduce the definition of two adjacent vertices of a 

polyhedral set. 
D e f i n i t i o n  2.2. Assume zl and z2 are vertices of a polyhedral set F .  If  the convex 

hull conv{zl,z2} of the set {zl,z2} is a face of F ,  then we call zl and z2 the two adjacent 
vertices of F.  

3 .  A n  O b s e r v a t i o n  

In this section, we give a numerical example to illustrate that  the steepest descent 
method is not necessarily convergent when it is applied to find a local minimum of a quadratic 
function on the union of some polyhedral sets. This observation can explain why some 
descent algorithm.~ for BLPPs  may not converge, even to a local minimum of a bilevel 
programming problem. 

Consider applying the steepest-descent method to solve the following unconstrained 
quadratic programming problem (QP): 

mln x 2 + ay 2, 

where x 6 R 1, y 6 R 1 and a is a paramete r  satisfying a > 1. First we prove a lemma as 
follows. 

L e m m a  3.1. For any given initial point (xo,Yo) satisfying xo ~ 0 and Yo # O, 
the steepest descent method with the exact linear search generates a sequence of infinite 
iteration points {(xk, y~)} satisfying 

x~+lxk > O, Yk+l # O, for any k > 0, 
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if it is applied to solve (QP). 
Proof. We show this lemma by the induction. Without loss of generality, we suppose 

that  x0 > 0 and Y0 ~ 0. Assume that  xj > 0 and yj ~ 0 for all j = 0, 1 , - . . ,  k, where k is a 
nonnegative integer. It suffices to verify that  xk+l > 0 and Yk+l r 0. The steepest descent 
direction of the function x 2 + ay 2 at (xk, Yk) is C-2xk,-2ayk).  The linear search generates 
the next iteration point (xk(1 - 2t), yk( 1 - 2at)), where 

t -~ x2 + a2y2 
2Cx ~ -b a3y 2~'kj 

Because a > 1 and yk r 0, we get that  1 - 2t > 0. Hence, xk+l > 0. 
It is obvious that  2at r 1. So Yk+l r 0. The proof is completed. 
E x a m p l e  3.1. Consider the following quadratic bilevel programming problem: 

min ~ + 4 ~  + (y - 1) ~ 
~g 

s.t. - 2  <~ x 1 ~_~ 2, - 1  < x2 _< 1, 

where y is a solution of 
min y2 

s.t. y - x 1  >_0, y < 2 .  

It is not hard to show that  the induced region of the above bilevel programming problem is 
the union of the following tv~o polyhedral sets: 

~1 = {(~1, ~2, y) l - 2 < ~ < 0, - 1  < x~ <__ 1, y = 0} 

and 
~2-~ {(Xl,Z2,Y) I 0 ~ Xl ~-- 2, --1~: ms ~ 1, y : : C l } .  

Let the initial iteration point be ( - 2 , - 1 , 0 ) .  The first iteration point generated by the 
steepest descent algorithm in [10] is C-12-~, 3 , 0 ) .  The objective function value at this iter- 

i' 24"~2 ation point is ~iVJ + 4 • ( 3 )  2. By Lemma 3.1, this steepest descent algorithm generates 
a sequence of infinite iteration points in the relatively interior set ri f21 of ftl .  It is not 
difficult to show that  this sequence converges to Co, 0, 0). However, we can easily show that  
( 0, 0, 0) E f22 is not any local minimum of the bilevel programming problem. 

This example reveals that  any method based on the technique of the steepest descent 
algorithm is not convergent when it is applied to solve quadratic bilevel programming prob- 
lems. 

4 .  A N e w  D e s c e n t  A l g o r i t h m  

As mentioned in [10], at least one local minimum of (QBP) is an extreme point of 
the induced region if the objective function F of the upper level is concave and thus their 
descent algorithm terminates finitely at a local minimum of CQBP) under a nondegeneracy 
assumption about the induced region. Unfortunately, the conclusion is not true when F 
is not concave because the iteration points generated by the descent algorithms for CQBP) 
are often not any extreme points of the induced region. In this section, we propose a new 
descent algorithm to solve (QBP). Our new algorithm utilizes a particular property of an 
extreme point related to the iteration point at each iteration. 

Denote 

~(x ,  y, ~) = (x, y), for any (~, y, u) �9 D, 

HCD ) = {(x ,y)  lCx, y ,u)  �9 D}, 

h(x,  y) = (u  I (x, y, u) �9 D} ,  for any (x, y) �9 H(D).  
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Let H be a polyhedral set in R '~+2m+q and z be a vertex of D. We denote by E ( H )  the set 
of all the vertices of H, and by A(z)  the set of all the vertices adjacent to z in D. If z E 9 
and G is a nonempty convex subset of D, we denote the smallest face of D including z and 
G respectively by S(z)  and S(G).  

Denote by h'(z; d) the directional derivative of h at z in the direction d. Now we can 
state our new descent algorithm as follows. 

A lgor i thm 4.1. 
S tep  0. Find an initial feasible solution (x0,Y0) of (QBP) and let k = 0. 
S tep  1. Set V k = r  
Step  2. If E(A(xk ,yk ) )  = Vk then stop, and (xk,yk)  is a locally optimal solution to 
(QBP); otherwise, proceed. 
S tep  3. Take a f i e  E(A(xk ,yk ) )  \ V~:. 
Step  4. Take a zk �9 E ( S ( z k ,  yk,~))  and let Ak = r 
S tep  5. If A(zk)  N D = Ak, then set Vk = Vk U {fi} and go to Step 2; otherwise, proceed. 
S tep  6. Take a 5 �9 A(zk)  N D \ Ak. 
Step  7. 
otherwise, 
S tep  8. 
otherwise, 
S tep  9. 
proceed. 
S tep  10. Choose a maximal face T of D 
following quadratic programming problem 

If F(5) < F(xk ,  yj,), then set  (Xk+l,Yk.-F1) = I I (2) ,  k = k ~-1  and go to Step 1; 
proceed. 
If F'((xk,yk);II(~.)  - (xk,yk))  >_ O, then set Ak = Ak U {5} and go to Step 5; 
proceed. 
If �89 ((xk, yk, fi) § 5) • D, then set Ak = Ak 1.9 {5} and go to Step 5; otherwise, 

satisfying {(xk, Yk, fi), ~'} C T C D and solve the 
(QP)T 

rain F (  x, y) 

s.t. (x, y, u) e T. 

Let (Xk+l,yk+l) e II(arg m i n { F ( x , y ) ] ( x , y , u )  E T}), k -- k + 1 and go to Step 1. 
Before discussing the finite convergence of the algorithm, we illustrate this algorithm 

via a numerical example. 
Example  4.1. Consider the following quadratic bilevel programming problem: 

1 1 1 

�9 1 2 
s.t. y E a . r g m m ~ = y  - - y - - x l y + 3 x 2 y ] O < y < l } ,  yHx LZ -- -- 

xl  <1 ,  x2 < l. 

Take (1, 0,1) as the initial iteration point. It is easy to verify that A(1, 0, 1) = {(0, 1)} 
and that (1,0,1,0,1) is a vertex of D. In the first iteration, we get a descent vertex 
(1, 1~, 1,0,0) of 9 and then the first iteration point (1, ~,1 1) ~vith A(1, 1,1) = {0,0}. In  
the second iteration, the vertex (1, 2,0, 0, 0) of 9 is found to get a descent direction. We 
choose T = { ( x , y , u ) l y - x l + 3 x 2  = 1, Ul = O, u2 -- O, 0 <c xl <_ 1, 0 < z2 <_ 1, 0 <_ y < 1}. 
T is a maximal face of 9 satisfying {(1,~,0,0,0) ,  (1,�89 C T C D. Solving the 
corresponding quadratic programming problem (QP)T: 

(x,y,~)>0 
s.t. y - -  X 1 ~- 3X2 = 1, Ul = 0, U2 ---- 0, 

0_<X1~1,  0_<Z2_<l,  0 < y ~ l ,  
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we get the second iteration point (1, 2 4 2 4 g, g). It is easy to show that  A(1, g, g) = {(0, 0)}. In 
the third iteration, no extreme descent direction can be found and the algorithm terminates 

1 2 (1, g, ~) is also a global minimum of the problem at the local minimum ( , g, 4). In fact, 2 4 
discussed in this example. 

At the k-th iteration of the above descent algorithm, we implicitly enumerate the ver- 
tices of A(xk,yk). For each vertex u of A(xk,yk), we check whether or not (xk,yk,u) is 
a local minimum of (SLP). If not, a new face of D is found to generate a new iteration 
point. The objective value of the upper level decreases as the algorithm is iterated. The 
crucial step in the algorithm is to choose a vertex z k of the smallest face T of D satisfying 
(xk,yk,u) E T and to check all the vertices in D which are adjacent to z k. If a feasible 
descent vertex or a feasible descent vertex direction is found, then the required face can be 
easily constructed. Otherwise, we can conclude that  (x k, yk, u) is a local minimum of (SLP). 
If (x k, yk, u) is a local minimum of (SLP) for each vertex u of A(x k, yk), then (x k, yk) is a 
local minimum of (QBP). When a descent direction is found, we solve a convex quadratic 
programming problem instead of a linear search. This can avoid searching repeatedly in one 
face of D and guarantee the finite convergence of the algorithm. 

Now we apply the new descent algorithm to solve the quadratic bilevel programming 
problem given in Example 3.1. We denote by DE the relaxed feasible solution set of the single 
level programming problem converted by replacing the lower level programming problem 
with the K-K-T optimality condition, i.e., 

D E = { ( x l , x 2 , y ,  ul,u2) l - - 2 ~ x l  ~ 2 ,  --1 ~x2_< 1, y - - x l  >_O, y ~ 2 ,  ul >O, u2 ~0} .  

Taking ( - 2 , - 1 , 0 )  as the initial point, we have that A(x,y) = {(0,0)}. It is easy to verify 
that  ( -2 ,  -1 ,  0, 0, 0) is a vertex of DE. At the first iteration, (0, -1 ,  0, 0, 0) is found which is 
a feasible descent vertex of DE and is also a point in D adjacent to ( - 2 , - 1 , 0 , 0 , 0 ) .  Thus, 
we get the first iteration point (0 , -1 ,0) .  At the second iteration, the vertex (0, 1,0, 0, 0) 
provides a feasible descent direction. We construct a maximal face T2 of D s  satisfying 
{(0 , -1 ,0 ,0 ,0) ,  (0, 1,0,0,0)} C T2 C D as follows: 

T2 = {(Xl,x2,y, ul,U2) l - 2  ~ Xl ~ O, - 1  ~x2  ~ 1, y-~O, u 1 =0,  u 2 : 0 } .  

Solving the corresponding subproblem (QP)T: 

min F ( x , y ) = x  2 + 4 x  2 + ( y - 1 )  2 
s.t. (xl, x2, y, ul ,  u2) E T2, 

we get an optimal solution (0, 0, 0, 0, 0). Thus, the second iteration point is (0, 0, 0). It is 
obvious that  

S(0, 0, 0, 0, 0) = {(xl ,x2,y ,  ul,u2)[ - 1 ~ x2 _ 1, xl = 0, y = 0, ul  = 0, u2 = 0}. 

The point (0, 1, 0, 0, 0) is a vertex of S(0, 0, 0, 0, 0) and the vertex (2, 1, 2, 4, 0) of DE provides 
a feasible descent direction. The maximal face T3 of DE satisfying { (0, 0, 0, 0, 0), (2, 1, 2, 4, 0) } 
C T3 C D can be constructed as follows: 

T3 = {(xl ,x2,y,  ul ,u2)[0 < xl _~ 2, - 1  < x2 _< 1, y = xl ,  ul = 2y, u2 = 0}. 

Solving the following quadratic programming problem (QP)T: 

min F(x, y) -= x 2 -t- 4x 2 + (y - 1) 2 
s.t. (xl, x2, y, ul ,  u2) E T3, 
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( 7 , 0 ,  ~ ,  1, . we get an optimal solution t t 0) Hence, the third iteration point is (�89 �89 It is 
not hard to show that among all the faces of D~,  T3 is also the smallest face of DE which 
includes (�89 0, �89 0). We can not find any feasible descent direction at this i terat ion point. 

1 1 Because A(�89 �89 = {(1,0)),  we can conclude that (~,0, ~) is a locally opt imal  solution 
of the quadratic programming problem in Example 3.1. In fact, it is a globally optimal 
solution to this bilevel programming problem. 

5.  F i n i t e  C o n v e r g e n c e  

First we prove three lemmas. 
L e m m a  5.1. Let (~, ~) be a feasible solution of (QBP). If (~, ~, ~) is a locally optimal 

solution of (SLP) for any vertex ~ of A(~:, ~), then (~, ~) is a locally opt imal  solution of 
(QBP). 

Proof. Suppose that (~, ~, ~2) is a locally optimal solution of (SLP) for any  vertex ~2 of 
A(~, ~3). If (~, ~) was not a locally optimal solution of (QBP), there would be a sequence of 
feasible points ((xi, yi)} of (QBP) converging to (~, ~2) and satisfying 

F(xi,yi) < F($:,~3), for i = 1 ,2 , . . . .  

Choose a vertex ui of A(xi, Yi) for i = 1, 2 , . . . .  There must be a subsequence (ui~ } of {ui} 
which converges to ft. It can .be verified that  fi is a vertex of A(~, ~). This contradicts the 
assumption that (~, ~, fi) is a locally optimal solution of (SLP). Hence, (~, ~) is a locally 
optimal solution of (QBP). The proof is completed. 

L e m m a  5.2. Let (~, fl, fi) E D. If F(~., ft, ~) <_ F(z) for any face T of  D satisfying 
(~, g, ~) e T C D and any z E T, then (~, ~, fi) is a locally optimal solution of (SLP). 

Proof. Suppose that F(~, ~2, ~z) < F(z) for any face T of D satisfying (~, .~, fi) �9 T C D 
and any z �9 T. If (~, ~, fi) was not a locally optimal solution of (SLP), there  would be a 
sequence of points {(xi, Yi, ui)) in D converging to (~, ~2, fi) and satisfying 

F(xl, Yl, ui) < F($, ~2, fz), for i = 1, 2 , . - - .  

Because there are only finite faces of D, there are a subsequence {(xi~, Yi~, ui~)} of {(xi, Yi, ui)} 
and a face T of D such that 

S(xi~,yik,uik) = T, for k = 1 ,2 , - . . .  

Therefore, (~,~3,fi) �9 T and S(~,~,f i)  C T. From Theorem 2.1, we have T �9 D. 
This contradicts the assumption that F(~2, Y, fO < F(z) for any face T of D satisfying 
(~, ~3, fi) �9 T C D and any z �9 T. So ($, ~2, fi) is a locally optimal solution of (SLP). 

L e m m a  5.3. Let (~',~,~) �9 D and ~, �9 E(S(~, ~,~2)) with F(~) > F(~,~2,~). If 
F '  ((~, Y, fi); z - (~, ~3, fi)) > 0 for any z �9 A(~,) A D satisfying �89 + ~') �9 D, then (~, Y, fi) is 
a locally optimal solution of (SLP). 

Proof. It suffices to verify that  the condition of Lemma 5.2 is satisfied if F '  ((~, Y, ~2); z -  
($,~,fi)) > 0 for any z �9 A(Z,) A D  satisfying �89 + ~,) �9 D. Let T be a face of  D satisfying 
(~, ~, fi) �9 T C D and z be a point of T. Thus there are a positive integer t, t numbers 
Ai > 0 and t points zi �9 A(~) NT,  i = 1 , . . .  , t  such that 

$ 

= = + (1)  
i = 1  

I f~A i__ l ,  l e t ~ o = l -  ~ i a n d z o = 2 .  Note that 
i = 1  i = 1  
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t 

F'( ( , ,9 ,~) ;  2 -  ( , ,9 ,  ~)) = ~ ~ ,F' ( ( , ,9 ,~) ;  z , -  ( ' ,9 ,~) )  >_ 0 
s  

By the convexity of F,  we have 
F(z) >_ F(~, Y, ~). 

t 

Now we suppose ~ A~ > 1. We have 
i = l  

I;1 t2 

(~,9,~) = , 0 ~ +  ~ , , z , +  Z , , z , ,  (2) 
i = 1  i = t + l  

where /z0 > 0, #i > 0 and zi e E(S(~,9, fz)) NA(Z) for i --- 1 , 2 , . . . , t l ,  /~, > 0 and 
El t2 

z~ e E(S(~,  9, a)) \ A(~) for i = t + 1 , . . . , t 2  and E ~' + E ~ = 1. Without loss of 
i = 0  i = t + l  

t 
generality, we can assume tl < t. Let M = ~ hi, #i = 0 for i = tl  + 1,-- .  , t  and Ai = 0 for 

i = 1  
i = t + 1 , . . . ,  t2. By (2), we can replace e in (1) by (2, 9, e). Therefore, 

1 t2 

= - -  ~ (#0~, + ( M -  1 )m) (~ , -  (~,9, ~)) + (z, 9, e). 
#0 i = 0  

Similarly, we can also get 
F(z) > F(~, Y, ~). 

This completes the proof. 
Now we can state our main result as follows. 
T h e o r e m  5.1. Algorithm 4.1 finds a locally optimal solution of (QBP) in a finite 

number of iterations. 
Proof. The algorithm generates a new iteration point which is a globally optimal 

solution of the objective function F(x, y) of the upper level on a face of D at each iteration. 
Because D has only a finite faces and any face of D is at most checked once, the algorithm 
is determinate after a finite number of iterations. By Lemmas 5.1, 5.2 and 5.3, the final 
iteration point generated by the algorithm is a locally optimal solution of (QBP). 

6.  C o n c l u s i o n s  

We have presented a new descent algorithm for solving quadratic bilevel programming 
problems. The algorithm finds a locally optimal solution to a quadratic bilevel programming 
problem in a finite number of iterations. No assumption of any strict convexity is made to the 
lower level optimization problem when applying the new descent algorithm to solve QBPPs.  
But such an assumption is necessary for the other algorithms applied to solve quadratic 
bilevel programming problems. From the proofs of Theorem 5.1 and Lemmas 5.1, 5.2 and 
5.3, we observe that  Algorithm 4.1 can also be applied to solve the bilevel programming 
problems in which the upper level objective function is convex but not necessarily quadratic 
and that  the algorithm terminates at a locally optimal solution of the problem in a finite 
number of iterations in this situation. When the upper level objective function is not convex, 
the algorithm can still be applied without any modification and the algorithm terminates in 
a finite number of iterations as well. In this case, however, the final iteration point is not 
necessarily a locally optimal solution of the bilevel programmiug problem. 

The main feature of the new descent algorithm is its finite convergence. The maximal 
number of iterations is not more than the number of the faces H of D satisfying H C D. 
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If the set of all the op t imal  solut ions of the lower level op t imiza t ion  p rob lem in  a 
general quadra t ic  bilevel p rog ramming  prob lem is not  a singleton,  most  of the methods  
based on  sensi t ivi ty analysis  can  not  be appl ied to solve the bilevel p rob lem because no 
descent direct ion can be found at  an  i t e ra t ion  point  in  this s i tuat ion.  In  Algor i thm 4.1, 
the extreme point  a lgor i thm for l inear -quadra t ic  bilevel p rogramming  problems proposed in 
[10] is applied, with some modificat ions,  to find a descent direct ion for a convex quadra t ic  
bilevel p rogramming  problem. Hence, the a lgor i thm proposed in this paper  possesses the 
ma in  advantage of the ext reme point  a lgor i thm even when the i te ra t ion  poin t  is not  an  
extreme point  of the induced region. 

Final ly,  we would like to men t ion  t ha t  computa t iona l  exper iments  are required to be 
made  to test  this new descent algori thm. We will report  the numerica l  results in  a separate  

paper.  
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