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Dynamical Sources in Information Theory: 
Fundamental Intervals and Word Prefixes 

B. Vall6e I 

Abstract. A quite general model of source that comes from dynamical systems theory is introduced. Within 
this model, some basic problems of algorithmic information theory contexts are analysed. The main tool is a 
new object, the generalized Ruelle operator, which can be viewed as a "generating" operator for fundamental 
intervals (associated to information sharing common prefixes). Its dominant spectral objects are linked with 
important parameters of the source, such as the entropy, and play a central rrle in all the results. 

Key Words. Information theory, Dynamical systems, Transfer operator, Sources, Entropy, Fundamental 
intervals. 

1. I n t roduc t i on .  In information theory contexts, data items are (infinite) words that are 
produced by a common mechanism, called a source. Real-l ife sources are often complex  
objects. We introduce here a general framework of  sources related to dynamical  systems 
theory which goes beyond the cases of  memoryless  and Markov sources. This model  can 
describe non-Markovian processes, where the dependency on past history is unbounded,  
and as such, they attain a high level of  generality. 

A probabil ist ic dynamical  source is defined by two objects: a symbol ic  mechanism 
and a density. The mechanism is related to symbol ic  dynamics and associates an infinite 
word M (x) to a real number x of  the [0, 1 ] interval. It can be viewed as a general izat ion of  
numeration systems, the binary expansion of  a real x,  or the continued fraction expansion 
of  the real x being well-known instances. Once the mechanism has been fixed, the densi ty 
f on the [0, 1] interval can vary. This then induces different probabil ist ic behaviours  for 
source words: for instance, the distribution of  the binary expansions of  reals depends  on 
the distribution of  the reals themselves. The dependence on the initial input distribution 
has already been considered by Devroye [8] when he studies digital  trees associated to 
the simplest  source, the Bernoulli  source. We treat here a more general model  defined 
from a general dynamical  source and a general initial input distribution, which we call  
a probabilistic dynamic source. 

In probabil ist ic dynamic contexts, an important  tool is the Ruelle transfer operator: 
it is classically used as a "generating operator" since it can easily generate objects  that 
are essential in the analysis. Here, we are interested in problems which come from 
computational  information theory. Most  of  the problems in this area deal  with prefixes of  
words. Al l  the source words which begin with the same prefix "come f rom" an interval 
of  [0, 1] that is called a fundamental interval. However,  the classical  Ruelle  operator  
cannot generate both ends of  these intervals at the same time, so that it is not adequate  in 
information theory contexts. We thus devise a new tool, the general ized Ruelle  operator, 
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that acts on functions of two variables and relates to an earlier generalization of [39]. Like 
in its classical version, the generalized Ruelle operator depends on a complex parameter s. 
The operator is now a "generating" operator for fundamental intervals; more precisely, 
it makes it possible to express the Dirichlet series of fundamental intervals that plays a 
central rrle in all the analyses of the paper. 

Furthermore, positivity properties of the (generalized) Ruelle operator (for real values 
of parameter s) entail the existence of dominant spectral objects. In particular, we prove 
the existence of the dominant eigenvaluefunction X(s) defined in the neighbourhood of 
the real axis. This function intervenes everywhere in the analysis of the source. First, 
the main intrinsic parameters of the source, like the entropy h(,.q) and the coincidence 
probability c(S), are proven to be independent of the initial density f on the unit interval; 
they depend only on the mechanism of the source and they satisfy 

h(S) = -~. '(1), c(S) = ;~(2). 

More generally, the dominant eigenvalue function intervenes in all the results of the 
paper. 

(i) The number B(x) of finite prefixes whose occurrence probability is at least equal 
to x (for x ~ 0) is analysed. It satisfies, for "most" of the sources, 

- 1  1 
B ( x ) ~ - - - - -  for x ~ 0 .  

X'(1) x 

(ii) The distribution of the prefixes of length k is shown to follow asymptotically a log- 
normal law, for"most" of the sources. This proves a strong "equipartition property", 
in the flavour of the Shannon-MacMillan-Breimann Theorem. The dominant be- 
haviours of the mean and the variance involve the first two derivatives of the function 
log ;~(s) at s = 1. 

(iii) The coincidence between two source words, i.e., the length of their longest common 
prefix, is shown to follow a geometric law asymptotically. The ratio of the geometric 
law depends on the drawing of the words. If  the two words are independently drawn, 
then the ratio equals L(2). More generally, the ratio equals ~.(2 + r) where r > - 1  
is a parameter which is linked to the drawing of the words. 

REMARK. In the first two results, we use the informal term "most of the sources". The 
exceptions correspond to very particular cases that will be precisely characterized. 

The two simpler models of sources are memoryless sources, where symbols in words 
are each emitted independently of the previous ones, and Markov chains, where the 
probability of emitting a symbol depends solely on a bounded part of the past history. 
Other common instances of sources studied in the literature are only that of stationary 
ergodic sources, which possess good "mixing" properties, see for instance the work of 
Szpankowski et al. [36], [37]. To the best of our knowledge, the only instance of an 
explicit source with unbounded history dependency considered in the literature is that 
of continued fraction representations [13]. Our probabilistic dynamical source model 
encompasses all the usual models previously studied so that our approach both unifies 
previous analyses in a powerful way and extends previous results. 
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Plan of the paper. Section 2 describes the general framework of dynamical sources, 
and defines fundamental intervals, as well as two basic parameters of the source, the 
entropy and the coincidence probability. Section 3 is devoted to the description of the 
main questions. It is shown that all of them involve the Dirichlet series of fundamental 
measures. In Section 4 we introduce the generalized Ruelle operator, and show how 
it generates the fundamental measures. In Section 5 we then transfer the properties of 
the operator on the Dirichlet series of fundamental intervals, and we relate dominant 
spectral objects of the Ruelle operator to basic parameters of the source, like the entropy 
and the coincidence probability. In Section 6 we study more precisely some important 
properties of the dominant eigenvalue. We obtain classification results that will help 
to characterize the exceptions. With the results obtained in Sections 5 and 6, we can 
return to our questions and solve them in Sections 7-9. We conclude with an example 
in Section 10. 

We focus here on the application of this model to problems which involve words, and 
more precisely word prefixes. A companion paper (a joint work with Julien C16ment 
and Philippe Flajolet) deals with further analyses on an important class of trees used in 
information theory: the digital trees (or tries). The main tools that we introduce here, 
as the generalized RueUe operator, or the Dirichlet series of fundamental intervals, also 
play a central r61e there. Thus, the companion paper will make great use of Sections 2 
and 4-6  of this paper. 

2. Probabilistic Dynamical  Sources. Here, we describe the general framework of 
probabilistic dynamical sources. First, we introduce symbolic dynamical sources, with 
two different possible mechanisms--basic, Markovian. These mechanisms are associ- 
ated to dynamical systems defined from expanding analytical maps of the interval. Then, 
when endowing the unit interval with some (analytical) density, we define the concept 
of probabilistic dynamical sources. Finally, we present the notion of fundamental inter- 
vals, fundamental measures, and two basic parameters of the source, the entropy and the 
coincidence probability. 

2.1. Basic Symbolic Dynamical Sources. In information theory contexts, a source is 
a mechanism which produces infinite words written on an alphabet .A4. We are first 
interested here in sources that are associated to basic dynamical systems, where the 
mechanism is the same at each step. 

DEFINITION 2.1 (Basic Symbolic Dynamical Source). A basic dynamical source is de- 
fined by four elements: 

(a) An alphabet A4 included in N, finite or denumerable. 
(b) A topological_partition of 77 := ]0, 1 [ with disjoint open intervals 27m, m e .M, i.e., 

= UmE.A4 ~m. 
(c) A mapping a which is constant and equal to m on each 2-m. 
(d) Amapping T whose restriction to each 2-m is a real analytic bijection from "Im to2-.Let 

hm be the local inverse of T restricted to 2"m and let 7-/be the set 7-/:-- {hm, m e All}. 
There exists a common complex neighbourhood ]2 of 2" on which the set 7-/satisfies 
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the following: 
(dl) The mappin_gs hm extend to holomorphic maps on ~), mapping V strictly inside 

V (i.e., hm (V) C V). 
(d2) The mappings Ih~,l extend to holomorphic maps h'm on 1) and there exists 

8,. < 1 for which 0 < Ih'm(Z)[-< 8,. forz  ~ 1;. 
(d3) There exists y < 1 for which the series ~,,~.M 6,~ converges on 9~(s) > y. 

REMARKS. We call such a dynamical source basic because of the equalities T (2-m) = 2-. 
Elsewhere in the literature, it is only asked of a dynamical system that the image T(5(z) 
is a union of some elements Zj of the partition. Conditions (dl) and (d2) express that 
the inverse branches hz are contractions, or that T is expansive. Condition (d3) always 
holds for a finite alphabet (with y = - o o ) ;  it is only useful for infinite alphabets. 

It is sufficient that an iterate of T satisfies conditions (d). For instance, the mapping T 
associated to a continued fraction source does not fulfil conditions (dl) and (d2) but the 
iterate T 2 does. 

The words emitted by the source are then produced as follows: The mapping T: Z 
Z (almost everywhere defined) is used for iterating the process, as a shift mapping; the 
mapping or: I ~ .h4 is used for coding. The word M(x)  o f . M  °° associated to a real x 
of 2" is then formed with the symbols 

(1) M(x)  := (Ml(x),  M2(x) . . . . .  Mj:(x) . . . .  ), 

where the kth component Mk(x) of M(x)  is equal to cr(Tk-lx),  while the kth prefix 
Pk(x) of M(x)  is equal to 

(2) Pk(x) := (Ml(x),  M2(x) . . . . .  Mk(X)). 

The number of branches of T equals the cardinality of  the alphabet, and the alphabet is 
used for coding the distinct branches of T, or the distinct inverse branches of T which 
are denoted hm. Here, h"  is a bijection from 2" to 2"m, which coincides with the inverse 
of the restriction of T to 2-m. 

Memoryless sources. All the memoryless sources can be described in the basic dynam- 
ical framework. A source is said to be memoryless when the random variables Mk are 
independent and follow the same law. The Bernoulli source associated to a probability 
system P ----- (Pm)m~Jvl (finite or denumerable) is the source where all the components 
Mk are independent and follow a Bernaulli law of parameters (Pm)meA4. The topological 
partition of 2- is then defined by 

2 - m : :  ]qm, qm+l[, w h e r e  qm----- ~-~Pj; 
j <" 

the restriction of T to 2"m is the affine mapping defined by T(qm) = 0 and T(q,,+t) = 1. 
Special cases of importance are the b-ary expansion transformations that are defined 

by 

(3) T(x)  = [bx}, tr(x) = [bx], 
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where [u] is the integer part o f u  and {u} = u rood 1 = u - [u] is the fractional part o fu .  
These transformations give rise to the b-ary expansions o f x  in base b and are associated 
to symmetric  Bernoulli sources (i.e., Bernoulli sources where all pj's are equal). 

Continued fraction expansion. This general framework may also create quite different 
sources, with memory. It is sufficient to use a mapping T with at least one non-affine 
branch. In a sense, it is the derivative T'(x) that keeps memory  of previous history. The 
continued fraction transformation is an example of  this situation. The alphabet is N, the 
topological partition of  Z is defined by 2-,. :=  ] l / ( m  + 1), 1/m[, and the restriction of  
T to 2-,. is the decreasing function T(x) :=  ( I / x )  - m, 

(4) TCF(X)={I} ,  trCF(X) = [ 1 ] ,  

where [u] is the integer part of  u and {u} = u mod 1 = u - [u] is the fractional part of  
u. This transformation gives rise to the continued fraction expansion of  x. 

The inverse branches are all the linear fractional transformations (LFTs) hm defined 
by h,. (x) :=  I/(x d- m). The first branch hi does not satisfy (dl)  and (d2), but the set of  
the Lb-Ts h, .  o hn satisfies conditions (d). 

2.2. Markov Symbolic Dynamical Sources. Until now, the shift T used at each stage 
is always defined in the same way. Very often, the modelling of  more realistic sources 
leads to the use of  a shift that depends on the last emitted symbol.  This gives rise to 
so-called Markov sources. 

DEFINITION 2.2 (Markov Symbolic Dynamical  Sources). Let .A4 be a finite alphabet 
of  cardinality r ,  and let S = (So, S1, $2 . . . . .  Si . . . . .  Sr) be a set of  r + 1 different basic 
dynamical  systems, all defined on the same alphabet .A4. A Markov dynamical  source 
is then defined as follows: the basic dynamical  system So is used to begin with, and the 
dynamical system Sj is chosen when the previously emitted symbol  is j .  

We describe more precisely the mechanism of  the source. One thus associates to a 
real x of  2- an infinite word M(x) on alphabet .A4, as in (1), 

(5) M(x) :=  (Ml(x) . . . . .  Mk(x), . ..), 

together with the sequence of the iterates of  the real x, 

(6) (T/l>(x), TIZ)(x) . . . . . .  TIk>(x) , . . . ) ,  

that are now defined by the initial conditions Ml(x) :=  tr0(x), TIl~(x) :=  To(x), and 
the recurrence relations 

(7) if Mk(X) = j ,  then T<k+l)(x) :=  Tj(T<kl(x)) 
and Mk+l(x) :=  trj(T{k)(x)). 

Like previously in the case of  a basic source (2), the kth prefix Pk(X) of M(x) is equal to 

(8) Pk(x) :=  (Ml(x), Mz(x) . . . . .  Mk(X)). 
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Each shift Tj is associated to a topological partition (~ilj) (1 < i < r)  of  the unit interval 
2-, and satisfies hypotheses (d) of  Definition 2.1. We denote by (T/I j)  (1 < i < r )  the 
branches of  Tj, so that T/U is a real analytic bijection from IiU to 2-, that is required to be 
expansive. The inverse branches of Tj are denoted by hilj, s o  that hqj is a real analytic 
bijection from 2" toZ,.ij that extends to a holomorphic map on );, mapping ]2 strictly 
inside V (i.e., hilj(V) C V for 1 < i < r, 0 < j < r). 

The usual model of  Markov chains of  order 1 is then relative to the case when all 
the Sj's are Bernoulli systems. More precisely, if the system Sj is a Bernoulli system of  
parameters FIj : =  (Pilj)i<r, the transition matrix FI of  the Markov chain is the square 
matrix r × r, 

FI :=  (Piu),  1 < i, j < r, 

and the initial probability system is the vector Fl0. 

Relation between Markov sources and general dynamical systems. Any Markovian 
source can be associated to a (general) dynamical system (see Figure 1). We take r -t- 1 
copies of  2-, for instance 2"0 := 2" = ]0, 1[ and I j  :=  ] j ,  j + 1[. Denoting by ¢ , ,  the 
translation qb,n (X) :=  x + m, we then define, for 1 < i < r and 0 < j < r,  

2-i,j :~- d~)j(~il j), Ti, j  : =  (~i o T/]j 0 ~ - l ,  

so that Ti,j is now a bijection from Zi,j on Z/. The system ,5 associated to quasi-partition 
Ii,j of ]0, r + 1[ and to branches T/,j is a dynamical system (that is no longer basic). 

One can use both interpretations of  a Markovian source, but, here, we prefer stay in 
the unit interval and we adopt the first formalism which is closer to the intuition behind 
Markov chains. This is the point of  view that has been adopted by Ruelle himself  [29]. 

° a ~ ,  . . . . . . . . .  .......... 

o 8/8 l 

80 

r 

0 1/4 7Is 1 
~;l 83 

Zt 

r< 

Zl,O Z2,0 Z l , I  :~:,1 ZI ,2  Z2,2 

Fig. 1. Relation between a Markov source (defined by three basic sources So, `sb ,52) and the corresponding 
general dynamical system. 
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2.3. Fundamental Intervals and Prefixes. We consider now the kth iterate of the shift. 
In the case of a basic source, this is the true kth iterate of T. In the case of a Markovian 
source, this is the shift T {k> defined in (7). Each branch (or each inverse branch) of  the 
kth iterate of the shift is called a branch (or an inverse branch) of depth k. The depth of 
the inverse branch h is denoted by [hi. An inverse branch h of depth k is then associated 
in a unique way to a finite word W(h) = (ml, m2, • . . ,  mk) of length k which keeps the 
memory of the choices. In the basic case, each inverse branch of depth k associated to 
(ml, m2 . . . . .  mk) is of the form 

(9) h = hml o hm2 o . . .  o hmk,  

w h e r e  hi  denotes the ith branch of T. In the Markov case, it is of  the form 

(10) h = h m d  0 o hm21ml o • ' '  o h m ,  lmk-l" 

For a finite alphabet of cardinality r, there are r k branches of depth k. We denote by ~k  
the set of branches of depth k. Cyclic branches, i.e., branches for which the associated 
word begins and finishes with the same symbol, play an important r61e in the case of 
Markov sources. We denote by C and C[i] the set of cyclic branches and the set of cyclic 
branches that begin and finish with symbol i. In the same vein, Ck, Ck[i] denote the same 
objects of fixed depth k. 

We now present one of the main objects of the paper. 

DEFINITION 2.3 (Fundamental Intervals). The fundamental interval relative to the in- 
verse branch h is the transform 2-h := h(2-) of the unit interval 27 by the inverse branch 
h. Its depth is the depth [hJ of h. The fundamental intervals of depth 1 are thus exactly 
the intervals of the initial partition. A fundamental interval 27h of depth k is formed with 
all the real numbers x of 27 which produce a word M(x) whose prefix Pk(x) of length k 
is exactly the finite word associated to h. 

2.4. Probabilistic Dynamical Sources. In what follows, we are interested in proba- 
bilistic dynamical sources, where the words are emitted by the mechanism of the source, 
but also with a prescribed distribution which depends on a density on the unit interval. 

DEFINITION 2.4 (Probabilistic Dynamical Sources). Let S be a dynamical source (ba- 
sic or Markovian) and let f be a real analytic density on interval 27 that extends to an 
analytical function on V. Let F be the associated distribution function. The pair (S, F)  
is called a probabilistic dynamical source. The set .A4 °° of the words produced by the 
dynamical probabilistic source (S, F) is the set M(27) endowed with the probability 
induced from f by M. 

In this context, the measure Uh of the fundamental interval 27h, 

(11) Uh := IF(h(0)) -- F(h(1))[,  

associated to an inverse branch h defined in (9) or (10), plays an important r61e, since it 
equals the probability that a source word begins with the prefix of.A4* relative to h. It is 
called the fundamental measure relative to h. 
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More generally, when studying two source words M(x) and M(y) independently 
drawn from the same probabilistic dynamical source (S, f ) ,  the square 2- × 2- is endowed 
with continuous density g(x, y) = f (x ) f (y ) ,  and/z denotes the associated measure 
on the square 2- × 2-. In this context, the measure IX(Ch) of the fundamental square 
Ch := 2-h X 2-h is equal to u~ and it plays an important r61e, since it represents the 
probability that two source words both begin with the same prefix relative to h. 

2.5. Dirichlet Series of Fundamental Intervals. Entropy, Coincidence Probability. The 
entropy h(S, F) relative to probabilistic dynamical source (S, F)  is defined as the limit, 
if it exists, of a quantity that involves the fundamental measures Uh, 

(12) h(S, F) := lim - 1  k--,~-'-k- E Uh lOguh. 
Ihl=k 

In the same vein, the probability that two independent words have the same prefix of 
length k equals Y~-lhl=k Uh 2" Since this quantity generally appears to decrease exponentially 
with k, it is natural to define the coincidence probability c(S, F) as the following limit, 
if it exists, 

(13) c(S, F) := lira u . 
k ~  I 

More generally, for an integer b > 2, the b-coincidence probability Cb($, F), defined as 

(14) cb(S, F) := lira u , 
k ~  I 

is related to the probability that b independent words have the same prefix of length k. 
The previous three definitions involve the series of fundamental measures of depth k, 

(15) A,(F, s) := Z u~ = Z IF(h(O)) - F(h(1))l s, 
Ihl=k Ihl=k 

since 

(16) 
- l d  

h(S, F) := lim -7--Ak(F, s)ls=l, 
k~oo T a s  

(17) c(S, F) := lim [Ak(F, 2)] l/k, Cb(S, F) := lim [Ak(F, b)] l/k. 
k--+oo k--+ oo 

We show in what follow that the quantifies Ak(F, s) defined in (15) asymptotically 
behave as the kth power of a certain function Z(s) that is well defined and analytic near 
the real axis. The three objects defined in (12)-(14) depend only on the mechanism S. 
They are independent of the distribution F and can only be expressed with the function 
X(s) as 

h(S) = -U(1) ,  c(S) = )~(2), co(S) = Z(b). 

They play an important r61e in all our analyses. 
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2.6. Comparing with Other Models of Sources. First, our model encompasses the 
most usual sources, like memoryless sources, or Markov chains, but also most of the 
main numeration systems such as those associated to base b or to continued fraction 
expansion. Since the model is not only symbolic, but also probabilistic, it is possible 
to examine properties of the expansions (for instance dyadic expansions or continued 
fraction expansions) of numbers that are not uniformly distributed on the unit interval. 

More generally, the sources studied in information theory are essentially ergodic and 
stationary. We show in what follows that our sources are all ergodic, but not necessarily 
stationary. Moreover, the proposed framework encompasses essentially all the instances 
of sources that satisfy some "easy" sufficient conditions of ergodicity (for instance, 
unicity of the invariant measure and mixing). 

3. Distribution of Prefixes Source Words 

3.1. Three Questions about Prefixes. Generally, in information theory contexts, we are 
interested in three basic questions about the probability that given source words appear. 
All these questions concern prefixes of words and can be easily translated into questions 
about fundamental measures. 

(i) Evaluate the number B(p) of finite prefixes whose probability is at least equal 
to p (for p ~ 0). The number B(p) is alternatively defined as the number of  
fundamental measures at least equal to p. 

(ii) Describe the distribution of the prefixes of the same fixed length k. Alternatively, 
describe the distribution of the fundamental measures of depth k. More precisely, 
we let gk(x) := Uh when x belongs to the fundamental interval h(2-) of depth k. 
Since the fundamental intervals of depth k form a quasi-partition of 37, the random 
variable £k is almost everywhere defined on 37 and we examine characteristics of 
its distribution when x is distributed over the interval 37 according density f .  

(iii) Describe the coincidence between two source words, i.e., the length of their longest 
common prefix. For two words M(x) and M(y), one defines C(x, y) to be the 
length of the longest common prefix of M(x) and M(y), 

C(x, y) = Max{k ~ N; Pk(x) = Pk(Y)}. 

Then C is a random variable almost everywhere defined on the square 2" x 2- and we 
examine characteristics of its distribution when (x, y) is distributed over the square 
2- × 2- according density g(x, y). 

3.2. The Main Results. Our main results all involve the dominant eigenvalue )~(s) 
of the Ruelle operator; they are the following: For all the dynamical sources, but the 
exceptional ones: 

(i) The number B(p) of fundamental intervals whose measure is at least equal to p 
satisfies 

1 
B ( p ) ~ - ~  for p - - + 0 .  

)J(1)p 
This result is true provided that the function s ~ ~.(s) is not periodic (Theorem 2). 
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(ii) The variable log gk follows asymptotically a normal law (for k ~ oo), provided 
that log ~,(s) is strictly concave; the mean is asymptotically equivalent to kU(1); 
the variance is asymptotically equivalent to k [~,"(1) - U (1)2] (Theorem 1 ). 

(iii) The variable C follows asymptotically a geometric law. The ratio of the geometric 
law depends only on the behaviour of the initial density g near the diagonal x = y 
of the unit square. If g has valuation r near the diagonal, i.e., 

(18) g(x, y) = Ix - ylr g(x, y) 

with g defined in the square and strictly positive in the unit square, and r > - 1 ,  
then the ratio is of the form ~.(2 + r) (Theorem 3). 

Furthermore, we give a precise characterization of exceptional dynamical sources (Propo- 
sition 11). There are two kinds of exceptional sources, both related to exceptional prop- 
erties of the dominant eigenvalue Z(s). The first one is relative to the case when the 
dominant eigenvalue ~.(s) is periodic and intervenes as an exception for the first result. 
The second one is relative to the case when the dominant eigenvalue L(s) is log-affine 
(i.e., log ~.(s) affine) and intervenes as an exception for the second result. We prove that 
exceptional sources are quite similar to the two simpler sources, memoryless sources 
or Markov chains, where all branches are affine and we conjecture that exceptional 
sources can only belong to one of these simpler models: a "complex" source cannot be 
exceptional. 

3.3. Asymptotic Normality of the Variable log gk. We describe now how the quantity 
Ak (F, s) plays a central rSle in this question. The random variable gk is a step function 
that is constant on any fundamental interval h(Z) of depth k (and equal to Uh). For 
studying the distribution of the random variable log gk, we use its moment generating 
function, 

which satisfies 

(19) 

Mk(s) := E [exp(s logek)] = E [g~], 

Mk(s) = y ~  UShUh = Y~ u l+s = Ak(F, l + s). 
lhl=k Ih l=k 

We will prove that At(F,  1 + s) behaves nearly like the kth power of a fixed analytic 
function ~(1 + s). The central limit theorem of probability theory asserts that exact large 
powers induce Gaussian laws in the asymptotic limit. Here, we use an extension of the 
central limit theorem to "quasi-powers" which has been developed in a general setting 
by Hwang [16]. This extension is valid provided that the function log ~.(s) is strictly 
concave at s = 1. We show that this is the case for most of  the sources, but not for those 
that behave like an unbiaised Bernoulli source. 

3.4. Longest Common Prefix of Two Words. For two words M(x) and M(y),  one 
defines C(x, y) to be the length of their longest common prefix, 

C(x, y) = Max{k 6 N; Pk(x) = Pk(Y)}. 
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Then C is is a random variable almost everywhere defined on the square Z x 77. The 
event C(x ,  y) > k is formed with all the points (x, y) such that prefixes Pk(x) and 
Pk(Y) are the same. Then x and y belong to the same fundamental interval of  depth k, 
and 

[c_> k] = UIh×Ih. 
Ihl=k 

In the case when the two words are independently drawn from the same probabilistic 
dynamical source ($, f ) ,  the measure on the square is defined as the product of the two 
measures associated to the initial distribution F, so that 

P r [ C > k ] =  ~ u ~ =  A k ( Y ,  2). 
Ihl=k 

i 

Again, the Dirichlet series of fundamental measures appear, now at s = 2; we shall 
prove that more general probabilistic settings involve the Dirichlet series Ak(F, s) for 
other real values of s that are related to the choice of words distribution. 

3.5. Asymptotic Behaviour of  the Number  o f  the Most  Probable Prefixes. We recall 
that we wish to describe the asymptotic behaviour of function B defined as 

B(x) = ~ 1 
h;uh>_x 

when x tends to 0. Here, the central r61e is played by the Dirichlet series o f a l l  fundamental  
measures (of any depth) 

(20) A ( F , s )  := E u ~  = E l F ( h ( 0 ) )  - F(h(1))l  s = E A k ( F ' s ) "  
h h k>0 

This function A(F,  s) intervenes because of the relations 

(21) 

(22) 

f0  ° 
A(F,  s) = s B(x )  x s-x dx ,  

C A(F,  s) = s A ( y ) e  - ' y  dy  with A(y )  = B(e-Y) ,  

that show that A(F,  s) has two integral forms that are related to function B: the first 
integral form (21) defines A ( F ,  s) to be the Mellin transform of function B, and the 
second one (22) defines A ( F ,  s) to be the Laplace transform of function A. So, it is 
a well-known fact that the location of poles of A(F,  s) gives some knowledge on the 
asymptotics of B near 0, and we shall prove the following facts: 

The function s --+ A (F, s) is analytic in the plane 9t (s) > 1, and it has a simple pole 
at s = 1. Near the  line 9~(s) = 1, there are only two possible cases: 

(a) The periodic case: A ( F ,  s) has other poles on the line, and they are regularly 
distributed on the line. There is a strip cr < ~ ( s )  < 1 that is free o f  poles. 
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(b) The aperiodic case: A (F, s) has no other poles on the line, but there is possibly an 
accumulation of poles on the left of the line. 

So, we proceed as follows: 
(a) In the periodic case we can use the first integral form and Mellin analysis [12], 

because of the pole-free region. For reasons which will be explained later (essentially 
convergence problems), it seems that this Mellin analysis cannot be conducted on the 
function B itself which is too highly discontinuous in this case. We instead consider the 
integral D of B, defined as D(x) := fo  B(y) dy. 

(b) In the aperiodic case it is not always possible to locate precisely the singularities of 
A(F,  s) on the left of the line 91(s) = 1. An alternative method uses the second integral 
form and Tauberian theorems [7], [38]. 

4, Introduction of Generalized Ruelle Operators.  Here, we define the generalized 
Ruelle operator, and show how it generates the fundamental intervals, as well as the 
Dirichet series of fundamental measures. 

4.1. Density Transformers. There is a direct relationship between the dynamics of 
source ,9, the answers to the main three problems, and spectral properties of an operator 
closely related to the way the shift T transforms probability distributions. The basic 
ingredient, well-developed in dynamical systems theory, is the class of transfer operators 
[2], [30], [29]. In its simplest form, the transfer operator associated to a basic dynamical 
system is the "density transformer", 

(23) ~[fl(x) := y~  [hi(x) I f o hi(x). 
iEM 

If f is the initial density on Z, then the density on 2- after one iteration of the process, i.e., 
the density function of the iterate T(x),  is precisely G[f](x) .  The component operator 
given by the ith term is denoted by ~[il; it is defined by 

(24) 

so that 

(25) 

Gtil[f](x) := Ih~(x)[ f o hi(x), 

leA4 

In the same way, one can define a "density transformer" associated to a Markov dy- 
namical system. There are now r different densities ( f l ,  f2 . . . . .  fr) that correspond to 
"conditional densities": ./~ (x) is the density at the point x when the last emitted symbol 
equals j .  One begins with density f ,  and, after one iteration of the shift associated to 
the initial system ,90, one has 

f j (x )  = Ihjlo(x)lf o h j lo (x  ). 

More generally, the sequence of"conditional densities" ( f l ,  f2, - . . ,  fr)  at one iteration, 
and the sequence of"conditional densities" (gx, g2 . . . . .  gr) at the following iteration, are 
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related by an operator matrix G that is built from the density transformers ~j associated 
to each dynamical system S i. The density transformer ~j associated to Sj acts on .~: 

~j[J~](x) := ~ [h'ilj(x)lf j o hiti(x). 
i~.A4 

Each term of the previous sum defines an operator which will be denoted by ~[ilJ]' 

(26) G[iljl[f](x) := Ih~lj(x)ff o hijj(x), 

and each te rm ~[ifj][j~] represents the "part" of the new density gi that "comes from" 
the density 3~- We now consider the (r × r)-matrix G whose general coefficient is ~[ilj], 

(27) 9 = ( ~[iij] )l<i,j<r 

(i is the index for lines, and j the index for columns). This matrix ~ is itself the density 
transformer, since it transforms the sequence of "conditional densities" ( f l ,  f2 . . . . .  fr) 
at one iteration, into the sequence of "conditional densities" (gl, g2 . . . . .  gr) at the fol- 
lowing iteration: 

g2 = ( ~[i[J] ) 

r f r /  

4.2. Classical Ruelle Operators. In fact, in each case (basic dynamical system or 
Markovian one) it proves highly useful to work with more general operators, called the 
Ruelle operators. Each component operator in (24) or (26) depends now on a complex 
parameter s and is defined with the analytic extension h of Ih'l. The new component 
operators are respectively denoted by Gs,[i] or Gs.tilj]: 

(28) Gs.til[f](z) := h'~ (z) f o hi (z), 

(29) Gs,[iljl[f](z) := h~lj(z) f o hilj(z). 

As in (25) or in (27), the Ruelle operators are now respectively defined by 

r 

(30) Gs = Z ~s,[i], ~s : :  (~s , [ i l j ] ) l< i , j<r ,  
i=l 

in the basic case and in the Markovian case. The dynamics of the process is a priori 
described by s = 1 (i.e., G ---- Gl), but many other properties appear to be dependent 
upon complex values of s other than t. 

4.3. Generalized Ruelle Operators. We introduce here a new tool: the generalized 
operators of Ruelle that involve secants of inverse branches, 

Ih(u) - h(v) l 
(31) H(u, v) := - , 

U 1) 
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instead of tangents Ih'(z) I of inverse branches. Each component operator in (28) or (29) is 
now defined with the analytic extension/~ of the secant H relative to branch h. The new 
component operators are respectively denoted by Gs,t~l or Gs,tiljl. They act on functions 
F of two (complex) variables in the following way: 

(32) Gs,[i][F](u, v) := nS(u, v)F(hi(u), hi(u)) 

or  

(33) Gs,[iljl[F](u, v) := ~.slj(u, v)F(hilj(u), hitj(u)). 

As previously in (30), the generalized Ruelle operators themselves are respectively de- 
fined by 

r 

(34) Gs : =  ~ Gs,[i], Gs : =  (Gs,tiljl), 
i=1 

in the basic case and in the Markovian case. 
The generalized Ruelle operator "extends" the (usual) Ruelle operator as follows: if 

f denotes the diagonal mapping of F that is defined by f(u) := F(u, u), one obtains 
on the diagonal u ----- v the relations 

(35) /~(u, u) = h'(u), Gs[F](u, u) = Gs[f](u). 

4.4. Pseudo-Powers of Ruelle Operators. We now show how the operators ~s or Gs 
generate all the branches h of any depth. We first consider the case of a basic dynamical 
system. By the chain rule, the kth iterates of Gs and Gs involve inverse branches h of 
depth k, 

(36) ~sk[f](z) = ~ "h(z)Sf o h(z), Gsi[Fl(u, v) = ~ if(u, v)SF(h(u), h(v)), 
{hl=k {hl=k 

where the functions h" and /q are the extensions of the derivative and the secant of 
branches h, and the sum now ranges over all branches of depth k. 

In the Markovian case, the coefficient (i, j )  of the kth iterate of matrix G~ or Gs 
involves all the branches h relative to a word (ml . . . .  mk) which begins with j (ml = j )  
and finishes with i (mk = i). We wish to generate all the inverse branches of depth k 
(i.e., all the inverse branches of T<kl), and, for this purpose, we define pseudo-powers 
~k>, G~k> of the Ruelle operators. We first let ~0> := 1, GJ °> := I. Then we consider 
the operators Ads and Ms relative to the initial dynamical system So: 

(~s,tll01 \ 
Gs,f2fol [ 

(37) M s [ f ]  [Gsdi,ol|[f], M s [ F ] : =  / G~ ol / 
Gs] oj 

G~ oj 

G~' oj 

IF]. 
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If U denotes the unit rth dimensional vector, i.e., tU = (1, 1 . . . . .  1) (r times), then 
t U.A4s denotes the Ruelle operator associated to So and t UM, its generalized version. 
We let 

GJ 1> := 'UA4~, G~ 11 := lUMp. 

For k > 2, the pseudo-powers are defined by 

tU~k-1 AA G~ k) = :  tUGk- I  M . (38) ~ =: ~ ,  ~ - , s ,  ~ 

Now, the pseudo-iterate of order k generates all the inverse branches of depth k and we 
obtain the analog of (36): 

(39) G~k>[f](z) = 

G~ kl[Fl(u, o) ----- 

Z "h(z)Sf(h(z))' 
Ihl=k 

~_~ H (u, v)S F(h(u), h(v)). 
Ihl=k 

In order to unify our notations, we extend the notion of pseudo-powers to the case of a 
basic dynamical system, and we let, in this case, 

(40) GJ k) := G~, G~ k)'.= G~k. 

4.5. The Dirichlet Series of Fundamental Measures. Symbolically, in both cases, the 
kth pseudo-powers of the operators represent k iterations of shift T. Then the series of 
fundamental intervals of depth k defined in (15) can be easily expressed in terms of the 
pseudo-powers of the operator Gs, 

(41) Ak(F, s) := Z IF(h(O)) - F(h(1))l s = G~k>[L'](0, 1), 
[hl=k 

where L is defined as the analytic extension of the secant of the distribution F, 

(42) L(x, y) = I F(~ - F(Y) I 

Note that the diagonal application of L is exactly the extension of the density f := F'. 
In the same vein, the quasi-inverses (I - Gs) I-1~, (I - Gs) <-l), respectively being 

the formal sum of all the pseudo-powers of the operators, then represent all the possible 
iterations. An important case is the series of all the fundamental measures (20), 

(43) A(F, s) := ~ IF(h(0)) - F(h(1))l ~ 
h 

= ~GJk)[LS](0 ,  1) = (I - G,)(-l>[LS](0, 1). 
k>_0 

In both cases, the series Ak (F, s) of fundamental measures of depth k is also expressible 
in terms of true powers G~, in the basic case, 

(44) Ak(F, s) = Gsk[LS](0, 1), 
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or in the Markovian case, for k > 1, 

(45) Ak(F, s) = G~k~[LS](0, 1) =t  UG~-1Ms[Ls](o, 1). 

Asymptotic properties of such powers are thus needed and they are closely related to 
spectral properties, especially dominant and subdominant eigenvalues of the transfer 
operator Gs. 

In the same vein, the series A (F, s) of fundamental intervals of  all depths is expressible 
in terms of the true quasi-inverse (1 - G~) -1, in the basic case, 

(46) A(F,  s) = (I  - Gs)-I[L~](0, 1), 

or, in the Markovian case, 

(47) A(F,  s) := ~ Ak(F, s) = 1 +t U(I - Gs)-tMs[LS](O, 1). 
k 

Asymptotic analysis of  coefficients of  this series is dependent on the location of its poles. 
Such poles arise from values of s where (I - Gs ) -  1 is singular, that is, values s for which 
1 is an eigenvalue of Gs. In this way, the poles also relate to the spectral properties of 
the transfer operator. 

In the quite particular case when the two following conditions are fulfilled, (i) all the 
branches of T are linear fractional transformations, (ii) the initial distribution is uniform 
F(x) :=  x, then the series of fundamental intervals can be solely expressed with the 
usual Ruelle operator [13]. However, in the general case it appears that the generalized 
Ruelle operator must be introduced. We now show that the generalized operator shares 
its main spectral properties with the classical operator which it extends. 

5. First Spectral Properties of Generalized Ruelle Operators. We now state the 
main properties of the generalized Ruelle operator: we prove it to be nuclear, we describe 
its spectrum, and we exhibit strong positivity properties (for real values of parameter s) 
that entail the existence of dominant (positive) spectral objects. We then transfer all these 
properties to the Dirichlet series of fundamental intervals, and we relate the dominant 
spectral objects of the operator to the basic parameters of the source, the entropy and the 
coincidence probability. 

5.1. Nuclearity, Trace Formula, and Fredholm Determinant. We first recall the notion 
of nuclearity introduced by Grothendieck [14], [15]. Let B be a Banach space and B* 
its dual space. An operator £: B ---> B is nuclear of order 0 if it admits a representation 

/~[f] = ~-~tzieT(f)e i forall  f E B, 
iEl 

with ei E B, e~ E B* such that Ileil[ = ileal[ = 1 and, for all real p > 0, the /d, i are 
p-summable (i.e., ~ ]#i I p < -t-c~). Most of matrix algebra can be extended to such 
operators; in particular, one can define their trace, 

(48) TrZ~ ---- ~"~izie;(ei), also equal to Tr/~ = '~"~3.i, 
iEI i~ l  
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where the Zi's are the eigenvalues of £ ,  counted with their algebraic multiplicities. 
The traces of the iterates of £ are also well defined, together with the analogue of the 
characteristic polynomial known as the Fredholm determinant, 

(49) F(£ ,  u) := det(l  - u£)  := H ( 1  )~iu), l 

iEl 

where the Zi's are the eigenvalues of £,  counted with their algebraic multiplicities. 
There exists an important relation between the Fredholm determinant and the traces of 
the iterates, 

(50) det(l  - uE) = exp[Tr l o g ( / -  uE)] = exp - --~Tr/2 k . 

In this way, it is easy to deal with spectral properties of nuclear operators of order O. 

5.2. Composition Operators. Each component operator g~,h is known as a composition 
operator, defined by Gs,h [ f ]  := h ~ f o h. We recall that each branch h satisfies "contract- 
ing" properties (dl) and (d2) of Definition 2.1: there exists a suitable neighbourhood )2 
of Z? such that the following holds: h and Ih'] extend to analytics map on V; h maps the 
closure Q of the disk )) inside V, and there exists6 < 1 for which 0 < Ih(z)l < 6 for all 

z e ] ; .  
Then the operator ~,h acts on the space Aoo('ff) formed with all functions f that are 

holomorphic in the domain V and are continuous on the closure 1). Endowed with the 
sup-norm, 

Ilfll = sup{lf(u)]; u e ~;}, 

Aoo('l)) is a Banach space. Such operators are studied in an extensive way by several 
authors (Schwartz [31 ], Shapiro and Taylor [35], Shapiro [34]), and their results are well 
summarized in [33]. They prove the following: 

The operator Qs,h : Aoo (V) ~ Aoo (V) is compact; it is moreover nuclear of  orde.er O. Its 
spectrum consists of a geometric progression which involves the value ot (h ) := h(h*) of  

"h at the unique fixed point h* of the branch h inside )2, 

(51)  SpGs,h := {#n := tx(h) s [e(h)a(h)] n, n 6 N} 

(here e(h ) denotes the sign of the function h' on Z). In particular, the trace of  Gs,h is well 
defined and satisfies 

or(h) ~ 
(52) Tr G~,h = 1 -- e(h)ot(h)" 

Moreover, the eigenfunction ff/. relative to eigenvalue Iz. has all its derivatives of  order 
j < n that are zero at thefixedpoint h* and its derivative of order n is non-zero at h*. 
The eigenfunction ~Po is non-zero on "ft. 

Since each branch h satisfies hypotheses (dl) and (d2) of Definition 2.1, the gener- 
alized component operator Gs,h acts  on the space Boo(V) formed with all functions F 
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that are holomorphic in the domain 12 x V and are continuous on the closure 1) x 1). 
Endowed with the sup-norm, 

IIFII = sup{IF(u, v)l; (u, v) ~ V x V}, 

Boo(V) is a Banach space. A theorem due to Mayer [22] can be used in order to determine 
the spectrum ofGs,h. Mayer's theorem shows that, for any inverse branch h, the spectrum 
of Gs,h has the same elements as the spectrum Of~s,h. However, the eigenvalue/zn appears 
in the spectrum of Gs,h with an algebraic multiplicity exactly equal to n + 1. We introduce 

the signed operator G,,h, 

(53) ~s,h = 8(h)~s,h,  with e(h) := Sign(h') on Z. 

Thus, the spectrum of G~,h can be alternatively defined as a union of spectra, 

where the union is taken in the sense of multi-sets, and this entails a trace formula 
for Gs,h, 

ct(h)" = ~-'~e(h)eTr~,+e.h = ~--'~ Tr~+e,h + ~ T r f f , + e , h .  
(55) TrGs,h = [1 - e ( h ) a ( h ) ]  2 ~>__o eeven eoda 

5.3. Functional Spaces and Spectra of Transfer Operators. One first makes precise 
the functional spaces to which the Gs operators are applied. In the Markovian case, we 
restrict ourselves to finite alphabets. However, in the basic case, we can consider infinite 
(denumerable) alphabets. In this case, the fact that one can choose the same open set 
l; for all branches h, and the convergence condition (d3), entail "good" properties for 
the Ruelle operator Gs when s belongs to the plane 9 t ( s ) >  y. We denote by f f  the 
intersection of V with the real axis. The secant mapping H (u, v) defined in (31) has a 
strictly positive real part on 12 x V, and the operator Gs is well defined for any complex 
s in the plane 9t(s) > y. 

In the basic case, the Gs operators (resp. the Gs operators) are then taken to act on the 
space Aoo (l;) (resp. Boo 02)) defined previously. In the Markovian case, the Gs operators 
(resp. the G~ operators) are taken to act on the space Aoo(~2) r (resp. noo()f)r) .  Since the 
component operators ~,h,  Gs,h are nuclear of order 0, the operators G,, G~ are nuclear 
of order 0. 

The signed operator ~, is now defined from the signed component operators ~s,h 
defined in (53); in the two respective cases, 

(56) ~ := ~ ~,,h, ~ := (~s,h), 
Ihl=l 

and the multiplicativity of e entails similar equalities for the powers of ff~. Then trace 
formulae for G, involve both families Gs+e, G,+e. In the Markovian case, the trace of the 
kth iterate of ~ (resp. Gs) equals the sum of the trace of the diagonal elements of the 
matrix G~ (resp. G~); such diagonal elements only involve inverse branches h that are 
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cyclic: these are branches whose associated word begins and ends with the same symbol. 
Finally, in both cases, the trace formulae involve the set Ck; it is the set of  all the inverse 
branches of  depth k (in the basic case) or the set of  the cyclic inverse branches o f  depth k 
(in the Markov case); one obtains 

a (h )  ~ 
(57) T r ~  

z . . ,  1 - 
heC~ 

°t(h)~ ~ Tr k ~'k TrG~ = ~ ~;+e + ~ Tr G,+e. 
"--" [1 -- efh)otfh)] 2 eeven eodd h ~¢k 

PROPOSITION 1 (Spectrum). For 9~(s) > y,  the operators ~ ,  ~ ,  Gs are bounded, and 
compact, even more nuclear. Their spectra are discrete with only an accumulation point 
at O. Moreover, the spectrum of Gs is determined by the spectra of ~s and ~s, 

where the union is taken in the sense of multi-sets. The Fredholm determinant ~(s ,  u) 
of G~ and the Fredholm determinant F(s, u) of Gs are expressible with the quantities 
or(h) = "h(h*), 

[ ~-~Ukh~C * °t(h)S (59) .T(s, u) :=  det(l  - UGs) = exp - -~- 1 - e(h)ot(h) ' 
k=l 

(60) F(s, u) :=  det(l  - ugh)  = exp - -~- [1 - e(h)a(h)] 2 ' 
k=l 

where the set Ck contains all the inverse branches of depth k (in the basic case) or only 
the cyclic inverse branches of depth k (in the Markov case). 

5.4. Dominant Spectral Properties for Real s. Whens  = a i s rea l ,  the operators G~, G~ 
satisfy strong positivity properties related to the Perron-Frobenius theory [19]. 

PROPOSITION 2 (Dominant Eigenvalue). For real s > y, the operators ~s and Gs have 
a unique dominant eigenvalue (of largest modulus). It is positive and has multiplicity 1. 

PROOE We follow the lines of  Mayer 's  work [22] that we adapt in our context. Mayer  
himself uses a result due to Krasnoselskii [ 19]. 

A subset K of  a real Banach space B is called a proper cone if (i) p K C K for p > 0 
and (ii) K f'l - K  = {0}. A proper cone is called reproducing if B = K - K,  i.e., every 
element g of  B is a difference of  two elements of  K. A linear operator 12: B --+ B is 
positive with respect to K if 12K C K. A positive operator 12: B --* B is u0-positive, 
for some some u0 in the interior K* of  K, if there exist, for every non-zero f 6 K, an 
integer p and strictly positive reals t~,/3 for which 

(61) auo < 12P[f] < flu0, 

where the order is defined with respect to K. Here is the result that we shall use. 
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POSITIVITY THEOREM [19]. Any compact uo-positive operator L: B --+ B satisfies a 
Perron-Frobenius property: it has a unique eigenvector in K* and the relative eigenvalue 
is simple, positive, and in absolute value strictly larger than the other eigenvalues of  l~. 

We first apply Krasnoselskii's result to the operator ~ in the basic case. For real s, 
G~ acts on the real Banach space AooR())) formed with elements f of Aoo())) which 
are real on the real segment ft.  We denote by A+ the subset of AooR0;) formed with 
elements f which are positive on the real segment f .  For real s, G~ acts on A+, and A+ 
is a cone, proper and reproducing. The interior of the cone, denoted by A~., is formed 
with elements f of Aoo())) which are strictly positive on the real segment f .  We define 
the function u0 to be equal to the constant function 1, and we show now that the operator 
G~ is u0-positive with respect to the cone A+: The upper bound of (61) is clear. For the 
lower bound, consider an element f ~ A+ and suppose that, for each integer p, there 
exists x in ,F for which ~P[f] (x)  = 0. Then f is zero at each point h(x) associated to 
an inverse branch h of depth p. Since f is analytic, then f is zero. 

Then we apply Krasnoselskii's theorem: since ~s: AooR(l;) ~ AooR(V) is a compact 
u0-positive operator with respect to the proper and reproducing cone A+, the restriction 
of G~ to the real Banach space AooR())) has a unique positive dominant eigenvalue 
L(s) strictly positive. One can choose the dominant eigenvector aPs in the cone A~_, 
which means that ~ is strictly positive on ft .  Moreover, a direct calculus using the 
nuclearity (and the trace formula) shows that the spectra of the two operators, the operator 
~ :  Aoo(V) --+ Ao~())) and its restriction to AooR('~) are the same. Finally, the operator 
~ : Aoo0 )) --+ Aoo())) has itself dominant spectral properties. 

This ends the proof for the operator Gs in the basic case. This proof can be easily 
generalized to the other cases: the Markov case and/or the case of the operator G~. The 
real Banach spaces are then respectively AooRO;) r, BooR())), BooR())) r, where BooR())) 
is the subspace of functions F whose restriction to f f  x ,7" is real. The associated cones 
are (A+) r, B+, (B+) r, where B + is the set formed with the zero function together with 
functions whose restriction to ,7" x ,7 is positive and not identically zero. [] 

We have shown the existence of dominant eigenvalues, )-(s) for G,, )-1 (s) for G,. We 
now prove the equality ;~(s) = Ll (s). Since the spectrum of the operators is discrete, 
this makes it possible to separate the dominant eigenvalues from the remainder of the 
spectra; there is a "spectral gap", and Gs, G~ decompose as [20] 

~s = ~(s)3°~ + A/'s, Gs = ~l(s)P~ +N~. 

Here, 79s, Ps are the projections over the dominant eigenspace, and .Afs, Ns are relative 
to the remainder of the spectrum, so that their spectral radius is strictly smaller than the 
dominant eigenvalue. More generally Gs k, Gs k decomposes as 

(62) G k = Z(s) k 79~ + A/'~, G~ = ).1 (s) k Ps + N~. ,g 

The previous relations, together with positive properties of the dominant eigensubspace 
projections, entail the equalities 

= lim (G~ [1](0,0)) 1/k X(s) = lim (G k [1](0)) 1/k , kl(s) k--,oo 
k---~ o o  
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Since Gs extends ~s in the sense of (35), one deduces the equality ~q(s) = ~.(s). The 
dominant projections T'~, P~ can be written as 

79s[f](u) = es[f]~Ps(U), Ps[F](u, v) = Es[F]~s(u, v), 

where ~Ps, ~ are the dominant eigenfunctions, and es, E~ some linear forms. From (35), 
one deduces the equalities 

k0~ (u, u) = ~ps (u), Es [F] = e~ [ f ]  if f is the diagonal of F. 

So, we have shown: 

PROPOSITION 3 (Dominant Spectral Objects). Dominant spectral objects of G~ and ~s 
are closely linked. Both operators have the same dominant eigenvalue )~(s), and the 
other dominant spectral objects (dominant eigenvectors and dominant projectors) are 
related: 

qJs(U, u) = ~ks(u), Es[F] = es[f] if f is the diagonal o fF .  

5.5. Quasi-Power Property for Ak(F, s). By the classical theory of analytic pertur- 
bation [17], for s in a sufficiently small neighbourhood of any point cr of the real axis, 
unicity of the dominant eigenvalue is preserved, so that the mappings s ~ ~.(s), s ~ qJs, 
s ~ Es define analytic functions in a neighbourhood of any point where ~.(s) is well 
defined. Then the decompositions (62) extend to a neighbourhood of the real axis. Since 
the Dirichlet series of fundamental measures of depth k are expressed in terms of the 
kth iterate of G~ as in (41) or in (44), these decompositions can be applied to these 
Dirichlet series that behave in fact as a kth power of the dominant eigenvalue ~ (s), with 
an exponential remainder term. 

PROPOSITION 4 (Quasi-Power Property). Let cr be real. Denote by X(s) the dominant 
eigenvalue (defined in a neighbourhood of a) and by Iz(cr) a subdominant eigenvalue 
of the operator Ga. For any distribution F associated to a density f E Aoo('l)) strictly 
positive on ,7, and any constant p satisfying Itz(cr)l/~.(~r) < p < 1, there exist a 
neighbourhood IN of ~r and a function U F strictly positive on ]IV,for which one has, for 
any k > 1 and any s in 1/V, 

(63) Ak(F, s) = ~.(s)kUF(S)[1 "k- OF(flk)]. 

5.6. Special Values of the Spectral Objects; Entropy and Coincidence Probabilities. 
For s = 1, the Ruelle operator is a density transformer, and this property entails explicit 
values of some spectral objects. 

PROPOSITION 5 (Special Values). The dominant eigenvalue at s = i equals 1, the dom- 
inant eigenvector satisfies ~l  (0, 1) = 1, and the dominant projector El satisfies 

(64) fo E l [ F ]  = F(x, x) dx. 
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PROOF. Since fundamental intervals of depth k form a quasi-partition of unit interval 
27, there results the equality Ak(F, 1) = 1 for any distribution function F, and thus 
k(1) = 1. Moreover, the operator G1 is a density transformer: for f ( x )  > 0 when x is 
real, 

f0 f0' fo l Gk[f](t) dt = f ( t ) d t  = el[f] 7~t(t)dt + O(pk), 

from which et [ f ]  is obtained, provided that ~1 is defined as a density function with the 
normalization condition f~ lPl (t) dt = 1. One deduces the expression of projector El 
by the extension property (35), and, when coming back to the relation Ak(F, 1) = 1, 
the equality ~Pl (0, 1) = 1. [] 

We recall that entropy and coincidence probabilities, defined in (12)-(14), admit 
expressions (16) and (17) in terms of a Dirichlet series of fixed depth. Then the asymptotic 
behaviour described in (63) provides expressions of entropy and coincidence probability 
that involve spectral objects for s = 1, s = 2, or more generally s = b. 

PROPOSITION 6 (Entropy and Coincidence Probabilities). The entropy of the source is 
equal to the opposite of the derivative of s ~ k(s) at s = 1, while the coincidence prob- 
ability is equal to ,k(2). More generally, the b-coincidence probability is equal to 3.(b). 

5.7. Two Particular Cases: Bernoulli Sources or Markov Chains. We recall that Ber- 
noulli sources are memoryless sources on an alphabet (finite or infinite) .A4 where symbol 
m arises with probability Pro. The standard Ruelle operator associated to the system is 

9s[ f ] (z)  := ~ P~f(qm + pmZ), with qm := ~ P i .  
m E M  i<m 

The dominant eigenfunction is the same for each component operator Gs,h and equals 
the constant function, for all values of s, ~(s) > a;  then the constant function is also 
the dominant eigenfunction of ~s itself, for all values of s, and ~.(s) = )--]m~ Pm is 

the dominant eigenvalue. The dominant projector e,[f] is the integral f l  f ( t )  dt. More 
generally, the spectrum of 9s is 

SPG~=I~e(s):= Y~'P:+e'e>OI'm~A4 

so that the Fredholm determinant is 

The eigenvector relative to the gth eigenvalue Le (s) is a polynomial of degree £. For sym- 
metric Bernoulli sources, it is independent of s. For the symmetric Bernoulli source with 
two symbols, the family of eigenfunctions coincides exactly with Bernoulli polynomials 
[5], defined by 

Be(x) := e! [tel zezt 
e z -  1" 
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We consider now the particular case of  Markov chains. Here, the alphabet .AA is finite, 
of  cardinality r,  and the matrix FIs whose general term is pslj plays a central r61e. For 
s = 1, it is the transition matrix of  the Markov chain. 

The spectrum of the matrix operator ~s is exactly the union of  the spectra of  the 
matrices 1-I=+e, for all integers e > 0, so that 

Sp 9= = U Sp l-I=+e, 
e>0 

~ ' ( s ,  u) = I | de t ( I  - u FI=+e). 
g>0 

If  the eigenvalues of  matrix FI= are denoted by ),CO(s) for 1 < i < r, then 

SpG= -~ {~.(i)(s -2i- e )  I 1 < i < r, e > 0}, 

and the eigenvector relative to eigenvalue z(i)(s + g) has all its components  that are 
polynomials of  degree g. Finally, the dominant eigenvalue of  the operator G= is exactly 
the dominant eigenvalue of the matrix 1-I=, and the associated eigenfunction has all its 
components that are constants. 

The two particular previous cases are characterized by the fact that all the branches are 
affine: we call these sources ABS (Affine Branches Sources). Then, for such sources, all 
the component  operators share the same dominant eigenfunction which is the constant 
function. In what follows, we are led to study instances of  sources where the components  
of the Ruelle operator have strongly correlated dominant spectral objects. More precisely, 
we give the following definition. 

DEFINITION 5.1. A source S is said to be similar to a source with affine branches (SABS 
in shorthand) if: 

(i) In the basic case, there exist a function v 6 .A~(~)), strictly positive on f f  and 
non-zero on ]), and a system of positive numbers (Ph, h ~ 7-l) for which, for each 
inverse branch h, and all s, one has 

9=,h[ v`] = P~h V=" 

(ii) In the Markovian case of  an alphabet of  cardinality r, there exist r functions 
vl, v 2 , . . . ,  vr in .A~(V), strictly positive on i f ,  and non-zero on V, and a matrix 
Q = (qtelj]), 1 < £, j < r, such that one has 

[ v j ]  = = ~s,[eljl = = q[eljl ve 

for each inverse branch hielj I. 

The following result shows that these sources actually behave as sources whose 
branches are all affine, since their Ruelle operator has exactly the same spectrum as the 
Ruelle operator associated to a source with affine branches. 

PROPOSITION 7. Let S be a source similar to a source with affine branches. Then the 
RueUe operator ~= has exactly the same spectrum as the Ruelle operator associated to 
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a source with affine branches. More precisely: 

(i) In the basic case, the system o f  reals Ph is a system o f  probabilities, and the Ruelle 
operator has the same spectrum as the Bernoulli source o f  probabilities Ph. 

(ii) In the Markovian case, there exist r positive reals (bt, b2 . . . . .  br) such that the 
matrix with coefficients P[eljl := (be/bj)qtelj] is the transition matrix o f  a Markov 
chain, and the Ruelle operator has the same spectrum as the Markov chain with 
transition matrix P[elJl. 

PROOF. In the basic case, the positivity of  v on [0, 1] proves that o~(h) = H/=I Ph, 
for all h of the form h = hi o h2 o . . .  o hi. Then the trace formula shows that the 
Fredholm determinant .T'(s, u) is the same as the Fredholm determinant associated to 
the Bernoulli source of probabilities Ph. In particular, the dominant eigenvalue X(s) of  
~s equals ~h~7-t P~ and satisfies X(s) = 1. Then Ph is a system of probabilities. 

In the Markovian case, the positivity of ve on [0, 1] proves that 

k k 

ol(h) = 1--Iq[ji[j,_l ] for all h ~ Ck[g.] of the form h = I'-Ihj, tj,_t 
i=l  i= l  

with j 0 = j k = e .  

Denote by Q~ the matrix of general coefficient q{el)l" Then the trace formula shows that 
the Fredholm determinant ~'(s, u) satisfies 

.T'(s, u) = I - I  det(l  - uQs+e). 
e>_>_0 

Since the dominant eigenvalue ~.(s) of Gs satisfies L(s) = 1, the matrix Q has an 
eigenvalue equal to 1, and there exist r positive reals (bl, b2 . . . .  br) such that 

r 

be qteljl = bj. 
e=l 

Then P[elj] :--- (be/bj)qtew is the coefficient of the transition matrix of a Markov chain 
which has the same spectrum as the Ruelle operator. [] 

Such sources actually have properties that are very similar to sources with affine 
branches, with respect of both eigenvalues or eigenfunctions. Moreover, the fact that all 
component operators share the same (dominant) eigenfunction seems to be a quite strong 
constraint which entails in both cases a multiplicative property for the quantities t~, and 
a very special form for the spectrum. The author does not know other sources where all 
component operators share the same (dominant) eigenfunction. Since the eigenfunction 
of Gs,h is closely related to branch h, it seems unlikely that all component operators 
may have the same eigenfunction, unless these branches h are all affine. So, we state the 
following conjecture: 

CONJECTURE 1. The sources that are similar to sources with affine branches can only 
be sources with affine branches. 
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5.8. Comparing with Other Models: Stationary, Ergodicity, and Strong Mixing. In the 
framework of our dynamical sources, the dominant eigenvector ~1, with normalizing 
condition fd 7q (x) dx = 1, is the density of the unique invariant probability under 
shift T. Then classical results prove that the dynamical source is ergodic. Note that it is 
not stationary, unless the initial density is exactly equal to ~1. Strong mixing properties 
are easily deduced from the quasi-power property. 

6. Further Spectral Properties of Generalized RueUe Operators. Because of the 
quasi-power property (Proposition 4), the dominant eigenvalue function s ---> ~.(s) plays 
a central r61e in our analyses. Here, we establish some important properties of this 
function. More generally, we study the spectral radius R(s) of the operator Gs, and the 
poles of the quasi-inverse (I - G~) - l .  We obtain two results of classification which 
characterize possible exceptions for our further results. 

6.1. Maximum Properties on the Half-Planes. Atapoints inthehalf-planefi t (s)  > a ,  
we compare the spectral radius R(s) of Gs and the spectral radius R(a )  = ~.(a) of Gc,. 

PROPOSITION 8 (Maximum Properties). 

(i) The function s ---> X(s) is strictly decreasing along the real axis s > y. 
(ii) On each vertical line fit(s) = a, the inequality R(s) < Z(a) holds. 

(iii) l f  the equality R(s) = ~.(a) holds for s = a + it, t ~ O, then Gs has an eigenvalue 
= eiaX(a) that belongs to the spectrum of Qsfor some real a. 

(iv) In the half-plane fit(s) > a, the strict inequality R(s) < X(a) holds. 

PROOF. (i) From relation (63) of Proposition 4, the dominant eigenvalue ~.(s) is alter- 
natively defined by 

L(s) = lim Ak(Id, s) 1/k. 

From properties (d2) and (d3) of dynamical sources, there exists ~ < 1 for which 
I h' (x)l -< 3 for any inverse branch of depth 1, and any x in the unit interval. One deduces 
the inequalities Ih(0) - h(1)l < 6k, valid for all inverse branch of depth k, and then 

X(s + u) _< 8 u X(s), 

so that the function L(s) strictly decreases along the real axis. 
We now consider vertical lines, and we prove (ii). The description of the spectrum 

given in Proposition 1 shows that this spectral radius depends on both of the spectral 
radii R(s + £~and R(s + g,) of operators Gs and ffs. We begin to study the spectral radii 
of operators Gs and Gs on vertical lines, and we prove the following fact: 

On the line fit(s) ~ a,  the spectral radius R(s ) of  the operator ~s and the spectral radius 
R(s) of the operator ~s both satisfy 

(65) R(s) < )~(a), R(s) < )~(a). 



Dynamical Sources in Information Theory: Fundamental Intervals and Word Prefixes 287 

We consider first the operator G, in the basic case. Let ~. be an eigenvalue of  ~s and let f 
denote an eigenvector relative to ~.. In the same way, the vector f~ denotes a dominant 
eigenvector relative to ~. (or). This function is strictly positive on the segment ,7, non-zero 
on ]) and normalized by the condition fo (0) = 1. Moreover, one can suppose that the 
function/z 

f(x) 
(66) /~(x) :=  

f a (x )  

is of  modulus at most  1 on [0, 1] and attains modulus 1 at point xo. One always has 

(67) IZ f (x0) l  = IG~[f](x0)l = ~ "h(xo)Sf o h(xo) < y ~  h ' (xo)° l f  o h(x0)l 
h =l Ihl=l 

(68) < ~ "h(xo)° fa o h(xo) = )~(e)fo(xo), 
Ihl=l 

and the definition of  x0 proves the inequality ILl _< ~.(~). 
For the operator Gs in the Markovian case, we consider the same objects: L is an 

eigenvalue of  Gs and f = ( f l ,  f2 . . . .  fr) denotes an eigenvector relative to )~. In the 
same way, the vector f~ = (f,.1, fa.2 . . . . .  f~,r) denotes a dominant eigenvector relative 
to ~. (~). This function has all its components strictly positive on the segment i f ,  non-zero 
on ~). Moreover, one can suppose that all the functions ~i ,  

jS(x) 
(69) t~i(x) . -  f , , , i (x) '  

are of  modulus at most 1 on [0, 1], and one function/ze attains modulus 1 at point xo. 
One always has 

(70) ]Z fe(xo)] = Y~h~elj(xo)~fj ohelj(xo) S ~-~helj(xo)~Ifj ohelj(xo)] 
J J 

(71) <_ ~ ' h t l j ( X o ) °  fa, j o hetj(xo) = ~.(e)fo, e(xo), 
J 

and the definition of point x0 and index ~ proves the inequality I)~l _< Z(cO. 
The property (65) is proven for the operator Gs; it is clear that it can be easily adapted 

to the operator 0s. We return now to operator Gs with the spectrum formula (58) together 
with the strict decreasing of ~. along the real axis, and we easily prove (iii) and (iv). []  

6.2. Singularities of  the Quasi-Inverse (I - Gs) -1. We have explained in Section 3 
why it is necessary to locate the poles of  the series A ( F ,  s) precisely. We recall that 
Z(1) = 1 (Proposition 5). Then, from Proposition 8, the operator I - Gs is invertible in 
the plane ~ ( s )  > 1. Thus, the series A(F ,  s) is analytic there and it has a simple pole 
at s = 1. We focus on what may take place near the line ~t(s) = 1 and we consider 
so-called particular points: they are points s = 1 + it, with t # 0 for which the spectrum 
of  G~ contains an eigenvalue equal to 1. The following result, which extends results o f  
[10], [28], and [40], gives a characterization of particular points and describes the only 
two possible types of behaviour. 
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PROPOSITION 9 (Periodicity and Aperiodicity). The operator Gs may only behave in 
two different ways on the line i l(s) = 1: 

(i) The aperiodic case. There are no particular points, and the operator 1 - Gs is 
invertible in the punctured plane il(s) >_ 1, s # 1. 

(ii) The periodic case. There are particular points, and they are regularly spaced on the 
line. They form a sequence of the form sk := 1 + kit, k ~ Z, for some t > O. The 
operator (1 - Gs) -1 has simple poles at these points, and there is a strip on the 
left of  the line il(s) = 1 that is free of  poles. In this case, the source is similar to a 
source with affine branches (SABS) and the Fredholm determinant 2~(s, u) of  Gs is 
periodic of  period it, i.e., ~:(s + it, u) = .~(s, u). 

We shall see in what follows that these two cases may occur, mainly for simple sources, 
as Bernoulli sources or Markov chains. However, we conjecture that"correlated" sources 
whose branches are not all affine will always be aperiodic. 

PROOF. Assertion (iii) of Proposition 8 shows that it is sufficient to work with the ~s 
operator. We prove the previous statement in the two main cases: the basic case and the 
Markov case. 

Basic case. We keep the notations of  Section 6.1. We consider the point x0 where the 
function/z attains its maximum. From the equalities 3. = 3.(or) and Isz(x0)l = 1, we 
deduce that the sequence of inequalities (67), (68) becomes a sequence of equalities 
at x0, 

h~l__i--h(xo)"+" (72) kf(xo)  = oh(xo) = y ~  I f  o  (x0) o h(x0) l 
I Ihl=l 

(73) = ~ "h(xo)~ f~ o h(xo) = 3.(cr)f~(xo). 
Ihl=l 

For any h of depth 1, the equality 

I f  o h(xo)l = f~ o h(xo) 

holds, and an inductive argument proves that the function/z defined in (66) satisfies 
I/z o h(x0)] = 1 for any inverse branch h of any depth. Since any real x in [0, 1] is the 
limit of a sequence h(xo), one gets 

I/z(x)l = 1 for any x in [0, 1]. 

Then the sequence of equalities (72), (73), now valid for any x in [0, 1], entails the 
relation 

Ihl=! I 

The sequence ah (x) := "h(x)~'+"f o h(x) satisfies the equality I ~ ah (x)l = ~ lah (x)l. 
Then there exists 0 (x) (of modulus 1) such that ah (X)  --~ 0 (x)lah (X)I for any h of  depth 1. 
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When returning to our problem, we note that O(x) =/z (x ) ,  and we deduce the equality 

(74) "h(x)i'tz o h(x) = / z ( x )  for any h of depth 1, 

and, more generally, 

(75) "h(x)itlj~ o h(x) =/x(x )  for any h of any depth. 

The equality extends (by analytic continuation) to 1). Since/z is of modulus 1 on [0, 1], 
Section 5.2 and (75) show that/z is a dominant eigenfunction of all the component 
operators ~it,h, SO that we deduce the relations 

o~(h) it = 1 for any h of any depth, 

which involve the quantity ,~ defined in Section 5.2. Then the Fredholm determinant 
satisfies, from (60), the relation 

~ ( s  + it, u) = .T(s, u). 

Moreover, the function/~ is non-zero on V and it can be written as/z := exp(itL) with 
some analytic function L. Since/z is of modulus 1 on [0, 1], the function L is real on 
[0, 1], so that the function v := exp L is strictly positive on [0, 1], and v s is a dominant 
eigenfunction of all the component operators Gs,h. The source is thus similar to a source 
with affine branches. 

Markov case. Again, we keep the notations of Section 6.1. The equality IZl = ~.(cr) 
transforms the sequence of inequalities (70), (71) into a sequence of equalities: 

(76) ;. fe(xo) = l~'hely(Xo)~ f j  o helj(Xo)[ = ~ ' h e l j ( x o ) ~ l f j  o J 

(77) = Z 'hel j (X°)af° ' J  o helj(xo) = 3.(a) fo.e(xo). 
J 

In particular, for any symbol j ,  we deduce the equality 

Ifj o helj(xo)l = fo, j o helj(xo). 

Then/zj,  defined in (69), has modulus 1 at the point xj := helj(Xo); when writing the 
sequence of equalities similar to (76), (77) but due to the relation [gj (xj)l = 1, we obtain 

]fe o hjle(xj) ] = fa.e o h j l e ( X j )  , 

and, finally, an inductive argument proves that all the/zj 's  have modulus 1 on [0, 1]. 
Then the sequence of equalities (76), (77), now valid for any x in 3" and any symbol e, 
proves the relation 

"hel](x)itl~j o hely(X) = ize(x) for any symbol e, j .  

The equality extends (by analytic continuation) to ]2. In particular, 

(78) "h(x)itl.~j o h(x) =/x)  (x) for any h e C[j]. 
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Since bey is not zero on [0, 1], Section 5.2 and (78) prove that be/is a dominant eigenvector 
of all the component operators ~it,h, for any h e C[j]. In particular, bej is non-zero on 
]2. Then we deduce the relations 

or(h) i' = l for h e C ,  

which involve the quantity a defined in Section 5.2. Then the Fredholm determinant 
satisfies, from relation (60), the equality 

3C(s + it, u) = 3:(s, u). 

Moreover, the functions bej are non-zero on ]2 and can be written as bej = exp( i tL j )  with 
some analytic functions Lj. Since/xj's are of modulus 1 on [0, 1], the functions Lj are 
real on [0, 1], so that the functions vj := exp Lj are strictly positive on [0, 1]. Then the 
functions v] satisfy, for any h = h[elj], 

(79) "h(x)Sv] o h(x)  = q[elj]S Ct(x), with positive qtelj] such that qteljlit = 1, 

and the source is similar to a source with affine branches. This concludes the proof for 
the Markov case. D 

6.3. Log-Concavity o f  the Dominant Eigenvalue. This property intervenes mainly in 
the study of the variance of the random variable log ek. It will play an important r61e in 
the height of tries in a companion paper. Again, as in Section 6.2, the function k(s) may 
have only two different behaviours with respect to concavity. 

PROPOSITION 10 (Log-Concavity). For real s > y ,  the function log),(s) is always 
concave. There are only two different possible behaviours: 

(i) The function log ;~(s) is strictly concave. 
(ii) The function log )~(s) is affine. Then the alphabet .A4 is finite, o f  cardinality r, and 

the source is similar to a symmetric Bernoulli source. 

In both cases, and fo r  any positive reals s, t such that s > t > y ,  one has ~.(s) t < )~(t) s. 

PROOF. We shall prove the following inequality: 

(80) X(8 + r )  < X(28) 1/2 X(2fl) 1/2, 

for any real pair (8, fl). If equality holds for 3 # r ,  then the function log ~.(s) is affine, 
and we prove that the operator has exactly the same spectrum as the Bernoulli operator. 

Basic case. The function 

(81) ~r(X) :-~- f,~+#(x)(f2,~(X))-l/2(f2fl(X))-l/2 , 

defined with the dominant eigenvectors f~ of G,~, can be normalized by the condition 

Sup{~t(x); x ~ [0, 1]} --- 1. 
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We denote by xo a point where ~P(x0) -= 1. One always has 

(82) ~.(8+fllfs+e(x0) = E "h(x°lS+efa+~ o h(xo) 
Ihl=l 

< ~ h'(x0) '~ (f2,~ o h(xo)) 1:2 h(xo) '° (f2/~ o h(xo)) '/2 
Ihl=l 
( ))1/2( ~1/2 

(83) < Ihl=lE h'(x°)2s f2, o h(xo \lhl-~ h'(xo) 2/~ fE#o h(xo)) 

= (k (23) f2s (xo)) 1/2 (L (2/5) f2: (xo)) 1/2. 

(Inequality (83) is due to the Cauchy-Schwarz property.) The definition ofxo now proves 
inequality (80). If now equality holds in (80), then (82) becomes an equality, and then 
the function q: satisfies @(h(xo)) = 1 for any inverse branch h of depth 1. Now, an 
inductive argument proves that the function ap satisfies ~P(h(xo)) = 1 for any inverse 
branch h of any depth. Since any real x in [0, 1] is the limit of a sequence h (xo), one gets 

qz(x) = 1 for any x in [0, 1]. 

Then the sequence of inequalities (82), (83) are now equalities for any x in [0, 1] and the 
Cauchy-Schwarz inequality becomes an equality. Thus, there exists ~l*~(x) such that, 
for every h of depth k, 

(84) h(x)28f2,~ o h(x) 
h'(x)2/~f2/~ o hix) = ~:Ik>(X)" 

Let y := 2(8 -/~) (y is supposed to be non-zero) and ~P0(x) := fzs(x)/f2:(x). Then 
the first member of (84) involves the component operator ~r.h, and 

(85) ~lk> = Gy,h[qr0]. 

Consider the particular case when h is of the form h0 k, with h0 of depth p. Then (85) can 
be written as ~/~P> (x) = ~,ho[~Po] (x). Since ~o is strictly positive on if ,  the sequence 
lp <*> has a quasi-power property and satisfies 

lim (~/kP)(x))l/k = l i m  (~kr,ho[aPol(x))l/k = ot(ho) ×. k--+oo 

We deduce that all the or(h) relative to any branch h of depth p are equal, and equal to 
ot p, for some constant or. Returning to (84), we then deduce that 

(86) O(x) := lim ~'Ce)(x) 
k--~ oo OtY e 

exists, is strictly positive on [0, 1 ], and is a common eigenfunction for all the component 
operators ~×,h. Then we let v := 01/×, and v" is a common eigenfunction for all the 
component operators Gs,h. The source is similar to a Bernoulli source with all probabilities 
equal to c~. Then the alphabet is finite, of cardinality r, and the source is similar to a 
symmetric Bernoulli source. 
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Markovian case. The functions 

V:e(x) := f~+:,e(x)Cfzs,e(x))-~/2(fz:,~(x))-~/z, 

defined with the components f~,.e of dominant eigenveetors f~ of Go, can be normalized 
by the condition 

Sup{~(x); x E [0, 1]; £ E [l..r]} = 1. 

We consider a point x0 and a symbol e for which ~Pe (x0) = 1. One always has 

(87) z(8 + #) f~+a,,(x0) 

= Y~. helj (x0) ~+/~ fa+:,j o helj (xo) 
J 

<-- ~ "h£1J (Xo) a (f2~,j o helj (Xo))1/5 h~lj (Xo)l~ (f2#,j o helj (xo))I/2 
J 

, . ,  < 

J 

= (X(28)f2,,eCxo)) '/2 (X(2fl)f2~,e(xo)) '/~. 

(Inequality (88) is due to the Cauchy-Schwarz property.) The definition of x0 implies 
inequality (80). If now the equality holds in (80), we have a sequence of equalities in 
(87) and (88), and an inductive argument proves that all the ~j are equal to 1 on [0, 1]. 
Then the sequence of equalities in (87) and (88) is now valid for any x in [0, 1] and the 
Cauchy-Schwarz inequality becomes an equality. Thus, there exists ~b~ k> (x) such that, 
for every h of depth k which begins with symbol j and ends with symbol e, 

h(x) 28 f2~,) o h(x)  = d~k ) (x). 
(89) "h(x)2# f2#,j o h(x) 

Let y := 2(6 - fl) (2/is supposed to be non-zero) and ~bj (x) := f28,j(x)/ f2~,j(x) .  Then 
the first member of (89) involves the component operator ~r,h, and 

(90) q~k>(x) = ~y.h[4~e]. 

Consider the particular case when h is of the form ho ~, with ho E Cp [e]. Then the first 
member of (89) can be written as 4~ kp) (x) = ~kh ° [~be](x). Since ~be is strictly positive 

on [0, 1], the sequence ~b~ ~p) satisfies a quasi-power property so that 

: i m  (qb~ kp) (x ) ) l/ k --_ ot(ho)r, 

and then all the or(h) relative to elements h ~ Ca[e] are equal to a(e)  p. Moreover, by 
another application of the quasi-power property, the limit 

(91) Oe(x) : :  lim ~b~k>(x) 
k--,oo u(e)rk 
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defines a common eigenfunction for all the component  operators~r.h relative to branches 
h ~ C[g]. Furthermore, relation (89) proves that the functions helj (x)×Oj o hely (x) and 
Re(x) are proportional, i.e., 

"helj(x)rOj o helj(X) -= q~jOe(x). 

Since the functions Oj are strictly positive on [0, 1], and non-zero on 1), we let vj :=  O]/y, 
and the functions v} satisfy 

N $ $ 

helj(x)Sv} o heft(x) = qeljVe(x). 

Now, the equalities 

qeljqjte = or(g) 2 = or(J) 2 

prove that all the ~(£) are equal (to or), and the trace formula proves that the Ruelle 
operator has the same spectrum as a Bernoulli symmetric  operator 13r,~. This ends the 
proof of  the two first assertions. 

We now prove the third assertion. I f  log ~.(s) is affine, it is of  the form log ~.(s) = 
( 1  - s) l o g r  with an integer r > 1. Then 

t logZ(s)  = t(1 - s) l o g r  < s(1 - t) l o g r  = s log3.(t). 

In the other case, log 3.(s) is strictly concave. Consider an integer k such that s belongs 
to the interval [t, kt], then the strict concavity of  log )~(s) proves the inequality: 

;k(s) < Z(t)~Z(kt)  a, with ot + / 5  1, s = - = ot + k/3. 
t 

On the other hand, for any integer k, 

-] l/e I- "1 k/~ 
~"~ukt| Lh~[=~ ut ] = ~ ' ( t )~"  Z(kt)  = lim d..., h < lim h 

e-~oo Llh,=t ] - ,-~o , 

Finally, 

~,(s) < ~,(ty '+ak = X(t)  s/'. 

This ends the proof  of  Proposition 10. [] 

6.4. Exceptional Cases. The proofs of  Propositions 9 and 10 are quite similar. When 
studying periodicity, we use triangular inequality, whereas the study about log-concavity 
uses Cauchy-Schwartz  inequality. In our proofs, we have exhibited strong properties of  
eigenfunctions and eigenvalues. In exceptional cases, all the sources are similar to sources 
with affine branches, and the systems of  the a ' s  are highly correlated. 

So, we obtain characterizations of  exceptional cases f rom both points of  view, log- 
affinity and periodicity. 

PROPOSITION 11. The following two conditions are equivalent: 

(a) The dominant eigenvalue Z(s) o f  the operator Gs is log-affine. 
(b) The alphabet .M is finite, o f  cardinality r and the source is similar to a symmetric 

Bernoulli source. 
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Let t > 0 be a real number and denote by a the real number a = e x p ( - 2 r r / t ) .  The 
following two conditions are equivalent: 

(c) The dominant eigenvalue )~(s) o f  the operator ~s is periodic of  period it. 
(d) The source is similar to a source with affine branches. In the basic case, all the 

quantities et's are positive powers of  the real a. In the Markovian case, all the 
quantities qtel)] are positive powers of  the real a. 

PROOF. It is clear from Propositions 7, 9, and 10. [] 

We now describe the exceptional sources with affine branches: 

COROLLARY. The only Bernoulli sources that are log-affine are exactly symmetric 
Bernoulli sources. In particular, their alphabet is finite. A Bernoulli source is peri- 
odic i f  and only if  there exists a real number a < 1 such that all the probabilities pm 
belong to the semi-group (a) generated by a. 

The only cases of  Markov chains that are log-affine correspond to degenerate cases, 
where each Bernoulli source Sj is symmetric. A Markov chain is periodic i f  and only i f  
there exist a real number a < 1 and a sequence of  real numbers (bl, b2 . . . . .  br) such 
that all the quantities Pilj(bi /bj ) belong to the semi-group (a) generated by a. 

Here are some examples of  periodic Bernoulli sources: 

(½, 1, ¼), (p,  p ,  p2) with p = l ( v " 2 -  1), 

1 m (Pm)m>_l with Pm = (~) • 

The case when the Fredholm determinant is pseudo-periodic, i.e., 

~ ( s  + it, u) = ~ ( s ,  eiau) with a ~ 2kzr, 

is also interesting. A Bernoulli source is pseudo-periodic if and only if there exist two 
real numbers a and b such that b does not belong to the cyclic group (a) generated by a 
and all the numbers pm/b belong to this cyclic group (a). An instance of  this situation 
is ], 2 , 3' 3)" As Pollicott [28] and Fayolle et al. [11] remark, there is an accumulat ion of  
s for which )~(s) = 1 on the left of  the line ~R(s) = 1. Our Tauberian argument  directly 
shows that the total contribution of these poles gives a term o(1/x)  in the asymptot ic  
expansion of  B(x). 

Non-degenerate instances of  transition matrices of  periodic Markov chains are 

(il ) 1 
FI "----- 2 o r  

1 
4 

c'3 c 3 - 1  with c >  1 root of  FI 
c 3 - 1 1 

~-~ C 2 

c 5 - 2c 3 - c 2 + 1 = O. 



Dynamical Sources in Information Theory: Fundamental Intervals and Word Prefixes 295 

We recall that our Conjecture 1 states that any source similar to a source with affine 
branches has actually all its branches affine. Thus, we restate it in a weaker form: 

CONJECTURE 2. The exceptional sources can only be Bernoulli sources or Markov 
chains described in the previous corollary. 

Now, in the following three sections, we return to the three main problems, and solve 
them using the tools and the results previously described. 

7. The Strong Equipartition Property of the Prefixes of Fixed Length. Our ap- 
proach has been first described in Section 3.3: our study of the distribution of the random 
variable log gk uses its moment generating function, 

which satisfies 

Mk(s) := E [exp(s logek)] = E [g~], 

Uk(S) = Z ush uh = ~ ulh-bs ~- i k (F ,  1 -t- s). 
Ihl=k [h]=k 

Now, the quasi-power property of Section 5.6 proves that Mk(s) behaves nearly like a 
"large power" of the fixed function ~.. More precisely, there exists a sufficiently small 
complex neighbourhood of s = 1 where 

Mk(s) = exp(k log~.(1 + s )  + V(s)) • (1 + O(pk)). (92) 

Here, 

V(s) = log(Et+s[L s] qJl+s(O, 1)) 

is analytic near s = 1, and p is any number satisfying l/z(1)l < p < 1, where/x(1) is a 
subdominant eigenvalue of GI. 

The central limit theorem of probability theory asserts that large powers-- in the "pure" 
case V = ot = 0 at least--induce Gaussian laws in the asymptotic limit. There are two 
differences here: one is the analytic factor e V(s); the other corresponds to the error term 
O (pk) which is negligible in the scale of the problem. The extension of the central limit 
theorem to "quasi-powers" of the form (92) has been developed in a general setting by 
Hwang [16]. Hwang's technology is based on the Berry-Esseen inequality that relates 
the Loo distance between distribution functions to a distance between characteristic 
functions. 

THEOREM (Hwang's Quasipower Theorem). Let Zk be a sequence of  random variables 
whose moment generating functions admit the asymptotic estimate 

( Mk(S) := E [exp(s Zk)] = exp(kU(s) + V(s)) 1 + 0 , Wk --+ oo, 

the error term being uniform for  s in a disk Is[ <_ so for  some so > O. Assume that U (s) 
and V (s) are analytic for  Isl <_ so and U(s) satisfies the "second moment condition" 
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U" (O) ~ O. Then the distribution of  Zk is asymptotically Gaussian: 

Pr [ Zk - kU'(O) 
[ < t ] = ~ ( t , + O ( ~ )  where e -w2/2 dw 

• (t) = ~ oo 

uniformly for all x in R, as k tends to o0, with Sk = min(V~,  W~). 

Under these strong analyticity conditions, the mean and variance of  Zk are obtained 
by differentiation of  the asymptotic form of the moment  (or the cumulant) generating 
functions: 

E [ Z ~ ] = k U ' ( O ) + V ' ( O ) + O ( w - ~ )  Var[Zk] k U " ( O ) + V " ( O ) + O ( w - ~ )  , ~ . 

The theorem is applicable to the relation (92), with U (s) = log ~.(1 + s )  that is an analytic 
function near s = 0 and the second moment  condition U"(0)  ~ 0 holds provided that 
the function log ~.(s) is strictly concave. Thus, we can state: 

THEOREM 1. Let (S, F) be a probabilistic dynamical source. I f  $ is not log-affine, then 
the distribution of  the random variable log £k (x ) is asymptotically Gaussian, 

p [ l o g e k ( x ) - a k  ] 1 L t  ( - ~ k )  
r ~ -  ~ v ~  o o  

L V r ~  < t  = e - w 2 / 2 d w + O  , 

uniformly for x E R, as k ~ +oo. The constants A and B are expressible in terms of  
the derivatives of  log )~(s) at s = 1, 

A = [log)~(s)]'s= l = L'(1) and B = [log~.(s)]~'__ 1 = k"(1) -- k ' (1)  2. 

More precisely, 

E[ logek]  = Ak + C + O(p k) and Var[logCk] = Bk + D + O(pk) ,  

where p is any real that is larger than a subdominant eigenvalue p > I/z(1)l. The 
quantities C, D are constants which depend on the initial distribution F, while the main 
terms are independent of  the initial distribution and depend only on the mechanism S of  
the source. 

This result is a strong form of the Almost  Equipartition Property, known as the 
Shannon-MacMil lan-Breiman Theorem, that can be described as follows (see [4], [32], 
and [41] for more details): 

THEOREM (Shannon-MacMil lan-Breiman Theorem).  Let S be a stationary ergodic 
source with entropy h(S)  and alphabet .Ad. Then, for any e > O, there exists a positive 
integer Ko(e) such that, if k > Ko(e), the set .A4 k of prefixes of  length k decomposes 
into two sets Ck and ~ satisfying 

(i) Pr [Ck] < e, 
(ii) exp( -k[h(S )  - e]) < Pr [{t}] < exp( -k[h(S )  + e]) for  any prefix t ~ ~ .  
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In other words, the set A/~ k of prefixes of length k consists of a set of low probability or 
atypical prefixes (namely £k) and a disjoint set of high probability or typical prefixes, each 
of which has a probability of occurrence approximatively exp[ -kh  (8)]. Our Theorem 1 
sharpens the result in the case of the dynamical probabilistic source. We recall that such 
a source is always ergodic, but not stationary in general. 

8. Most Probable Prefixes. We wish to evaluate the asymptotic behaviour of B(p), 
and we have explained in Section 3.5 how the properties of Dirichlet series A ( F ,  s) 
intervene, mainly via the location of poles near the line 9t(s) = 1. Now, Propositions 8 
and 9 make these properties precise, and we consider the two main cases: first, the 
aperiodic case; then, the periodic case. 

Aperiodic case. Here, we begin with the integral expression of A ( F ,  s), (22): 

A ( F , s ) = s  A ( y ) e  - ' y d y  with A ( y ) = B ( e  - y ) =  ~ 1, 
uh>__e-Y 

and we use the following Tauberian Theorem due to Delange [7], [38]. 

TAUBERIAN THEOREM [7]. Let V (s) be a function that admits in the half-plane 9~(s) > 
tr > 0 the integral representation 

f0 ° V (s) = s A ( y ) e  -sy dy ,  

where A is increasing and positive. Assume that 

(i) V (s) is analytic on ~R(s) = cr, s ~ tr, and 
(ii) f o r  some y > O, 

g( s )  
V ( s )  - (s - or)×+1 + e ( s ) ,  

where g, £ are analytic at tr, with g(cr) ~ O. 

Then, as x --+ oo, 

g(cr) 
A(x)  -- eX* x r  [1 + e(x)  ]. 

crl~(y + 1) 

The hypotheses of the Tauberian Theorem are fulfilled by A(F,  s) for cr = 1 and 
y = 0. Validity of hypothesis (i) comes from the aperiodicity. For hypothesis (ii), we 
begin with the decompositions (62) of iterates of Gs that are valid on a neighbourhood 
of any real point s, for any k > 0. Then this decomposition generalizes to the pseudo- 
iterates of Gs defined in (38) and finally to the quasi-inverse, and the quasi-inverses 
themselves decompose as 

( I  - G ~ )  - 1  P~ - - -  + ( I  - N D  - ~  
1 - ~ ( s )  
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o r  

( I  - Gs) -1 = tUps o Ms +t U( I  - Ns) -1 o Ms, 
1 - -  Z ( s )  

near s = 1. Here, Ms is defined in (37), Ps is the dominant projector, and INs has a 
spectral radius strictly smaller than 1, so that (1 - Ns) - l  is analytic near s --- 1. Both 
decompositions involve the quantity 1/(1 - X(s)) which can be written near s = 1 as 

1 - 1  a(s) 

1 - X ( s )  Z ' ( 1 )  s - 1 '  

where a is analytic near s = 1 and satisfies a(1) = 1. Returning to A ( F ,  s) with 
expression (43), and using the secant L of  distribution F defined in (42), we obtain the 
decomposition of  hypothesis (ii), with 

- 1  
g(s) : =  ~ a(s) Ps [LS](0, 1), e(s) :=  (I  - N,)  - I  [LSl(0, 1) 

in the basic case, or 

- 1  
g(s) : =  , ~ ,~a ( s ) tUPs  o Ms [LS](0, 1), £(s) : =  'U(1 - Ns) -1 o Ms [LS](0, 1) 

i t )  

in the Markovian case. 
Finally, we can apply the Tauberian Theorem. At s = 1, Proposition 6 gives special 

values of  the spectral objects, from which one deduces that g(1) = -1 /~ . ' (1) .  Then 

- 1  
A(y)  = e y [l + e(y) ] as x ~  o~ 

x,(1) 

and we conclude that 

B(x) = 
1 

X'(1)x + °  as x ~ 0 .  

This ends the aperiodic case. 

Periodic case. In this case the function B may be highly discontinuous. For instance, 
in the case of  a symmetric Bernoulli source relative to an alphabet of  cardinality r, the 
function B is a step function that satisfies 

B ( x ) - - - -  for x ~  . 
r - -  1 ' 

Then one cannot expect a result of  the same type as previously. On the other hand, it 
seems that the analysis cannot be conducted in this case on the function B itself which 
is too highly discontinuous. We instead consider the integral D of  B, 

(93) D(x) : =  B(y)  dy, 
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and we begin with the integral expression of A(F ,  s): 

A ( F , s  + l ) = - s ( s  + l) D(x )xS - l  dx. 

Here, we use Mellin analysis, and we denote by g* (s) the Mellin transform of a function 
g(x), defined by 

(94) g*(s) := g(x)x  s-I dx,  

so that the Mellin transform D*(s) of integral D of B, 

1 
(95) D*(s) -- - -  A(F ,  s + 1), 

s(s + 1) 

is closely linked to A(F,  s). 
We use the following theorem [12] that explains how the behaviour of A near its 

singularities can give the asymptotic expansion of D. 

MELLIN INVERSION THEOREM. Suppose that D has a Mellin transform D*(s ) having 
a non-empty fundamental strip (or, ~). Assume that D*(s) admits a meromorphic contin- 
uation to the strip (y, [31 for some y < c~, and is analytic on the line ~R(s) = y.  Assume 
that there exists a real number v E (or, ~) such that 

(96) D*(s) = O ( I s l - ' )  with r > 1 

for infinitely many values of~(s)  when Isl ~ oo in the strip (y, v). l f  D*(s) admits the 
singular expansion for s E (F, or), 

1 

a .k (s  - (~,k)~A 

then an asymptotic expansion of  D(x) at 0 is 

/ ( - I )k -2  x_~.lo X)k-l'~ o x)= " t g 
(/~,k)EA 

We prove first that function D eventually fulfils the hypotheses of the theorem. The 
expression of D*(s) in (95) together with the properties of A shows that D*(s) has a 
fundamental strip (0, +oo).  The periodicity assumption entails the existence of a region 
for A that is free of poles. Thus, there exists a real ?' ( - 1  < y < 0) for which D*(s) 
admits a meromorphic continuation to the strip (×, +c~) and is analytic on the line 
~(s)  = Y. The periodicity also entails that A(F,  s) is bounded on vertical lines of the 
strip (0, +oo),  so that D*(s) satisfies (96) with r = 2. Moreover, in this case the poles 
of A(F,  s + 1) in the strip (Y, +oo) are all of  the form sk := ikto for some to ~ 0, with 
k E Z. Then D*(s) has a double pole at s = 0 and simple poles at points sk for k # 0. 
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Finally, the periodicity assumption shows that the residues of A(F, s) at all the points 
~ equal - 1/~.' (1), and the singular expression of D* (s), 

- I  I Cp - 1  1 1 
D*(s) × )~,(1-----~ s-- ~ + ~ + ~ s ~ sk(1 +sk)  (s sk)' k c L  

k#o 

leads to the asymptotic expansion of D(x) at 0: 

1 1 
D(x) = L'(I'---~ logx + CF + ~-7(-~ P(tologx) + O(x-r), 

where P is a periodic function. The only term that may depend on the distribution F is 
the constant term CF. 

The Mellin transform B*(s) of B(x) is itself closely linked with A(F, s), 

(97) B*(s) = _1 A(F, s), 
$ 

but we cannot apply the previous theorem to B*, since it only satisfies (96) with r = 1. 
If one tries to apply this theorem, we obtain an asymptotic expression for B which is 
not convergent. However, the derivative of the above expression of D(x) can give some 
information about B(x). The function P(t) is a continuous periodic function with a very 
explicit Fourier series of the form 

eitk 
P(t) 

Ez2i~lO ik(1 q- ik)" k I 

Furthermore, the derivative of P(t) exists and (after combining k and - k )  is given by 

cos(kt) k sin(kt) 
P'( t )=2~-~ 1+k--------7+2)-'-~ l + k 2  , 

k>0 k>0  

an expression which is indeed bounded: the first part is clearly bounded (and continuous). 
Furthermore, the second sum is bounded, too; we just have to consider the case 0 < t < 
~r/2, and we split the sum. Firstly, 

k sin(kt) k2t 1 
k<_l/t 1 +k----'----~ << k<l/t ~ 1 +k"----~ < < - t  = l ' t  

Secondly, by partial summation 

k sin(kt) 
~ 1 + k 2  k>l/t 

11  1 
~ < <  ~ ~ t < < t t  =1"  

k>l/t 

Since the function P(t) has a bounded derivative, the derivative (with respect to x) of 
the term P(to logx) is of the form ®(x). Then the above expansion of D(x) combined 
with the monoticity of B(x) directly implies (by elementary means) that B(x) = ®(x). 

Final|y, the following theorem describes in both cases (periodic or aperiodic) the 
asymptotic behaviour of the number of most probable prefixes. 
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THEOREM 2. Let (S, F) be a probabilistic dynamical source. Let B(x)  be the number 
o f  prefixes whose probability is at least equal to x.  

(a) In the case when the source S is aperiodic, B(x)  has the following asymptotic 
behaviour: 

1 (1) 
B(x) = ~.'(1)-----~ + o as x --* O. 

(b) In the case when the source is S periodic, there exists a strip 1 - 3/ < 9t(s) < 1 
where the operator (I - Gs) -1 has no poles. Then the integral D of  function B 
defined by D(x)  := f o  B(y) dy admits the asymptotic expansion at x = O, 

1 1 
D(x) = ~ logx + CF + ~-7-(~P(tologx) + O(x -Y) ,  

where P is a periodic function. The only term that depends a priori on the distribution 
F is the constant term Cr. Moreover, there exist two strictly positive constants A 
and C (that may depend on the distribution F) such that 

A C 
- -  <_ B ( x )  <_ -- .  
x x 

9. Coincidence of Prefixes. In our approach described in Section 3.4, we consider 
a point (x, y) in the unit square Q = [0, 1] 2, and we analyse the random variable C 
that represents the coincidence between the two words M(x)  and M(y) .  Then the event 
[C > k] is formed of all pairs (x, y) whose associated words M(x)  and M ( y )  coincide 
till depth k. In that case, x and y belong to the same fundamental interval of depth k, so 
that (x, y) lies in a "fundamental square" Ch = Zh x Ih. Thus, one has 

(98) I f  Z k] = U zh x ~Z" h = U oh" 
Ihl=k Ihl=k 

We consider three cases in the following: first, the case when the two words are drawn 
independently, second, the case when the density on the unit square Q = [0, 1] 2 is 
proportional to Ix - yl r, and finally the general case of densities of valuation r. 

If  the two words are drawn independently from the same probabilistic source, the 
probability of the event [C > k] involves all the fundamental measures Uh associated to 
inverse branches h of  depth k, 

pk : =  Pr[C >__ k] = _ _  ~ / z ( C h )  = ~ (Uh) 2 = A k ( F ,  (99) 2). 
Ihl=k Ihl=k 

Now, the quasi-power property (Proposition 4) applies, and, as a consequence, the Pt 
decrease geometrically: 

(100) Pk = AF " ~.(2)k(1 + o (vk ) ) ,  

for some real A > 0 that depends on the initial distribution F, and some constant ?, 
with 0 < y < 1 (one may take any y > I/x(2)l/k(2), where/x(2) is a subdominant 
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eigenvalue of G2). The expectation of C satisfies 

(101) E[C] = ~ . P k  = A(F,  2). 
k>_0 

The analysis generalizes directly to densities g(x, y) on the unit square that are pro- 
portional to Ix - yl r for some real parameter r > - 1 .  The case r = 0 is the uniform 
model; the cases - 1  < r < 0 correspond to giving a heavier weight to similar words. 
We explain now why statements similar to (99) then hold true but with the operator G2+r 
replacing G2. In this case the measure of a square "built" on the diagonal satisfies 

u( [a ,  b] × [a, b]) = Ib - al r+2, 

so that the probability of the event [C > k] is now 

Pk = Z Ih(0) - h(1)l 2+r = Ak(Id, 2 + r). 
Ihl=k 

This analysis further generalizes to more general non-uniform densities over the unit 
square, so-called of valuation r. This notion is defined in (18). For studying the coinci- 
dence in this quite general model, we use another generalization of Ruelle operators, 

Gs,,[F](u, v) := ~ h(u) s/2 "h(v) s/2 i f(u,  v) t F(h(u), h(v)), 
Ihl=l 

which is well adapted to these more general densities. This another generalized operator 
also extends the classical operator Gs+t, in the sense of (35). It is also a generating 
operator since its iterate of order k involves all the branches of depth k, 

CJks,t[F](u, v) := Z "h(u)S/2 "h(v)s/2 /~(u, v) t F(h(u), h(v)). 
I h [=k 

Moreover, it shares its main spectral properties with the classical operator Gs+t which 
it extends. In particular, for s, t real, it has dominant spectral objects, and its iterate of 
order k behaves (for large k) as a true kth power of the dominant eigenvalue ~.(s + t) of 
Gs+t. More precisely, a quasi-power property holds for k ---> oo and 

cJsk,[Fl(u, v)  ~ ~.(s + t )  k ~s,t(U, v)Es.,[F], 

where Es,t, ~ , ,  represent dominant spectral objects of the operator G~a. 
With respect to densities of valuation r, defined in (18), the measure of the fundamental 

square Ch := 2), x 2-h satisfies 

 (ch) := d.(x,y)= f , x -  ylrg.(x,y) dxdy. 
h h 

Then, when using the change of variables defined by x = h(u), y = h(v), we obtain 

IZ(Ch) = f f "h(u)"h(v) /7(u, v)rlu - vl ~ e(h(u), h(v))du dv, 
dJc 
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so that the probability Pk of the event [C > k] is now expressible in terms of the kth 

iterate of the operator C-2,r: 

f £1u- o rear[,l(o oldudv Pk 

Since e is strictly positive, a quasi-power property for G2k r[e] holds, and then 

-'- ),(2 + r) ~ E2,r[£] f f c  lu - o[ ~ ~2,r(U, Pk 1)) du du, 

where E2,~, ~2,r represent dominant spectral objects of the operator ~--e,r. 

THEOREM 3. When two words are drawn f rom the same source with respect to density o f  
valuation r > - 1, the length o f  their longest common prefix has a probability distribution 

that satisfies 

Pk := Pr[C > k] = Ae.r • L(2 + r)k(1 + O ( y k ) ) .  

Here, y is some constant y with 0 < y < 1, k(2 + r) is the dominant eigenvalue o f  the 
Ruelle operator ~s associated to the source f o r  s = 2 + r, and the constant A depends 
on the initial distribution. 

NOTE. The random variable C has another interesting algorithmic meaning. When 
comparing two real numbers of 2-, one can use their expansions in the same numeration 
system. One runs in parallel two "lazy" versions of the same numeration process, one on 
each number, and execution is halted as soon as a discrepancy of expansions is detected. 
The variable C is now exactly the number of iterations of this comparing algorithm. 

10. An Important Example: The Continued Fraction Source. Some results about 
this source have already been discussed in [13], but only in the case when the initial den- 
sity is uniform. Here, we explain how our main results (Theorems 1-3) can apply to this 
case. The operator of Ruelle is then called the Ruelle-Mayer operator and is defined by 

' ( ' )  
w (m + z) 2s ~ ' Gstfl(z) 
m>_l 

1 for complex s satisfying 9t(s) > g. 
The entropy of the source is linked to the so-called L6vy constant which plays a 

central r61e in the analysis of the Euclidean algorithm, and the coincidence probability is 
a constant that intervenes in two-dimensional generalizations of the Euclidean algorithm 
[6], [13]. Here, one has 

7r 2 

~.'(1) = 61og2'  )~(2) ,~. 0.1994. 

The dominant eigenfunction is 1/(1 + x). 
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The source is aperiodic, and the poles of (I  - Gs) -1 are well known because they 
intervene in several deep mathematical questions. They include all the non-trivial zeros 
of the Riemann zeta function. The other values s for which G~ has eigenvalue 1 are 
related to the eigenvalues of the hyperbolic Laplace operator and they lie on the line 
fit(s) = ½ (see [9]). These last values do not however occur as poles of the Dirichlet 
series A(Id, s). In the half-plane fit(s) > 0, A(Id, s) can be represented as 

~'(2s - 1) 21-~ - 1 R(s)  
A(Id, s) = 2 ~(2s) I - s ~(2s) '  

where R(s)  is analytic in fit(s) > 0. So, when the initial density is uniform, the asymp- 
totic expansion of B(x)  given in Theorem 2 solely involves the non-trivial zeros of the 
Riemann zeta function. For an arbitrary density, the same situation occurs, because the 

eigenvectors f of the hyperbolic Laplace operators satisfy fd  f (x) dx  = 0 [24]. Now, if 
the Riemann hypothesis is true, all the non-trivial zeros of  the Riemann zeta function are 

l 1 ~t(S) < 1. With Mellin on the line fit(s) = ~. Then A(F,  s) has no poles in the strip ~ < 
analysis, and some tools of Prime Number Theory, Theorem 2 should imply (under the 
validity of Riemann hypothesis) 

61og21 + O ( x 1 ~ 4 + ~ )  forany e > 0 .  B ( x ) =  rr-----T- x 

In the case of the continued fraction source, the length of the fundamental intervals is 
closely related to the continuants. So, Theorem 1 has another interpretation in terms of 
continuants: the asymptotical log-normality of continuants is well known with respect 
to uniform density (see [27], [25], and [26]). The author has extended the result to 
non-uniform densities [39], and this result has been obtained with the same methods as 
here. 

The HAKMEM memo [3] first described the comparison algorithm with continued 
fraction expansions. Later, the same algorithm has been used by Knuth in the Metafont 
system [18], and, more recently, Avnaim et al. [1] have proposed it for computing (in 
single-precision) the sign of (2 x 2)-determinants with integer entries. The comparison 
algorithm with continued fraction expansions has been previously studied in [40], and 
Theorem 3 can be seen as a far-reaching generalization of [40]. 

Acknowledgements.  Many thanks to Julien Cltment, Philippe Flajolet, Mireille 
Rtgnier, and Wojciech Szpankowski for valuable discussions. 
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