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A ternary function has been developed based on the Maclaurin infinite series, which is expressed 
in the neighborhood of each of the pure components of the system. Each of the series is sub- 
jected to various boundary conditions. The ternary function is based on the summation of these 
series. In the process of converting the terms of these infinite series to the corresponding infinite 
dilution constants and interaction parameters, the ternary function also distinguishes between 
the binary and ternary interaction parameters of the system. The truncation of  the infinite series 
pertaining to the binary and ternary interaction terms is adjusted by a suitable technique which 
is described in the text. The function is thermodynamically consistent and capable of interpreting 
properties of the ternary system. 

I. INTRODUCTION 

THE development of  the interaction parameter formal- 
ism Ll'2] is based on the expansion of the Maclaurin in- 
finite series in terms of  the partial property in the 
neighborhood of a solvent component of  a system. Al- 
though the parameters are originally intended to be use- 
ful for interpretation of  properties for dilute solutions, 
attempts have been made by several researchers to ex- 
tend the approach to concentrated solutions.J3'4] 
Schuhmann t3j has shown that Wagner's original sugges- 
tion ~l is essentially valid if such an infinite series is not 
truncated. Since higher order interaction parameters are 
rarely available for systems of  practical interest, activity 
coefficients of solutes at finite concentrations have so far 
been calculated using the first-order parameters. Two 
methods have been suggested by Srikanth and Jacob [7~ 
toward solution of  the inexact differential equation: 
(a) through the introduction of the special relations of 
the interaction parameters and (b) by the use of  suitable 
compositional paths. It should be mentioned that an ex- 
tensive critical survey of the experimental data of  the 
first- and second-order parameters has been compiled in 
the literature; r8-~21 their evaluation does not support the 
validity of the special relations between the first- and 
second-order parameters. A constant compositional path, 
such as x i = k or xi/x~ = k, may be employed, as sug- 
gested by them, tTj toward the solution of the problem. 
One cannot eliminate all of  the compositional degrees of 
freedom by the application of a compositional path. 
Hence, the method remains inconsistent from a thermo- 
dynamic viewpoint as in the case of  the use of  the special 
relations between parameters. Two important aspects 
which emerge from the discussion are 
(a) thermodynamic consistency and (b) the capability of 
interpreting experimental data beyond the dilute solution 
range. It should be mentioned that the Maclaurin infinite 
series may either be expressed by an integral or a partial 
property in the neighborhood of a component of a sys- 
tem. Since a partial may be readily derived from the other 
using the Gibbs-Duhem relation for a binary system, the 
choice of an integral or a partial property for expressing 
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the Maclaurin series does not restrict the thermodynamic 
consistency due to truncation of the series. In the case 
of a ternary or a higher order system, the truncated 
Maclaurin series based on the partial property of the sys- 
tem has been shown to limit the thermodynamic consis- 
tency, f3,7] It should be mentioned that these observations 
are made with respect to the Maclaurin series which is 
expressed in the vicinity of  a component of  a system. 
Before one considers the applicability of a function be- 
yond the dilute solution range, it must satisfy certain 
boundary conditions. For integral excess properties of  a 
ternary system, these conditions are 

(x) AG xs ~ O a s X l ~ l . 0  

( y )  AG x s ~ O  a s X z ~  1.0 

(z) AG xs ~ O a s X 3 ~ l . 0  

Using similar arguments, as mentioned with respect to 
the binaries, it may be noted that Darken's equations t5,61 
satisfy the Gibbs-Duhem relation and, therefore, they are 
thermodynamically consistent. The equation satisfies 
condition (x) and will satisfy ( y )  and (z) for a ternary 
system if the solute components also behave regularly. 
The quadratic formalism may be quite useful in repre- 
senting excess thermodynamic properties in dilute multi- 
component solutions for simple systems. From the above 
arguments, it follows that it may be necessary to adopt 
the Maclaurin infinite series based on the integral prop- 
erty which is expressed in the neighborhood of each of 
the components of the system. Furthermore, it is easy to 
obtain the partials from the integral function for a ternary 
or a higher order system, as the truncation may be con- 
trolled by repeated differentiation. It may also be noted 
that the derived partials from such an integral function 
are automatically thermodynamically consistent. The 
above-mentioned boundary conditions and their appli- 
cations at the various stages of the treatment, as adopted 
in the present research, are discussed in detail in the text 
along with the development of the function. 

II. GENERALIZED 
APPROACH TO TERNARY SYSTEMS 

Although the Maclaurin infinite series is normally ex- 
pressed in terms of the partial properties, in the present 
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work, as already outlined, it has been expressed through 
the integral function of the system. Furthermore, apart 
from expressing the Maclaurin infinite series in the vi- 
cinity of X, ---> 1.0, the series representations are also 
included as X2 ~ 1.0 and X3 ~ 1.0. These three sep- 
arate representations of the Maclaurin infinite series may 
then be expressed as 

[ bAGXS~ 
AGXS= (AGXS)x,.I. 0 + t " - ~ 2  )Xl..~ 1"0 x2 

1 [OZAG xS\ 

+ - t 

+ 35 \-~-X-'~-2ix,--,l.o X~ + " "  

[OAGXS'~ 1 [02AGXS~ 2 
- -  X3 2 t ~ ) x , _ _ ~ l  0 X3 + t  L ,0 + 

+ 35 \-~-X-~3ix,._> l.o X~ + " "  

[ O2AGXS~ 
+ l - - /  XzX3 

kOX2OX3/xl--.~l.O 

1 /03AGXS\ 
+ - / ~ /  x 2 x ~  + . . .  

2 \OXzOX31x,-+l.O 

[1] 

in the vicinity of X 1 ~ 1.0 of a ternary system. The 
representation based on the Maclaurin series as X2 ~ 1.0 
may be denoted as 

[ OAGXS\ 
XS - -  X 1 AGXS (AG )x2~l'~ + t OXI )X2---~l.0 

1 [O:AGXS'~ 2 1 (03AGXS~ X3 
"t- .2-- t ~ 1 2  )X2.._~I 0 XI. -t- ~ t-~13/Xs._~l.O 1 

[ OA GXS~ 
- -  X 3 

+ ' ' '  + t oX3 )x2_.,.O 

1 {02AGXS~ 2 

+ -2 t ' i~3 )Xs_.~l .0 x3 

1 {O3AGXS\ 3 
- - I  .--SS-.3 1 X3 

+ 3! \ OX3 /xs--,l.o 

1/ 02AGXS~ 
+ . . .  + / - - I  XIX3 

\OXlOX3/] xT...1. 0 

1 / 03AGXS\ 
+ - / ~ /  x~x3 

2 \OXlOX3/x2--+l.o 

1 [03AGXS\ 
+ -/~--c--~/ x , x ~  + . . .  

2 \OXlOX3]x2_..~l.O [2] 

The series in the neighborhood of S 3 -----> 1.0 may be 
expressed as 

[ oA GXS\ 
AGXS= (AGXS)x3-+"~ + t--~l )Xy'~l.O x '  

1 [O2AGXS~ 1 /03AGXS\ 
x + +  

2 \ OX1 /xr-,l.o ~ \ 1 /Xy"~l .O 

[oAGXS~ 

+ . . .  -t- t ' - - ~ 2  )x3__~loX2. 

1 {O2AGXS~ 2 1 [03AGXS\ 
+ - l ~--SffT-.z I X2 + / _ ~ ~ ' - ~ a  ] 3 

,x3.,o 

+ ... + X~X2 
\OXlOX21] Xy....1.o 

1 (03AGXS~ 
+ - X2X2 

2 ~ OX l~OX2/x3._~, l .o 
[ 03A G xs \ 

1 / ~ l  x,x~ + . . .  

+ "2 \ O X l O X s / x ~ . - . . o  
[31 

The process of converting the above derivatives in the 
Maclaurin series represented by Eqs. [1] through [3] to 
the corresponding interaction parameters involves re- 
peated differentiation of the equations relating to the par- 
tials and the integral excess quantities of ternary systems 
with the application of relevant dilute solution 
restrictions. [~3] 

These equations along with their respective dilute so- 
lution restrictions are summarized as 

AG xs I'OAGXS'~ 1 [OAGXS\ 1 
in" = ) ) 

[4] 

AG xs ( aAGXS'~__ 1 
In = ~ + (1 - Xs)  w 72 

RT \ OX2 ,] RT 
[OAGXS\ 1 

- ) 

AG xs [OAGXS'~ 1 
In Y3 - R~- X 2 t ~ )  

R---T 

+ (1 - X3) \ - -~- -3  / R---T [61 

for the dilute solution restriction X1 ---> 1.0 which is used 
at each stage of differentiation for correlating the deriv- 
atives of Eq. [1] to the corresponding interaction param- 
eters. With the restriction of X: ---> 1.0, the following 
equations are used in converting the derivatives of Eq. [2]: 

AG xs (oAaxs~ 1 
-- - -  + (1 - X l )  In 71 RT \ - - ~ 1  / RT 

[OAGXS'~ 1 [7] 
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In Y2 = - -  - 

ln73 = - - -  

AG xs I/ OAGXS'~ 1 

[OhGXS\ 1 

- % - a 7 )  
AG xs [OAGXS\ 1 x'l-Ki-,) 

[81  

(OAGXS~ 1 
+ (1 -X3)  - - ~ 3 / /  R--T [9] 

Application of restriction X3 --> 1.0 at each stage of dif- 
ferentiation of the following equations: 

AG xs (OAGXS~ 1 
+ (1 - X1) In 'Yl - -  R T  \ - ~ 1  / R-T 

{OAGX~\ 1 
- X2~---~2 ) ~-  ~ [10] 

A G xs (OAGXS~ 1 
- - - -  X1 In T2 RT \ ~ / R - T  

(OAGXS) 1 
+ (1 -X2)  \ - - ~ 2  ] R--T [11] 

AG xs /OAGXS\ 1 
In Y3 = R---~- - X~-~I) 

R--T 

[OAGXS'~ 1 
- X2~---~2 ) R-"T [12] 

leads to necessary correlations between the derivatives 
of the Maclaurin series, as represented by Eq. [3], to the 
corresponding interaction parameters of the ternary 
system. 

From the above treatment of conversion of the deriv- 
atives, it is clear that each of the two initial series in- 
volved in Eqs. [1] through [3] belongs exclusively to 
those of the constituent binaries and the rest a~e specific 
ternary interaction parameters. In this treatment, it is in- 
teresting to note that the properties of a binary system 
may be regarded as a summation of binary contributions 
and, specifically, the ternary ones. 

The following boundary conditions are imposed on 
Eq. [1]: 

as X2 --) 1.0, AG xs ---) 0 

1 (O'AGXS~ 
- -  = 0  

Er=l r! \"~-X~2"--2 JXI___~I.0 

and a s  X 3 --) 1.0, AG xs ---> 0 

1 (OrAGXS~ 
- -  = 0  

E F! 

Using these relations and converting the derivatives to 

the corresponding interaction parameters, Eq. [1] 
reduces to 

RT - XE(I - X2) in y~ + X2 In 7~ + 2 e~t'~ 

+ X~ In ~2~ -1- ; E2(1) 

1]  / 
+-o22(1) + ... 

3 { [ 1 ]  
+ X 3 ( 1 - X 3 )  lny~  l n y ~  

+ X3 2 In y~ + ~ e3(l~ 

+ x#3{e3 ( ,  + ...} 

[13] 

Similarly, on imposing conditions X1 ~ 1.0 and X3 --> 
1.0, the following equations are obtained as 

1 (OrAGXS~ 
~ .  - -  = 0  r 

\ 0X1 /] = . X2---~ 1.0 

and 

1 
E --  ~ = 0  r r=l r! \ OX3 /x~l.o 

Using these relations, Eq. [2] may be represented as 

AOXS / [ 1,] 
RT - XI(1 - XI) In "Y~(2) + X 1  In Y~(2~ + 2 el(2) 

+ X  lny~(2) + -  

+ X3(1 -- X3) In Y~(2) + X3 In Y~(2) + 2 e3(2) 

32[ + X  Iny~(2)+;e33(2) 

+ ~ p3(2)] + - . - }  

+ X,X3{e~(2) + .. .} 

[141 

Equation [3] may similarly be transformed through the 
use of equations 

1 (OrAGxs~ 
- -  =-0 

E~=I r !  \ - - - 0 - ~ - l l / x 3 _ . ~ l . 0  
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and 

1 (O~AGXS) 

E - -  = 0  

for conditions X1 ~ 1.0 and X 2 ~ 1.0, respectively. 
Equation [3] may be written by use of the above 
equations as 

R r  - x , (1  - x 0  In 70(3) + x I In 7~ + 2 I(3) 

[ + X~ In 7~ ) + 3 e 1(3) 

+ } 
{ [ + X2(1 - X2) In 7~ + X2 In y~ ) + 2 e2(3) 

[ + X2 z In y~ ) + 3 e2(3) 

+ ~ p 2 ( 3 ) ]  + . . . }  

+ X,X2{e~(3) + . . . }  

[151 

Since two of the initial series in Eqs. [13] through [15] 
belong to those of the constituent binaries, as already 
mentioned, the following approximations are used in re- 
spect of them as 

For 1-2 binary, Xl(1 - X1) = X2(1 - X2) = XlX2 
For 1-3 binary, X1(1 - X1) = X 3 ( 1  - X3)  = XIX3 
For 2-3 binary, X3(1 - X2) = X3(1 - X3) ---- X2X3 

The summation of Eqs. [ 13] through [ 15] yields integral 
excess free energy of mixing of the ternary system as 

A G XS (ternary ) 

RT 
XX2{ln ~ +X2(ln ~ 2 )  "Y20) + 2 E2~ 

+ X~ In ~t~l ) + 3 E2(1) 

+ ~p~(1))  + . . .  

+ In y~ + X~(In 3,~ 

, )  
+ - e I(2) 

2 

+ X 2 In 3,~ + 3 e I(2) 

+ ~ p ] ( 2 ) ) + . . . }  

+ X,X3{ln 

+ 

+ X2X3Iln 

+ 

y~ + X3(ln 'yO(l ) 

+ - e~(1) 
2 

+ X~ In ')/3~ + 3 E~(1) 

1)  
+ -p~(1) + �9 �9 �9 

3 

+ I n  70(3) + X 1 (In 70(3) 

+ - e I(2) 
2 

�9 x ,  ~ in ~,o + ; ~I(3) 

 ol.0 + } 
o ( 

72(3) + X2 In y~ ) 

_12 ~(3))  

+ x~ in v~ + 3 ~ ( 3 )  

- o22(3) + . . .  + 
3 

+ In 730(2) ql_ X3(1 n 7o(2) 

1)  
+ - e~(2) 

2 

+ X 2 In y3~ + 3 e~(2) 

1)  } 
+ - p ~ ( 2 )  + . . .  

3 

+ X2X3(E32(I) + . . . )  

+ x,x2(el~(3) + . . . )  

+ X1X3(E3(2) -F . . . )  

[16] 

The binary contributions involved in Eq. [16] satisfy the 
following boundary conditions: 
(a) A G  xs (ternary) ~ A G  xs 1-2 binary as X3 ~ 0 
(b) A G  xs (ternary) ~ A G  xs 1-3 binary as X2 ~ 0 
(c) A G  xs (ternary) --~ A G  xs 2-3 binary as Xl ~ 0 

However, the specific temary interaction terms should 
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tend toward zero for each of the above boundary con- 
ditions. They are bound by the following necessary con- 
dition which is expressed as 

AG xs (ternary) - AG xs (binaries) 

X1X2X3 

= E~X 1 + e~X3 + e~X2 [17] 

This, however, involves truncation of the higher order 
terms of the series depicted in Eq. [16] with respect to 
the specific interaction effect of the ternary system. Nec- 
essary adjustments with respect to them by use of equa- 
tions based on differentiation of the excess integral 
function of the ternary system will be discussed in the 
subsequent sections. 

Assessment of the Binary Function 

It should be noted that the binary functions, as ex- 
pressed in Eq. [16], consist of infinite terms of the orig- 
inal Maclaurin series. In this section, truncation of these 
series is discussed by application of relevant boundary 
conditions. As an example, the form of function of the 
binary 1-2 system is considered in this section. This may 
be represented from Eq. [16] as 

{ ( I I AGXSRT(I-2) _ XIX2 In 7~ + X2 In 7~ + 2 e~(1) 

( 2 2 1 2 1  + X~ In y~ + 3 era) + 3 p2(1) 

+ . . .  + In 7~ 

+ 1  
+ Xl( ln  7 ~  el(2)) 

2( 0 2 
+ X1 In 71(21 + 3 e I(2) 

For the binary system, 

[18 ]  

AG xs (1-2) 
as X2 ~ 0 and X 1 "--) 1 . 0 ,  * In 7~ 

X1X2 

Imposing the condition on Eq. [18], one obtains 

( ' t  In 70,) = In y~ + In 70(2) + In 3,0(2, + 2 ei(2) 

+ In 7 ~  01(2) + . . .  

i.e., 

+ 1  
In 7 1 ~  (ln 71~ 2 el(2)) 

-- ( Inyl~ 

Similarly, by imposing the condition 

AG xs (1-2) 
-~ In o Yl(2) asXi---~0 andX2---~ 1.0 

X1X2 

one obtains the following series which is expressed as 
1 

In 7~ = - (In yo )  + 2 e2(1)) 

- I n y ~  - . . .  

Substituting the above equations in Eq. [ 18], one obtains 
the following form of function, neglecting higher order 
terms as 

AG xs 1-2 ~ 0 

l Yl(2) RT = XIX2 In 7~ + X2(ln - In 7~ 

[ 1 
+ X2(1 -- X2) 2 In 72~ + 2 El(l)  

+ 4 In 3,~ + el(2) + x2(2 In y~ 
X 1 )]) 

- 2 in 7~ + e (1) - 2 el(2)  

[19] 

Since truncation of higher order terms is unavoidable, it 
is necessary to adjust Eq. [19] by the following condi- 
tions while retaining the above functional form 

= In 70(2) 
\ dXi /x~--,l.o RT 

(dAGXS~ 1 
- -  = In 7 ~  

~ k ~ 2  J XI__)I.0 RT 

( d aGx   1 
~'~12//x2__, l .o R-T = el(2) 

( d 2 A 
"--~2/X,--~l.O = e~(1) 

By use of the above sets of equations, Eq. [19] 
transforms to 

AG xs (1-2) 

RT 

f 
XIX2tXI In 72o(,) + X2 In 70(2) 

+ X~(1 - X2) 

�9 XI e ~ ( 1 )  - In 3'1(21 

+ 2 In y~ 
/ 

+ X2 e I(2) + 2 In y~ ) 

[20] 
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Applicability of the equation in interpreting thermo- 
dynamic properties of various binary systems is de- 
scribed elsewhere, t~4J Adopting an exactly similar form 
of binary function for the 2-3 and 1-3 binaries from 
Eqs. [16], [17], and [20], AG xs of the ternary system 
may be expressed as 

AGXS [ 
RT - X1X2 Xl I n  7~  -[- X 2 In y~ 

"~ X1X2{X,( ~ e ~ ( 1 ) -  In 70(2) 

+ 2 In y~ 

+ x x3[xl I n  7 0 . )  + X3 In 7~ 
L 

dr X l X 3 I X l ( ~  we3(1) - In 70(3) 

+ 2 In 7~ 

+ x3 ei(3) + 2 In 70(3) 

XzX31X2 In 7~ + X3 In 7~ + 

+ 2 In 7~ 

% 

+ X3 e 2(3) + 2 In 70(3) 

+ X,X2X3(e3(,)X~ + e~(3)X3 + e~(2)X2 + . . . )  

[211 

Equation [21] satisfies the following boundary conditions: 

AG xs (ternary) ~ AG xs 1,2 binary as X3 ~ 0 
AG xs (ternary) ~ AG xs 1,3 binary as X2 ~ 0 
AG xs (ternary) ~ AG xs 2,3 binary as Xl ~ 0 

It should further be noted that for each of the above con- 

ditions, the ternary interaction terms tend toward zero. 
However, as implied earlier, application of Eq. [17] in- 
volves truncation of the series related to the specific ter- 
nary interaction terms in Eq. [16]. Necessary adjustments 
are now, therefore, required to make Eq. [21] thermo- 
dynamically consistent, Let the ternary function be re- 
designated by Eq. [22], retaining the assessed functional 
form as in Eq. [21] as 

AG xs 
-- XIXE{alX I + a2X 2 + XlXE(a3X l + a422 )  } 

RT 

+ XlXa{a5X ! + a6X 3 + X1X3(a7X I + aaX3) } 

"~ X2X3{a9X 2 --~ aloX 3 + X2X3(alIX 2 + a12X3) } 

+ X1X2X3{aI3X 1 + a l4X 2 + a15X3} 

[221 

Since a ternary isothermal integral function consists of 
two compositional variables, the partial differentiation of 
the excess integral property followed by the application 
of relevant dilute solution restrictions involves prior 
transformation of the equation into two variable func- 
tions. The following sets of  equations may then be de- 
rived by differentiating the integral excess function of 
Eq. [22] repeatedly and by applying appropriate dilute 
solution restrictions at each stage of differentiation as 

(OAGXS I 1 
- -  - -  = I n  " /~  = al 

\ OX2 /xr - , i .oRT 

{ OAGXS~ 1 
- e~(l) = - 4 a l  + 2a2 + 2a3 \--~ /x,_~.oRT 

(OAGXS~ 1 
- -  - -  = I n  y 3 ~  = a5 

\ OX3 /x,__,l.oRT 

( a~aGxs'~ 1 
- - ~ 3 2  ] ~ - ~ =  e ] ( 1 ) = - 4 a s + 2 a 6 + 2 a 7  

(oA  S) 1 
- In y~ = a2 

\ OX1 ,Ix2~l.oRT 

( 02 A GXS~ 1 
= e~1(2) = - 4 a 2  + 2al + 2a4 

\ OXl ,Ix2~l.oRT 

OAGXS I 1 
- - ~ 3 / x 2 - . L o  R T -  In ")/0(2 , = a 9 

- -  = e~(2) = - 4 a  9 + 2al0 + 2 a ,  
\ a 3 ]x:--,lo RT 

OAGXS I ...11 = lnTO(3)=a6  
OXl /x3--,t.o RT 

( 02AG xs'] 1 
T - -  e i (3  ) = - - 4 a  6 + 2a5 + 2as 

\ 0 1 /Ix3-ol.oRT 
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AGXS) 1 
- -  = In 72~ = a~0 \ OX2 /x~.oRT 

( 02 AGXS'~ 1 
- -  = 222(3) = - 4 a l 0  + 2a9 + 2a12 

\ X2 ]xr-,1.oRT 
(02AGXS~ __1 = 23(1 ) = - 2 0 1 - 2 0 5 + a 1 3  

\ ~ / ]  X,--~ 1.0 RT 

( 02AGXS) 1 e~(2) = - 2 a 2 -  2 a  9 + a 1 4  

( o AC xs] , 
~ ] x 3 _ _ , l . o  ~-~ = e~(3)= - 2 a 6 -  2 a l o -  a8 + al5 

The empirical constants al through al5 may be expressed 
through the infinite dilution constants and interaction pa- 
rameters. Solutions of the above equations yield the fol- 
lowing relations: 

al = In y~ a 2  = In 7o(2) 

1 
a 3  = 2 22(1) + 2 I n  TO(l) --  In )'?(2) 

1 
a4 = 2 el(2) + 2 In 70(2) - In y~ 

as = In o o 
T30);  a 6 = I n  Tt(3) 

1 
= + 2 in T~ - In T1(3) 

a s  

a 9 = 

a l l  -= 

1 
= ~ el(3) + 2 In 7o(3) - In 3,o(,) 

In o . In o 
T3(2), a l o  = T2(3) 

1 
T2(3) - 23(2) + 2 In 7o(2) - In o 

2 

a12 

a13 

a14 = 

a l 5  = 

1 
2 s2(3) + 2 I n  T0(3) In o - -  T3(2) 

3 + 2 In y~ + 2 In y~ E2(I) 

e~(2) + 2 In T1~ + 2 In o T3(2) 

e12(3) + 2In  o 1 

+ 2 In yl~ - In Tom 

It should be noted that constants al through al2 match 
exactly as expected to those of  corresponding binary 
functions, as expressed in Eq. [21]. The constants per- 
taining to specific ternary interaction, however, differ 
due to the truncational effects, as mentioned earlier. It 
is to be noted that necessary adjustments as described 
are required to transform the normally acceptable ana- 
lytical ternary function to one based on interaction pa- 

rameters. Substituting the above relations into Eq. [22], 
the resulting ternary functions may then be expressed as 

AGXS [ 
RT = X1X2 Xl In y~ + X2 In y~ 

f /1 
+ X1X2~Xlti e22(1)- In y~ 

+ 2 In y~ 

T2(1) 

+ X1X3[X~ In 73~ + X3 In 70(3) 

+ X,X3{X,(~ e l ( l ) -  In 7~ 

+ 2 In T3~ 

X2X3[X2 In 7~ + X3 In 7~ + 

-~ X2X 3 X2 E3(21 

+ 2 In y~ 

(1 
+ X3 2 e 2(3) + 2 In Y~(3) 

X1X2X3{XI(e3(1) + 2 In o Ym) + 2 In y~ + 

+ X2(e~(2) + 2 In 70(2) + 2 In y~ 

+ X3(el2(3) + 2 In 7~ 

1 
+ 2 In y~ ) + 2 e I(3) + 2 In y~ ) 

-lnv%)} 
[23] 
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The constants pertaining to the specific interaction effect 
are seen to differ as a result of  the truncational effect, 
as described earlier. These adjustments are required to 
make the function, Eq. [23], thermodynamically consis- 
tent. Thermodynamic consistency of a ternary function 
is determined by any two of  its partials, TM such as, 

0 In  % 01n ~ 0 In  
X 2 - -  + (1 - X3) - - -  X 3 -  

OX 2 OX 3 OX 3 

31n  y3 
+ (1 - X 2 ) - -  

OX2 

[241 

It may be shown that the partials of  the integral function 
represented by Eq. [23], which may be deduced through 

Eqs. [7] and [8], for example, will automatically satisfy 
consistency (Eq. [24]). 

I I I .  A P P L I C A B I L I T Y  OF E Q U A T I O N  [23] 

Although all of  the necessary binary parameters may 
be evaluated by regressional analysis of  the respective 
experimental excess property using Eq. [20], it is nor- 
mally difficult to obtain the specific interaction param- 
eters in the neighborhood of each of the pure components 
for various systems. Equation [23] has been used to in- 
terpret thermodynamic properties of  the Fe-Cr-Ni system 
at 1873 K. Gilby and St. Pierre f~51 have measured 
thermodynamic properties of  the system using Knudsen 
effusion mass spectrometry and analysis of  the con- 
densed vapor phase. The infinite dilution constants and 
hrst-order interaction parameters for the Ni-Cr and Fe-Cr 

Table I. Evaluation of Binary Parameters 

The Ni-Fe System, 1873 K 

Regressional Values 
Based on Eq. [20] 

In y o  (Ni) -1.0212 
In y~ (Fe) -0.4988 

Ni (Fe) + 1.92 ENi 

Fe (Ni) + 1.85 E Fe 

Comparison between integral excess values computed 

XNi 0.1 0.2 
- A G  xs J .mol  668.27 1238.18 
- A G  xs, Ref. 15 J- mol 665.5 1246.8 

Hul tgren  e t a l .  [16] 

-1.0356 
-0.4828 

by Eq. [20] and those of ~e  experimental d~a tl61 

0.3 0.4 0.5 0.6 0.7 
1797.13 2335.97 2778.9 3013.3 2919.75 
1803.5 2326.3 2765.6 3016.6 2928.8 

0.8 
2401.65 
2401.6 

0.9 
1415.38 
1414.19 

The Ni-Cr system, 1873 K 

In "y~ r (Ni) 
In Ni (Cr) 

c~ (Ni) ECr 
Ni ( C r )  '~ Ni 

Regressional Values 
Based on Eq. [20] Gilby and St. Pierre tl51 

- 1.0424 -0.77 
- 2.4809 

1.61 1.85 
21.60 

Comparison between integral excess values computed by Eq. [20] and those of the experimental data t151 

Xcr 0.01 0.03 0.05 0.1 0.2 0.3 0.4 0.5 
xs -AGcajc J" mo1-1 160.99 473.38 769.98 1424.26 2286.45 2577.21 2499.48 2339.90 
XS --AGexptl, Ref. 14 J" mo1-1 161.65 482.95 748.47 1412.26 2337.32 2560.05 2477.83 2351.15 

The Fe-Cr system, 1873 K 

Regressional Values 

In y~ (Fe) -0.1384 
In y~ (Cr) -0.4281 

Fo (Cr) 1.277 Fe 

ecC~ (Fe) -0.2742 

Comparison between computed values and the Hultgren data t~6j 

Xvc 0.4 0.5 
XS -AGca~c J" mol -l 1204.57 1134.57 

- A G  xs, Ref. 16 J. mol -l 1204.99 1133.86 

0.6 0.7 0.8 0.9 
971.31 746.50 491.11 234.0 
970.69 748.93 489.52 234.30 
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Table II. Comparison between the Computed Integral Excess 
Values of the Fe-Cr-Ni System at 1873 K and the Experimental Data t~sJ 

xs xs -AGc~c by Eq. [23] -AGexptl, Ref. 15 
X~ = Ni Xz = Xvc X3 = Xcr J" mo1-1 J" mo1-1 

0. 293 0. 657 0. 050 1962.16 1963.13 
0.490 0.460 0.050 2943.24 2733.05 
0.688 0.262 0.050 3070.62 2696.79 
0.794 0.156 0.050 2509.76 2075.78 
0.851 0.099 0.050 1993.30 1760.04 
0.897 0.053 0.050 1477.23 1336.20 
0.182 0.718 0.100 1432.69 1130.93 
0.293 0.607 0.100 2127.23 1900.57 
0.485 0.415 0.100 3097.10 3084.06 
0.692 0.208 0.100 3136.19 3144.86 
0.743 0.157 0.100 2891.54 2745.79 
0.795 0.105 0.100 2523.55 2436.40 
0.847 0.053 0.100 2035.04 2112.37 

systems are determined by regressional analysis of  the 
excess integral values, as reported by Hultgren et al. ,[161 
and those for the Ni-Cr system are evaluated with respect 
to the experimental data of  Gilby and St. Pierre. f~Sl 
Table I lists these evaluated parameters along with the 
data available in the literature, r~5'~61 The table also lists 
the computed and experimental values of  the integral ex- 
cess properties of  the binary systems for the purpose 

ecr(N0 and ecN~(Fe) of  comparison. In this calculation, F~ �9 
are, respectively, taken to be 2.19 and 0, as indicated 
b~. the authors, t~Sj In the absence of any other data for 
e~i(Cr), it has been assumed to be zero for the purpose 
of the present ternary calculation. Table II lists the com- 
puted values of  the integral excess properties of  the Fe- 
Cr-Ni system at 1873 K using Eq. [23] along with the 
experimental values. ~51 Table I shows that an excellent 
agreement exists between these two sets of  values. 

IV.  C O N C L U S I O N S  

A ternary function has been deduced based on the 
Maclaurin infinite series which is expanded in the neigh- 
borhood of each of the pure components of  the system. 
These series are subjected to appropriate boundary con- 
ditions, as described in this article. The truncation of the 
infinite series pertaining to the constituent binaries and 
that of  the specific interaction terms are controlled by 
repeated differentiation of the excess function with the 
application of relevant dilute solution restrictions at each 
stage of differentiation. The function is thermo- 
dynamically consistent and capable of  interpreting 
thermodynamic properties of  the Fe-Cr-Ni system at 
1873 K. 
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