

Magnetic Resonance Materials in Physics, Biology and Medicine 11 (2000) 80-81

MAGMA Magnetic Resonance Materials in Physics, Biology and Medicine

www.elsevier.com/locate/magma

Na⁺-overload during ischemia and reperfusion in rat hearts: comparison of the Na⁺/H⁺-exchange blockers EIPA, HOE642 and EMD96785

Michiel ten Hove a.*, Jan G. van Emous a, Cees J.A. van Echteld b

" Interuniversity Cardiology Institute of the Netherlands, The Netherlands ^b Department of Cardiology, University Medical Center, Utrecht, The Netherlands

Received 4 August 2000; accepted 4 August 2000

Keywords: Heart; Ischemia-reperfusion; Sodium

1. Introduction

Intracellular myocardial Na⁺ overload during ischemia is an important cause of reperfusion damage via reversed Na⁺/Ca²⁺-exchange. The relative importance of the different influx routes of Na⁺ is still a matter of debate. Previously it has been shown that the Na⁺channel plays an important role and its blockade can result in a 60% reduction in Na⁺-overload. Another important influx route is via the sarcolemmal Na⁺/H⁺exchanger (NHE). In this study the effect of ischemic inhibition of the NHE on intracellular Na⁺([Na⁺]_i), intracellular pH (pH_i), high energetic phosphates (HEPs) and post-ischemic contractile recovery was tested in isolated rat hearts, using three different NHEblockers: EIPA, HOE642 and EMD96785.

2. Material and methods

Isolated rat hearts were perfused according to Langendorff at a constant pressure of 73.5 mmHg at 37°C with a modified Krebs-Henseleit buffer (pH 7.4) with glucose as substrate and were paced at 5 Hz. Left ventricular developed pressure (LVDP) and end diastolic pressure (EDP) were measured with an intraventricular balloon. [Na⁺]_i, pH_i and HEPs were measured

1352-8661/00 S - see front matter O 2000 Elsevier Science B.V. All rights reserved. Pfl: S1352-8661(00)00122-8

using ²³Na and ³¹P NMR spectroscopy, respectively. ²³Na and ³¹P were measured simultaneously at frequencies of 105.9 and 162.0 MHz, respectively, on a Bruker Avance DRX400 spectrometer equipped with a dual tuned probe and two digital receivers. ²³Na spectra were acquired by adding 288 FIDs using 90° pulses and a 210 ms interpulse delay. ³¹P spectra were acquired by adding 24 FIDs using 90° pulses and a 2.5 s interpulse delay. ³¹P and ²³Na were both collected with a time resolution of 1 min. To quantify PCr and ATP five ³¹P spectra were added. To discriminate between intra- and extracellular Na⁺, the shift reagent TmDOTP⁵⁻ (3.5 mM) was added to the perfusate, necessitating a lower free Ca²⁺ concentration (0.85 mM). NHE-blockers were administered in a concentration of 3 µM during 5 min immediately prior to 30 min of global ischemia and 30 min of drug-free reperfusion. Data are presented as mean \pm S.E.M.

3. Results

Na⁺ overload after 30 min of ischemia was reduced with 30, 58 and 60% using EIPA, HOE642 and EMD96785, respectively. Results are presented in Table 1.

Administration of NHE-blockers did not result in any significant difference in pH_i during ischemia. During reperfusion recovery of pH_i was delayed. Results are presented in Table 2.

During ischemia PCr content decreased to < 5% within 15 min in all groups. After 30 min of reperfusion

^{*} Corresponding author. Present address: University Medical Center, Heart Lung Institute, Room G02.523, Heidelberglaan 100, PO Box 85500, 3508 GA Utrecht, The Netherlands. Tel.: + 31-30-2535568; fax: + 31-30-2522693.

E-mail address: m.tenhove@med.uu.nl (M. ten Hove).

Table 1 [Na⁺]_i after 30 min ischemia and after 30 min reperfusion as percent of baseline^a

		$30 \min I(9/)$	30 min R (%)	
	<i>n</i>	50 min 1 (70)		
Untreated	7	305 ± 23	162 ± 14	
EIPA	6	$212 \pm 6^{*}$	127 ± 7	
HOE642	6	$157 \pm 5*$	123 ± 15	
EMD96785	6	146 <u>+</u> 6*	132 ± 5	

^a Data are \pm S.E.M.

* P < 0.001 vs. untreated.

Table 2

pH_i after 5 min reperfusion^a

	n	5 min R
Untreated	7	6.90 ± 0.05
EIPA	6	6.78 ± 0.07
HOE642	6	6.79 ± 0.04
EMD96785	6	6.68 ± 0.04

^a Data are \pm S.E.M.

PCr had recovered to 81 ± 6 , 95 ± 8 , 94 ± 10 and $105 \pm 7\%$ in untreated and EIPA, HOE642 and EMD96785 treated hearts, respectively (EMD96785 vs. untreated, P < 0.05). ATP content had decreased to < 10% after 30 min of ischemia in all groups. After 30 min of reperfusion ATP had recovered to 29 ± 1 , 44 ± 8 , 35 ± 3 and $42 \pm 4\%$ in untreated and EIPA, HOE642 and EMD96785 treated hearts, respectively (NS).

Administration of HOE642 and of EMD96785 resulted in a better recovery of the rate pressure product (RPP; heart rate × LVDP) after 30 min of reperfusion. Results are presented in Table 3. At the end of reperfusion EDP was 38.0 ± 3.8 , 38.3 ± 2.2 , 31.9 ± 4.6 and 23.5 ± 4.3 mmHg in untreated and EIPA, HOE642 and EMD96785 treated hearts, respectively (EMD96785 vs. untreated, P < 0.05).

Table 3					
RPP at start	of protocol	and af	fter 30 i	min repe	fusion ^a

	п	Start protocol	30 min R	
Untreated	7	16.4 ± 1.2	11.5 ± 2.7	
EIPA	6	15.8 <u>+</u> 1.9	12.1 ± 2.1	
HOE642	6	16.9 ± 1.3	19.6 ± 2.0*	
EMD96785	6	15.6 ± 1.4	$20.4 \pm 2.3^*$	

^a Data are 10^3 mmHg/min \pm S.E.M.

* P < 0.05 vs. untreated.

4. Discussion

The results show that the NHE mediates an important Na⁺ influx during ischemia, reflected in a reduced Na⁺ overload when the NHE is inhibited. However, EIPA was less effective than the two more specific NHE-blockers, HOE642 and EMD96785, in the concentrations used. Although drugs were not administered during reperfusion, treated hearts showed a slower recovery of pH_i, indicating that the NHE is still (partly) inhibited at that time, probably due to the fact that a complete washout of the drug takes a few minutes. This idea is supported by the finding that EMD96785, which is reported to be the most potent blocker, showed the most pronounced delay. The NHE-inhibition upon reperfusion will reduce reversed Na⁺/Ca²⁺-exchange via decreased NHE-mediated Na+ influx and, reportedly, via direct inhibition of the Na⁺/Ca²⁺-exchanger protein by the prolonged acidosis. The more pronounced delay in recovery of pH_i in the EMD96785 treated hearts corresponds to the better recovery of the EDP in that group, suggesting that higher concentrations of the two other blockers are required to achieve a similar recovery of the EDP.