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Abs t rac t  

We show that for every initial data a E L2(f2) there exists a weak 
solution u of the Navier-Stokes equations satisfying the generalized en- 
ergy inequality introduced by CaffareUi-Kohn-Nirenberg for n = 3. We 
also show that if a weak solution u C L~(O,T;Lq(f~)) with 2/q + 2Is <_ 
l a n d 3 / q + l / s _ < l  f o r n = 3 ,  o r 2 / q + 2 / s < l a n d q > 4 f o r n > 4 ,  then 
u satisfies both the generalized and the usual energy equalities. Moreover 
we show that the generalized energy equality holds only under the local 
hypothesis that u E L'(e,T; Lq(K)) for all compact sets K CC ft and all 
0 < e < T with the same (q, s) as above when 3 < n < 10. 

1 I n t r o d u c t i o n  

Let ft be a domain in R " ( n  > 3) with smooth boundary 0f~. On the space-time 
cylinder f t x  (0, oo), we consider the nonstationary Navier-Stokes problem: 

Ou 
(1.1) O - - [ - A u + u .  V u + V p = f ,  V . u = O  i n x e f ~ , t > 0 ,  

(1.2) u = 0  on 0Ft, t > 0 ,  u[t=o=a, 

where u = u(x, t )  = ( u l ( x , t ) , u 2 ( x , t ) , . . . , u " ( x , t ) )  and p = p(x, t )  denote the 
unknown velocity vector and pressure, respectively; a = a(x) = (al(x), a 2 ( z ) , . . . ,  
a"(x)) is the initial velocity field; f = f (x ,  t )= ( f l (x ,  t), f2(x, t ) , . . . ,  p ( x ,  t ) ) i s  a 
given external force. Here we use the notation: 

f i  .Or f i  Ou' 
u . V v = uJ -ff~x j , V . u = 

j=l  j=l  ~ 

for vector functions u and v. Up to now the fundamental problem of existence 
and uniqueness of global solutions to (1.1)-(1.2) is unsolved. Leray [111 and Hopf 
[101 showed the existence of a global weak solution to (1.1)-(1.2). However, 
uniqueness and regularity of weak solutions are still open problems. When f~ is 
R z, Leray [11] introduced a class of weak solutions with the energy inequality 
of the strong form which are called turbulent solutions (see Masuda [12]). He 
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constructed turbulent solutions u for every a E Lz (R  3) and proved that  u(t) E 
C°°(R 3) for almost all t E (0, co). After his pioneer work, the singular set 
E -- {t E (0, co); u(t) ~ C~(f~)} in time was studied by Foias-Temam [4], Giga 
[6], and many authors and it is known that  H~/2(E) = 0. Here H" denotes the s- 
dimensional Hausdorffmeasure.  On the other hand, the singular set S -= {(x, t) E 
f~ × (0, co); u ~ L~(Br(x, t)) for all r > 0} in space-time was investigated by the 
series of papers of Scheffer [16]-[20], where B,(x,t) = {(y, s) e ly-xl+ls-tl  < r}. 
Then Caffarelli-Kohn-Nirenberg [3] improved Scheffer's result and introduced 
a new class of suitable weak solutions satisfying a local version of the energy 
inequality, i.e., the generalized energy inequality: 

/0°Yo /0°Jotl (1.3) 2 [Vu[ZCdxdt <_ uiz(Ct+AC)+(lulZ+Zp)u.vc÷2(u.f)Cldxdt 

for all ¢ e C~'(f~ × (0, co)) with ¢ > 0. Actually, Caffarelli-Kohn-Nirenberg [3] 
constructed the suitable weak solution and proved that  Hi(S)  = 0 for all such 
solutions if n = 3. Concerning the initial data  a, they imposed the condition 
tha t  a e L2(R 3) in t/3. In bounded domains, however, they assumed that  
a E Lz(~) n wzls's/'(fl). 

The first purpose of the present paper  is to remove the superfluous hypothesis 
a E WZ/5'~/4(f~) imposed by [3], and as in the case of the whole space R 3, the 
condition a E Lz(~) is sufficient for construction of suitable weak solutions. Our 
result covers not only the case when f / i s  a bounded domain but also the case 
when ~ is an exterior domain and the half-space Ra+. For this purpose, we 
need to estimate an associated pressure only under the condition a E Lz(Y~). 
Here we adopt the method introduced by Miyakawa-Sohr [14]. Investigating 
this procedure more precisely, we shall derive a larger class of weak solutions 
satisfying the generalized energy inequality. 

In addition to the uniqueness result, Serrin [15] showed that if a weak solution 
u e L'(0,  T; nq(f~)) for 
(1.4) nlq + 2Is < 1, 

then u satisfies the energy equality 

f f(', (1.5) II (t)ll] + 2 I lWl l ]d t  = II (s)lt] + 2 u)dt, 0 < s < t < T. 

Shinbrot [221 derived the same conclusion if u • L'(0,  T; Lq(~)) for 

(1.6) 2/q + 2/s < 1, and q _> 4. 

Shinbrot 's hypothesis is weaker than Serrin's if n > 4, but not the case for n = 3. 
Thus it occurs the question which class of solutions guarantees the generalized 
energy equality. Here we mean by the generalized energy equality 

(1.7, 2 JOT]. IW?¢dxdt = f)¢]dxdt 

for all ¢ • C ~ ( ~  x (0, T)).  The  second purpose of this paper is to give a partial 
answer to this question. We show that  if u E L ' (0 ,T ;  Lq(gl)) with 

(1.8) 2/q + 2/s < 1, and 3/q + 1/s _< 1 for n = 3, 

(1.9) 2/q+ 2/s _< 1, and q _> 4 for n >_ 4, 
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then u satisfies both usual (1.5) and generalized (1.7) energy equalities. For 
n = 3 our class (1.8) is larger than both Serrin's and Shinbrot's results. For 
n > 4 our class (1.9) coincides with Shinbrot's. Sohr-von Wahl [24] showed that  
if uiu j E L~(0,T; L2(f/)) for i , j  = 1, 2 , . . . ,  n, then u satisfies the energy equality. 
Although the hypotheses (1.8) and (1.9) yield the class of Sohr-von Wahl, we 
can characterize the class with the energy equality by means of solutions u itself 
directly, not by uiu i. In view of the structure of the generalized energy equality, 
it is reasonable to expect that  one can get the generalized energy equality only 
by the information on local behavior of u. Compared with the usual parabolic 
equations, we need to obtain the information on the local behavior of the associ- 
ated pressure p. However, such behavior of p cannot be easily derived from the 
local behavior of the velocity u, because p is determined by the global properties 
of the domain ~, i.e., the Helmholtz decomposition. To overcome this difficulty, 
we shall make use of the cut-off technique to reduce the local problem to the 
global one. Bogovski's result on the operator div plays an important role for this 
reduction. In fact we shall show that if 

u E L ' ( c , T ; L q ( K ) )  for all 0 < ~ < T, and all compact domain K CC f't 

with ( 1 . 8 ) -  (1.9) for 3 < n < 10, 

then u satisfies the generalized energy equality. Our result may be regarded as 
a local version of Serrin [15] and Shinbrot [22]. Moreover, we can estimate the 
singular set of weak solution u as in Caffarelli-Kohn-Nirenberg [3] only by using 
local behavior of u. 

In Section 2, we shall state the main results. Section 3 is devoted to preparing 
some fundamental lemmas for the approximate solutions. Then we shall prove 
the main results in Sections 4, 5 and 6. 

2 R e s u l t s  

Throughout this paper we impose the following assumption on the domain. 

A s s u m p t i o n  2.1 f / c  R~(n  >_ 3) is a bounded domain with smooth boundary, 
an exterior domain with smooth boundary, the half-space R~+ or the whole space 
R n" 

Before stating our results, we introduce some notations and function spaces. 
Let C~,~ denote the set of all C°°-real vector functions ¢ = (¢1, . . .  ,¢,,) with 
compact support in f~ such that div ¢ = 0. L~, is the closure of C °O with respect 0,a' 
to the L ' -norm I] It~; (', ") denotes the L 2- inner product and the duality pairing 
between L ~ and L ~', where 1/r  + 1/r  ~ = 1. L r stands for the usual (vector- 
valued)L~-space over f/, 1 < r < oo. H01,'~ denotes the closure of Coo with 0,a 
respect to the norm 

I1¢11,, . . . .  I1¢11, + IlV¢ll,, 

where V¢  = (O¢' /Oxi; i , j  = 1, . . .  ,n). When X is a Banach space, its norm 
is denoted by I1" I]x. Then C"([ t l , t 2 ) ;X)  is the usual Banach space, where 
m = 0, 1, 2 , . . .  and tl and t2 are real numbers such that tl < t2. In this paper, 
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we denote by C various constants. In particular, C = C ( * , . . . , * )  denotes the 
constant depending only on the quantities appearing in the parentheses. 

Let us recall the Helmholtz decomposition: 

L T = L ~ G ~ ( d i r e c t s u m ) ,  l < r < c o ,  

where Gr = {Vp E L';p E L[o¢(~)}. For the proof, see Fujiwara-Morimoto [5], 
Miyakawa [13], Simader-Sohr [21] and Borchers-Miyakawa [1]. P, denotes the 
projection operator from L" onto L~ along G,. The Stokes operator A, on L~, is 
then defined by A, = - P , A  with domain D(A,) = {u e W~'~(fl); u]oa = 0}NL,~. 
It is known that 

(L~)*(the dual space of n~) = L~', A:(the adjoint operator of A,) = A,,, 

where 1 / r  + 1/r  t = 1. In particular, A - A2 is a non-negative self-adjoint 
operator in L~ and there holds 

D(A1/2) ~1,2 = - 0 , ,  with ItA1/2uH = HVuH for u e D(A1/2). 

Here and in what follows, for simplicity we abbreviate A2 and the L2-norm H" ]l 
as A and H" H, respectively. It is shown by Giga [7], Giga-Sohr [9] and Borchers- 
Miyakawa [1] that  for every ~ < w < 7r and every 1 < r < co, the resolvent set 
p( -A , )  of - A ,  contains the sector ~7~, - {,X e C; largA] < w} and there is a 
constant M,,~, depending only on r and w such that  

(2.1) [](A, + A)-I]lnCL~ < M,,~IA[ -1 

holds for all A E ,U~. Therefore - A t  generates a uniformly bounded holomorphic 
semigroup {e-tA';t > 0} of class Co in L~. Moreover, there holds 

Ilullw~., ___ c11(1 + A~)~II, for all u e D(A,) 

with a constant C -- C(r).  
Let Jk = (1 + k-XA) -0+['/41) for k = 1, 2 , . . . .  By (2.1), we have 

(2.2) ][Jkw]l < Hw]] k = 1 ,2 , - - - ,  Jkw ~ w in L2, as k--* co 

for all w e L~. Our definition of a weak solution to (1.1)-(1.2) is as follows. 

De f in i t i on  2.1 Let a e L~ and let f E L2(0, T; L2,) for all T > O. A measurable 
function u on ~2 x (0, co) is called a weak solution of (1.i)-(1.2) if for all T > 0 

(i) u e L°°(0,T; L~) N L2(0,T; D(A1/2)); 

foT{--Cu(t), ~ ¢ ( t ) )  + (Vu(t) ,  V¢(t))  + (u .  Vu(t),  ¢(t))}dt 

= (a, ¢(0)) + loT(f (t), ¢(t))dt 

/or all ¢ e { C a ( a  × [0,T))} n with V .  ¢ = 0. 
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Our results are stated as follows. 

T h e o r e m  2.1 Let n = 3 and let a E L~ and f E L2(O,T;L~) for all T > 
O. Then there exists at least one weak solution u of the problem (1.1)-(1.2) 

5/a together with the associated pressure p in Lto c ( ~ × (0, e¢)) satisfying the following 
generalized energy inequality; 

/o7o (2.3) 2 [VutZedxdt < u l2 (¢ t+~¢)+( tu l2+2p)u .V¢+2(u- f ) f ldxd t  

for all ¢ e C~°(12 x (0, co)) with ¢ > O. 

This generalized energy inequality was introduced by Caffarelli-Kohn-Nirenberg 
[3, pp. 779-780]. By their result, we can estimate the size of singular set of the 
above solutions. 

C o r o l l a r y  2.1 In addition to the hypotheses of Theorem 2.1,  assume moreover 
that f e L~oc(a × (0, co)) for some q > 5/2. Then every weak solution u as in 
Theorem 2.1 has the property that 

H' (S)  = 0, 

where S - {(x, t) e f~ × (0, co); u q~ n°°(B, (x , t ) )  for all r > 0} denotes the 
singular set of u in space-time. 

Remark 2.1. It  will be shown that  above u is actually a suitable weak solution 
defined by Caffarelli-Kohn-Nirenberg [3],which yields Corollary 2.1. In bounded 
domains fl, however, they showed the existence of suitable weak solutions under 
the stronger assumption that  the initial data a E L~ N W215'514(f~), while the 
Leray-Hopf weak solution can be constructed for arbitrary a E L~. Hence our 
theorem states that  suitable weak solutions are obtained for the same class of 
the initial da ta  as Leray-Hopf's.  Furthermore, we can include the case where f~ 
is an exterior domain and the half-space R~.  

Next we investigate the class of weak sohtions which fulfill the usual and 
generalized energy equalities. 

T h e o r e m  2.2 Let a E L ~ ( ~ ) , f  
having compact K C f~ and let u 
I f u  e L ' ( ¢ , T ; L q ( K ) ) ,  1 < q,s < 

E L2(O,T;L~(fl)),¢ E (O,T), K be a domain 
be a weak solution of the problem (1.1)-(1.2). 
co, with 

2/q + 2/s  < 1, and 3/q + 1/s <_ 1 for n = 3, 

2 / q + 2 / s < _ l ,  andq>_4 fo r4  < n  <lO,  

2 / q + 2 / s < l , q >  4, a n d n / q + 2 / s < 3  f o r n > _ l l  

then u satisfies the generalized energy equality on (~,T) × K.  

C o r o l l a r y  2.2 Let n = 3 and a E L~(~), f e L2(0, T; L~(f~)) Q L~oe(f~ × (0, T))  
for some 5 > 5/2, and let u be a weak solution of the problem (1.1)-(1.2). I f  
u E L~(~, T; Lq(K))  for all ~ E (O,T) and all compact g CC 12 with 

2/q + 2Is < 1, and 3 / q +  1Is < 1(1 < q,s < ¢0), 

then u has the property that Hi(S)  = 0. 
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Remark ~.2. Note that we assume only local behavior of u in Theorem 2.2 
and Corollary 2.2. To get the generalized energy equality, we need to show 
f f u p .  V¢dx < co for all ¢ • C ~ ( ~  x (0,T)). However, the information on p 
cannot be easily derived from the local behavior of u, because p is determined 
the global properties of the domain fl, i.e., the Helmholtz decomposition. To 
overcome this difficulty, we make use of cut-off technique and Bogovski's lemma. 

When n > 11, compared with Shinbrot's hypothesis, we need to assume n / q +  
2/s < 3. However, under the global assumption u • L*(0,T;nq(l~)) we can 
remove this hypothesis as follows. 

T h e o r e m  2.3 Let a e L~(~), f • L2(0,T; n~(12)), and let u be a weak solution 
of the problem (1.1)- (1.2). If  u • L*(O, T; Lq (fl)), 1 < q, s < c~, with 

2 /q+2/s<_ 1, a n d 3 / q +  l/s<_ l f o r n = 3 ,  

2 / q + 2 / s <  1, andq>_4 f o r n > 4 ,  

then u satisfies both usual and generalized energy equalities. 

Remark Z.3. Serrin [15] and Shinbrot [22] found the class of weak solutions with 
the energy equality. For n = 3, there is no inclusion between their results. For 
n > 4, the class of Shinbrot is larger than that of Serrin. Our class covers both 
their results. 

3 P r e l i m i n a r i e s  

Now we state the definition of a suitable weak solution introduced by Caffarelli- 
Kohn-Nirenberg as follows. 

Def in i t i on  3.1 The pair {u,p} is a suitable weak solution of the Navier-Stokes 
system (1.1) on an open set D E 1~ 3 × R with force f if the following conditions 
are satisfied: 

1. u,p and f are measurable functions on D and 
(a) ] E Lq(D) for some q :> 5/2,  and V . f = O, 
(b) p • Lb/4(D), 
(c) for some constants Eo, E1 < oo, 

/r, [ul 2dx < Eo , 1 9 , = D f q ( R  3 x { t } ) ,  
t 

for almost every t such that Dt ~ 0 (empty set), and 

f fD IVul2dxdt <- El. 

2. u,p and f satisfy (1.1) in the sense of distribution on D.  
3. Generalized energy inequality (2.3) is valid for each real-valued ¢ • 

C~°(D) with ¢ >_ O. 

These suitable weak solutions have the following property [3]. 
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L e m m a  3.1 (Caffare l l i -Kohn-Nirenberg [3]) When n = 3, for any suitable 
weak solution of the Navier-Stokes system (1.1) on an open set in space time, 
the associated singular set satisfies Hi(S) = 0. 

Before stating Sohr's approximate solutions to (1.1)-(1.2), we should state 
following lemma which plays an important role in constructing the approximate 
solutions. 

L e m m a  3.2 (1) Ira  e D(A~/2) ,T > O, and if f • L2(0,T; n]), the function u 

(3.1) u(t) = e-tAa + e-(t-s)Af(s)ds , 

belongs to L2(0,T; D(A2)) N W1,2(0,T; L~) and solves the problem 

u' + A2u = f , a.e. t • (O,T) ; u (0 )=a .  

Furthermore u satisfies the estimate 

foT(llu'll~ + IIm~zll~)dt <_ C(liml/2all~ + fo r Ilfll~dt) 

with C independent of a, f ,  and T .  
(2) Ira • D(A, )  and f • L°(O,T; L;) ,  for some 1 < r,O < oo, then u defined 

by (3,1) is in Ls(O,T; D(mr)) f] WL°(O,T; n•) and solves the problem 

u' + A~u = f , a.e. te(0,T) ; u(O) = a. 

Furthermore u satisfies the estimate 

foT([[u'H~ + [[(1 + A)u]l°,)dt < C(IIaIIw,,, + foTllflf:dt) 

with C depending on T .  

For the proof we refer the reader to Giga-Sohr [8] . 
We now explain in Lemma 3.3 and 3.4 Sohr's approximate solutions to (1.1)- 

(1.2); see [14]. 

L e m m a  3.3 (Miyakawa-Sohr)  (1) Let n = 3, 4, a • L~ and f • L2(O, T; L~). 
Then there is a unique uk in C([0,T]; D(A~/2)) which solves integral equation 

(3.2) u~(t) = e-tAak + e-(t-')A(Fkuk + fk)(s)ds. 

Here, ak = Jka, fk = Jkf ,  F~u = Fk(u,u),  Fk(u,v) = -P2(Sku"  V)v, and 
Jk = (1 + k - l A )  -(1+['/41). (~b] is the largest integer in the real number b.) 

(2) The function uk is in n2(0, T; D(A2)) N W1'2(0, T; L~) and satisfies 

(3.3) u' k + g2uk = h + Fkuk , a.e. t • (O,T) ; uk(O) = ak, 

(3.4) II , (t)ll  + 2 ]0' llA1/2  ll dt <- C(italt  + ]o Ilflf~dt), 
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with C independent of k. Therefore, 

(3.5) {u~} is bounded in L°°(O, T; L~) N L2(O, T; D(A~/2)). 

(3) Let u~ = vk + wk, where 

v (t) = + w , ( t ) =  

Then there are sequences {qk} and {6k} of scalar functions such that 

{Vqk} is bounded in L2(e,T; G2) for each e > 0, 

{VSk} is bounded in L(n+2)/("+x)(0,T; G(n+2)/(,,+l)), and 

Vqk = A v k - - v ~ + f k ,  V S k = A w k - - w  k' - - (Jkuk) 'Vuk  a.e. t e ( O , T ) ,  

where GT is defined in Section.2. Let Pk = qk + 5k. Then 

(3.6) V p k = A u k - - u ' k - - ( J k u k ) . V u k + £  a.e. t e ( O , T ) .  

Treating convergence of vk and wk separately, one can show strong convergence 
of uk and Jkuk in L~(0,T; L2(K)) for each fixed compact set K in f~, (see [14]). 
This lemma yields the following convergence of uk. 

L e m m a  3.4 ( M i y a k a w a - S o h r )  Let n = 3,4, a e  L~ and f e L2(O,T;L~) for 
all T > O. Then there exist subsequences of uk and Jkuk - again denoted by uk 
and Jkuk, for simplicity - with a function u such that 

(3.7) uk--~u weak-star in L°°(O, T; L 2) and 

weakly in L2(0,T; D(A~/2)) for all T > O, 

(3.8) uk--*u strongly in L2(K x (0,T))  for all compact K c c f ~ , T  > O, 

(3.9) Jkuk~u strongly in L2(K × (0,T))  for all compact KCCI2,T > O. 

Moreover u is a weak solution of the problem (1.I)-(1.2). 

Miyakawa and Sohr showed the above two laminas in [14], where they assumed 
that  Q was an exterior domain. However, in the cases a bounded domain, a half- 
space and the whole space the two lemmas can be shown in the same way. 

The next lemma plays an important  role in controlling behavior of the pressures 
Pk, and makes it possible to derive the generalized energy inequality (2.3) after 
passing to the limit. 

L e m m a  3.5 Suppose that V f E G~ for some 1 < r < n, and f e L[oc(-~ ). Then 
there is a unique function g in L~'(f~), l / r*  = 1 / r  - 1/n, such that 

(1) v g  -- v f  ; and (2) Ilgll,- -< IlVgll, = IIVIII~, 
where C is independent of V f . 

Lemma 3.5 is shown e.g. in [8]. 
There are well-known lemmas stated as follows. 
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L e m m a  3.6 (I) If 1 < q < r, uk--*u strongly in L q, and {uk} is bounded in 
L r, then u k ~ u  strongly in L" for q < s < r. 
(2) I fB i saBanachspaee ,  l <_q<r, uk---*ustronglyinLq(O,T;B),and{uk} 
is bounded in L~(0,T; B), then uk~u  strongly in L'(O,T; B) for q < s < r. 

L e m m a  3.7 (Bogovsk i )  Let K C l:l~(n > 2) be a bounded Lipshitz domain, 
1 < r < co, and m be a nonnegative integer. Then there exists a linear operator 
n = n'~: from WT'r(K) into (W$+~"(K)) ~ with the following properties : 

(a) d ivRf  = f for all f • W T " ( K  ) with fg fdx = O, 
(b) IIV'~+~Rfl[, _< elIV'flI, for all f • W:"(K) 
where c = c(K, m, r) > 0 is a constant, 
(c) R f  • (C~°(K)) ~ if f • C~°(K), and R f  = " :  R K f depends only on 
f and g if f • C~°(K). 
(d) R ~ f  = ~Rfd if f •  C~°(K x (0,T)) .  

Lemma 3.7 (a)-(c) are shown e.g. in [2]. When K is starlike with respect to some 
ball B such that  B C K,  we can show the above (d) by Bogovski's formula, i.e., 

RS(~,t) =/ ,~ C(~, y)S(y, t)dy, a(~, y) = (~ - y) ~oo ~(Y + s(~ - y))s~-lds, 

where h • C~°(B) with .fs hdx = 1. When K is a general bounded Lipshitz 
domain, the decomposition of K into finite starlike domains as in [2] yields the 
conclusion. 

4 P r o o f  of T h e o r e m  2.1 a n d  Coro l l a ry  2 .1  

In this Section we assume n = 3 and prove Theorem 2.1 and Corollary 2.1, 
showing that  the function u obtained in Lemma 3.4 is actually a suitable weak 
solution. By Lemma 3.3, and Lemma 3.5, we may assume that  

{qk} is bounded in L2(e,T; n6(fl)),  {bk} is bounded in LS/4(0, T; L15/T(f~)). 

This implies {Pk} is bounded in Lb/4(e, T; Lls/~(K)) for all e, T with 0 < e < T, 
and all compact K CC ~. Then, - an appropriate subsequence of {p~} being 
again denoted by {Pk} -,there exists a function p such that  

(4.1) p e LS/4(e,T; LlS/7(K)),pk~p weakly in L~/t(e,T; L'5/r(K)), 

for all e ,T with 0 < e < T, and all compact K CC ft. 
By (3.6) ,  for any ¢ = (el ,  ¢2, ¢3) e {C~°(f~ x (0, 00))} 3, we have 

0¢ 

Then, using (2.2), (3.7), (3.8), and (3.9), we obtain 

0¢ f f [ - : .   ]d dt = / / t - W .  v¢'+ + r e ' + :  ¢]d dt, 
for any ¢ e {C~°(fl × (0, 00))} 3. Hence {u, p} satisfies the condition 2 of Definition 
3.1. 



37a TANIUCHI Generalized energy equality of the Navier-Stokes equations 

Next, we shall show {u,p}  satisfies the condition 3 of Definition 3.1, i.e., the 
generalized energy inequality. Let ¢ be a non-negative smooth function with 
compact support in 12 × (0, co). Multiplying both sides of (3.6) by 2uk¢ and 
integrating the result identity, we get 

f f  [2u~ . u'~¢ 2Jkuk " i i i i + Vukuk¢ -- 2Aukuk¢ + 2Vpk • uk¢ -- 2 f .  uk¢]dxdt = O. 

By integration by parts, 

f f  2J~. w'~'~Od~dt = f/Jk~. ( v ( l ~ l ~ ) ) ¢ d ~ d t  = - f/J~u~l~l:, vOd~dt, 
and 

Therefore 

(4.2) 2 f f  IW~l:¢d~dt 
? t "  

= /j I~k12(~, + Ao)+ j j  w(u~. v~)dxd~ 

+ 

We discuss the convergence of each term of (4.2) as k-*0. The Sobolev inequality 
yields 

:/5 3/5 IlukllL--(n) --< OlI~klIL,(.)IIv=~IIL=(a), (where C is independent of uk,) 

2 /5  r T x 3 / i 0  

Hence by (3.5), we see that 

(4.3) {uk} is bounded in LI°/a(Ft x (0,T))  for all T > 0. 

Since [[Jkuk[[u0/,(a) < C[[uk[[L,0/,(fl) with C independent of uk, we have 

(4.4) {Jkuk} is bounded in L1°/3(12 x (0,T)) for all T > 0. 

Using (3.8), (3.9), (4.3), (4.4), and Lemma 3.6 (1), we obtain that 

(4.5) uk ,u strongly in L3(K x (0,T))  for all compact K CC ~ , T  > 0. 

(4.6) Jkuk ,u strongly in L3(K x (0,T))  for all compact K CC f / ,T  > 0. 

By (3.5), uk is bounded in n6(0, T; nxs/s(K)) for all compact K CC ~2, T > 0, and 
(3.8) implies also uk ,u strongly in L:(0, T; LlS/S(K)) for all compact K CC fl, 
T > 0. Hence from Lemma 3.6 (2), we see that 

(4.7) uk----*u strongly in Ls(0,T; L15/S(K)) for all compact K CC f l , T  > 0. 

By (4.1) and (4.7) we obtain 

JJff;~(~k v ¢ ) d ~ a t ~  ff~(~ v ¢ ) a ~ t  for all ¢ ~ O ~ ( "  × (0, ~)), (4.S) 
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and by (2.2) and (3.8), 

  ¢dxdt--  ¢dxd  for all ¢ e C~°(fl x (0, oo)). (4.9) 

Using (3.7), we see that  

(4.10) f /  ]Vul2¢dxdt _< liminfk_~oo ff [Vukt2¢dxdt 

for all ¢ e C~°(fl x (0, c~)) with ¢ > 0. We next handle the 4th term on the 
right-side of (4.2). From the HSlder inequality, we see 

_ IIV¢llL~{ll~k--~ll~;q(il~li~;Q+ll~li~;Q)ligk~ll~;Q + I I~II~;QIIJ~'~II~;Q}, 

where I1" II~;Q = I1" II~'(q), Q = supp ¢. Then (4.5) and (4.6) yield 

4.11) f/[u l 2 Jkuk .V Cdzdt ~ f/i 12  v ( 

for all ¢ e C~°(~2 x (0, oo)). (3.8), (4.8), (4.9), (4.10), (4.11), and (4.2) yield 
[Sl4/n the generalized energy inequality. On the other hand (4.1) implies p E "-'toe ~0 x 

(0, oo)). This completes the proof of Theorem 2.1. 
Now, we assume f e L~o~(fl x (0, eo)) for some q > 5/2. Then {u,p} is a 

suitable weak solution on every bounded open set D CC f lx  (0, co). From Lemma 
3.1 we conclude H~(S ¢3 D) = 0 for every bounded open set D CC ~2 x (0, oo). 
One can take a sequence of bounded open sets {Ak}~l  such that  

c o  

Ak CC a × (0, oo), k = 1 , 2 , . . . ,  and f l x  (0, c~) = ~ i A k .  

From the property of Hausdorff measure, we get 

1 oo 
t t l (S)  = H (UI(Ak N S)) < ~ H'(Ak n S) = 0 

k = l  

This completes the proof of Corollary 2.1. 

Remark/,.1. Miyakawa-Sohr [14] showed the existence of a weak solution satis- 
fying the energy inequality for n = 3, 4. Compared with the energy inequality, 
however, it seems to be difficult to prove the generalized energy inequality for 
n = 4. Because in the case of n = 4, we have a lack of information corresponding 
to (4.5), (4.6) and (4.11). There are other difficulties for n = 4. 

5 K e y  l e m m a s  for t h e  p r o o f  o f  T h e o r e m  2.2 

For the proof of Theorem 2.2 and proof of 2.3, we need more precise information 
on {u,p}. 
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L e m m a  5.1 Let a • L2~([2), f • L2(0, T; L~(~I)), and let u be a weak solution of 
(1.1)-(1.2). If u - V u  • L°(O,T; L'(~2)), 1 < r,O < oo, then there are two pair 
{ul ,pl}  and {u2,P2) of functions such that 

ul+u2 --- u a.e ~ × (0, T); 
u~ • L2(6, T; D(A2)) N H~'2(E, T; L~), Vpl • L2(e, T; G2) for all 0 < e < T; 

u2 • L°(O,T;D(A~))N HI'°(O,T;L~),Vp2 • L°(O,T;G~); 

~Ul -AUl  + Vpl = f in L2(e,T; L2(~) ) ;  

~u2 -Au2 + Vp2 = - u .  Vu in L°(O,T; n'(fl)), and u2(O) = O. 

Lemma 5.1 implies that u always has an associated pressure p(= Pl + P2) with 
Vp • {L2(e,T;G2) + LS°(e,T;G~o)} for all (r0,00) • (1,n/(n - 1)) × (1,2) with 
n/ro + 2/0o < n + 1, since u .  Vu • L°°(O,T;L~°(~)). Applying Lemma 3.5, we 

5 
see that p • Ll~ (~ × (0, T)), and that in particular p • L~o¢(fl × (0,T)) for 
n = 3. Using Lemma 5.1, we have: 

L e m m a  5.2 Let a • L 2 ( f l ) , f  •L2(O,T;L2(l~)),e • (O,T), K be a domain hav- 
ing compact -K C -~, and let u be a weak solution of (1.1)-(1.2). If  u .  Vu • 
L~(e,T; LZ(K)), 1 < a,[J < co, then u has the associated pressure p such that 

Vp • {L2(E ', T; G2(K')) + L°(E ', T; G,.( K') ) + L~(s ', T; G~( K') ) }, 

for all e < e' < T, all domain K' with K ---v C K, all r • (1,n/(n - 1)), and all 
0 • (1,2) with n /r  + 2/0 < n + 1. Here 1/r* = l / r -  1/n. 

Proof of Lemma 5.1. 
Let hp : -PpAp + I, ~k : (I + A~_/k) -6, where 5 : n/4 and define us : ~ku. 
Then it follows from Sohr-von Wahl [25, p.435] that uk satisfies the following 
equation 

(5.1) u~ - P2Auk + ~kP,(u.  Vu) = ~ f  in L2(0, T; L2(Ft)). 

By assumption and Sohr-von Wahl [25, p.435] we have ~ P , ( u .  Vu) 6 L2(0, T; 
L2(ft)) N L°(O,T; L'(~)).  This implies that uk is a strong solution of the linear 
Stokes equation 

(5.2)u~+A2u~=F, F = ~ k f - g k P ~ ( u .  Vu) a.e. t 6 (0,T), uk(0)=~ku(0). 

On the other hand, there exist two solutions vk, wk 6 L2(0, T; D(A2))NW~'2(0, T; 
L 2) of the equations 

(5.3) 

(5.4) 

respectively. 
tion, we have 
(5.5) 

~Vk 
+ A2v~ = ~kf,  vk(O) = uk(O) = ~ka, 

Ot 
Owk 
Ot + A2wk = - ~ P ~ ( u .  Vu), wk(0) = 0, 

From the uniqueness of strong solutions of the linear Stokes equa- 

uk(t) = vk(t) + wk(t) a.e. t 6 (O,T) 
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Let us estimate vk and wk in the similar manner to Miyakawa-Sohr [14]. By 
Lemma 3.2 we see that 

(5.6) {wk} is bounded in L°(0,T; D(A,.)) fq W~'r(0,T; L:), 

(5.7) (llv~ll~ + [[Avklt~)dt < C([tAV2v~(e)II~ + ttfllgdt) for 0 < ¢ < T. 

with C independent of e, since II~kYll= -< cIIfll=, II~kPJu" Vu)ll~ _< Cllu. Vull~. 
Integrating (5.7) in s on (0, T), we have 

(5s) for,(lt  llN + ttA  ltN)dt <__ C(]oorllA /   (,)nNdt + T]oo ll llNd,). 
Multiplying (5.3) by 2vk, we obtain 

0 t  - - 

Application of Gronwall's lemma yields 

(5.9) IlvkCt)ll~ + 2 f f  IIA~/2vkll~dt C(llvk(0)ll~ + .iT II.fll~dt) 

= C(IIg~aH~ + f T Ilfll~ dr) 

_< C(llall~ + fo r Ilfll~dt). 

By (5.8) and (5.9), there holds 

(5.10) vk is bounded in L2(s,T; D(A2) )N  WI'z(~,T; L~) for each fixd e > 0. 

Then there exist subsequences of {vk},{w~}, which we denote by {Vk},{Wk} 
themselves for simplicity, and functions v, w such that 

v • L2(~,T; (A2)) n WI '2(s ,T;  L~(f/)); 

w • Le(0, T; (A~)) f3 WI'°(0, T; n:(fl))); 

vk----~v weakly in L2(e, T; (A2)); 
0 0 

-~vk- - -~-~v  weakly in L2(E,T; n~(fl)); 

wk-----.~w weakly in L°(0, T; (At)); 
0 0 

-~w~---- . -~w weakly in L°(0, T; L;(f/)), 

for all 0 < ~ < T. Moreover, from (5.3),(5.4), and (5.5) we have 

(5.11) u = v + w a.e.f~ x (0,T), 
(5.12) v~ + A2v = f in L2(e,T; L~(f~)) for all 0 < ~ < T, 

(5.13) wt + Azw = - P , ( u .  Vu) in L°(0,T; n;(a)) ,  w(0) = 0. 

Clearly, f - v, + Av  • L2(¢,T;G2)),  - u .  V u  - wt + Au  E L°(O,T;G,.). Then 
there exist Vp~ • L2(E,T; G2)),Vp2 • L°(0,T; G,) such that 

Vpl = f - vt + Av in L2(e, T; L~(f~)) for all 0 < ~ < T, 

Vp2 = - u .  V u  - wt + A w  in L°(O,T; L~(f~)). 
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This completes the proof Lemma 5.1. 
Next we prove Lemma 5.2, using Lemma 3.7 

Proof of Lemma 5.2. 
Let us fix r,O E (1, co) so that n/r  ÷ 2/~ > n-I- 1. Since u E L~(O,T;L~) N 

2 1 2  L (0,T; H~:g) implies u - V u  E ne(0,T; n'(~)), by Lemma 5.1 there exist two 
pairs {ul,Pl}, {u2,p2} such that 

(5.14) ~ =u1+~2,  p : p l + p 2 a . e .  ~x(0 ,T);  
(5.15) ul E L2(~,T; D(m2)) N HI'2(~,T; n~),Vpl E L2(e,T; G2); 

(5.16) u2 E Le(O,T;D(A,))NHI'°(O,T;L:),Vp2 E Le(O,T;G,); 
(5.17) ~ u l - A u l  + Vpl = f in L2(e, T; L~(~)); 

(5.18) ~u2-Au2 + Vp2 = - u .  Vu in Le(0,T; L'(12)), and u2(0) = 0. 

for all 0 < ~ < T. Let K and K ~ be compact domains in 12 satisfying K ~ C K with 
smooth boundaries OK and OK'. Let ¢ be a smooth scalar function satisfying 
¢ E C~(K) and ¢ = 1 in K'. From Lemma 3.5, we have 

Pl 6 L2(e,T; L2"(~t)),p2 E ne(0,T; L"(fl)) ,  

where 1/2" : 1/2 - 1/n, and 1/r* = 1/r - 1/n. Since r, 0 < 2 and since K is 
compact, this yields 

(5.19) p E L°(v, T; L'" (K)), Vp E ne(e, T; L~(K)), 

(5.14)-(5.16) imply 

(5.20) u E L~(0, T; L2(K)) N L2(0, T; WI'2(K)) 

N Le(e, T; W2"(K)) N gl'°(e, T; L'(K)); 

(5.21) Ou Au + Vp = - u .  Vu ÷ f E Le(E, T; L~(K)). 
0t 

Now, we recall Lemma 3.7 (Bogovski's lemma). We easily prove that if 1 < " /<  
co, 1 < 7z _< 72 <: co, then 

R ~ g  = R y g  for all g e W~'~(K); 
R'~'V'g = R~mg for all g E W:m(K) ;  

d 0~ 0~ d ~ R ~  g = R~ ~-~g for all g E HI'e(O,T;L~(K)). 

Set ~ = Cu, v = R~2(V¢ • u), w = £ - v, and/5 = Cp. We find that 

(5.22) ~, V~(= V¢.  u) E L~(0, T; L2(K)) N L2(0,T; W~'2(K)) 
n Le(e, T; W~"(K)) N Hl'e(e, T; L~(K)), 

(5.23) V/5 = CVp + pVCE Le(~,T;L'(K)), 
(5.24) v RK(V¢ u) R~.'(V¢ u) 1,2 . . . . .  RK (re .  ~), 
(5.25) v E L~(O,T;W~'2(K)) N L2(O,T;W:o'2(K)) 

NLe(e, T; W~'~(K)) N Hl'e(¢, T; W~'~(K)), and 

(5.26) div v = V£ = V¢.  u. 
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In (5.26) note that f V ¢ .  udx = 0. By (5.21), we have 

0fi 
0-7 - z ~  + v ~  = ¢ ( f - ~  • v u )  

- 2 V ¢ .  Vu - u&¢ + p V ¢  in L°(e,T;L~(K)). 

By (5.22),(5.25),we can take e'(e' > E) such that ~(e'),v(e') 6 Wol'2(K)N 
W~'~(K). Let Ar,K be the Stokes operator on L~(K) and P,.K be the projec- 
tion operator from L'(K) onto L~(K). Then we see that w(= ~ - v) is a unique 
strong solution of the following Stokes equation, 

0_~_w _ Aw + V# : F in L°(e, T; Lr(K)), & 
V . w = O ,  
wloK = O, w(d) = fi(e') - v(d) 6 W2o"(K) N L~(K) = D(A,,K), 

Ov 
where F = ¢ ( f  - u .  Vu) - 2 V ¢ .  Vu  - uA¢  + pV¢  - - ~  + Av. As in the proof 

of Lemma 5.1, we decompose this Stokes equation as 

Ow---! - Aw~ + Vp~ = F~ in L°(d,T; L~(K)), 
Ot 

d i V W l = 0 ,  Wl]oK = O, 
z/2 

Wl(d) = fi(e') -- v(d) 6 D(A2,u) N D(A~,K), 

Ow---! - AT2 + Vp2 = F2 in L°(s ', T; L~(K)), 
Ot 

d i v w 2 = 0 ,  w2]og=O, 
w~(~') = 0, 

I Ow---13 - &w3 + Vp3 = F3 in Le(d,T;  L~(K)), 
0t 

d i r T 3 = 0 ,  w31aK = O, 
w~(~') = 0, 

where 

F = F1 + F2 + Fa with FI = e f  - 2V¢ .  Vu - u A ¢  + Av, 
Ov 

F 2 = p V ¢ - - ~ ,  F z = ¢ ( - u ' V u ) .  

These Stokes equations have unique strong solutions Wl, w2, w3 in L°(s ', T; D(A~,K 
)) N Hl'°(e',T; L~(K)), respectively. Clearly it follows that w = Wl + w2 + 
wa, /5 = p, + P R + P 3  a.e.(x,t) 6 K x (d ,T) .  By (5.22),(5.25) and (5.19) we 
obtain 

F1 6 L2(s ', T; L2(K)), F2 6 Lo(e ', T; L'" (K)), 
F3 6 L~(e ', T; L~(K)). 

Hence by Lemma 3.2 we have 

Vpl 6 L2(s ', T; G2(K)), Vp2 6 L°(d,T; G,.(K)), 
Vp3 6 L~(e',T; Go(K)), 

which yields 

Vp 6 {L~(d,T;G2(K')) + L°(d,T; G,.(K')) + L~(d,T;Gp(K'))}, 

since ~ = p in K'. This is valid for a.e.6' 6 (~,T), and this completes the proof 

of Lemma 5.2. 
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6 P r o o f  o f  T h e o r e m s  2 . 2  a n d  2 . 3  

For the proof of Theorems 2.2 and 2.3 we state the following lemma. 

L e m m a  6.1 / fv  E n~(0, T; L2(f2)) n L2(0, T; Wl,:(12)) n L'(0, T; Lq(f~)), where 

1 / q + l / s < _ 1 / 2 ,  q > 4  for n > 4 ,  

1 / q + l / s <  1/2, 3 / q + l / s <  1 for n = 3 ,  

then v.  Vv  E L"(O,T;Lq'(f~)) where 1/s + 1/s' = 1, 1/q+ 1/q' = 1. Moreover 
v E L'(f l  x (O,T)). 

Proof of Lemma 6.1. 
Let us first find the exponents r and /9 guaranteeing v E L°(O,T; Lr(gl)) if 

v E L°°(0,T; L2(f~))OL2(O,T; WI'2(f}))AL'(O,T; nq(12)), 2 < q < oo, 1 < s < oo. 
We have 

~ 1 2q 
I1~-Vv l l , -< l l v l t~ -~ l l v l l~ l lWl l~ ,  a = (1 - r )  for 1 < r < - - - - ~ ,  - - q +  

IIv Vvll ,< v ~ 2-~ .1 1 1 ,  1 1 2 q  n • II II~llvllw,.=, , ~ t ~ + ~ - ~ ) = - + - - 1  for < r < - -  
- r n q + 2  - n - l "  

Letting d > 1, we obtain 
I d - I  

Itv. Vvll~dt < sup IIv(t)ll~ l-x)° vll~°~dt Vvlt~-'dt for l < r <  
- 0_<t<_T ' - -  - - q + 2 '  

d--I 1 

tJHVHwIT~' dt~ for <r . 
- ' - n - I  

Then v. Vv E Le(0, T; Lr(~)) if there is d > 1 such that 

0d 
A0d_<s, d - I  -<2' forl <r<2q/(q+2),0_>l ,  or 

,~Od<_s, (2-~)dU_--~d 1 _<2for2q/(q+2)<r_<n/(n-l) ,0_> I. 

Hence we see that v. Vv E L°(0,T; L'(fl)), where 

(6.1) 4q + s(q - 2) _< 2(q -19 2)s ~.q 
2q 

- -  , or + , 0>__1, 1 _ < r < 2 +  q 

(6.2) ( s - 2 ) ( n - 1 ) q + s ( 2 n + 2 q - n q ) < n ( s - 2 ) q  + (2n+2q-nq)s ,  
- r 0 

2q n 
~ < r <  0>_1. 
2 + q  n - l '  

We can get a sufficient condition in order to v. Vv E L"(O, T; L¢(f~)). This is 
guaranteed by (6.1) with (r, 0) replaced by (q~, s'), i.e., 

2 / q + 2 / s < 1 ,  s > l ,  q > 4 .  

Another sufficient condition is represented by (6.2) with (r, 0) replaced by (q', s'), 
i , e . )  

n / q + ( 4 - n ) / s < l ,  s > l ,  n<_q<4 .  
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Therefore under the hypothesis of Lemma 6.1, v.  Vv E L"(0,T; L4(gt)). 
We easily show that v E L4(~ x (0, T)) under the hypothesis of Lemma 6.1. 

This completes the proof of Lemma 6.1. 

Proof of Theorem 2.2. 
Let K be a compact domain in gl with smooth boundary OK. By Lemma 6.1 
and Lemma 5.2, {u,p} satisfy that 

(6.3) u. Vu e L"(e ,T : L4(K)), 
s I I (6.4) VpE {L2(e ' ,T;G2(K'))+Le(~' ,T;G,.(K'))+L (e,T;G¢(K'))} ,  

for all e' E (e,T), all K'  C K, and all (r, 0) e (1,n/(n - 1)) x (1,2) with 
n/r  -F 2/0 > n + 1, 

Z (6.5) { - ( u , ¢ t ) + ( V u ,  V ¢ ) + ( u . V u , ¢ ) + ( V p , ¢ ) - ( / , ¢ ) } d t = O ,  

for all ¢ E {C~(a  x (0,T))} ~. 
Now we consider the mollification of u given by 

~mC~,t) = ]o T £ o = ( ~ -  ~',t-t')~(~',t')e~'et'. 

Here 

p,,(=,t) = { 0, for I=12 + Itl 2 _> l / m  2, 
C m  "+1 exp{(m=l=l = + ~=ltt = - 1)-1}, for I=1 ~ + Itl 2 < 1 / ~  =, 

where C are chosen so that f°_~oo f ~  p, dx = 1. Since u E L2(0,T; W~'2(fl))n 
L'(E, T; Lq(K)), it follows that 

(6.6) II~m - ~ll~,(0,T,w,,(,))-~0, as , - - ~ ,  

(6.7) II~,,,, - ~'IIL.(,,,T,~,(~'))--'0 ~ m--- ,~,  for all ~' e (e,T),  all ~ C/4. 

Let ¢ e C~(K × (~,T)). From (6.5) we obtain, for large . , ,  

Ou,,~ 
(6.s) o-7- - z ~  + (~ .  w ) ~  + Vp~ = f~ ,  v . ~  = 0 

in a neighborhood of supp ¢. Here (u.  Vu),, and Pm are the mollifications of 
u .  Vu and p, respectively. Multiplying (6.8) by 2u,,¢ and integrating the result 
identity, we have 

+2pmum' V¢ + 2(urn" f,,)¢]dxdt 

Letting ~ = (r*)*, i.e., 1/(r*)* = 1 / r - 2 / n ,  and applying Lemma 3.5, we obtain 

p e {L=(e',T; L2(K')) + n°(~',T; L~(K')) + L"(~',T; M'(K'))}, 

for all ~' E (e,T), all K C K, and all (A,8) e (1 ,~ )  x (1,2) with n/A + 2/8 >_ 
n - 1. Since the hypotheses of Theorem 2.2 imply n/q' + 2Is' > n - 1, we see 
that 
(6.10) p E {L2(E',T; L2(K')) + L"te ' ,T;  L#(K'))}. 
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Letting m ~ c o  and using (6.9) and (6.10) we get 

/o /o 
Since u • L~¢(~ x (0, T)), we have 

1 T 
= 

Hence we get the generalized energy equality on (e, T) x K. This completes the 
proof of Theorem 2.2. 

Proof of Theorem 2.3. 
Let u satisfy the hypothesis of Theorem 2.3. Then Lemma 6.1 and [24, Theorem 
2.1] yield the usual energy equality (1.5). As we have seen in the proof of Theorem 
2.2, to get the generalized energy equality, it is essential to derive the class of 
the associated pressure p. In fact, by Lemma 5.1, we see 

Vp • L2(e,T; G2(12)) + L" (~,T; eq,(12)) 

for all e • (0,T). Then using this instead of (6.10), we can argue similarly to 
the proof of Theorem 2.2 and get the conclusion. 
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