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S u m m a r y .  We construct spectral triples in a sense of noncommutative differ- 
ential geometry, associated with a Riemannian foliation on a compact manifold, 
and describe its dimension spectrum. 

0. I n t r o d u c t i o n  

According to [9, 8], the initial datum of noncommutat ive differential geometry 
is a spectral triple (`4,7-/, D) (see Section 3.1 for the definition), which provides 
a description of the corresponding geometrical space in terms of spectral data 
of geometrical operators on this space. 

The purpose of this paper is to construct spectral triples given by transver- 
sally elliptic operators with respect to a foliation on a compact manifold and 
describe its dimension. The first result of the paper is the following theorem: 

T h e o r e m  1. Given a closed foliated manifold (M, Jr), let a triple (A,7-I, D) be 
defined as follows: 
I. ,4 is the involutive algebra C~(G~) of smooth, compactly supported functions 

on the holonomy groupoid Gj: of the foliation :P; 
2. 7"l is the Hilbert space L2(M,E) of L~-sections of a holonomy equivariant 

Hermitian vector bundle E equipped with the .-representation R~ of the al- 
gebra ,4 (13); 

3. D is a first order self-adjoint transversally elliptic operator in L~(M, E) with 
the holonomy invariant transversal principal symbol such that the operator 
D 2 is self-adjoint and has the scalar principal symbol. 

Then (`4, 7t, D) is a finite-dimensional spectral triple. 

A geometrical example of spectral triples considered in Theorem 1 is given 
by the transverse signature operator on a Riemannian foliation. 
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Example I. Let (M, ~-) be a Riemannian foliation, equipped with a bundle-like 
metric gM. Let F = T.Z- be the integrable distribution in T M  of tangent p-planes 
to the foliation, and H = F ± be the orthogonal complement to F.  So we have 
a decomposition of T M  into a direct sum T M  = F (9 H and the corresponding 
decomposition of the de Rham differential d in the form d = dF + dH + O, where 
the tangential de Rham differential dF and the transversal de Rham differential 
dH are first order differential operators, and 0 is zeroth order. 

To define a spectral triple (A,7-/, D), we take the Hilbert space 7-/ to be the 
space L2(M, A ' H * )  of transversal differential forms, equipped with the natural 
action of the algebra A = C~(G) ,  and the operator D to be the transverse 
signature operator dH + 6H (see Section 3.2 for more details). 

Transversally elliptic operators on manifolds, equipped with an action of a 
compact Lie group, were introduced by Atiyah and Singer in [2]. In the context of 
noncommutative differential geometry, these operators appeared in [6] to provide 
examples of Fredholm modules, associated with foliated manifolds. Namely, it 
was proved there that any zeroth order transversally elliptic operator with the 
holonomy invariant transversal principal symbol gives rise to a finite-dimensional 
Fredholm module over the foliation algebra C~(G~,)  (see also [7, 17]). Theorem 1 
provides an extension of the above mentioned result to the case of transversally 
elliptic operators of positive order. 

The next problem is to describe dimension of the spectral triples in question. 
The usual notion of dimension for a general spectral triple (.4, "H, D) ([7])is given 
by the degree of summability d of the operator (D - i) -1, that is, by the least 
p such that  the operator a(D - i) -1, a C A is an operator of the Schatten ideal 
/:P('H). In the case under consideration, d is equal to the codimension q of the 
foliation .T (see Proposition 17 for a proof). If we are looking at a geometrical 
space as a union of pieces of different dimensions, this notion of dimension of 
the corresponding spectral triple gives only an upper bound on dimensions of 
various pieces. To take into account lower dimensional pieces of the space under 
consideration, Connes and Moscovici [9] suggested that the correct notion of 
dimension is given not by a single real number d but by a subset Sd C C, which 
is called the dimension spectrum of the given triple (see Section 3.1 for the 
definition). 

The second result of the paper is a description of the spectrum dimension of 
the spectral triples defined in Theorem 1. 

T h e o r e m  2. A spectral triple (.4, 7-[, D) as in Theorem 1 has discrete dimension 
spectrum Sd, which is contained in the set {v E N : v <_ q} and simple. 

In [24], the author studied analytic properties of transversally elliptic opera- 
tors with respect to noncompact Lie group actions. In particular, results of [24] 
allows us to define (finite-dimensional) Fredholm modules given by transversally 
elliptic operators with the invariant transversal principal symbol on a smooth 
manifold equipped with a Lie group action and claim that the corresponding 
spectral triples have discrete dimension spectrum (but the dimension spectrum 
might be not simple, if there are singular orbits). In this paper, we combine 
general methods of [24] with a further elaboration of pseudodifferential calculus 
on foliated manifolds [26, 25] to give a more precise description of the dimension 
spectrum for spectral triples associated with foliated manifolds. 
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This  work concerns to the simplest  examples of spectral  tr iples associated 
with foliated manifolds. In the forthcoming paper  [27], we will extend our consid- 
erations to foliated manifolds, equipped with a t r iangular  transversal  structure 
as in [9], using a transversal pseudodifferential calculus, modelled on the Beals- 
Greiner pseudodifferential calculus on Heisenberg manifolds (see [3, 9]). 

Contents:  
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1.1. Prel iminaries  
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1.3. Anisotropic Sobolev spaces and classes g'm,t ' (M, .T, E )  
1.4. Symbolic  properties of # m ' - ° ° ( M ,  .T, E)  
1.5. Residue trace 

2. Transversally elliptic operators 
2.1. Definition and basic properties 
2.2. Complex powers 
2.3. G-trace 
2.4. Zeta-function 

3. Spectral  triples of Riemannian foliations 
3.1. Proof  of main  theorems 
3.2. Geometr ic  example 
3.3. Concluding remarks 

1. T r a n s v e r s a l  p s e u d o d i f f e r e n f i a l  c a l c u l u s  

1.1. Prel iminaries  

Throughout  in the paper, we consider a closed, connected, oriented foliated 
manifold  (M, Y), dim M = n, dim 9 v = p, p + q  = n, and a complex vector bundle 
E on M of rank r. We fix a Riemannian metr ic  on M with the corresponding 
distance p and an Hermit ian structure on E. 

We will denote by G = G7  the holonomy groupoid of (M, F') .  G is equipped 
with the source and the target maps s, r : G -+ M.  We will make use of s tandard  
notat ion:  G (°) = M is the set of objects, G * = {7 E G : r (7  ) = x}, G~ = {7 E 
G : s(7 ) = r (7  ) = x}, x C M. For any x E M,  s defines a covering map  from G * 
to the leaf through the point x associated with the holonomy group G~ of the 
leaf. We will identify a point z E M with the identi ty element in G~. Let dz be 
the Riemannian volume form on M, ,kL the Riemannian  volume form on a leaf 
L of ~ and, for any x E M, A * its lift to a density on the holonomy covering 
G*. We will make use of notat ion (z ,  y) E IV x I q ( I  = ( - 1 ,  1)) for the local 
coordinates given by a foliated chart ~ : I v x Iq --+ M and ({, rl) E IRP x 1Rq for 
the dual  coordinates  (in T* M).  

The holonomy groupoid G has tile structure of a smooth manifold  of di- 
mension 2p + q. Recall briefly the construction of  an at las on G [5]. Let 
n : I v x I q ---+ M , n '  : I v x lq ---+ M ,  be two foliated charts, 7r : {0} x I q --+ 
rr({0} x Iq) = Dq C M, rd : {0} x Iq -+ rr'({0} x Iq) = D'q C M be the 
corresponding transversals to the foliation. The foliation charts ~, ~' are called 
c o m p a r t i b l e ,  if, for any points m E U = ~( I  v x Iq) and m'  E U'  = ~ ' ( I  v x Iq) 
such tha t  m = ~(:r.,y), m'  = ~ ' ( z ' , y ) ,  there is a leafwise pa th  7 from m to 
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m'  such that  the corresponding holonomy map h~ maps the germ rr,n of the 
transversal 7r at the point m to the germ 7r,n,' of the transversal ~r' at the point 
m t : h~ I .irra = t 7r tr~ l . 

For any pair of compartible foliation charts, ~ and ~', let W(~:, ~') be a subset 
in Gy :  

W(t% ~') = {7 E G :  s(~[) = m E U , r ( 7 )  = m '  E U ' ,hvTrm = 7rtm,}, 

equipped with a coordinate map 

F : I p x I p x I q ---+ W(x ,R ' ) ,  (i) 

which associates to any (x, x', y) 6 I p x I p x I q the element 7 E W(~, x') such 
that  s(7 ) = m = n(x, y), r(7 ) = m'  = ~'(x' ,  y) and hvrrn = 7r m,' • 

As shown in [5], the coordinate patches W(~, td) form an atlas of a 2p + q- 
dimensional manifold on G. 

Denote by C ~ ( G ,  £ ( E ) )  the space of smooth, compactly supported sections 
of the vector bundle ( s 'E)*  ® r*E on G. Otherwise speaking, the value of k E 
C g ° ( G , £ ( E ) )  at any point 7 6 G is a linear map k(7) : E,[-t) --+ E~(7). Any 
element k e C~(G, Z(E)) defines an operator RE(k ) :  C~°(M, E) --* C~°(M, E) 
by the formula 

RE(k )u (x )  = ~ k(7)u(s(7))dA~(7), u E C°~(M, E),  x E M.  (2) 

which is said to be a tangential operator on (M,.¢') defined by the tangential 
kernel k. 

1.2. Classes kprn'-°°(M, .7:, E) 

In this section, we introduce the algebra gt*,-°°(M, }', E) of transversal pseudod- 
ifferential operators on the foliated manifold (M, ~'), which can be considered 
as an analogue of the algebra of pseudodifferentiM operators on a closed man- 
ifold. This algebra can be realized as a Guillemin-Sternberg algebra T¢~; [11], 
corresponding to a coisotropic conic submanifold ~U in the punctured cotangent 
bundle T * M  (see below), therefore, many its properties can be deduced, just 
referring to the corresponding results for these general algebras. Here we prefer 
to give direct proofs (when it is possible), since this is simpler and allows us to 
extend these results to more general cases [27]. 

Recall that  a function k 6 C°°( I  p x IP x Iq x II~q, £(C~)) belongs to the class 
S m ( I  v x IP x Iq x Nq,£(Cr)) ,  if, for any multiindices a and fl, there exists a 
constant C~,,p > 0 such that  

IlO~OOfx x'  k ( z ,  z ' ,  y, g/)[[ < C(~(1 --1- [r/I) m-la[,  ( z ,  z ' ,  y) E I p x I p x I q, 71 E I~ q. ( , ,u) 

In what follows, we will consider only classical symbols. Recall that  a function 
k E C~°(I  p x I p x Iq x Nq,£.(Cr)) is a classical  s y m b o l  of order z E C 
(k E SZ ' - ° ° ( I  p x IP x Iq x N'~,I~P,£(cr))),  i fk  is represented as an asymptotic 
sum 
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k(z, z', v, 7) ~ ~ e( ,)k,_~ (z, z', v, ,), 
j=o 

where k~_ 1 E C ~ ( I  p x I p x Iq × (Rq\{0}) , / : (C ' ) )  is homogeneous in 77 of degree 
z -  j ,  that  is, 

kz_ i ( z ,  z',  y, tr]) = tZ-J k~_j(z ,  z ' ,  y, y), t > O, 

and 0 is a smooth function on l~q such that  O(r/) = 0 for I01 < 1, 0(7) = I for 
101 >__ 2. 

A symbol k e Sm( I  p x F x I q x ]~q,£(C~)) defines an operator A : 
C ~ ( I " , ~ )  --* C ~ ( I " , C  ~) by the formula 

A~(z,y)=(2~)-q f e~(v-Y')'k(z,z',y,,7)~,(z',y')dz'ay'd,7, (3) 

where u E C°°c ~ (In, ~ ), z E I p, y E I q. Denote by ¢m, -  c~ ( i  n ' i p, Cr ) the class of 
operators of the form (3) with k e Sm( I  p x I p x Iq x ]~q,L(Cr)) such that its 
Schwartz kernel is compactly supported in I"  x I " .  

It is very useful to note that the algebra k~*,-°° ( I  n, I p, C r ) has the structure 
of a crossed product of an algebra of pseudodifferentiM operators on transversals 
to the foliation (in y variables) by the leafwise equivalence relation. More pre- 
cisely, it can be formulated as follows. If we represent the space L2(I  ",  ~ )  as the 
L 2 space of L 2 (Iq, U'))-valued functions on I p , n ~ ( I  n, C r ) = L 2 ( I  v, L 2 (Iq, C ~)), 
then an operator A E k~m'-~(I  ", I p, C ~) can be written in the following form: 

/ A(z ,  z ' ) f t (z ' )  dx', z e I p, (4) Aft(x) 

where ~ e C~U~,L2(Z~,C~)) such that ft(z) e C~(Zq, C ~) for any z e Z~, and, 
for any z E I p, x t E I p, the operator A(z ,  z ')  is a pseudodifferential operator of 
order m on Iq: 

f e (v-v ) "k (x , z ' , y , ,~ )v (y ' )dy '  ao, v e C ~ ( I ~ , C ) .  (5) d ( x ,  x ' )v(y)  = (2r) -q i ' 

The principal symbol of A E g ' m ' - ~ ( I n , I P , C ~ )  is defined to be a matrix- 
valued function ~rA on I p x /P x Iq x (li~q\{0}) given by the formula 

~a(~ ,z ' ,v ,  ~) = kin(z, z', V, ~), (6) 

where km is the homogeneous (of degree m) component of the complete symbol 
k of the operator A. We have the following properties of the principal symbols 
of operators from ~m.-oo ( i  n ' i p, C~ ). 

L e m m a  1. (1) Given A E ~ m " - ° ° ( I " , I P , C ~ )  and B e # m " - ° ° ( I n , I P , C ~ ) ,  
fhe composition C = A B  belongs ~o the class ~ m ~ + m " ' - ~ ° ( I n , F , ~ ) ,  and its 
principal symbol ac  is given by ihe formula 

~rc(z, ' : [ x ,y ,~)  O'A(X,Xt',Y,~)CrB(X't,xt, Y,~?)dx". 
d 
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(2) The principal symbol ~rA of an operator A E k~'n'-oo(In,IP,~) is trans- 
formed under a foliated coordinate change xl = ¢(x, y), Yl = ¢(Y), via the fol- 
lowing formula 

aA, (¢(x,  y), ¢(Z', y), ¢(y),  (de(y)*)-1(0))  = aA(X, x', y, 7), 

where the operator A is assumed to be written in the coordinates C a, y) and A1 
denotes the operator A, written in the coordinates (xl, Yl). 

Proof. If A E ~rn,-oo(in,  Ip ' CY) is written in the form (4), the principal symbol 
crA of A can be expressed in terms of the principal symbols eA(~,~,) of the 
operators  A(x, x ' )  as follows: 

~A(~, z', y, 7) = ~a(~,~,)(y, 7). 

If  operators  A E ~ml'-oo(I'~,IP,C r) and B E k~m2'-oo(In,/P,C r)  are written 
in the form (4) with the corresponding families A(x, z') E O'nl(Iq,qL'~) and 
B(x, x') E ff, m~ (Iq, (U') accordingly, then it is easy to see that  the composition 
C = AB is writ ten in the form (4) with 

C(z, z') = f A(z, xll)B(xll~ xl)dx II, 

Using these facts and standard pseudodifferential calculus, the l emma can be 
easily proved. 

If ~ : I p x I q ---+ U -- t~(I p x I ~) C M, t~' : I p x lq ~ U' = ~'(I p x Iq) C M, 
are two compart ible  foliated charts on M equipped with trivializations of the 
vector bundle E over them, we can transfer an operator A E ~rn,-oo ( i  n, i p, ~Z" ) 
to an operator  A' : C~(U, E) ~ C~(U',  E), which extends in a trivial way to 
an operator  in C°°(M, E), denoted also by A ~. The resulting operator A' is said 
to be a n  e l e m e n t a r y  o p e r a t o r  of class kT/m,-oo(M, fly, E). 

D e f i n i t i o n  1. The class ~m,-~(M,  ~,  E) consists of operators A, acting from 
COO(M,E) to COO(M,E), such that A can be represented in the form A = 
~-'~ki= 1 Ai + K, where A, are elementary operators of class ~m,-oo(M, fly, E), cor- 
responding to some pairs ni, ~ of compartible foliated charts, K E ~-oo(M, E). 

To give an invariant definition of the principal symbol for operators of 
k~m'-°O(M, flY, E), let us show how these operators can be represented as Fourier 
integral operators ,  associated with some canonical relation on the punctured 
cotangent space T*M = T ' M \ { 0 } .  

It  is well-known that  the foliation fly can be lifted to a foliation 9rN in 
the punctured conormal bundle/?*fly, which is transversally parallelizable and, 
therefore, has tr ivial  holonomy (see [28]). In local coordinates (x, y, 7) on N*fly 
given by a foliated chart on M,  plaques of the foliation flyN are defined by 
y = const ,7  = const. It  is easy to see that  the leaf Lv of the foliation flyN 
through a point 7/E N*fly is diffeomorphic to the holonomy covering G~ of the 
leaf Lx, x = r(r/), of the foliation fly through the point z, therefore, we can give 
the following description of the holonomy groupoid of fly~¢. 

P~ecall that ,  for any smooth leafwise path  7 from x E M to y E M, there is 
defined the map  dh~ : N;fly --* N;fly, being the codifferential of the holonomy 
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map hx, corresponding to 7 (cf., for instance, [7]). The holonomy groupoid Gy u 
of the lifted foliation YN consists of all (7, 77) 6 Gy  x N ' Y  such that r(7) = ~r(r]) 
with the source map s : GTN ~ N *br,s(7,r]) = dh~r(rl) and the target map 

r : GyN --* N*~-, r(7, 77) = r/. The bundle map r : /~*Y ~ M induces a map 
7rc : G y  N ~ G y b y  

~c(7, ~) = r ,  (7, ~) e azN. 
There is also a symplectic description of the lifted foliation. Consider T * M  

as a syrnplectic manifold, equipped with the canonical symplectic structure. 
Then N*Y is a coisotropic submanifold in 7~*M, and the foliation Ylv is the 
corresponding null-foliation. It is welt-known that the mapping 

(r, s ) :  G~ N ---* :~*M x T ' M  (7) 

defines an immersed canonical relation in T ' M ,  which is often called by the 
flowout of the coisotropic submanifold N*Y. 

It  can be easily checked that the algebra of Fourier integral operators, as- 
sociated with this canonical relation, is the algebra ff '*,-~(M, Y, E) introduced 
above. We only need to be more precise about the immersed canonical rela- 
tion (7). Namely, let us define the space I m ( M  x M,  G ~ , )  of compactly sup- 
ported Lagrangian distributions, taking finite sums of elementary Lagrangian 
distributions as we did above in the definition of classes ~ * , - ~ ( M , Y ,  E). A 
precise statement is that the class ~ m ' - ~ ( M ,  Y, E) consists of all operators in 
C°°( M,  E)  with Schwartz kernels from the space Im-Pl~( M x M,  G ~ , ) .  

Now let us show how the notion of the principal symbol of operators of class 
~ m ' - ~ ( M ,  ~', E) as Fourier integrM operators agrees with the local definition 
given by (6). According to [18, Section 25.1], the principal symbol of an operator 
of class ~t'%-c~ (M, Y, E) as a Fourier integral operator is a hMf-density on G~: N 
homogeneous of degree re+q~2 defined as follows. Let ~ : I p x I q ~ U = ~(I  p x 
Iq ) C M,  ~' : I p x Iq ---+ U' = ~' ( I p x Iq ) C M ,  be two compartible foliated charts 
on M equipped with trivializations of the vector bundle E over them. Define 
a foliated coordinate map Fly : IP x I p x Iq x ~q --4 G y  N by Fly(x, z', y, 71) = 
( F ( z , z ' , y ) , ( d x ' * ) - l ( x ' , y , ~ ) ) ,  where (z,z ' ,y,r])  6 I v x I v x I q x ~q, F is the 
coordinate map given by (1) and (dx'*) -1 : I p x Iq x ~q ~ / V * Y  is the inverse 
to the codifferential of x'. In this coordinate chart, the half-density principal 
symbol era of an elementary operator A 6 f f t m ' - m ( M , Y , E )  (given by (3) in 
W(~, e~')) is defined to be equal to 

kin(z, x', y, rl)(dx dz '  dy dr]) 1/2, (8) 

where  krn is the homogeneous component of the complete symbol k of degree 
m. The half-density (8) can be identified with a leafwise half-density, using 
the canonical transversal symplectic form dy drl, and, moreover, with a smooth 
section from C°°(Gj:u,  £Qr*E)), using the fixed leafwise density A = {An : L 6 
M / Y } .  

Let Sm(GyN,  r ' E )  be the space of alt sections s 6 C~(G~:N, £(~r*E)), s = 
s(7, ~) homogeneous in r /of degree m such that ~ra(supp s) is compact in Gy.  
Then the principal symbol ~rA of an operator A 6 ~m'-°°(M,  Y, E) is globally 
defined as an element of Sm(G~:u,v*E).  We can also consider the principal 
symbol of the operator A as the corresponding tangential operator R~.E(O'A) on 

N*Y with respect to YN. 
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The space 

S* (G~'~, 7r'E) = U S'~(GJ:N' 7r'E) 
m 

carries the structure of an involutive algebra, defined by its embedding into the 
foliation algebra Cc~(GTN, 7r'E). By Lemma 1, we obtain symbolic properties 
of ~m' -~ (M,  ~,  E) (see also Ill, Section 2] for the corresponding general result 
for Fourier integral operators). 

P r o p o s i t i o n  1. (1) The principal symbol mapping 

or: ~*,-°~(M, Jr, E) ~ S*(GT~,Tr*E) 

is an algebra homomorphism. Otherwise speaking, if A E ~'~t,-~(M,.7:,  E) and 
B E Pm~'-~(M, .T ,E) ,  then C = AB belongs to ~'m+m2'-~(M,:~,E) and 
O'AB ~ O'AO'B. 

($) If the density dx on M is holonomy invariant, then a is a .-homomorphism 
of involutive algebras, i.e., irA e er"'-°°(M,~ r, E), then A* e em ' - ° ° (M,7 ,  E) 
and ~rao = (CA)*. 

The next problem is to state L2-continuity of operators from ~°'-°° (M, Y, E). 
We refer the reader to [20, Theorem 25.3.8] for the corresponding general result 
on L2-continuity of Fourier integral operators, but, indeed, our case is a model 
case for this general theorem. 

P r o p o s i t i o n  2. Any operator A E k~°'-~(M, ~,  E) defines a bounded operator 
in the Hilbert space L2(M, E). 

Proof. The proposition follows immediately, if we make use of a representation 
of the operator A in the form (4) and apply the theorem on L ~ boundedness of 
zero-order pseudodifferential operators. 

1.3. Anisolropic Sobolev spaces and classes g]m,'(M, J:, E) 

Our norm estimates will be given in terms of the scale of anisotropic Sobolev 
spaces H"k(M,  ~ ,  E), s E ]~, k E ~ ([25, 26]). Let us briefly recall its definition. 

Def in i t ion  2. The space H',k(I~n,]~P,C ~) consists of all u C S~(]~n,C ~) such 
that its Fourier transform ft E L~oc(~ ~, C ~) and 

11,-,ll,2.k = f f I~(¢, r/)l~( 1 + I~1 = + 1'712)'( 1 + 1'¢12)~d'Cd'7 < oo. (9) 

The identity (9) serves as a definition of a Hilbert norm in HS,k(]~ n, ]~P, C ~). 

Def in i t ion  3. The space H"k(M, jr, E) consists of all u E 79'(M, E) such that, 
for any foliated coordinate chart ~ : IP x Iq ~ U = ~(1 p x lq) C M, for any 
trivialization of the bundle E over it and for any ¢ E C~(U),  the function 
m(¢u) belongs to the space H"k(a",aP, C'). 
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Fix a finite covering {Ui : i = 1 , . . . ,  d} of M by foliated coordinate patches 
with foliated coordinate charts ~i : IV x Iq ~ Ui = ~i(I v x Iq), and a partition 
of unity {¢i E C ~ ( M )  : i = 1 . . . .  ,d} subordinate to this covering. A scalar 
product  in H',k(M, J:, E) can be equivalently defined by the formula 

d 

(u,v),,k = ~-~(n*(¢iu),~*(¢iv)),,k,u, vE H"k(M, Sr, E). (10) 
i=l 

Using the anisotropic Sobolev spaces H~,k(M,~ ", E) ,s  E lI~,k E 1~, we can 
give a sufficient condition for a bounded operator T in L~(M, E) to be an oper- 
ator of trace class, adapted to the foliated structure of M [26]. 

P r o p o s i t i o n  3. Let T be a bounded operator in L2(M, E) such that T defines a 
bounded operator from L2(M, E) to H',k(M, ~,  E) with some s > q and k > p. 
Then T is an operator of trace class with the following estimate of its trace norm: 

JJTJJl < CJJT : L~(M, E) ---* H"k(M, jr, E)J]. 

Now we introduce operator classes k~'~,U(M, j c  E)  associated with the scale 
H',k(M, 9 c, E).  A local description of these classes (denoted by gJm'~(M, jr, 6) 
there) was given in [26, 25] by means of HSrmander classes of pseudodifferential 
operators  with tempered metrics. Here we define classes ~'~,U(M, jc, E) globally, 
using the definition of Fourier integral operators, corresponding to a pair (A0, Aa) 
of intersected Lagrangian submanifolds [15, 16]: A0 is the diagonal in 2~*M x 
2~*M, A1 is the holonomy groupoid Gj, n. One of essential advantages of our 
approach is possibility to make use of the symbolic calculus for Fourier integral 
operators.  

D e f i n i t i o n  4. We say that a function a e C c~ (I p x I p x I q x ]~n x ~P, £(C r )), a = 
a(s,x ,y ,~,rl ,~ ) belongs to the class Sm'u(I n x ll~n,]~P,f~(C~)), if, for any mul- 
tiindices a, j3 and 7, there exists a constant C~,0,7 > 0 such that 

a ~ "r s C~p~(1 4- J~J 4- JrlJ)m-I~l(1 + JaJ) ~'-M, JJO((,n)O a O(. , . ,y)a(  , x, y, ~, ~, a)JJ -< 

(s,x,y) e I p x I " ,  (~, rl,~r ) e IIU ~ x I~ v. 

A symbol  a e S'n'"(I n x tI~, NP,/:(C~)) defines an operator  A from C~( I '~ ,  C r)  
to C ~ ( I  n, (U") by the formula 

Au(x, y) = (2~) -2p-q / eiI('-~'-')e+(Y-~')e+'°la(s, z ,y,~,  rl, IT) 

u(z ' ,  y') ds dx' dy' d( d~ da, (11) 

w h e r e u ~ C ~ ( I  n , ~ ) , x ~  I ~ , y~  I ~. 
I f n : I V  x I ~ - - - * U = ~ ( I V x I ~ ) C M , ~ ' : I  e x I ~ - - ~ U ' = n ' ( I  v x I ~ ) C M ,  

are two compart ible foliated charts on M, then we can transfer an operator A 
of the form (11) to an operator A ' :  C~(U, E) -* C~(U ', E). If, in addition, the 
kernel of the operator A ~ is compactly supported in U x U ~, then the operator 
A ~ maps  C~(U, E) to C~(U ~, E), and we can prolong it in a trivial way to an 
operator  A' : C~(M,  E) -~ C~(M, E). We say that  the operator A' obtained 
in such a way is a n  e l e m e n t a r y  o p e r a t o r  of class ~Pm,"(M, .T', E).  
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Def in i t ion  5. The class ~m,U(M, iT, E) consists of operators A, acting from 
C~(M,E)  to C~(M,E),  such that A can be represenled in the form A = 
~ = 1  Ai + K, where Ai are elemenlary operators of class ~'*,u(m, iT, E), cor- 
responding to some pairs ~i, ~ of cornpartible foliated charts, K E ~t-°°(M, E). 

Remark i. In notation of [15, 16], the Schwartz kernel KA of an operator A E 
~tm'U(M, iT, E) belongs to the class Im-pl2,u+pl2(M × M, A, G~,). 

Example 2. Any tangential pseudodifferential operator B E ~u(iT, E) [25] be- 
longs to the class ~°,U(M, iT, E). Moreover, if B is given by the complete symbol 
b(x, y, ~) in some foliated coordinate chart ~, then, in the foliated chart W(g, g), 
the Schwarz kernel of B is represented in the form (11) with 

a(s ,x ,y ,~ ,~ ,a)  = b(x,y,a)  

(for a global description, see also Example 3). 

Example 3. Any operator C E ~m(M, E) belongs to ~m,°(M, iT, E). Moreover, 
if C is given by the complete symbol c(z, y, ~, 71) in some foliated coordinate chart 
x, then, in the foliated chart W(n, n), the Schwarz kernel of C is represented in 
the form (11) with 

a(s,  x, y, ~, z}, or) = c(x, y, ~, zl). 

Example 4. It can be easily seen that two definitions of classes fftm'-°°(M, iT, E) 
are equivalent, that is, 

~trn'-°°(M, iT; E) = N~m'U(M, iT, E). 

The operators of class ~m'U(M, iT, E) can be considered as a usual pseud- 
ifferential operators of order rn + p with the complete symbol, singular on the 
punctured conormal bundle N'IT. Let us briefly mention about the correspond- 
ing symbolic calculus referring to [15, 16] for details. 

Let A be an elementary operator of class ~m'U(M, iT, E), given by the formula 
(11). Then the principal symbol of A is a function ao(A) on T*M\N*Y r, given 
locally by the formula 

ao(A)(x,y,~,71) = am,u(O,x,y,~,~7,~),~ ¢ O, 

where a,~,u is the bihomogeneous component of the complete symbol a of degree 
m in (~, r/) and of degree/t in a. 

We say that an operator A E ~'~'U(M, ~, E) is elliptic, if a0(A) is invertible 
on T*M\N*iT. By [15, Proposition 6.4], any elliptic operator A E ~rn'u(M, iT, E) 
has a parametrix, i.e. an operator P E ~-m'-U(M, iT, E) such that 

AP = I - R~, PA = I - R2, (12) 

where R 1 E fft-l'°(M, iT, E) + ~°,-°°(M, U, E), j = 1, 2. 

P r o p o s i t i o n  4. (1) I rA  E ~'m'~'(M, yr, E) and B e ~trn2'U2(M, iT, E), then 
C = A B E  ~m~+"*~'u~+u~(M, Y:, E) and a0(C) = a0(A)a0(B). 

(2) Any operator A E ~m'U(M, iT, E) defines a continuous mapping 

A: H"k(M, iT, E) -~ H'-rn'k-U(M, iT, E) 

for any s and k. 
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Proof. 1) A proof is given in [1] (see also [16, Proposition 1.39]). 
2) As usual, it suffices to consider the case when A is an elementary operator. 

Using the s tandard description of the Sobolev space H~):(M,.~, E) by means of 
elliptic operators  of class ~ ' ,k (M,  ~', E) (we may use the local description, using 

2 2 s/2 2 k/2 the operator  (1 -i- D x -{- D~) (1 ÷ D~) ) and a parametr ix  for elliptic operators 
(12), we can reduce the problem to the case s = k = 0 and max(re,  m-i- 1~) _< 0. 
L 2 bounded'ness of  operator.s from qrm'"(M, ~ ,  E) with max(m,  m -i- ~) _< 0 can 
be stated by imitat ing of the RSrmander 's proof of L 2 boundedness of zero-order 
pseudod~i~erential operators. For details see [16, Theorem 3.3]. 

1.4. Symbolic properties of !['m,-°°(M,.l:, E) 

Here we turn to more elaborate symbolic properties of classes ~ltm,-C°(M, yr, E). 
While the algebraic symbolic properties of the section follow directly from the 
corresponding properties of the algebras 7Z£ of [11] (see [11, Section 3]), the 
presence of the Sobolev space scale in our geometric case provides norm estimates 
in addition to the algebraic symbolic results of [11]. 

Recall that  the principal symbol Prn of an operator P E ~m(M,E) is a 
smooth  section of the vector bundle £:(~r*E) on :~*M, where lr : T*M --* M is 
the natural  projection. 

D e f i n i t i o n  6. T h e  t r a n s v e r s a l  p r i n c i p a l  s y m b o l  ~p of an operator P E 
grin(M, E) is the restriction of its principal symbol Pm on N*3:. 

P r o p o s i t i o n  5. I rA  E fftrnl(M,E) and B E ~"~2'-°°(M,~C,E),  then AB and 
BA in ~Pml+m~'-°°(M,Y:,E) and 

~AB(7. ~) = ~a(O)~B(V.,). (7. ~) e G~N. 

~,A(V.,)  = ~-(V.,)~A(dh;(,)).  (V.,) ~ C~N. 

Proof. This Proposition follows from the composition theorem of Fourier integral 
operators  (see, for instance, [20]). 

From now on, we will assume that  E is h o l o n o m y  e q u i v a r i a n t ,  that  is, there 
is an isometrical action 

T(7)  : Ex --* Ey, 7 6 G, 7 : x --~ y 

of the holonomy groupoid G in fibres of E.  We have an inclusion C~(G) C 
C~(G,£(E) ) ,  given by k(7 ) ~ k(v)T(7),  and, by (2), a representation RE of 
the algebra C~(G) in L2(M, E), which is a .-representation,  if the density dx 
is holonomy invariant. For any k e C~(G), the operator RE(k) is given by the 
formula  

RE(k)u(z) = [ k(7)T(7)u(s(7))d$ ~ (7), z E M, u e C~(M, E). (13) 
JG x 

Our norm est imates will be given in terms of the following seminorms on C ~  (G): 

[]kil,,t,t_ z = IIRE(k) : g',t(M, .T, E) --~ gs ' t- t(M, .T, E)H , (14) 

where k E C~(G) and s E ~ , t  E ]~,l E ~.  There are defined the corresponding 
functional classes: 
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Def in i t ion  7. The class OPt(G) consists of all distributions k • 79'(G) such 
that the operator RE(k) defines a continuous mapping 

RE(k):  H'"(M, yr, E) ---* H'3- t (M,  Y:, E) 

for any real s and t. 

Recall that an open subset U in T*M is a conic n e i g h b o r h o o d  of N*.T, 
if U is a neighborhood of N*~', which is invariant under the action of i~+ by 
multiplication. It is clear that a basis of conic neighborhoods of N*9 v is formed 
by sets x(Uc),E > 0, where U~ is given by 

u, = { ( x , y , ~ , ~ )  • x" x ~ " :  k'l < ~l,fl}, 

and x : I p x Iq ---* M is a foliated coordinate chart. 

Def in i t ion  8. We say that an operator P • ~t(M, E) has t r ansversa l  o rde r  
m < l (P • k~m(N*:7 :, E)), if P has order m in some conic neighborhood of 
N*:~, thai is, its complete symbol p in any folialed coordinate system satisfies 
the following condition: there is a ~ > 0 such that, for any mul~iindices c~, 13, 
there is a constant C~,13 > 0 such that 

a 13 x ]O(~,,~)O(,:,u)P( , y,~C,r/)l <_ C,~,o(1 + k'l + I,~l)"'-I"J, (~, u,,',,7) • v , .  (15) 

The main fact, which relates the notion of transversal order with the classes 
~m'U(M,~', E), consists in the following inclusion: 

~fl(M, E) A ~tm(g*:T' E) C ~tm't-m(M, ~ ,  E). (16) 

Indeed, it can be easily checked by a straightforward calculation, that, if p • 
St(I" x lI[ n) satisfies (15), then p(x, y, ~, 7/)(1 + I~[~) m-t belongs to Sm(I n x ~n), 
from where (16) follows immediately (see also [19, Theorem 18.1.351). 

By Proposition 4 and (16), any operator P • fftm(N*Y', E)[ ']#~(M, E) de- 
fines a continuous mapping 

P:  H',k(M, JZ, E) --. g '-m,k-t+m(M,~T,E),  (17) 

that, in its turn, gives immediately the following proposition. 

P r o p o s i t i o n  6. Suppose that an operator P • flit(M, E) has transversal order 
m <_ I. Then, for any k • Cy(G,£.(E)),  the operators RE(k)P and PRE(k) 
belong to ~tm'-~(M, jz, E) with the following norm estimates 

IIRE(k)P : H"t(M,:7:,E) ~ g ' - m " ( M ,  Yr, E)]] < C][k[],-m,t-t+m,,, 

I[PFdE(k) : H"t(M,:1:,E)--~ H'-"~(M,:T,E)I[  < CIIkll,,,,~+,-~,. 

We will denote by adT(7) the action of G in fibres of the bundle £Qr*E), 
induced by T(7). 

Def in i t ion  9. We say that the transversal principal symbol of an operator P • 
elm(M, E) is h o l o n o m y  invariant ,  if, for any smooth leafwise path 7 from z 
to y, the following equality holds: 

adT(7)[ap(dh~(~))] = ~rp(~), ~ E N~.T. 
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Remark 2. The assumption of existence of positive order pseudodifferential op- 
erators with the holonomy invariant transversal principal symbol implies rather 
strong restrictions on the foliated manifold under consideration. There are ex- 
amples of such operators on every Riemannian foliation given by the transverse 
signature operator, and, in fact, this assumption is equivalent to a slightly more 
general assumption on the foliation to be transversally Finsler (as introduced in 
[25]). For general foliations, one can use a generalized notion of holonomy invari- 
ance, based on more sophisticated transversal pseudodifferential calculus. As an 
example, we point out the treatment of triangular Riemannian manifolds, based 
on hypoelliptic operators and Beals-Greiner pseudodifferential calculus [9]. We 
will discuss this subject in more details in [27]. 

By Proposition 5, if P is a pseudodifferential operator from gem(M, E) with 
the holonomy invariant transversal principal symbol, and k E C~(G) ,  the oper- 
ator [P, RE(k)] belongs to the class ~m-1,-°°(M, 5 r, E). Moreover, we have the 
following norm estimate: 

P r o p o s i t i o n  7. Let P be a pseudodifferential operator from ge'~(M, E) with the 
holonomy invariant transversal principal symbol. Then, for any k E OPt(G), the 
operator [P, R~(k)] de~nes a co . t in .ous  map 

[P, RE(k)]:  H"t(M, J:, E) --* H'-m+Lt-t-I(M, F, E) 

with the following norm estimate 

H[P, RE(k)] : H"t(M,.T,E)---* H'-m+x't-z-I(M,~,E)H 

_< U max(llklls,t,t_t, Ilkll,_m+l,,_l,t_t_x). 

Proof. Let p E sm(In,£(C')) be the complete symbol of the operator P in 
some foliated chart with a complete asymptotic expansion p ~ ~¢~=o Pm-j, 
pm-j(x, y, ~, ~) is homogeneous in (~, r/) of degree m - j .  By the holonomy in- 
variance assumption, we can choose a trivialization of the bundle E so that the 
transversal principM symbol in this coordinate system will be a matrix-valued 
function, independent of z: 

pro(,, y, 0,,) = Pm(Y, ~). 

Using the Taylor formula, we represent pm in the form 

P 

pm(~, ~,~, ,11 = Pro(Y, '71 + ~ Pm,~(~, Y,~, '7)~', 
i---.1 

where pm,i are homogeneous in (~, r/) of degree m - 1. 
Let Px be an operator with the complete symbol Pro(Y, rl), RI be an operator 

with the complete symbol ~P=lPm,i(x,Y,~,q)~i. Gluing together these local 
operators into global ones in a standard way, we get a representation P = P1 + 
R1, where el e gem(M,E), [P1,RE(k)] e ~-°°(M,E),  t~1 E ~m-I'I(M,J:,E). 
So we have [P, RE(k)] = JR1, R~(k)]mod e - ~ ( M ,  E), from where Proposition 7 
is immediate. 
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1.5. Residue trace 

Now we turn to a trace extension and a Wodzicki type residue for operators of 
class ~rn ' -°°(M,~- ,  E). These results are particular cases of results [12, 14] on 
Fourier integral operators, but we make use of the local structure of operators 
in question given by (4) to derive directly all necessary facts 

For any cr e C°°(~q\{O}), homogeneous of order q, i.e. ~r(Ar/) = Adtr(r}) for 
any r/5£ 0 and A E IR~., let 

s(~) =fl.t=, W~(o)d~. 

For any function ¢ on ]~q\{0}, let 

¢~(~) = A~¢(av), ~ > 0,~ e ~q\{0}. 

Recall the following fact on continuation of a homogeneous smooth function 
on ~q\{0} to a homogeneous distribution in ~q, see [18], Theorems 3.2.3 and 
3.2.4. 

L e m m a  2. Let a E C°°(]~q\{O}) be homogeneous of order d in V E ]Rq. 

(1) I f  d ~[ { - q  - k : k E 1~}, ~r extends to a homogeneous distribution r on ]~q. 

(2} I f  d = - q  - k, there is an extension r of ~, satisfying the condition 

(T, ¢) = ~-~-~(T, ¢x) + log~ ~ s ( ~ a ) a ; ¢ ( o ) / ~ ! ,  ~ > o. 

I~l=k 

In particular, the obstruction to an extension of or E Dt(IRq), homogeneous in ~, 
is given by S(~?a~r), I~1 = k. 

Let a functional L be given by the formula 

Z(a) = (2rr) -q f T r  aO?)d~7, 

which is well-defined on symbols o" E S~(l~q) of order m < -q .  

L e m m a  3 ([22, 91). The functional L has an unique holomorphic extension g 
to the space of classical symbols S~t(~q ) of non-integral order z. The value of L 
on a symbol cr ,.. ~ ~rz_j is given by 

N 

0 

where r z - j  is the unique homogeneous extension of a z - j ,  given by Lemma 2, 
N > R e z + q .  
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The trace of a pseudodifferential operator A E # '~ ' -°°(In ,  I v, C" ) given by 
(3) with m < -q  is given by the formula 

(A) = (27r) -q / Tr k(z,  x, y, zl)dzdydTI. tr 

The following formula provides an extension of the trace to a pseudodifferential 
operator A E #z,-oo (in, iv ' C~) of arbitrary non-integral order z E C\~ : 

(A) = / L(k(x, z, y, TR ~))dxdy. 

This definition can be extended to elementary operators, and, by linearity, to all 
operators P E ~Pz'-C°(M, •, E), z E C\Z. 

If an operator A E grrn'-°°(In, I p, C') is written in the form (4), then TR (A) 
is given by 

(A) = / TR (A(z, x)) TI~ dz, (18) 

where TR (A(x, x)) denotes the extension of the usual trace of the pseudodif- 
ferential operator A(z, z) on Iq, defined in [22, 23]. Using (18) and [22, 23], we 
immediately obtain the following proposition. 

P r o p o s i t i o n  8. The linear functional TP~ on the class kPa,-°°(M,Y,E) of 
classical pseudodifferential operators of orders ~ E rn-4- ~ , m  E C\2~, has the 
following properties: 

(1) It coincides with the usual trace tr for Re a < -q .  
ITIal,-oo { IIA" ~t7 E )  (2) It is a trace functional, i.e. TI~. ([d,B]) : O for any A E -c, , . . . ,  , 

and B E kV~2'-C°(M, ~ ,  E), al  + a2 E m -4- ~.  

Now let us turn to the residue trace of operators from kPm,-°°(M,.T, E). As 
above, it suffices to define the residue trace for an elementary operator. Given 
an operator A e ~p,~,-oo(i,~, i p, C ~ ), we define its residue form PA as 

PA : Tr k_q(Z, x, y, ~)dxdyd~, 

and the residue trace r(A) as 

r (d )  = f Tr k_q(x, x, y, ~)dzdyd~. 
JI, I=1 

If an operator A E IP'~'-°°(I~, I v, C r) is written in the form (4), then its residue 
trace v(A)  is given by 

I "  

/ r(A(z, z)) dz, (19) v(A) 

where r ( A ( z , x ) )  denotes the residue trace of the pseudodifferential operator 
A(~, ~) on rq due to [13, 30]. 

Using (19), it can be easily checked that, for any A E ~Pm'-°°(M, J=, E), its 
residue form PA is an invariantly defined form on N*~', and the residue trace 
r(A) is given by integration of the residue form PA over the spherical conormal 
bundle SN*9 v = {v e g*~ ' :  I~,[ = 1}: 

r(A) = / PA. 
dS N' .~  
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Remark 3. Let A e fftm'-co(M,Y=,E), and KA E Im-V/2(M x M,G'yN) be its 
Schwarz kernel. In terms of [12], the residue trace v(A) of A is defined as the 
residue pairing of KA with the delta function dim of the diagonal A in T*M. The 
holonomy groupoid G• N and .4 are intersected cleanly in the p +  2q-submanifold 
G(0) = N*~', and, therefore, this residue pairing is defined by [12, Theorem 4.1]. 
The main properties, concerning to the trace extension and the residue form for 
general Fourier integral operators, are due to [12, Theorem 2.1]. 

Now we relate the trace extension and the residue trace for operators of 
~m'-co(M,Y:, E). At first, let us give a definition of a holomorphic family of 
pseudodifferential operators of class ff t*,-°° (M, 5 r ,  E). As usual, it is sufficient to 
do this for elementary operators. 

Def in i t ion  10. We say that a family A(z) E ff,~(z)~-co(I,,, ip ' ~ . )  is holomor- 
phic (in a domain D C C), if: 

(1) the order f (z )  is a holomorphic function; 

(2) A(z) is given by a classical symbol k(z) E S f(~)'-cO (Ip x lP × Iq x ~q, f . ( ~  )), 
represented as an asymptotic sum 

CO 

y, 7) ~ (z ,  y, 
j=O 

which is uniform in z, and the homogeneous components kz_j(z, x,xt ,  y,~) are 
holomorphic in z. 

'rsrn+ae "'-co (M, ~', E), z E P r o p o s i t i o n  9. For any holomorphic family A(z) E ~ ¢t 
D C C, the function z ~ TR (A(z)) is meromorphic with no more than simple 
poles at zk = - m - q + k  E D~E,k>__ 0 and with 

res ~=z,TR (A(z)) = r(A(zk)). 

Proof. The proposition is an immediate consequence of (19) and of the similar 
fact for usual pseudodifferential operators [22, 23]. 

2. T r a n s v e r s a l l y  el l ipt ic  o p e r a t o r s  

2.1. Definition and basic properties 

As above, we assume that M is a closed foliated manifold, and E is a holonomy 
equivariant Hermitian vector bundle E on M. 

Def in i t ion  11. We say that an operator P E ~m(M, E) is t r a n s v e r s a l l y  el- 
l ipt ic ,  if the transversal principal symbol of P is invertible for any ~ E N*J:. 

Remark 4. The condition of transversal ellipticity implies that the transversal 
principal symbol of P is invertible for any ~ in some conic neighborhood of N*:r. 
It  also implies that, in any foliated coordinate system, there are ~ > 0 and c > 0 
such that 

I(pm(x,y,¢,~)v,v)I >_ e(l + I~I+ I,I)mllvll, (x, y,~, ~) ~ U,,v e c ~, 

where Pm is the homogeneous component of degree m in (~, r/) of the complete 
symbol of P. 
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Performing the standard parametr ix  construction in the conic neighborhood 
U~ of N*.T" given by Remark 4, it is easy to get the following proposition (see 
also [24]). 

P r o p o s i t i o n  10. For a transversally elliptic operator P E ~rn(M,E), there 
exists a parametrix, thai is, an operator Q E ff'-m(M, E) such that 

PQ = I -  R I , Q P  = I -  R2, (20) 

where Rj E ! I r° (M,E)Agz-°° (N*~,E) , j  = 1,2. 

Existence of a parametr ix  implies a transverse elliptic regularity theorem in 
a usual manner:  

P r o p o s i t i o n  11. Given a transversally elliptic operator P ~ k~m(M,E), and 
a section u such that u E HS+m-g 'k+g(M,~,E)  for some N > 0 and Pu E 
H ' , k ( M , F , E ) ,  we have u C H'+m'k(M,~,E)  and 

Ilull,+m.  --< C(IIP"It,,  + 

2.2. Complex powers 

Throughout  in this section, we assume that an operator A E ~m(M, E) satisfies 
the following conditions: 

(T1) A is a transversally elliptic pseudodifferentiat operator with the positive 
transversal principal symbol; 

(T2) A is essentially self-adjoint on the initial domain C°°(M, E), and its 
closure is invertible and positive definite as an unbounded operator in the Hilbert 
space L2(M, E). 

Remark 5. The assumption (T2) may be considered as an equivariance type 
condition, which is, usually, assumed for transversally elliptic operators. 

P r o p o s i t i o n  12. Let A E ~Pm(M, E) be as above. Then, for any A ~ ~+, the 
resolvent operator (A - A)-i  is represented as 

(A - A) -1 = P(A) + RI(A)(A - A) -1 , ( A -  A)-I  = p(A) + ( A -  A)-IR2(A), (21) 

where: 
(I) P(A) E ~p-m (M, E) is an operator, which complete symbol in any foliated 

coordinate system is supported in some conical neighborhood U~ of N*~  and 
satisfies the estimates 

D z n~, ~+x _ C,~a(1 + I¢1 + 1'71 + I l'/m) - ' '  (=,y)~(~,,)e~ ,y,~,rl,,X)l < 

(1 + 151+ u,5, o) e e A~ 

for any 6 > 0 and for any multi-indices c~ and fl; 
(2) Rj(A) E g r ° ( M , E ) A ~ - ° ° ( N * ~ , E ) , J  = 1,2, with the complete symbol 

rj(A), satisfying the following estimates: 
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_< c ~ N ( 1  + 1~1 + 171 + I ;q~/ ' )  - "  

(1 + I~l + 17l)-I~l+m-~, (x, Y,~, 7) ~ U~,; 

_< c .~ (~  + I~l + 171) -t°l, 

(x,y,~,7) E I p x I q x ~P x ]~q,)t E A6 (22) 

for any 5 > O, for any natural N and for any multi-indices a and/3. 
Moreover, the principal symbol p-re(A) of P(A) is equal to (am - A) -x in 

some conic neighborhood of N*U with am, being the principal symbol of A. 

Proof. We will prove the proposition, performing the standard construction due 
to Seeley of a parametrix P(A) for the operator A - A as an operator with a 
parameter in some conic neighborhood of N*Y'. 

Denote by A6 the angle in the complex plane: 

A6 = {A E C:  [argA[ > 6}. 

Fix some foliated coordinate system. Let a ~ ~ i = 0  aj be an asymptotic 
expansion of the complete symbol of the operator A in this system. By (T1), 
there is a e > 0 such that 

am(x, y,~, 7) _> C(1 + [~1 + [7[)=, (x, Y,~,7) ~ U,. 

For any 6 > 0, define functions p-m-t(A),A E A~,l = 0 ,1 , . . . ,  in U~ by the 
following system 

(am - ~)P-m = 1, 
(am - A)p-m-t + ~--]~j<t,j+k+l~l=Z O~b-m-jD~am-k/a! = O, l > O. 

It  can be easily checked that the functions P-m-t()Q satisfy the following esti- 
mates 

}D~,v)D~,.)p-m-t(x,y,~,7,~)I <_ C a ~ ( l + ] ~ I +  ]71+ ]~]llm)-m 

where a and/3 are any multi-indices. Take p as an asymptotic sum of symbols 
+oo with a parameter: p ~ ~'~j=0 P-m-j.  Then p satisfies the estimates 

ID~,~)D~,.)p(~, v,~, 7, ~)1 < C(1 + t~t + 171 + I~l~/m)-~(1 + I~1 + lTt) -I~l, 

(~, v, ~, 7) ~ at ,  X ~ A,. (23) 

Let 00 E C~(II~) such that supp00 C ( -¢ ,e) ,  Oo(r) = 1 for any r E (-e1,¢1) 
with some el < e, and 8 E C ~ ( ~  p xI~q) be given by 0(~,7) = 00(7/~), if 
Ir/I < e[~[, and 0(~, r/) = 0 in the opposite case. Let us take a covering of M by 
foliation charts, construct in any foliation patch of this covering an operator with 
the complete symbol 0p(A), and glue these local operators in a global operator 
P(A) e # - m (M,  E), A e A6 by means of a partition of unity. It can be easily 
seen that  
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P()~)(A - )~) = I - RI(,~), (A - )t)P(,~) = I - R2(,~), ~ E A6, (24) 

where Rj()~) e f i ° ( M , E ) N f i - ~ ° ( N * ~ , Z ) , j  = 1,2, has the complete symbol 
rj(,~), satisfying the estimates (22). By (T2), the operator A - ,~ is invertible as 
an unbounded operator in L2(M, E) for all ~ ~ I~+ with the following estimate 
for the norm of its inverse: 

II(A - ~)-I t l  < C/l~l 
Using (24), we get the representation (21) for the resolvent, tha t  completes the 
proof. 

P r o p o s i t i o n  13. Let A E fire(M, E) be as above. Then, for any )~ ~ 1~+, the 
resolven! operator (A - .~)-1 can be represented as 

(A - )~)- 1 = p(,~) + T(~),  (25) 

where: 
(1) P()~) e f i -rn(M, E) satisfies the following norm estimates: 

[[P(,X) : H " k ( M ,  Y:, E) --+ H " k ( M ,  :1 z, E)I[ <_ C,,k,a(1 + I;q) -1,  ,X e An, 

l iP(A):  H " k ( M ,  YZ, E) ~ H'+m'k(M, Yr, E)II g C~,k,a,)~ E At ,  

for any s E ]~, k E ~ a n d S > O ;  
(2) T(  )~) satisfies the following norm estimates: 

HT()~) : H t ' - ' ( M , U , E )  --* H" - ' (M,~r ,E ) ] I  <_ C,,t,6(1 + I )q)- l ,  ~ e An, 

for any s , t  and ~ > O. 

Proof. By (21), (A - A)-I  = p(),) + RI()~)P(;~) + Ra()~)(A - )~)-1R2()~), so we 
get (25) with 

T()~) = RI(~)P(~)  + RI()~)(A - ),)-1R2(~). (26) 

Since Rj (),) E ~° (M,  E) N f i -°°(  y * U ,  E), j = 1,2, by (17), Rj defines a contin- 
uous map  from H t ' - t ( M ,  ~-, E) to H~,- ' (M,  jz, E) for any s and t, that  implies 
the same is true for T(,~). The desired norm est imates for operators P(,~) and 
T(,~) follow immediately from the symbol est imates '(23) and (22). 

Now we turn to a construction of complex powers A z for a transversally 
elliptic operator  A e firn(M, E), satisfying to the conditions (T1) and (T2). 

Let F be a contour in the complex plane of the form F =/"1 U/ '2  [.J F3, where 
= reia,+oo > r > p, on /11, ~ =pe i¢ ,  ~r > ¢ > - r r ,  on I"2, A = re-'C~,p < r < 

+c~,  on /73, where c~ ~ (0, r )  is arbitrary, and the constant p > 0 is chosen in 
such a way tha t  the disk of the radius p, centered at the origin, isn't  contained 
in ~r(D). 

A bounded operator A ~, Rez  < O, in L~(M, E) is defined by the formula 

A~=~ 
where a branch of the analytic function ~z is chosen so tha t  ~ = e z lnX for 
,~ > O. This  definition is extended to all z by 

A ~ = A~-~A ~ (27) 

for any z, Re z < k, where k is natural and A ~ is the usual power of the operator 
A. The  following proposition provides a descripiton of the complex powers A ~. 
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P r o p o s i t i o n  14. Under the current hypotheses on the operator A, the operator 
A z has ihe forra 

A z = P(z) + T(z), (28) 

where P(z)  is a holomorphic family of pseudodifferential operators of class 
~PmZ(M, E) with the principal symbol p,naez(z), being equal to (am) ~ in some 
conic neighborhood of N*5 e (am is the principal symbol of A), and, for any s, l 
and z, Re z < k, T(z) defines a continuous mapping 

T ( z ) : H " - ' ( M , ~ , E )  --+ H t ' - ~ - k ( M , ~ , E ) , k  > O, 

T(z) : H * ' - ' ( M , ~ , E )  --+ H t ' - ' ( M , F , E ) , k  < O. 

Proof. A proof of the proposition can be obtained by a straighforward repetition 
of the proof of [24, Proposition 7.3]. Namely, let us write A* for Re z < 0 as 
A z = P(z)  + T(z), where 

/r i £ i A~p(A)dA,T(z ) = P ( z )  = 

P(A) and T(A) are given by Proposition 13. All the statements about P(z) and 
T(z) can be easily checked in a standard way (see [24] for more details). 

Remark 6. We can get P(z) to be an elliptic operator of class ~pmRez(M,E) 
with the positive principal symbol, adding to P(z) an appropriate operator of 
class ~mRez(M, E) N g*-°°( g * y ,  E),. 

2.3. G-trace 

Before going to the distributional zeta-function of transversally elliptic operators, 
we introduce a general scheme of defining distributional spectral invariants for 
transversally elliptic operators based on the notion of the G-trace and prove 
some existence results for such invariants, that may have its own interest. 

Def in i t ion  12. We say that a bounded operator T in L2(M, E) is an  o p e r a t o r  
o f  G - t r a c e  class,  if, for any k • C~(G), the operator RE(k)T is a trace class 
operator, and a functional trG (T) on Ce°°(G), defined by the formula 

(try (T), k) = tr RE(k)T, k • C~(G),  

is a distribution on G. In this case, the distribution t ry (T) • :D'(G) is called 
t he  G - t r a c e  of the operator T. 

For any integral operator T on C°°(M, E) with the smooth kernel KT, its 
G-trace tre  (T) is a smooth function on the holonomy groupoid G, given by the 
formula 

t re  (T)(7) = I('T(r(7), s(7)), 7 • G. 

Otherwise speaking, the G-trace tre (T) is obtained by pulling back of the in- 
tegral kernel KT via the map (r, s) : G --+ M x M. 

By Propositions 3 and 4, we immediately obtain that any P • g*m'g(M, Jr, E) 
with m < - q  is an operator of G-trace class. Indeed, the following, more general 
proposition is valid. 
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P r o p o s i t i o n  15. Let T be a bounded operator in C°°(M, E), which extends to 
a bounded operator from L2(M,E) to H-"~'-U(M,~',E) with some rn < -q  
and #. Then T is an operator of G-trace class with the followin 9 estimate of its 
G-trace: 

I(tra (T), k)l < C~llkllq+~,-..-.-q-~,p+=,, 
where ¢ > 0 and sl > 0 are arbitrary constants such that s > q + ¢. 

Pro@ Let us fix some ¢ > 0 and ¢1 > 0 such that m < - q - e .  By Proposition 3, 
we have  

Itr RE(k)P[ < ClIRE(k)P : L2(M, E) ---+ Hq+',P+'t(M, 9 r, E)II. 

Using the embedding H-m'-u(M, .1:, E) C Hq+e'-m-u-q-'( M, 5 r, E), we get 

IIRE(k)P : L2(M,E)~Hq+"P+~'(M,Y:,E)II 

<_ IIRE(k) : gq+e'-m-u-q-~(M,~C,E) ~ Hg+~,P+~'(M,.~,E)II 
lIP: L2(M, E) ---, H-m'-U(M, .T', Z)[I, 

that completes the proof. 

Let A ~ Ore(M, E) be a transversally elliptic operator. We assume that A 
considered as an unbounded operator in L2(M, E) with the domain C~(M,  E) 
is essentially self-adjoint. For any mesurable, bounded function f on It~, the 
bounded operator f (A)  in L2(M, E) is defined via the spectral theorem. 

P r o p o s i t i o n  16. For any mesurable, bounded function f on ll~ such that 

If(,~)l _< C(1 + I)q) -z, ,~ E ~,  

with some C > 0 and I > q/m, the operator f (A)  is an operator of G-trace class 
with the following eslimate for its G-trace functional: 

I(tra (f(A)), k)] <_ CeHkllm,,_mt,n+e_rm, k E C•(G). 

for any ¢ > O. 

Proof. By (28) and Remark 6, we have 

A t = P(l) + T(l), (29) 

where P(l) is an elliptic operator of class g~'~l(M, E) with the positive principal 
symbol, and, for any real s, T(l) defines a continuous mapping 

T(I) :  L2(M, E) ---* HS'-s-mt(M, ~ ,  E). 

Let Q E ~-mZ(M, E) be a parametrix for P, that is, 

QP(I) = I - K , K  6 gJ-oo(M,E). (30) 

Let B E O°'-oo(m, 9 c, E) and u E C°°(M, E). By (30), we have the estimate 

IlBf(A)ulImz,, <_ ]lBQP(l)f(A)ullrm,t + ]IBKI(A)UlIr~,, 

The second term in the right-hand side of the last estimate can be estimated as 
follows: 
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IIBKy(A)ulI.~t,, < ClIBII.~,,,,, sup If(~)l I1~11. 
Let us turn to the first term. By (29), we have 

IIBQP(I)f(A)ulImo < IIBQAt f(A)ullmt,, + IIBQT(I)f(A)ulImO. 

Finally, the terms in the right-hand side of the last estimate can be estimated 
as follows: 

IIBQA~f(A)ulI..o < CIIBIl.~,0,,sup I(1 + IAI)tf(.~)lll~ll, 
IIBQT(l)f(A)ull,,s,, < CIIBIImz,-mOsuplf(~)lllull. 

Taking t = n + s - ml and applying Proposition 3, we complete the proof. 

Remark 7. Using Proposition 16, we can define distributional spectral invariants 
of transversally elliptic operators like as a spectrum distribution function, a zeta 
function etc. We refer the reader to [24] for analogous results for transversally 
elliptic operators on manifolds equipped with a smooth action of a (noncompact) 
Lie group. 

2.4. Zeta-function 

As in Section 2.2, we assume that A E ~ m ( M , E )  is a transversally ellip- 
tic classical pseudodifferential operator with the positive transversal principal 
symbol, which is essentially self-adjoint, invertible and positive definite in the 
Hilbert space L2(M, E) (see (T1) and (T2) above). By Proposition 16, for any 
Re z > q/m, the operator A -z is an operator of G-trace, and t h e  d i s t r i b u -  
t i o n a l  z e t a - f u n c t l o n  of the operator A is defined as follows: 

~ACz) = t rc  (A-Z), Re z > qlm. (31) 

Moreover, Proposition 16 provides the following estimate for the distributional 
zeta-function with any ~ > 0: 

I((A(z),k)l < C, llkllq,-q,,,+,, k • C~(C) , i te  z > q/m. (32) 

Now we turn to the problem of meromorphic continuation of CA (z). Actually, 
we consider a little bit more general situation. 

T h e o r e m  3. Let A as above and Q • ~YI'-C°(M,.T', E),  l • Z. Then the function 
z ~ Tr (QA -~) is holomorphic for Rez > l + q/m and admits a (unique} 
meromorphic continuation to C with at most simple poles at points zk = k /m  
with integer k < l + q. Its residue at z = zk is given by 

res z=~k tr (QA -~) = qr(QA-~lm). 

Proof. Using (28), we construct a meromorphie continuation of tr (QA -~) as 
follows: 

tr (QA -z)  = T i t  (QP(z)) + tr (QT(z)). 

Here QP(z)  is a holomorphic family of operators of class k~mz+t,-~(M,.T, E) 
and the meromorphic extension of its trace is given by T R  (QP(z)) due to Propo- 
sition 9. Further, QT(z) defines a continuous mapping QT(z) : L2(M,E)  ---+ 
H '  (M, E)  for any s. Therefore, by Proposition 3, the operator QT(z) is of trace 
class for any z • C with tr (QT(z)), being an entire function of z. 
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As a corollary, we have the following result on a meromorphic  continuation of 
the zeta-function, considered as a distribution on G. 

T h e o r e m  4. For any k 6 C ~ ( G ) ,  the zeta function (~A(Z), k) of the operator 
A extends to a meromorphic function on the complex plane with simple poles at 
points z = q/m,  (q - 1)/m, . . . . 

For future references, we state the following theorem, which can be proved in 
the same manner  (see [23, Proposition 4.2]). 

T h e o r e m  5. Let A as above and Qj E g~zJ'-~(M, JZ, E),  l i E Z, j = 1 , . . . , N .  
Then the function 

¢ ( z l , . . . , Z g )  = tr (Q1A -z '  . . . Q N A - ~ N ) , ( Z l , . . . , Z N )  e C y 

admits a (unique) meromorphic continuation to C N with at most simple poles 
on the hyperplanes ~tf= 1 lj - m ~ = l  zj = k e Z , k  >_ -q .  Its residue at this 
hyperplane is given by 

r e s  ¢ ( z l ,  . . . ,  z ~ )  = q , ( Q 1 A - z ,  . . .  Q ~ A - ~ ) .  

3. S p e c t r a l  t r i p l e s  o f  R i e m a n n i a n  fo l i a t i ons  

3.1. Proof of main theorems 

In this section, we complete proofs of our main theorems. Recall [9, 8] that  a 
spectral  triple is a triple (A, 7/, D), where: 

1. A is an involutive algebra; 
2. 7/ is a Hilbert space equipped with a . -representat ion of the algebra .4; 
3. D is a (unbounded) selfadjoint operator in 7 / such  that  

1. for any a E .4, the operator a(D - i) -1 is a compact  operator  in 7~; 

2. D almost  commutes with any a E .4 in a sense tha t  [D, a] is bounded for 
any a E A. 

One of the basic geometrical examples of spectral triples is given by a triple 
(A, 7/, D), associated with a compact Riemannian manifold M: 

1. The involutive algebra `4 is the algebra C ~ ( M )  of smooth functions on M; 
2. The Hilbert space 7 / i s  the L 2 space L 2 ( M , A * M )  of differential forms on M, 

on which the algebra `4 acts by multiplication; 
3. The operator D is the signature operator d + d*. 

In this section, we will consider spectral triples (A,7/ ,  D) associated with a 
compact  foliated manifold (M, F'): 

1. The  involutive algebra A is the algebra C ~ ( G ) ;  
2. The Hilbert space 7/ is the space L2(M, E) of L2-sections of a holonomy 

equivariant Hermitian vector bundle E, on which an element k of the algebra 
.4 is represented via the ,-representation R~; 

3. The  operator  D is a first order self-adjoint transversally elliptic operator with 
the holonomy invariant transversal principal symbol such tha t  the operator 
D ~ is self-adjoint and has the scalar principal symbol.  
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The following theorem is Theorem 1 of Introduction. 

T h e o r e m  6. Let (M,Y)  be a closed foIiaied manifold. Then a spectral triple 
(A,TI, D) as above is a finite-dimensional spectral triple, that is: 

1. for any k ~ C : ~ ( a ) ,  the operator RE(k) (D - 0 -1 is a compact operator i ,  
L2(M, E); 

2. for any k E C:°°(G), [n, RE(k)] is bounded in L2(M, E). 

Proof. The following proposition applied to A = D - i implies, in particular, the 
first part of this theorem. 

P r o p o s i t i o n  17. Let A E k~l(M, E) be a transversally elliptic operator, invert- 
ible in the Hilbert space L2(M, E). Then, for any k E OP-n/q(•), the operator 
RE(k)A -1 defines a continuous map from L2(M, E) to HI,P/q(M, ~,  E). In par- 
ticular, the operator RE(k)A -1 is a compact operator in L2(M, E). 

Proof. By (20), we have the following representation: 

RE(k)A -1 = RE(k)P + RE(k)R2A -1, (33) 

where P E kP-I(M,E) and R2 E g]°(M,E)N~-°°(N*Y:,E ). Since k E 
OP-n/q(~'),  by Proposition 4, the first term, RE(k)P, in the right-hand side of 
(33) defines a continuous mapping from H"t(M, Jr, E) to H'+l,t+"/q(M, ~,  E) 
for any s and t. By (17), the operator RE(k)R2A -1 defines a continuous mapping 
from L2(M, E) to HN,'~/q-N(M,:7:, E) for any N. So we get that the operator 
RE(k)A -~ defines a continuous map from L2(M, E) to HI,p/q(M, J:, E). 

The second part of this theorem, concerning to boundedness of commutators 
[D, RE(k)], follows from Proposition 7. 

Remark 8. By Proposition 17 and Proposition 3, it is easy to see that, for 
any k E C~(G) ,  the operator RE(k)(D - i) -~ belongs to the Schatten ideal 
£q+~(L2(M, E)) for any e > 0, therefore, the spectral triple in question has the 
finite dimension d, which is equal to q. 

Now we turn to a description of the dimension spectrum for the spectral 
triples under consideration. First, recall briefly the definition of the dimension 
spectrum [9, 8]. Let (.4, 7/, D) be a spectral triple. Denote by ~ an (unbounded) 
derivation on the algebra £(7-/) of all linear operators in 7/, given by the formula 

~(T) = [IDI, T], T e £(7/). (34) 

Assume that, for any a E A, 

a e N Dora 6 '~, [D, a] E N Dom ~n, (35) 
n>0 n>0 

and denote by B the algebra generated by the elements 5'~(a), a E Jl, n E N. Then 
the operator blDI -~ is of trace class for Re z > d, where d is the top spectrum 
dimension and b E B, and we can define the distributional zeta function ~b(Z) of 
the operator IDI by the formula 

~b(Z) = tr (bIDl-~),b ~ B, Rez > d. 
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Def in i t ion  13. A spectral triple (.A, 7-l, D) has disc re te  d i m e n s i o n  s p e c t r u m  
Sd C C, ifSd is a discrete subset in C, the triple satisfies the assumptions (35), 
and, for any b E B, the distributional zeta function (b(Z) extends holomorphically 
to C~Sd such that F(z)ib(z) is of rapid decay on vertical lines z = s q- it, for 
any s with Res > O. 

The dimension spectrum is said to be s imple ,  if the singularities of the func- 
tion (b(z) at z E Sd are at most simple poles. 

From now on, let D be a first order transversally elliptic operator with the 
holonomy invariant transversal principal symbol such that the operator D ~ has 
the scalar principal symbol, and D and D 2 are self-adjoint. We start with a 
description of the domain of the derivative 6 : C~(G) ~ £(L2(M, E)), given by 
(34). To do this, we slightly refine the description of the operator ]D[, given by 
Proposition 14. 

L a m i n a  4. Under the current assumptions, the operator ]D] has the form 

]D] = P + T, (36) 

where P is a pseudodifferential operator of class ~'I(M, E) with the scalar prin- 
cipal symbol and the holonomy invariant transversal principal symbol, and T 
defines a continuous mapping 

T :  H"k(M, ~, E) --, H ' + " k - ' - I ( M ,  U, E) (37) 

for any s, k and t. 

Proof. By Proposition 14, the operator IDI = (D2) a/~ can be represented in the 
form (36) with P and T, satisfying almost all the conditions stated in the lemma. 
It only remains to prove (37) for any s, k and t, because, by Proposition 14, we 
know it is true for any s, k with s + k = 0. Recall that T is given by 

i / r  A-1/2D2T(A)dA' T = ~  

and T(A) is given by (26), therefore, it is easy to see that, in order to prove (37), 
it suffices to state the standard resolvent estimate in any Sobolev space: 

I[(D 2 - A) - I :  H' (M,E)  ~ H'(M,E)I  I < C/IAI (38) 

for any real s and A E A, with IAl large enough (a e (0, ~) is arbitrary). 
Recall that the estimate (38) for s = 0 is a direct consequence of self- 

adjointness of D 2. Let A8 = (I + AM)'I2. Then AsDA-8 = D + B,,  where 
B, is a bounded operator in L2(M, E), and A,D2A_, = D2 + DB, + B , D +  B~. 
It can be easily checked that, for any e > 0, we have the estimate 

( ( DB, + B,D + By)u, u) < ~llOull = + c ,  llull =, u ~ C¢~( M, E), 

which implies the estimate (38) for any s due to well-known facts of the pertur- 
bation theory of linear operators (see, for instance, [21]). 

P r o p o s i t i o n  18. Under the current assumptions, the operator 6(K) = [[D[, K] 
is an operator of class ~/°'-°°(M,~, E) for any K 6 P°'-°~(M, J:, E). 
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Proof. By (36), $(K) = [P, K] + [T, K], where P and T are as in Lemma 4. 
Since P has the scalar principal symbol and the holonomy invariant transversal 
principal symbol, Proposition 5 implies that the operator [P, K] belongs to the 
class ~P°,-°°(M, ~,  E). By (37), the operator [T, K] is a smoothing operator in 
the scale H',k(M, jz, E), and, therefore, belongs to ~P-°°(M, E). 

By Proposition 18, we get immediately the following characterization of the 
domain of the derivative 6. 

P r o p o s i t i o n  19. Given an operator D as above, the class ~P°,-°°(M, J:, E) + 
OP-X($ ") is contained in the domain of the derivative 5. 

For further references, we note the following, slightly more general assertion 
of the domain of the derivative 5, which follows from the estimates of Proposi- 
tion 7. 

P r o p o s i t i o n  20. Given a first order transversally elliptic operator D with the 
holonomy invariant transversal principal symbol, the class OP- 1 ($-) is contained 
in the domain of 5. 

Now we are ready to prove the second main result of the paper, Theorem 2 
of Introduction. 

T h e o r e m  7. A spectral triple (.A, 7"l, D) as in Theorem 6 has discrete spectrum 
dimension Sd, which is contained in the set {v E IN : v ~_ q} and simple. 

Proof. First of all, we have to verify (35). Given A, being the algebra C~(G), 
by Propositions 18 and 19, all the assumptions on A formulated in (35) are 
satisfied, that is, for any k E C~(G),  RE(k) e ~n>0Dom6 n,[D,R~(k)] • 
~P°,-°°(M,:F, E) C Nn>0 D°m6'~. Moreover, the algebra B, generated by the 
elements 6"(RE(k)),  k • A, n • IN, is contained in ~P°,-°°(M, Y, Z), The rest of 
the proof follows immediately from Theorem 3. 

3.2. Geometric example 

In this section, we discuss an example of a spectral triple given by the transverse 
signature operator on a Riemannian foliation. 

Let (M, :P) be a Riemannian foliation equipped with a bundle-like metric 
gM. Let F = T9 c be the tangent bundle to $', and H = F ± be the orthogonal 
complement to F. So we have a decomposition of T M  into a direct sum 

T M  = F @ H. (39) 

The de Rham differential d inherits the decomposition (39) in the form 

d = d F + d H + O .  

Here the tangential de Rham differential dF and the transversal de Rham differ- 
ential dg a r e  first order differential operators, and 0 is zeroth order. Moreover, 
the operator dF doesn't depend on a choice of gM (see, for instance, [29]). 

The conormal bundle N*~" has a leafwise flat connection (the Bott connec- 
tion) defined by the lifted foliation $'N. The parallel transport along leafwise 
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paths with respect to this connection defines a representation of the holonomy 
groupoid G in fibres of N'97. Since H* ~ N'97, the bundles H* and A'H* are 
holonomy equivariant. 

Define a triple (A,7-/,D) to be given by the space 7"( = L2(M,A*H *) of 
the transversal differential forms equipped with the action of the algebra A = 
C~(G)  and by the transverse signature operator D = dH + d~r. 

Let us check that this spectral triple satisfy all the assumptions of Section 3.1. 
Under the isomorphism H* -~ N'97, the transversal principal symbol, ~rD(r}) E 
L:(A*N*97, of D is given by the formula 

O'D(~/) ~--- et/ -~- it/, ~'/ e /~r*~" 

(% and i~ are the exterior and the interior multiplications by ~} accordingly), 
from where one can easily see holonomy invariance of aD. We also have 

~D,(0) = IrJ[~I,(,), 0 e N'97. 

Finally, essential self-adjointness of D and D 2 follows from the finite propagation 
speed arguments of [4]. 

3.3. Concluding remarks 

1. Using the well-known relationship between the zeta-function and the heat 
trace, we can derive from Theorem 4 the following fact on heat trace asymptotics 
for transversally elliptic operators, which was used in [26]. 

P r o p o s i t i o n  21. Let (M, 97) be a compact foliated manifold and E be an Her- 
mitian vector bundle on M. Given a differential operator P E firm(M, E), m > O, 
with the positive transversal principal symbol, which is self-adjoint and positive 
in L2(M, E), we have an asymptotic expansion of the G-trace of the parabolic 
semigroup operator e -tP : 

( tra (e-tP), k) = tr RE(k)e -tP, k e CF(G),  

given by the formula 
O 0  

t r e  (e -tP) N Z alt-q/m+l]m,t ~ 0-1-, 

I=0 

where at, l = 0, 1 , . . .  are distributions on G with Go, given by the formula: 

= [ ( [  e C (G) (40) (Go,k) 
JM JN 

2. There are two observations, based on the explicit formula (40) for the 
leading coefficient in the heat trace expansion, or, equivalently, for the residue of 
the distributional zeta-function at the point z = - q / m ,  which have an interesting 
interpretation in terms of noncommutative spectral geometry. 

Assume that (M, 97) is a compact Riemannian foliated manifold with a 
bundle-like metric gM, and a spectral triple (.A,7-/, D) be given by the trans- 
verse signature operator (as in Section 3.2). 
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Denote by CA(G ) the closure of the set RE(C~(G))  in the uniform op- 
erator topology o f / : (L2(M,E) ) .  It is easy to see that the ,-homomorphism 
RE : C~(G)  ~ C~(G) extends to a ,-homomorphism of the full C*-atgebra 
C*(G), RE : C*(G) --* CA(G ) . By [10], we have the natural projection 
rE:  CA(G ) --+ C~(G). If2: is an involutive ideal in CA(G), we may think of the 
spectral triple (Z, 7-/, D) as a subset of our spectrally defined geometrical space 
and look for its dimension spectrum. Then Theorem 2 implies the following fact 
about the dimension spectra of "subsets" in the singular space M/:T. 

P r o p o s i t i o n  22. Let 7. be an involutive ideal in CA(G ). Then q E Sd(Z) iff 
rE(Z) • O. In particular, if Trz(Z) = O, then the top spectral dimension of the 
spectral triple (Z, 7-l, D) is less than q. 

This fact can be also interpreted as a fact about a noncommutative analogue of 
the integral in the case under consideration. Let I be a functional on C~(G), 
given by the formula 

I(k) : r(RE(k)lOl-q), k e C~°(G). 

P r o p o s i t i o n  23. Under the current assumptions, the functional I is given by 
the following formula 

" q k e I(k) - F(~ + 1) t ry 

and can be extended by continuity to a functional on C*-algebra C*E(G ). In 
pa ieular, I(k) = 0 for any k e CA(C),  E(k) = 0 

Otherwise speaking, the functional I coincides on C ~ ( G )  (up to some mul- 
tiple) with the von Neumann trace try , given by the Riemannian transversal 
volume due to the noncommutative integration theory [5], and the support of I 
is a "regular" part  of our geometrical space. 
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