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TWO CLASSES OF CENTRAL SIMPLE n-LIE ALGEBRAS
A. P. Pozhidaev ' UDC 512.554

Introduction. It is well known that the classification problem for simple binary algebras in
a variety is reduced to the classification of algebras which remain simple under every extension of the
ground field. The notions of centroid and central simple algebra (see, for example, [1, Section 10, §1])
play the key role in the classification. These notions extend easily to {2-algebras. .

In the previous article [2], the author considered the two classes A(H,t) and E(H) = E(H,t,J)
of n-Lie algebras (see (1) and (8)) and specified necessary and sufficient conditions for simplicity of the
algebras in these classes. In the present article, we study central simplicity of these algebras; namely,
we prove that these algebras are simple (Theorems 2.2 and 3.2).

Recall some definitions.

An Q-algebra over a field ® is a vector space over ® furnished with a system Q = {w; : |w;| = n; €
N, i € I} of multilinear algebraic operations, where |w;| stands for the arity of the operation w;. In
what follows, an Q-algebra is simply called an algebra.

An n-Lie algebra over ® is an Q-algebra L over & with one anticommutative n-ary operation
[z1,. .. ,z,] satisfying the identity

n
[[.'L'],... ’zn]$y27"- 1yn] = Z[$1; o ’[$i7y27"' 1yn]a e 1-77n]'
i=1

Henceforth we denote by (Y)g (or simply (T) if the field is clear from the context) the vector
space over ® spanned by the family {T}. Given k € N, we put Ny = {1,... ,k} C N.

The article is organized as follows. In §1 we formulate the basic properties of central simple
Q-algebras; in §2 and §3 we prove central simplicity of the algebras A(H,t) and E(H); and in §4
we study the Cartan subalgebras of A(H,t) and E(H), construct Cartan decompositions for these
algebras over a field of prime characteristic, and prove an existence theorem for simple modular n-Lie
algebras with Cartan subalgebras of various dimensions.

The research was carried out under the supervision of V. T. Filippov to whom the author expresses
his sincere gratitude.

1. The centroid of an Q-algebra. Let L be an {2-algebra over a field ¢. Given an operation

w; € Q and arbitrary zy,... ,;/1}]-,... ,Zn, in L, we define the operator M;(z1,... ,u/t\:j,... ,Tn;) of
right multiplication as the linear mapping y — wi(z1,...,%j-1,Y,Zj+1,-.. ,Zn;). The subalgebra

M = M(L) of the algebra Endg(L) of linear transformations of L which is generated by all left and
right multiplications and the identity mapping is called the multiplication algebra of L.
By the centroid T'(L) of an Q-algebra L we mean the following subalgebra of Endg(L):

(L) = & € Endg(L) : p(wila1, - - ,an;)) = wi(ay,... ,d(aj),... ,an,)
forallw; € Q, a1,... ,80, €L, j € Ny, )

Clearly, I'(L) is a unital associative algebra over &.
We now state without proof some theorems on the centroid of a simple Q-algebra.!) Proofs repeat

those in {1] almost verbatim.
Let L' = (ML) be the square of L.

D It is V. T. Filippov who pointed out to the author the possibility of translating the assertions of [1, Section 10, § 1]
to the case of (3-algebras.
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Lemma 1.1. If L} = L then T'(L) is commutative.

A subspace I of an Q-algebra L which is invariant under the action of the multiplication algebra
M(L) is called an ideal. An Q—algebra L is called simple if L* # 0 and L lacks ideals other than
0 and L. Therefore, an algebra L is simple if and only if M(L) is an irreducible algebra of linear
transformations. The following theorem is an immediate consequence of Lemma 1.1 and Schur’s
lemma.

Theorem 1.2. The centroid of a simple Q-algebra is a field.
Recall that an Q-algebra L is called central if I'(L) =

REMARK. The notion of the Martindale centroid is soundly defined for Q2-algebras as well; it
coincides with the notion of centroid in the case of simple (2-algebra. Also, a theorem is known
asserting that a simple finite-dimensional (2-algebra over an algebraically closed field is central. Results
relevant to these question can be found in [3].

Theorem 1.3. Let L be a simple Q-algebra over a field & and let T (D ®) be the centroid of L.
Consider L as an algebra over T', defining v-a = ¥(a), a € L, v € . Then L is a central simple
algebra over I'. The multiplication algebra of L over I has the same set of transformations as the
multiplication algebra of L over ®.

Theorem 1.4. If L is a central simple Q-algebra over ® and P is an extension of ® then Lp is
a central simple algebra over P. If L is an arbitrary ()-algebra over ®, A is a subfield (over ®) of the
centroid_ of L, and the A-algebra I’ ® o L is simple, then L is simple over ® and A =T.

Theorem 1.5. If L is a finite-dimensional simple Q-algebra with centroid I' and multiplication
algebra M (L) then M (L) is the set of all linear transformations of L regarded as a vector space over T'.

2. Central simplicity of the algebras A(H,t). Let ® be a field, let ™ be the Cartesian nth
power of the additive group of ®, let H be a subgroup in ®”, and let ¢ be a fixed element of H. In
what follows, we assume that there exists a set £ = {€1,... ,en} C H \ {¢} such that ¢;,... ,&, are
linearly independent elements of ®" regarded as a vector space over ®.

Put Ay = (6, : a € H); it is a vector space over ®. Fix ¢ € H and furnish Ay with the n-ary
operation

[éan v 7éan] = Ial’ tee 7a"| : éal+---+an+t7 (1)

where |ag, ... ,an| is the determinant constructed from aj,...,an € ™.
By [4, Theorem 2.1}, the so-constructed Q-algebra A(H,t) is an n-Lie algebra. Put

~ A(H,0) ift=0;
A(H’“={ (Ga:a€ H\{t}) ift#0.

Using (1), it is easy to verify that A(H, 1) is a subalgebra of A(H, t).
Let A(H,t) = A(H,t)/®&y be the quotient algebra of the n-Lie algebra A(H,t) by the one-
dimensional ideal ®&,. By definition,

A(H,t) = (e, = €.+ Peg : a € H' = H\ {0,t}).

Simplicity of A(H,t) was proved in [2] for every ¢t € H. Before proving that this algebra is central,
we prove the following

Lemma 2.1. Assume that H < ®", ¢ is a fixed element of H, H' = H \ {0, t}, and a1 and b are

arbitrary elements of H'. Then we may choose elements as, . .. ,an—1 € H' 50 that h = Z -1 az+b+t €
H' and ay,... ,an-1 are linearly independent elements of ®".

PROOF. Let ay,... ,an—1 be linearly independent elements of & and h ¢ H'. The two cases are
possible:

Case L h= Y"1} a,+b+t=t.

1113



In this case, it suffices to take a5 = ag — a; instead of ag, provided that ap #t. If ag—ay =1t
and n > 3, then it suffices to take ag instead of ag. If n = 3 and char & # 2 then put a) = a3 — 2a;,
whereas if char ® = 2 then we have h = a; +as +b+¢, ag —ay =t; whence h=b € H'.

CaseIl. h= Zz_l az+b+t=0.

Indthls case, we take aj = ag + a; instead of a3 and follow the arguments of Case 1. The lemma is
proved.

Given a € H, denote by (a) the subgroup of the Abelian group H which is defined as follows:
(a) ={be€ H:b=a for some vy € &} I H.

Theorem 2.2. A(H,t) is a central simple n-Lie algebra.

PrOOF. We claim that the centroid I" of A(H,t) coincides with the ground field ®. Let ¢ be an
element of I', a € H', and ¢(ea) =Y pem C(a,h)ep, where ¢ : H x H' + ® and {(a,h) = ((h,a) =0
if a =0,t. Then, for all ai,...,an € H', i € N,, we have

¢([eal7 e ’ean]) = [60-17 e 7eai-11 (b(eai);eaﬂ.p LR 7ean]
= Z C(ai,h)[eays- -+ 1€ai_1»€hr€apqs- -+ > €an]
heH'
= Z C(a’h h)la].’ ceey Q4-1, h; Qj41y .-+ ,0n|€qy+...+an+h+t—a;- (2)
heH'

On the other hand,

¢([6a1’ o ean]) = d)(la’lv feey anlea1+...+an+t) = ‘(1‘11 reey a'n,I Z ((Z a; + t, h) eh. (3)

heH' i=1

Comparing (2) and (3) and using the unique decomposition of a vector in a basis, we conclude that

n n
Iala-'- 1a"i—lvh'—taa'i+1’-~- ?a1L|C(ai7ai+h’—t— Zaz) = |a11°-' 7an|C(Za’i+tvh) (4)
i=1

i=1

for all h,ay,... ,an € H', i € N,,. Put in (4) a; = aj with i # j. We have

n
lal, ... ,ai-1,h —t, aj+1,. .- ,anlC(aj,aj+h-—t-—Zai> = 0. (5)

=1

Let b be an element of H'. Put h =Y., a; + b+t — a;. Without loss of generality we may assume
that ¢ = n and that h € H' by Lemma 2.1. Then (5) is reduced to the equality

|(11, con ,a,,_l,blC(aj,b) =0

which, by the arbitrariness of ay,...,an—1 € H’, implies that {(a,b) = 0 whenever a ¢ (b). Verify
that {(a,b) # 0 for a € {(b) only if a = b.
Indeed, let ay, ... ,an, h € H' be such that (31, a; +t,h) # 0; i.e., the equality

Zai+t=ah (6)

=]

holds for some o € ®*. By (4), for every j € N, we have ((aj,a;j + h—t — 3 a;) # 0; ie,
aj +h—t—37 0 = fBa; for some §; € *. Summing the last equality and (6), we obtain
(a —-1)h+ (5 - l)a.J = 0; whence @ = ; = 1 by the arbitrariness of j € N,. Since A(H,t) is
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simple; therefore, for every b € H’, there exist linearly independent elements ay,... ,a, € H' such
that Y ;@i +t =b. We thus proved that {(a,b) # 0 only if a = b.
Verify that {(a,a) = {(b,b) for all a,b € H'.

Indeed, by (4) we have
n n
i) =¢( Sm+t Y are) @)
i=1 i=1

i.e., C(ai,ai) = ((aj,a;) with a;, aj € H' such that a; ¢ (a;). If a; € H' and aq; € H’' for some
a € ®*, then by (7) ((aa;,aa;) = ((aj,a;), where a;, a; € H' are as above. Comparing the last
equalities, we arrive at the required result. Thus, the mapping ¢ is the multiplication by an element
of the field; i.e., I' = ®. The theorem is proved.

3. Central simplicity of the algebras E(H). In [2], there was distinguished some class
E(H,t,J) of subalgebras of the algebras A(H,t) and simplicity conditions were specified for the
algebras in this class. It was shown that to study the algebras in E(H,t,J) it suffices to study the
algebras of the following form.

As above, let ® be a field, H be a subgroup in ®”, and ¢t; = (1 - n,0,...,0) € H. Put
Hy = {h € H: m(h) = 1}, where m; : ®" — & is the ith projection operator: m;(zy,... ,Z,) = z;. In
what follows, we assume that there exists £’ = {e1,... ,e,} C H} = H; \ {t:} such that €1,... , ¢, are
linearly independent in ®". Put

_ _ _ [ Eg ifn#0 (mod p);
By =({ea:ac Hy), E(H) = { E}, i#n=0 (mod p),

where p = char ® and E}{ = [Egq,...,Eg] is the square of Ep.

It is easy to see that Eg is a subalgebra of A(H,#1). By [2], E(H) = (e, : a € H!) is a simple
n-Lie algebra.

Using these notations, we prove the following

(8)

Lemma 3.1. Let ay and b be arbitrary elements of H;. Then we may choose as, ... ,an-1 € Hj
so that h = Z;:ll a; +b+1t, € H] and ay,... ,a,_1 are linearly independent elements of ®".

PROOF. Let ay,... ,a,-1 be linearly independent elements of " and h ¢ Hj;ie., h = Z?;ll a; +
b+t; = ty which is equivalent to ' = ?__:11 a;+b = 0. Note that m;(h') = n and hence h ¢ Hj only if
n = 0 (mod p). To prove the lemma, it suffices to take a = — Z;:ll a; instead of as. It is easy to see
that ay, € H{. Otherwise b = ¢;, which contradicts the assumption. Now, if a; + an+ Z;:; ai+b=0
then b = ap and, to prove the lemma, we have to repeat the argument with a3 substituted for as. If
n =3, a1 +a2+b=0, and b = ay then a; + 2a2 = 0 which amounts to a; = a9, and we arrive at
a contradiction with the choice of ay and a. The lemina is proved.

Theorem 3.2. E(H) is a central simple n-Lie algebra.

PROOF. Demonstrate that the centroid I' of E(H) coincides with the ground field ®. Let ¢ be
an element of I' and we have ¢(e;) = ZheH; ¢(a, h)ep, for every a € Hj, where ¢ : Hy x H; = ® and

¢(t1, h) = {(h,t;) = 0. Then, for arbitrary ay,... ,an € H{, i € N,, we have

P([eass- -+ r€an)) = leays--- €0y, D(€a;), €aipr1re--  €an)
= Z Clai, h)leay, - -+ 1 €a;_11€hr€azp1s-- - » €an)
heH]
= Z C(aia h’)[a’l’ veey Q4 h', @ig1,-.. ,0n ea1+...+an+h+t1—ai- (g)
heH]

On the other hand,

¢([ea1; ey ean]) = ¢(|a17 <oy Qn ea1+...+an+t1) = Ia‘l: sen 1an| Z C(Z a; + t11 h') €p- (10)

heH] “i=1
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Comparing (9) and (10), and using the unique decomposition of a vector in a basis, we conclude that
the equality

n
ai,...,a-1,h —t1,041,. .. ,anlC(ai,ai-!-h—tl—Zai)

i=1

= lay,... ,anlC(iai-l-tl,h) (11)

i=1

holds for all h,ay,... ,a, € Hj, i € N,. By setting a; = a; with i # j in (11), we obtain

n
|a1,... , Gi—1,h — 1, Qit1,- - - ,an|C(aj,aj+h——t1—Zai) = (). (12)

i=1

Let b be an element of H]. Put h = 3 -, a; + b+ t; — a;. Without loss of generality we may assume
that i = n and that h € A by Lemma 3.1. Then (12) is reduced to the equality

lab v ,arn,-l,b|C(aj, b) =0

which, by the arbitrariness of ay,... ,an-1 € Hj, implies that {(a,b) = 0 whenever a ¢ (b). This is
equivalent to a # b, since a,b € Hj.

By (11), {(ai,ai) = (X iy @i + t1, > 1mq i + t1); e, C(as,a;) = {(a;,a;) for all a;, a; € Hj.
This implies that the mapping ¢ is multiplication by an element of the field and I' = ®. The theorem
is proved.

4. Cartan subalgebras of the algebras A(H,t) and E(H). In this section we define
Cartan subalgebras of the algebras A(H,t) and E(H). By analogy to Block’s theorem [5] concerning
Lie algebras, we prove Theorem 4.4 on existence of simple n-Lie algebras of characteristic p > 0 with
Cartan subalgebras of various dimensions. In what follows, we assume that the ground field ® is
algebraically closed. Recall some definitions.

An ideal I of an n-Lie algebra L is called nilpotent if I¥ = 0 for some k € N, where I' = I and
I* with k > 1 is defined by induction: I* = [I*"1,I,L,... L]

Let NV be a nilpotent subalgebra of an n-Lie algebra L. A function p : N*~1 > & is called
a root of L relative to AV if there exists a nonzero z € L such that, for every right multiplication Rp,
with h € N1, the element z is annihilated by some power of the operator Ry = Rj, — p(h) - 1d,
where Id : L + L is the identity operator. The set of all such z’s is called the root subspace L,
relative to the root p. Then p = 0 is a root and Ly = Lg(N) is a subalgebra of L containing . If
dim L < oo then L is decomposed as a vector space into the direct sumn of the root subspaces L,. If
N = Lg then N is called a Cartan subalgebra of L, and the decomposition of L into the direct sum
of root subspaces is called a Cartan decomposition of the n-Lie algebra L. The condition N' = Ly
is equivalent to the condition that the nilpotent subalgebra A coincides with its normalizer; i.e., the
inclusion [z,N,... ,N] € N implies z € N [6]. If z is a regular element of L; i.e., if the subalgebra
Lo(®z) has a minimal dimension, then Lo(®z) is a Cartan subalgebra of L [6]. Thus, every n-Lie
algebra has a Cartan subalgebra. .

In the case of characteristic zero, all Cartan subalgebras of an n-Lie algebra are conjugate [7].
However, this fails if the characteristic is prime, and the forthcoming Theorem 4.4 claims that, in
the modular case, a Cartan subalgebra may fail to contain a regular element and that the Cartan
decompositions relative to different Cartan subalgebras may differ.

We first find the Cartan subalgebras of A = A(H,t) and E = E(H). Let us agree that the set £
is chosen so that t € (e1,... ,en-1).

Proposition 4.1. Let K = {h € H: h € (e1,... ,en-1)} and Agx = (e, : a € K' = KN H').
Then Ay is a Cartan subalgebra of A(H,t).
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PRrOOF. Firstly, Ax is an Abelian subalgebra. Next, suppose that x = ) ../ viey, € Ao(Ax).

Then for some m = m(z, h) € N we have zRT* = 0, where h = (e¢;,... ,€c,_,) € A?(-_l. Applying (1)
to the last equality, we obtain:

271:[61),;7 €eyyen- )eenq] = Z YiTi€u; = 01 (13)

i€l iel

where 1; = Hk-—o lv; + Kkt ,E1y .- en—1l, Ui =v; +mer+ ... +mep_1 +mt.

Note that uz # uj w1th i 74 j, and we mav assume that uj # 0 for any fixed j € I, since otherwise
we may take 81 = g1 + &2 instead of &1 or 52 = g9 + €1 instead of £2, and follow the arguments of
Lemma 1.1.

By (13), 7; = 0; i.e., |v; + kt,e1,... ,6q—1] = O for some k € {0, .. — 1}, which implies the
membership v; € K 1 by the choice of J Since j € Iis a.rbltrary, we conclude that z € Ag, and the
proposition is proved.

If char ® = p > 0 then for arbitlary a € H' and h = (eay, .- ;€a,,) € A" we have e,R) =

g(a,h)es, where g(a,h) = k__ola + kt,ay,... ,an-1| € ®. Note that in the case of e, € Ak
we have g, # 0, where g, : A}~ s &, ga(h) = g(a,h). From the construction of the Cartan
subalgebra it follows that, if al, ,an-1 are independent, then there exist aj,... ,op-1 € ® such
that aja;1+... +ap-1an-1 = ¢ Whl(,h implies g(a, h) = p(a, h)P for every h = (eq,, ... ,ean_l) € A% 1

where p(a,h) = |a,ai1,...,an-1]. We then have e,(Rp — p(a,h) - Id)P = 0 and so p, = p(a,h)
is a root of A relative to Ax. Furthermore, we have g(b,h) = g(a,h) if and only if b € a + K,
which implies the Cartan decomposition of A(H,t) relative to Ax : A(H,t) = @3 ,ca Ap, Where
A={ps: AF = ®:a€ H/K, py(h)=p(a’,h), a=d + K, h=(a1,... ,an-1)}, and Ap = Ag.

If we choose €1, ... ,&x € ®", with k > n, linearly independent over F}, and consider H as a vector
space over Fy with the basis €1,... ,&, then we obtain an example of a central simple n-Lie a,lgebra
A(H, t) of dimension p* -2 (p* —1 1f t = 0) with a Cartan subalgebra of dimension p"~* -2 (p"~* —1).

Before constructing a Cartan subalgebra of E(H), let us agree that the set €;,... ,e,_1 € 5’ is
chosen so that t; € My = (e1,... ,€u-1)-

Proposition 4.2. Let M = H{ N My and Ep; = (eq : @ € M). Then Epy is a Cartan subalgebra
of E = E(H).
PROOF. Firstly, Ejs is an Abelian subalgebra. Next, suppose that z = Y. iel Yi€v; € EO(EM

Then we have zR* = 0 with h = (e, ... ;€¢,_,) € Ex, and some m = m(x,h) € N. Applying (1)
to the last equality, we obtain:

Z 7'5'[61’1" eel’ et efn—l] = Z 7i7'ieui = 01 (14)

el el
where 7; = H;C"__O lvi + ki1, €1, en—t], ui = vi+mer+ ... +men_y +mty.
Note that u; # uj with 3 7é j. Then, by (14), 7; = 0; i.e., |vj + kty,e1,... ,€n—1| = 0 for some
k € {0,.. ~1}; whence vj € M by the choice of €1, . 6n..1 Since j € [is arbltrary, we conclude

that © € E M dnd the proposition is proved.
If char ® = p > 0 then, for arbitrary a € H{ and & = (eq;,... ,€q,_,) € EM , we have e R} =

g(a, h)eq, where g(a,h) = :(1) |a + kt1,a1,... ,8a-1] € ©. Note that in the case of e € En
we have g, # 0, where g, : EXI ~ &, g.(h) = g(a,h). From the construction of the Cartan
subalgebra it follows that, if aj,...,a,—1 are independent, then there exist aq,...,an-1 € ® such
that aja1+. . .+aop-1an-1 = t1, Wthh implies g(a, h) = p(a, h)P for every h = (eal, e s€any) € Xfl,

where p(a,h) = |a, a1, ... ,an—1|- We then have eo( Ry — p(a, h)-Id)P = 0 and so p, = p(a h) is a root
of E relative to Epys. Furthermore, we have g(b,h) = g(a, h) if and only if b— a € My, which implies

the Cartan decomposition of E(H) relative to Eps : E(H) = @} ,car E,, where A" = {pq : Eyt
P:ac HoM = {m+ My : m € H{}, pa(h) = p(d',h), a = a' + My, h = (ay,...,an-1)}, and
Ey = E)r.
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If, as above, we choose €y, ... , e € ", with k > n, linearly independent over Fj, and consider H

as a vector space over Fy, with the basis €1, .. , &, then we obtain an example of a central simple n-Lie
algebra E(H) of dimension p*~1 (pF~1 -1 1f n = 0 (mod p)) with a Cartan subalgebra of dimension
Pt (- 1),

Before constructing an example of an n-Lie algebra with Cartan subalgebras of various dimensions,
we introduce the following deﬁnition

Fix r € N, and put N}, = {(31,... ,in-1) € N,’.”__’l1 :ig # 15 with & # s}. We call the set
T= {vl, .., Up} C O n—lndependent over ® if v;,, ... ,v;, are linearly independent over ® for every
(i1,- -+ yin) € N7y g1

Lemma 4.3. Let & be an infinite field of characteristic p. For any n,k € N there exists an
n-independent set T = {v1,... ,ux} C ®" over ® with linearly independent elements over Fp,.

PROOF is carried out by induction on k. For k = n, we take {vy,... ,v,} equal to the elements
of the basis. Now, assume that the lemma is proved for £k = r —1 > n and that {v1,...,vr-1}
satisfy the conditions of the lemma. Put v, = ayv; + ... + apvn, € ®". Then the set {vy,...,vr} is
n-independent if and only if |vr, viy, ... ,vi,_,| # 0 for any ¢ = (41, ... ,in-1) € I = N;,,. Expand the

determinant in the first row. We have o179} + ... + anY? # 0, where not all 7/ = 0 by the induction
hypothesis. Thus, it suffices to choose ay, ... ,an € ® so that azy! + ...+ azy® # 0 for any vel.

For every ¢ € I, consider the function f, : ®" + ® such that f,(z) = f.(z1,... ,%n) = 11V +...+
Ty, Put f =[] f.: 2" — ®. Since ® is infinite, there exist infinitely many a=(ay,...,0p) €
®" such that f(a) # 0 (see, for example, [8, Proposition IV.2.5.8]). Since the set {v1,... ,vr-1} is
finite, its linear span over F, is finite. So we may also choose  so that {vy,...,v,} are linearly
independent over Fy. The lemma is proved.

Theorem 4.4. For every prime p and every natural k € N, there exists a simple n-Lie algebra
of characteristic p with Cartan subalgebras of k different dimensions.

ProOOF. Take as a sought example the algebra A = A(H,0) over a field & with the group H
constructed below. Take r € N so that ¥ < C},_;. Using Lemma 4.3, choose {f?,... &0y c "

n-independent and linearly 1ndependent over Fp,. Now, choose ki, ...,k € N so that card {k;; +...+
ki,_, : (1,... ,in-1) € N} "+, o} = Cr_; (the sums of n — 1 summands are all distinct). Consider the

sets =; = {EO &L Ek‘} where i E Ng, f’ B; €1 , and 3 € ® are chosen so that the elements of Z;

are llnearly mdepenclent over F,. Let H be the vector space over F, of dimension 3o =1 Ki + r w1th
the basis = z_1_1 Put A = A(H 0). It is easy to see that, for every t= (i1, in-1) € Ny ps

A = (e, :a € (U i ....z]) F,)® is a Cartan subalgebra of A of dimension p"1p*0) — 1, where k(z) =
;-‘__:11 ki;. The claim follows by the choice of k;. The theorem is proved.
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