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A U T O M O R P H I S M S  OF O N E - R O O T E D  TREES: 
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A natural interpretation of automorphisms of one-rooted trees as output automata permits the ap- 
plication of notions of growth and circuit structure in their study. New classes of groups are introduced 
corresponding to diverse growth functions and circuit structure. In the context of automorphisms of the 
binary tree, we discuss the structure of maximal 2-subgroups and the question of existence of free subgroups. 
Moreover, we construct Burnside 2-groups generated by automorphisms of the binary tree which are finite 
state, bounded, and acyclic. 

1. I n t r o d u c t i o n  

Automorphisms of one-rooted infinite regular trees have been the focus of increasing investigations in 
recent years for their connections with problems in different areas of mathematics ranging from Group Theory 
to Dynamical Systems. As it is not our intention to give a survey of these developments, we have listed in 
the reference section publications which reflect the range of work that has been done. 

Our main purpose is to apply basic notions such as growth and circuit structure from finite automata 
and their graphs to the study of the structure of the group of automorphisms .A(Y) of one-rooted regular 
trees, where Y stands for the set of first-level vertices of the tree. These notions are directly applicable in 
view of a natural interpretation of tree automorphisms as output automata having }r as both the intmt and 
output alphabet.. The set of states of a E A(Y) is denoted by Q(a), and the initial state is a. A group H 
of tree automorphisms isstate closed provided Q(a)  is contained in H for all a E H, and is layered provided 
the set of functions $-(Y, H)  is a subgroup of H. Layered subgroups are state closed. When Y is finite, the 
set of automorphisms a in A(Y) for which Q(c~) is finite form the enumerable subgroup F(Y) of finite state 
automorphisms, which is a layered group. 

The infinite Burnside p-groups of Aleshin, Sushchanskii, Grigorchuk, and those of Gupta-Sidki, all of 
which are necessarily not linear, afford faithful representations into the group of finite-state automorphisms of 
a p-adic tree. One property some of these p-groups enjoy is that their proper quotients are finite and therefore 
are also solvable. Periodicity of these groups is not essential for guaranteeing the latter extremal property. 
As a matter  of fact, recently a 2-generator torsion-free nonsolvable group all of whose proper quotients are 
solvable was constructed in [6] as a subgroup of the finite-state automorphisms of the binary tree F.  The 
group of finite-state automorphisms also covers the linear phenomenon, for it was shown in [5] that there 
exists a faithful representation of the linear group GL(n, Z) into the group of F(Y), where Y has 2 ~ elements. 

Let D be a directed graph, W a property of vertices, and v a fixed vertex. The W-growth of D starting 
at v, denoted by #(W; k + 1, v), is the number of distinct directed paths of length k > 0 which start at v and 
end at a vertex with property W; the paths may be self-intersecting. In the case of a tree automorphism c~, 
the graph of the automaton with vertex set Q(c~) will be referred to as the graph of a and #(W; k + 1, a) 
as its growth function. One of the properties we consider is whether or not a state of (~ is active; for this 
property we simply write ~(k + 1, c~). 

Given a vertex property and a measure of growth, we prove in Sec. 2.4 that. the automorphisms of the 
tree whose automata have the given growth form a layered subgroup. It is a difficult problem in general 
to distinguish isomorphically among groups related to different choices of vertex properties a~ld measures of 
growth. 

A finite directed graph can be represented by an adjacency matrix with nonnegative integer entries. An 
elementary result in Sec. 2.5 on the growth of the entries of powers of such matrices implies 
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T h e o r e m  A. Let c~ E F(Y)  with m states. Then O(W; k + 1, a) seen as a function of k either grows 
exponentially or has an eventually polynomial growth of degree at most m - 1. 

The set of finite-state automorphisms a for which O(k + 1, a) is eventually zero form a layered subgroup 
which is the base group G(Y) ,  while those c~ for which O(k + 1, a) has polynomial growth of degree at most 
m form a layered subgroup Fro(Y). The elements of Fo(Y) are called bounded automorphisms. 

A simple circuit in a graph D is a circuit without self-intersections, and its length is the number of 
distinct vertices lying on this circuit. The graph D has m-circuit type provided m -- c(D) is the maximum 
length of its simple circuits, and it is acyclic provided m <_ 1. 

Let D be the graph of a tree automorphism a and assume that the simple circuits of D have largest 
length c(D) = m. If D is a tree, or if the identity automorphism e is one of the states of c~ and the only circuit 
is from e to itself, then we say that c~ has O-circuit type. Otherwise, a has m-circuit type where m = c(c~) > 1. 
Furthermore, c~ is called acyclic if c(a) < 1. 

We observe that the tree automorphisms with c(a) bounded above by m do not form in general a 
subgroup. However, we prove in Sec. 2.5 that elements of F ( Y )  which have circuit type at most 1 do form a 
subgroup F.,1 (Y). 

In Sec. 3, we prove that the cycle structures for finite-state bounded automorphisms behave quite well 
with respect to the group operation. As a matter  of fact, the following holds: 

T h e o r e m  B.  Let m be a natural number. Then the set 

Fo,m(Y) = {a e Fo(Y) ] c(a) = 0, or c(a) divides m} 

is a subgroup of Fo(Y) and it is layered. 

In Secs. 4-6, considerations are restricted to the automorphism group of the binary tree. As a test of 
the strength of the notions introduced so far, we undertake in Sec. 6 a detailed s tudy of the group F0,~ of 
autornorphisms of the binary tree which are finite state, bounded, and acyclic. 

Let Y = {0, 1}, and let a denote both the transposition (0, 1) and its so-called rigid extension to an 
automorphism of the binary tree. The group of automorphisms ,4 = A ( Y )  is a recursive wreath product 
A = .4 wr(c}. One special element of A is the binary adding machine which corresponds to adding 1 modulo 
2. This machine is represented by 7- = (e, T)a, and it is easy to see that 7 �9 Fo,~. One of the characteristic 
properties of ~- is that its centralizer subgroup in A is isomorphic to the ring of dyadic integers. The special 
properties of (~-) are used in Sec. 4 to distinguish between F0,1 and Fo. 

T h e o r e m  C. The group Fo,~ is not isomorphic to Fo. 

Moreover, it is possible to obtain the following nonfreeness criterion. 

T h e o r e m  D.  Let H be a noncyclic group of finite-state binary tree automorphisms which contains @}. Then 
H is not a free group. 

In Sec. 5, maximal 2-subgroups of layered groups are considered. Define w = (a, a3), an involutary 
element of F0,1. 

T h e o r e m  E. Let 7-I be a layered group of binary tree automorphisms. Assume that 7-l contains the base group 
G and the element w = (a, w). Then there are infinitely many conjugacy classes of maximal 2-subgroups, and 
infinitely many conjugacy classes of maximal locally finite subgroups in ~ .  

In Sec. 6, the group F0,~ is shown to factor as a product of certain special subgroups. In the same section 
we prove 

T h e o r e m  F.  The base subgroup G is a maximal locally finite subgroup of Fo,1. 

In Secs. 6.2 and 6.3, we discuss a number of nontorsion criteria for subgroups of F0,1. These results are 
obtained in the context of constructing infinite Burnside 2-groups within F0,~. The following group is the 
first of an infinite family of such examples. 

T h e o r e m  G. Let b = ((~, ~), e) be an element of the base group G, and let ~ = (b, ~) �9 Fo,~. Then the 
group B generated by the states of ~ is an infinite Burnside 2-group. 
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We remark that Grigorchuk's Burnside 2-group [7] defined on the binary tree and generated by the states 
of a = (e, (or, (a ,a)))  belongs properly to F0,a, since c(a) = 3. 

It was shown in [10] that given a tree with alphabet Y = {0, 1 , . . . ,  n - 1}, n > 3, and given its two 
automorphisms, the rigid extension of the permutation c~ = (0, 1 , . . .  , n - 1) and 7 = (3', or, e , . . .  , e, a'~-t), 
the group (or, 3') is an infinite Burnside n-subgroup of Fo,I(Y). Thus, with this last construction, it is proven 
that Fo,I(Y) contains infinite Burnside groups for all IYI _> 2. 

A c k n o w l e d g m e n t .  Support from the CNPq and FAPI)F of Brazil are acknowledged. 

2. Tree  A u t o m o r p h i s m s  

2.1. Pre l iminar ies .  A one-rooted regular tree 7- may be identified with the monoid .M freely generated by 
a set Y and ordered by the relation v < u if and only if u is a prefix of v; the identity element of M is the 
empty sequence r 

Let A = Aut(T) be the automorphism group of the tree 7-. The permutations P(Y)  of the set Y can 
be extended "rigidly" to automorphisms of .4 by 

(y.u)c  = Vy e Y, vu E M ,  

and this gives us an embedding of P(Y)  into A. 
An automorphism c~ E A induces a permutation a0(c~) on the set Y, which we identify with its rigid 

extension to the whole tree. Therefore, the automorphism affords the representation c~ = a/a0(a), where 
c~' fixes Y pointwise. Furthermore, ct r induces for each y �9 Y an automorphism a'(y) of the subtree whose 
vertices form the set. y.3/[. On using the canonical isomorphism yu --+ u between this subtree and the tree 
7-, we may consider (or renormalize) c~' as a function fl'om Y into A; in notational form, a '  �9 5c(Y, ,4). Thus, 
the group A factors as 

,4 = 5r(Y, A).P(Y).  

It is convenient to denote ct bv a(r and a'(y) by c~(y). In order to describe a(y), we use the same 
procedure as in the case of c~. Successive applications t)roduce the set. 

r~(~) = {~,,(~) I"* �9 M }  

of permutations of Y which describes faithfully the automorphism a. Another by-product of the procedure 
is the set states of ct: 

States will be considered with respect to a number of properties such as the property of being active. A state 
a,, of a tree automorphism c~ is said to be active provided a~(a) ~ e. 

The definition of the product of automorphisms implies the following important properties of the Q 
function: 

= 

Q(aZ) c Q(a)Q(,3),V~,Z �9 A. 

Given a group H and a set Y, define the groups 

.~o(Y, tI) = H, .Y~(Y:H) = ~(]-~ H), 

Given a subgroup H of P(Y), we may define H # to be the subgroup of .A generated by -~i(Y, H) for all i > 0. 
The factorization 

H # = :r(Y, H#) .H  

can be verified directly. 
A subgroup L of the tree automorphisms A is called a layer subgroup, or simply layered, provided 

~-(](; L) is a subgroup of L. Thus H # is an example of a layer subgroup. If H = P(Y),  then H # is called 
the base group and is denoted by G(Y). 
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Now let Go,k-1 (Y) be the subgroup of G(Y) generated by -~- I (Y ,P(Y) )  for all 0 < i < k - 1. Then 
G0,k-t (Y) is the group of automorphisms of the subtree formed by the vertices u of length at most k, and 
G(Y) is the union of G0,k-~ (Y) for k _> 1. A nontrivial element h of G(Y) has depth k - 1 provided k is the 
least integer such that h E G0,e-1 (Y); thus, nontrivial elements of P(Y)  have depth zero. Since 

.4 = ~'k(Y, A).Go,k-~ (Y), 

the decomposition of an automorphism a can be continued to the kth level of the tree in the form a = 
fk(a)"yk-l(a), where fk(a) E .Tk(Y, ..4) and ~/k-l(a) E Go,k-,(Y). 

The product of two automorphisms a,/3, is developed as follows: 

where fk(a/3) = fk(c~)- 3'k-l(a)fk(/3)2/k-t(Ct) -1, and ~/k-l(a/3) = "~k-l(a)Tk-l(/3). Also, a - I  = fk(a-1) �9 
~/k-1 (a) -1, where 

fk(a  -1) = %_l(a) - l fk(a) - l~ /k_l (a ) ,  
= 

Given a, we define a (~ = a, a (1) = f E 9v(Y, A), where f(y) = a for all y E Y, and define inductively 
a (k) = f E $'k(Y, A) such that. f(y) = a (k-l) for all y E Y. 

When Y = {0, 1}, the tree 7- is the binary tree. Here the symbol (7 is reserved to indicate the transposition 
(0, 1) and its rigid extension to a tree automorphism. For any binary tree automorphism a, define inductively 
the automorphisms ao = a, a~ = (e, ao), and ak = (e, O~k_l) for k _> 1. We note that for k > 0, G0,k (Y) is 
generated by {ai [ 0 < i < k} and is isomorphic to the k-fold wreath product of the cyclic group of order 
two. We also note that the set {or (~) I i >_ 0} generates freely an elementary abelian 2-group. 

2.2. A u t o m a t a  r e p r e s e n t a t i o n .  Automorphisms of the tree T can be interpreted in terms of output  
(Mealey) automata. Such an automaton is a Turing machine defined by a sextuple (Q, L, F, f ,  l, q0), where Q 
is the set of states, L is the input alphabet, F is the output  alphabet, f - Q • L --+ Q is the state transition 
function, l " Q x L --+ F is the output function, and qo is the initial state. For a given automorphism a of 
the tree T,  the input and output  alphabets are the same set Y, and its set of states is the set Q(a) defined 
above. The transition function is defined by 

and the output, function by 

where z is the image of y under (Tu(a). 

y:  (uz) 

c~(u) : y -+ z, 

P r o p o s i t i o n  1. Let Y be a finite set and F(Y)  be the set of finite-state automorphisms of the tree T (Y ) .  
Then F(Y)  is an enumerable layer group which factors as F(Y)  = ~(~; F(Y) )P(Y) .  

P r o o f .  This result is a direct consequence of the two properties of the Q state function above and of the 
enumerability of finite automata. 

2.3. S t a t e - c l o s e d  s u b g r o u p s .  It is evident that if L is a subgroup of the tree automorphisms A , the 
states of its elements are not necessarily again elements of L. In this regard, we recall that the group L is 
said to be state closed provided Q(a)  c_ L for all a E L. 

P r o p o s i t i o n  2. (i) The set of state-closed subgroups of A form a lattice. 
(ii) The layer subgroups of A are state closed. Furthermore, if Y is finite, then the layer subgroups form 

a lattice. 
(iii) Any subgroup of the group of permutations P(Y)  is state closed. 
(iv) Let a E ,4 .  Then (a} is state closed if and only if (~ = f.(7, where f is a map such that f(y)  E (a} 

for all y E Y and (7 E P(Y) .  
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P r o o f .  Let H, K be state-closed subgroups and L = (H, K) .  Also, let a = / 3 ? . . . / 3 ' ~ / E  L, where f l , . . .  , [~' E 
H and % . . .  ,~/~ E K.  Since the state function is sub-multiplicative, it follows tha t  Q((~) is contained in 
Q(/3)Q(?) . . .  Q(/3')Q(',/), a subset of (H, K) .  The other items are easy to prove. 

P r o p o s i t i o n  3. Let Y = {0, 1},g E a : G(Y) ,A"  = <Q(g)). Then, 
(i) K is an abelian group if  and only if  g E <or(0 I i > 0); 
(ii) K is a nonabelian dihedral group if and only if  g = (go, g~)cr, .where go E <or (~), a) and gt = go ~cr. 

P r o o f .  The group K is state closed. Since a E K implies tha t  (Q(a)) is a subgroup of K ,  we conchlde that  
E Q(h) for all nontrivial h E G. 

(i) Assume tha t  K is an abelian group. Then  a commutes with g, and therefore go = g,. As g,, E Q(9), 
we obtain that  g~0 = 9~.  If the depth of .q is s, then g E <a, a ( t ) , . . . ,  a(~)). Since <a, a ( 1 ) , . . . ,  a(~)) is an 
abelian group, the converse s ta tement  follows. 

(ii) Assume tha t  K is a nonabelian dihedral group. It is clear that  (e, a),  (a, e), or cr (t) = (a, a) E K.  Since 
E Q(g), it follows tha t  if (e, a) E K,  then (or, e), a(O E K.  In all cases, a(l) E K.  Now a central involution 

is a square. Therefore, no active involution can be central; in particular, cr is a noncentral  involution. The 
centralizer of ~ in K is <a 0), or). 

Let a E K such that  a 2 = (a,c~). Then a = (a0, al)cr. Therefore, a 2 = (aoat,a~ao) = (cr, a),aoa~ = 
atao = or. Also, from a ~' = (ai, ao)a = a - t  = (a~ -~, ao~)Cr, we conclude tha t  a = (a0, aoa)O', a o = e., and a0 
commutes with a. As a0 E K,  a0 E (cs (t), a).  Hence o(a) = 4. 

Assume that  g is inactive. Then g = a -~ = a (')~ and Q(g) = {e, ~r}; a contradiction. Therefore g is 
active. Now g = ai, o r  aicr. In the first case, i is odd and a may be taken to be 9. In the second case, i is 
even and K is abelian, which is a contradiction. 

2.4. G r o w t h  f u n c t i o n s  a n d  c h a r a c t e r s .  Let D be the graph of the au toma ta  which represents a tree 
automorphism ct. A vertex v of this graph is said to be active provided the state a,, associated to the vertex 
v is active. For the property W, the vertex v is active, an(l the notat ion fbr the growth flmction is simplified 
a s  

O ( k + l , a ) = # { u ' c ~ , , ( a ) r  u I = k }  for all k>_0.  

Thus O(k + 1, a) is the number of entries of fk(a)  which, as automorphisms of the tree 7-, are active on the 
1st level; if IYI = n ,  then O(k + 1, a) _< .n ~. 

In the above definition the condition c~,,(a) r e is equivalent to a~ ~ Y ( K  ,4). More generally, let 7{ be 
a subg,'oup of ,4 and let W indicate the property that  a,, ~ 7{. In view of this, we may define for the growth 
funcl;ion 

0n(k + 1, = 7{, lu  I= k} for all k _> 0 

which measures tile 7{-inactivity of a.  When  7{ is the identi ty subgroup, we define for k >_ 0 

~(k + 1, a)  = # { u :  a~ r e, I'ul = k}, 

tile frequency of nontrivial states of a .  It is clear tha t  0(~;, a) _< ~(k, a).  
The function O n ( k , - )  : `4 -+ N satisfies the following properties: for all a,/3 E `4 

0n(k, a/3) _ 0n(h:, a) + 0n(k 
On(k ,a  -1) = 

To just ify these assertions, first we observe tha t  for c~, ~3 E Yk(Y, A), we have 

{u :  ( ~ ) , ,  r 7{} C_ {u:  ~,, ~ 7-/or ~,, ~ 7{}. 

Since f'k(a) = ~/k_l(a)f~(a)3,k_t(a) -1 is simply fk(a)  with its entries permuted  by "),k_l(a) -I ,  we have that  
fk(a)  and fk((~) have the same number  of entries which do not belong to 7{. Now as multiplication in ~k(Y. ,4) 
is effected coordinate-wise, the above properties follow. 
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The function On(k, a) is not conjugate invariant in general. For instance, consider ~r and A = (A, A)cr, 
automorphisms of the binary tree. Then A -- ~(~,~) and we have O(k, a) = 0 for all k _> 2, while O(k, A) = 2 k-~ 
for all k _> 1. A conjugate-invariant function is obtained upon replacing 0 by 

On(k, a) = max{0n(k, ~/) I ~/is conjugate to 4}. 

Norms aad metrics may be defined on A using the function On(k,a).  For example, for n _> 1, let 
s~ = (n - 1)/n 'k-1 and define 

1 = : k _ 1}, = t  I- 

R e m a r k .  Bhatacharjee, in proving in [2] the ubiquity of free subgroups within `4, introduces the function 
re(a,  fl) =min{M I (u)a r (u)fl} for a r f l ,  which she uses to define the invariant metric 

0 if a = fl, 
d(a, fl) = 2 -m(~'~) if a :~ fi- 

Let. B be a set of functions defined on the natural numbers, contained in 5r(N, 1N), which satisfy the 
following two properties: 

(i) the constant function 0 E B, 
(ii) (Va, b E B)(3q E B)(a  + b _< q). 
A first example of such a class is the set. Z of eventually zero functions. A second example is the set of 

functions with growth k TM, where for given rn >_ O, 

P , ,  = { f  ' f (k)  <_ ck TM for some c > 0}, 

and a third is P = [.J{P,, I m _> 0}, which consists of flmc6ons of polynomial growth. In the case ?-t = 
~(Y, .4), we use the same symbol B for the class of functions as well as for the corresponding group. 

P r o p o s i t i o n  4. Let ~ bca  subgroup o f . 4  and let B be a set of functions as above. Then B(?-t) = {a E .4 [ 
(Bb E B)(Vk _> O)(On(k + 1,ct) < b)} is a layer subgroup of.4.  

Let Y be a finite set, F,~(Y) the set of finite-state automorphisms a whose activity functions O(k,a) 
belong to Pro, and let Fr~(Y) = (.J{F~(Y) ] m _> 0}. A special instance of the previous proposition is 

C o r o l l a r y  5. The set Fro(Y) is a layered subgroup of F (Y )  for all m >_ O. 

P r o b l e m  1. Let the class of functions B be fixed and let. ?-t,/C be subgroups of `4. When are B(7-t) and 
B(/C) equal? isomorphic? 

Let Y be finite, H _< P(Y),  U an abelian group, and ~ a homomorphism from H into U. Define a 
sequence of characters ~2k from B(H)  into U as follows: 

= = = k } .  

Associated to these characters are the normal subgroups 

N(~) = {a I (~m)(Vk _> m ) ( ~ ( a )  = e)}, 

;9 ( ; )  = {~ [ (~m)(vk _ m ) ( ~ ( ~ )  = ;~ (~ ) )} ,  

which are layer but not state-closed subgroups of `4. Moreover, N(9;) admits a total character defined by 
r  -- [ I{ ;~ (a )  I k > 1}. 

For the binary tree, let U = {0, 1} be the integers modulo 2 and i; the isomorphism from <(7) onto U. 
Then ~k(a) =: 0(k, a) modulo 2, which we denote by (~(k, a), and denote the corresponding total character 

by 0(~) = E{#(k ,  a) l ~: ~ 1}. 
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2.5. A d j a c e n c y  m a t r i c e s  a n d  c i r cu i t s .  Given a finite directed graph D having k vertices and an initial 
vertex v, enumerate its vertices as V = {v~(= v ) ; . . .  , v~} and let szj denote the number  of directed edges 
which connect v~ to v3. This can be expressed in terms of m linear equations vi = ~--]{s~jvi : 1 <_ j <_ k}, 
where s~j is the number of directed edges from v~ to vj. The adjacency matrix of D is the m x m mat r ix  
[D] = (s~j). If some of the vertices of D are distinguished by some property  W, then the W-frequency can be 

recorded in a column vector 0"1 = (0(W; 1, vj)). For k > 0, let D~ denote the graph having the same vertices 
as D and having a directed edge connecting v~ to vi for every directed pa th  of length k connecting vi to vj. 

We note that  [D] ~ = [D~], the vector ~'~+~ = [D]~'~ represents the W-frequency of Oh, and the first ent ry  of 

0~+~ is the W-growth function O(W; k + 1, v). 

T h e o r e m  6. Let A be an m x m matrix with nonnegative integer entries, and define the functions f~j (k) = 
(A~)~j. Then for each pair (i, j ) ,  the function f~j either grows exponentially or is a polynomial function of 
degree at most m - 1. 

P r o o f .  We will proceed by induction on the dimension m. 
For m = 1, the assertion is obvious. We will assume 1 < m, and tha t  the assertion is true for all m '  < m. 
Case 1. Let i = j .  Clearly, f~(k)  = (A~)~ >_ Ak~ and therefore f~ grows exponential ly unless A~ = 0, 1. 

Assume that  fi~ does not grow exponentially, so f~(k)  = 0, 1, for all k, and if f~i(h) = 1 for some h, then 
f i i(k) = 1 for all k k h. Thus f~i = 0: or f~i is zero at first and then eventually becomes constant with value 
1. 

Case 2. Let i # j .  
(2.1) Assume tha t  f~ grows exponentially. Then if for some h we have f~j(h) # O, then f~j(k + h) >_ 

f i i (k) f i j (h)  and thus grows exponentially. Thus either fi~ is eventually 0 or it grows exponentially. 
(2.2) Assmne that  fi~ = 0, or fi, is eventually 1. Assume, furthermore,  that  fij does not grow expo- 

I~entialty. T o s i m p l i f y t h e n o t a t i o n ,  w e w i l l l e t i =  1, j = 2 .  Then,  A =  [ a v ] w B , where a E {0,1}, 

v --- (vl, v 2 , . . . ,  vm_~), and B is an (m - 1) x (m - 1) matr ix  with nonnegative integer entries. Define the 
functions giy (k) = (Bk)ij. 

Assmne tha t  f l l  = 0. Then A ~ 0 v B  k-1 ] (2.2.1) = and f~.2(k) = (vB~-*), -- Y~{v,ge~(k - 1) I 1 < 

i <__ m - 1}. S~nce f ~  is not exponential,  by  induction g~ is eventually polynomial of degree at most  m - 2 
whenever vi :~ 0. Clearly, if vi = 0 then f~2 is not affected by gi~. 

(2.2.2) Assume tha t  there exists an s _> 1 such that  f11(k) = 1 for all k > s. Then A s = 

A~+I = A~A = * * w B = * * ' 

1 v B  '~-1 ] 

AS+k__ [ 1 v . ( q ~ ( B ) + B S + k - 1 ) ]  

where qk(B) = 1 § B + .  + B k-~. Therefore, 

f~2(k) = (vqk(B) + vB~+~-z)I = ~-~,{v~gil(j) I 1 < i < m - 1, 0 < j ~ k - 1} + 

 (w l(s + k -  1) 11 < i < m -  1). 

By induction, whenever v~ ~ 0, g~l is a polynomial of degree at most m -  2, and so ~ { g ~ ( j )  �9 0 <_ j < k -  1} 
is a polynomial in k of degree at most m - 1. Hence f12 is a polynomial of degree at most. m - 1. 

C o r o l l a r y  7. Let D be a finite graph with m vertices, W a vertex property, and v a fixed vertex of D. Then 
the W-growth function 0(W; k + 1, v) either grows exponentially or is eventually a polynomial function of 
degree at most m -  1. 
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Let a be an automorphism of a one-rooted tree, and let D be the graph of the automata associated to 
a. When a is a finite-state automorphism we enumerate the states o[ a as Q(a)  = {a l (=  a), a 2 , . . . ,  am}, 
setting am = e whenever this element is a state of a; we hope that this notation ai does not get confused with 
ay, where y E Y. Here the m x m adjacency matrix of c~ is [a] = [D] = (s~j); clearly, ~{s~j  I 1 <_ j <_ m}  = n. 
The column vector O~ = (0(W, 1, ai) ) registers whether or not aj satisfies the W property. 

Given the adjacency matrix of a finite-state automorphism, we conclude: 

T h e o r e m  8. Let a E F ( Y )  with m states. Then the function 0(W; k + 1, a) of k either grows exponentially 
or has an eventually polynomial growth of degree at most m - 1. 

We can now prove that  the groups Fro(Y) of tree automorphisms with polynomial growth of degree rn 
are distinct. 

P r o p o s i t i o n  9. Let V be a-finite set with at least two elements. Then groups of finite-state automorphisms 
Fro(Y) are distinct for  all integers m >_ O. 

Proof .  We will prove the assertion for the binary tree, the general case being similar. 

Let m > 0 . _  Consider the ( m + 2 ) - d i m e n s i o n a l u p p e r  t r i a n g u l a r m a t r i x S  = IT0 HI2 , w h e r e T  ~ 

I + ~ E~,i+l is (m + 1)-dimensional, E, i is the elementary transformation with 1 in the i j t h  position, and 

u =  [ 0 7 1 "  Als~ = [ 0 7 ]  " Then the pair (S'~l) represents an aut~176 ~ the binary 

havingr~t§ N ~  [ T / ~ * I  a n d T k 0  , =T§ V h e f i r s t t e r m o f t h e v e c t o r S k ~ t i s t h e  
L 3 

( m +  1)-th term of T k i 0 ~ * ]  and so, O ( l + k , a ) =  (k), which is apolynomial  in khaving  degree m when 
t -  _1 

k ~ m .  
A W~circuit is a circuit in the graph which passes through a W-vertex. Geometrically, the graphs w i t h  

polynomial growth are described by 

P r o p o s i t i o n  10. Let D be a -finite graph, W a vertex property, and v a fixed vertex of D. Then the function 
O(W; k + 1, v) has polynomial growth if  and only if  no W-circuit in the graph D contains two distinct W -  
circuits. 

R e m a r k .  (i) Let Y be finite. Then the set of finite-state automorphisms of 0-circuit type is the base group 
a(Y). 

(ii) If Y is infinite, then the automorphisms of 0-circuit type of the binary tree do not form a group. An 
example is the following: let a = (e, (a: e))a,/3 = (/32,/33)a, and (~ = (/3 -1, 13a)(r. Then a is finite state and 
has 2-circuit type, while the graphs of 13 and ~ are infinite trees without loops; that is,/3 and 3 are 0-circuit 
types. Now, (~- = (a, j3a/3-1), which has a as one of its states, and therefore (~2 is not of 0-circuit type. 

P r o p o s i t i o n  11. Let Y be a -finite set. Then set of automorphisms in F ( Y )  having circuit type at most 1 
forms a layer group F,,I(Y). 

P roof .  (i) Let a be an automorphism of the tree. We recall the decomposition a = f(7, where f is the 
frst-levet pointwise stabilizer and a is a permutation of Y. Then a is acyclic if and only if f (y )  is acyclic for 
all y E Y. 

(ii) Assume by contradiction that there exist a,/3 acyclic automorphisms of the tree such that c(a/3) > 2. 
Choose such elements a,13 for which IQ(a)[ + ]Q(/3)l is minimum. Decompose a = fa, /3 = g# .  Then 
aj3 = ha", where h = f S  -1, a " =  or(7', and h(y) = f ( y ) S  -1 (y). 

Let y E Y such that  h(y) is not acyclic. Since 

Q(f(y)) c #(a), Q(g _l (y)) c_ Q(9), 
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by the minimati ty of the counterexmnple it follows that  

IQ(f(y))l + Q(g~-'(y)) = IQ(aDI + IQ(3)I 

and so 

IQ( f (y ) ) l  = IQ(a) l ,  Q(g~'- ' (y))  = IQ(~)I- 

Now since a,  27 are acyclic, we have f (y)  = a,  g~'-' (y) = / 3 ,  and h(y) = a~. Thus for all y E Y, the entry 
h(y) is either acyclic or h(y) = a[3. But clearly a ~  is aeyclic; a contradiction. 

(iii) The proof that  the inverse of an acyelic au tomorphism is acyclic proceeds in a similar manner  to 
the previous item. 

R e m a r k .  The product  of two finite-state automorphisms having 2-circuit type  can have larger circuit type: 
let a = (a, a a ) ,  17 = (a~,  ~?a) be automorphisms of the binary tree. Then both  a and /3  have finite number  
of states and have 2-circuit type,  while the product  a~q is of 4-circuit type. 

3. B o u n d e d  A u t o m o r p h i s m s  

A tree automorphism a is called bounded provided its act ivi ty growth function 0(k,c~) is bounded 
(O(k,a) E P0). Recall tha t  O(k, a) <_ ~(k, ct) for all k.. We will show that for a bounded finite-state att- 
tomorphisin, the s~:ate frequency {(k, a)  is also bounded ({(k, c~) E P{e}) .  

P r o p o s i t i o n  12. Fo(Y) = F(Y)  A P0 = F ( Y )  n Po{e}.  

P r o o f .  Let the activity function O(k, ct) be bounded above by c. and assume that c~ has unlimited state 
frequency ~(k, a) .  Then since ct has a finite nulnber of states, there exists a level k such that  some nontrivial 
s tate fl E Q(a )  occurs more than c number  of times on that  level. But  the fact fl # e implies that  there 
exists an index u of length h for which a~(fl) is nontrivial. Thus at level k + h, the activity of a is greater 
than c; a contradiction. 

P r o p o s i t i o n  13. Let c~ E F (Y )  with e E Q(a), and let S be its adjacency matriz. Then 
(i) c~ E F0(Y) /f and only if there exist positive integers p < q such that S~ = S'~; 
(ii) c~ E G(Y) if and only if S~ = 0 for some p. 

P r o o f .  Let ]Q(a)] = m. Since e E Q(a) ,  the adjacency matr ix  of a has the block form S = [ S1 v ] [ Ore--1 72 J 
and ~l = [ 1~0-1 ]. Then ~l+k = S~ l  and for l < i < m - l, ~(l + k, ai) is the ith entry of Skl [1,~-i ]. 

(i) Assume that  a E F0(Y). Then there exists a constant  c such that  the entries of S~" are bounded by c 
for all k. Therefore S~ may be seen as an (m - 1) 2 vector with entries from {0, 1 , . . . ,  c}. As k varies over all 
the natural  numbers,  it follows that  there exist natural  numbers  p < q such that  S~ = S~. The other direction 
is clear. 

(ii) By definition, a E G(Y)  if and only if there exists a level k where a ,  = e for all u of length k, which 
is equivalent to saying that  S[ = 0. 

Bounded mKomorphisms can be descr ibed geometrically as follows. 

C o r o l l a r y  14. Let a be a bounded finite-state automorphism. Then no two different circuits in the graph of 
the automata of a pass thzvugh the same vertex or are connected by a directed path. 

One feature which distinguishes internally the group of bounded  finite-state automorphisms F0 from the 
group of finite-state au tomorphisms F of the binary tree is: 

P r o p o s i t i o n  15. The base group G of automorphisms of the binary tree is self-no~wtalizing in Fo. 

1933 



P r o o f .  Let p E F such tha t  #-~G# < G. Then  from Proposi t ion 7.3 of [4], p = p,m,g for some natural  
number  m and some g E G. The  states  of # are of the form #0)g,, where j < m, g' E G. If some such s ta te  
is the identity, then #0) E G, m~d therefore  # E G. 

3.1.  C i r c u i t o u s  a u t o m o r p h i s m s .  A nontrivial  f inite-state au tomorphism a is called circuitous provided 
it is bounded and a lies on a circuit  in its own graph.  An example of a circuitous au tomorph i sm a of the 
b inary  tree is defined as follows: let. go, gu  E G, and let 

= ( g 0 , a ; ) ,  = = 

We note  tha t  in tl~is example,  a factors as a -- a 'g ,  where a '  = (e, ( a , e ) )  and g = (go,(e, gu)cr) E G. 
I Fur thermore ,  we note  tha t  a m = a ,  g m =  e, and tha t  conjugat ion of a '  by g s imply permutes  the entries 

of a ~. 
To a circuitous au tomorphism a there  is associated a complete chain of indices C ( a )  --- {v E ~/l ] a~ is 

circuitous}. The re  exists an index u of smallest, length k such tha t  a ,  = a,  and this index is unique. Note 
tha t  u ~ E C(c~), for all i > 0, and tha t  for any index v = us, a~ = a~ holds. Now, in the same manner  
as in the above example,  a factors as a = a 'g ,  where a '  = ( e , . . . ,  e, a , ,  e, . ,  e) is an e lement  of the k th  
stabilizer,  a~ = a,  and g E G, where g~, = e. This  is a normal  form for the circuitous au tomorph ism a.  Since 
a~ = a . g - ; ,  it follows tha t  for any tree level k, if 7 is an element  of the k th  stabilizer subgroup having as a 
unique nonbase ent ry  a circuitous au tomorph ism a,  then  7 can be wr i t t en  as 7 = hc~h', for some h, h' E G. 

P r o p o s i t i o n  16. The group Fo(Y) is generated by the base group G(Y) together with the set of circuitous 
automorphisms. 

P r o o f .  Given d E F0(Y); then 6 de termines  a unique set S = S(6) of indices u of minimal  length where a 
s ta te  of (5 is e i ther  an element  of G(Y)  or is circuitous. This set S is a minimal connect ing set for the free 
monoid  ~ I  of indices. Let S' be the subset of S formed by indices u for which d~ is circuitous. Define 5' 
as follows: for u E S, let d~, = d, i f u  E S',  andd'~ = e i f u  E S - S ' .  Then  there  exists h, E G(Y) such 
tha t  5 = d~h. Assume tha t  u E S is of length k and tha t  d. is circuitous. Then  5~ appears  as an en t ry  of 
( e , . . .  , e, d,,, e , . . .  , e) E 9vk(Y..A), the k th  level stabilizer of the tree, and so it can be wri t ten  as a p roduc t  of 
a circuitous au tomorph i sm and an e lement  of G(Y).  T h u s / F  is a p roduc t  of circuitous au tomorphisms  and 
base elements,  mid therefore the same holds for d. 

R e m a r k .  Let  0 E F0(Y), and let s' =] S' ], as in the previous proposit ion.  Then  6 can be expressed as a 
word 5 = hah'/3. . ,  h"'~h," where h, h ~, h", h'" E G, and a , / 3 , . . .  , "7 are s' circuitous automorphisms.  Indeed, 

cannot  be wri t ten  using less than  s ~ circuitous automorphisms,  which justifies calling s t the syllable length 
of d. 

L e m m a  17. Let 5 E Fo(Y). There exists a tree level l such that ~ = 6'q, where 5' is an element of the l-th 
stabilizer subgroup such that ~'(v) is either circuitous or a base element, and q E G0,t-~(Y). 

P r o o f .  First. we observe that  if 5 is a base element  or is circuitous, then  for any level l, 6 factors as asserted. 
Fur thermore ,  if 5 is circuitous, then  since ~ is bounded,  there  is a unique index u of length l such tha t  5'(u) 
is circuitous, whereas 6'(v) is a base e lement  for all indices v of length l and v ~ u. 

Now we proceed by induct ion on the number  of circuitous states of 6 and assume tha t  6 ~ G(Y).  There  
exists a tree level k and an index u of length k such ~ = 6'q, where s is an element  of the  k th  stabil izer 
subgroup such tha t  5'(u) is circuitous and q E G0,k-~ (Y). Since 5 is bounded,  the number  of circui tous s tates  
of 5'(v) is less than  tha t  of d for all v ~ u. Thus,  by induction,  for each index v of length k, there  exists a 
level l~ such tha t  5'(v) has the required factorizat ion.  It  follows from the first observat ion tha t  there  exists a 
com mon  level 1 such tha t  for all indices v of length l, 5'(v) = s where ~"(v) is an e lement  of the  l th  
stabil izer subgroup and q'(v) E G0,t- ; (Y).  Let t = k + l. Th en  5 = 6"q'.q = s where 6" is and e lement  
of the t th  stablizer subgroup and q'q E Go,t-;. 

Whereas  for m > 2, the f inite-state au tomorphisms  of circuit m - ty p e  do not form a group,  the s i tua t ion 
for the bounded  automorphisms is nicer. Indeed, on defining for every  integer m _> 0, 

Fo,,,(Y) = {a E F0(Y) [ c(a) = 0, or c(a) divides m}. 
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we will show tha t  

Theorem 18. The set Fo,m(Y) is a subgroup of Fo(Y) and it is layered. 

P r o o f .  (i) First  we prove tha t  if g E G and c~ is a circuitous automorphism with c(a)  > 0, then c(ag) = c(a). 
Assume tha t  g E G has depth  k, and le t /3  = c~g. Let v E C((~) be an index of length greater  than  k. 

Then/3v = (~g)v = c~v. Therefore ,  c(/3) > c(c~v) = c(a) .  As c(c~) = c(/3g, 1) > c(/3v) = c(/3), we conclude tha t  
c(/3) = 

(ii) Next  we prove tha t  for any circuitous automorphisms a,/3, we have that  

c( Z) t c(/3)). 
Let q, = c,/3. Then ,  % = c~v/3v,, where (v') ~ = v. The  circuit type  of % is e i ther  c(%) = 0, c(c~), or c(/3v,), 
unless possibly when v E C(c~) and v'  E C(/3). Assume that  v' E C(/3) whenever  v E C(a ) .  Let m = c(a) ,  
n = c(/3), l = 1.c.m.(m,n),  m '  = l /m,  n' = 1In. Fur thermore  let u E C(c~) be of leng*h m, w E C(/3) of 
length n, and let v = u . Then,  % = c~/3~,, where v' = w ~'. Thus,  % = a/3 = % from which it follows tha t  
c('y) divides I. 

Let c~ be a circuitous au tomorphism,  and let y E Y be the unique index for which the s ta te  c~y is 
circuitous. Then  a is said to be strongly active provided y is not fixed by cr = a 0 ( a  ). We note tha t  in the 
case of the binary tree, the two notions active and strongly active coincide. 

Proposit ion 19. A circuitous automoTThism a E Fo(Y) has infinite order if and only if  at least one of its 
nonbase states ~,  is strongly active. 

P r o o f .  We will prove the s ta tement  for the binary tree. The  argmnent  in the general case is similar. 
Assume tha t  all nonbase states of c~ are inactive. Then,  a = (go, a t )  or (c~o, g~), where go, g~ E G; we will 

assume the first form. Thus,  c~ ~176 = (e, c,~(q~ Since c~ = a for some index v, a repet i t ion of the previous 
step shows tha t  a has finite order. 

Assume now that. some nonbase s ta te  c~ of a is active and choose v of min immn length. We may  assume 
that  a = (g0, at)o-. Let K(c~) be the subgroup generated by the base states of c~; tlfis subgroup is clearly 
finite. Now, c~ 2 = (g0al, chgo). Thus,  c~ e projects onto  algo, and if the la t ter  e lement  is inactive, then it. 
projects  onto a l0h or" chth,  where h. E K(c~) has smaller depth  than go, and ei ther  am or a t l  is a nonbase 
state. If we continue this sequence of project ions we will reach an active au tomorph i sm/3  = c,,,h', with a~ a 
nonbase s ta te  of a and h' E K(ct); th is /3  could be c~ itself. We repeat  the same opera t ion  on/3  as was done 
previously for c~. So /32(=  a 4) projects  eventuaUy onto  (5 = c~h", which is an active au tomorphism where 
av is a nonbase s ta te  of c~ and h" E K ( a ) .  As the number  of states of c~ is finite and K(c~) is a finite group, 
successive repeti t ions will produce  at some stage an active au tomorphism "y = c~wh'" tha t  had appeared  
previously. Therefore,  for some s > 1, "ye* projects eventual ly  onto 7. This  proves tha t  "y has infinite order,  
and consequently, c~ itself has infinite order.  

R e m a r k .  The  above proof  provides an algori thm for deciding the order  of an e lement  of Fo(Y), once it is 
given as a word in elements of the base group and in circuitous automorphisms.  

4. The Binary Addit ion Machine 

The automorphism of the binary tree r = (e, r)~r corresponds to adding 1 modulo 2, which explains its 
denomination as the binary adding machine. This automorphism has a number of special properties such as 
r permutes  t ransi t ively the kth-level vert ices for all k _> O, and its charac ter  values O~(r) = 1 for all k _> 1. 
Indeed, each of these proper t ies  character izes  conjugates of r .  

Proposit ion 20. Let c~ be an automorphism of the binary tree. Then a is conjugate to r if and only if c~ 
permutes transitively the k-th-level vertices for all k >_ O. 

P r o o f .  Assume tha t  ct permutes  t rans i t ively  the kth-level vertices for all k > 0. Th en  c~ is active, c~ = 
(c~0, c~,)cr. When  c~ is conjugated by /3 = (c~0, e) it t ransforms into aZ = (e, c~lC~o)a. The  au tomorphism 
c~ = c~tc~0 also permutes  t ransi t ively the kth-level vert ices for all k > 0, and thus in par t icular  it is active, 
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! ! I t a t = (a m, a;x)o.  Now we conjugate a a by [~' = (a, 5), d = (a  m, e), thus reducing a m to the identity. In this 
manner  we produce an infinite sequence of conjugators ~3, ~ ' , . . . ,  whose product. 3' is a well-defined element 
of A which conjugates a to 7. 

C o r o l l a r y  21. Let a be an automorphism of the binary tree. Then c~ is conjugate to r if  and only i~ &(c~) = i 
for all k > L 

P r o o f .  Assume tha t  0k(ct) = 1 for all k _> 1. In particular, a is active. We observe in the above proof tha t  
02(c~ ~) = t)t(ata0) = 0t (a t )  + 0~(o~0) = 02(c~), and, more generally, t~k(a a) = 0-~(a) for all k _> 1. Indeed, the 
successive conjugations in the above proof preserve the characters 0~. 

The structure of the centralizer of the cyclic group ('r) allows us to distinguish isomorphically between 
the group of finite-state automorphisms F and its subgroup F0 of bounded automorphisms.  

T h e o r e m  22. The group Fo is not isomorphic to F.  

We recall the following facts from [5]. 

P r o p o s i t i o n  23. Let Z., be the ring of dyadic integers, and Z(e) the localization of the rationals at the prime 
p =  2. Then CA(r) = (r)* = {r  ~ : ~  E Z,_}. Furthermore, i f a  E A i s s u c h  tha tCh(a)  = (a)*, t h e n a  is 
conjugate to r. In addition, CF(r)  = {r~ :~ E Z(.,)}. 

Next we prove 

P r o p o s i t i o n  24. The cyclic group (r) is self-normalizing in Fo. 

P r o o f .  We will show that  (r} is self-centralizing in F0. Let ~ E Z.~ and assume tha t  w~ E F0. We know tha t  
r~ E F if and only if ~ E Z(a), a rat ional  number  with odd denominator.  Then ~ = s + t~- where s, t are 
nonnegative integers, and g = 1 + 2 e + 2 zt' + . . . .  Assume tha t  t r 0. Then r~ E F0 if and only if "y = ~-~ E F0. 
~n:ce 3' sat!sies 7 7(k)r, t!:e set of states of "y is ~ ~ ~ = Q~% = {7 (k-'), ~,(~:-')r ] 1 < i < h}. Since :~:e ide::tity 
element e is in Q(7) it follows tha t  7 r  = e. 

Now let s be an odd integer, s = 2t + 1, and let a = (a, a t ' ) .  Then a conjugates -r into r'% It can be 
checked direct.ly that  Q(a)  is a subset of { a t  ~ : 0 < i < t}. Now if a E Fo, then c~r i = e for some i; therefore 
a centralizes r. 

P r o o f  o f  T h e o r e m  22. Assume by contradict ion that  F0 ~ F and let. a E F be the image of r under such 
an isomorphism Then  (a) is self-centralizing in F .  However, CF(a)  contains {c~ �9 { E Z(2)}, a free abelian 
group of infinite rank; a contradiction. 

P r o p o s i t i o n  25. Let T = <  r, G >. Then T is a layer group, and any finitely generated subgroup of T is 
an extension of a torsion-free abelian group of finite rank by a finite 2-group. 

P r o o f .  Note tha t  .T(Y, (r)), which is a direct product  of two copies of (T}, is a subgroup of T. Let 
f E 9v(Y, T). Then f (y )  is a product  of elements from G and $-(Y, (v)). Therefore 9r(Y, T)  C__ T. Given 
a finitely generated subgroup of T, there exists some level k such that  T is contained in $'~(Y, (r})G0,k-1, 
which is clearly torsion-free by a finite group. 

Since @) has a restricted centralizer, one might  hope to find an overgroup of it which is a free group of 
rank 2. However, this does not happen within the group of finite-state automorphisms F .  

T h e o r e m  26. Let H = (r, a) be a flee group of automorphisms of the binary tree, having rank 2. Then 
(au, r [ lu[ = k) is a free group of rank 2 k + 1, for all k >_ 1. 

P r o o f .  Let H,  be the first-level stabilizer subgroup. Since r is active, H1 has index 2 in H,  and therefore 
H[ is a free group of rank 3. To exhibit  the generators of H1 we have to consider two cases according to 
whether  or not a is active. (i) Assume tha t  c~ = (a0, a l ) .  Then a ~ = (a~,a0) ,  and HI = @2, a ,a~}.  As 
r 2 = (r, V), Ht is a sub-direct product  of L • L, where L = (a0, a t ,  v). (ii) Assume that  c~ = (a0, at)or. Then 
aT = (a0v, a t ) ,  "ca = (at, rao), and H1 = @2, at ,  7a), which again is a sub-direct product  of L = (a0, a l ,  r}. 
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It is easy to see that  L = (m0, (~t, T) is a free group of rank 3. Oll replacing H by L in the above argument,  
we arrive at the fact tha t  M = (moo, mot, ato~ Ctn, r) is a free group of rank 5. I terat ing the argument  k times 
produces (a,,, ~- I I'al = k) is a free group of rank 2 k + 1. 

A direct consequence of the above is 

C o r o l l a r y  27. Let H = (7-,m) be a noncyclic group of finite-state automorphisms of the binary tree. Then 
H 'is not a free group. 

A faithful representation of GL(2, Z) into the finite-state automorphisms of the regular 4-tree was pro- 
duced in [5]. Since the free group of rank 2 is a subgroup of GL(2, Z), a faithful representation of this free 
group as a finite-state automorphism ~ o u p  is consequently obtained. 

Aleshin asserted in [1] tha t  the group generated by 

is free of rank 2. Unfortunately,  we have not been able to unders tand his proof. At any rate, his generators 
are conjugates of 7-. This is so because 01(m) = 1, 02(a) = 1, and 

0k( ) = (m) + 0k_, = + 

which is an odd number  for k > 3. Similarly, 0k(/3) is an odd number  for k > 1. 
Andrew Brunner and I propose considering the simpler looking group generated by the three states of 

m = (c~ *, a(1))c~ as a candidate  for a free group of rank 3. 

P r o b l e m  2. Prove tha t  a representation of the free group of rank 2 into the group F~,(Y) of finite-state 
automorphisms having polynomial growth cmmot be faithful for any finite set Y. 

In surveying the overgroups of (7), we find in Fo,2 a torsion-fl'ee group generated by T and one of its 
conjugates, having a rich recursive structure (see [6]). 

T h e o r e m  28. Let H be the group of automorphisms of the binarT] tree generated by r = (e, 7)a and # = 
(e, #-i)(7. Then H is a subyrou p of Fo .2 is just-nonsolvable, and is residually a "torsion-free solvable group." 

4.1. M a x i m a l  2 - s u b g r o u p s  o f  b i n a r y  t r e e  a u t o m o r p h i s m s .  The  group of aut.omorphisms .4 of the 
binary tree was shown in [15] to contain nondenumerably many nonconjugate maximal  2-subgroups. The 
argument was built upon the observation that  the product  of c~, = ((7, a.,) with any conjugate of a has infinite 
order. 

T h e o r e m  29. Let 7-{ be a layered group of binary tree automorphisms. Assume that 7i contains the base 
group G and the element oJ = (o, ',.'). Th, en there are infinitely many eonjugacy classes of mazimal 2-subgroups 
and infinitely many conjugacy classes of maximal locally finite subgroups in ~ .  

First we reprove 

Proposition 30. A 2-subgroup of binary tree automorphisms that contains oJ = (or, ,~') is not conjugate to 
any 2-subgroup of binary tree automorphisms which contains (7. 

P r o o f .  We claim that  o(czcr ~) is infinite for any a E . 4 .  As we may consider m modulo the centralizer of (7, 
it can be assumed that  a = (e, ml). Thus, wa s = (a;al, craT1)a and 

where 3 = a[- ' .  Therefore, o(co~r ~) > 2o(c~'a~). We note tha t  the conjugator a of cr has changed to ~ inside 
the bracket, and now the argument  may be repeated to obtain o(a;cr ~) is infinite. 

P r o p o s i t i o n  31. Let ~ be a layered group containing the base group G. Let N be a 2-subgroup of ~ .  Then 
N is a ma~qmal 2-subgroup (mazimal locally finite 2-subgroup) of 7-t i f  and only if 

(i) N = H x K,  where I f  and K are nonconjugate maximal 2-subgroups (maximal locally finite 2- 
subgroups) of ~ or 

(ii) N is conjugate to L = (K x t().(a}, where t (  is a maximal 2-subgroup (maxzmaI locally finite 
2-subgroup) of N. 
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P r o o f .  Let K be the pointwise stabilizer of 0, 1, within N,  and le t /40,  K1, be the project ions  of K on the 
first and second coordinates,  respectively. 

(i) If N = K,  then N < h o •  K1, a 2-subgroup of 7-/. If K1 is a conjugate of K0, then N is conjugate to 
a subgroup of the larger 2-group L = (/4o • K0). ((7). 

(ii) If N # K ,  then N contains an element  a = (ao, a~)a. On conjugat ing N by (ao, e), we may  assume 
tha t  a0 = e. Since a = (e, ai )o ,  it follows that  a 2 = (at, al)  and a1 E Ko M K~. Now since a normalizes K ,  
we have t h a t / 4 o  = K~. Therefore,  N is embeddab le  in the 2-subgroup L = (Ko x K0)(a}. 

Proof  of Theorem 29. Let N be a maximal  2-subgroup of ~ which contains w. Define the following 
sequence of subgroups of 7-t, N(0) --- N,  N(i) = (N(i-1) • N(i-1))(a) for all i > 1. Then by  the above result,  
these are maximal  2-subgroups of 7-t. Clearly, since N(1) contains (7, it is not conjugate to N(0). By  a direct 
a rgument  it can be shown that  no two subgroups in the  set {N(0 ] i > 0} are conjugate. 

The  proof remains essentially the same when the condit ion "maximal 2-subgroup" is replaced by  "max- 
imal locally finite 2-subgroup." 

5. The Group of Acyclic Finite-State Binary Automorphisms 

Let Y be finite. Then by Proposi t ion 11, the finite-state acyclic automorphisms form a group F. , I (Y) .  In 
the  case of the binary tree we denote  it s imply by F.,t .  Recall  that  F~T,t s tands for the group of au tomorphisms  
which have polynomial  growth and are acyclic. The au tomorphism A -= )~(~)(7 is an element of F.,1 and has 
exponent ial  growth. Define by  induction Ao =.A and Ak = (e, Ak-1) for all k _> 1. Also, let A be the group 
generated by Ak for k > 0. We observe that  A contains G properly and is locally a finite 2-group. 

Proposition 32.  The group F.,I factors as F.,1 = AF~,I. Furthermore, A M Fv~,I = G. 

P r o o f .  Let a E F.,1 have exponential  growth. Then it has some nontrivial s tate which is a ver tex of a 
mult iple  loop. This  s tate is the unique ,k = A(t)(7. Now gathering to the left the occurrences of ,k in the  
development  of a ,  we obtain the factorization a = a 'a" ,  where a '  E A and a"  E F~,~. The  next  assertion is 
easy to prove. 

5.1.  The group F0,~ o f  b o u n d e d  acyclic automorphisms. In the rest of the paper,  we limit our con- 
siderations to the group F0,1 of finite-state bounded  acyclic automorphisms of the binary tree. 

Given a subgroup H of the base group G, we define the corresponding circuitous subgroups Hc = {a  ] 
a = ( g , a ) , g  E H} ,  H e =  {c~ ] ct = ( a , g ) , g  E H} ,  and T = @,G}. It is clear that  Hc and He are bo th  
isomorphic to H.  

Theorem 33.  Let G = (G ,G~) ,G  = (G, Ge), T = (% G). Then the group F0,~ admits the factorizat ions 

F0,1 = T G T  = T G T .  Furthermore, T M G = G = G M G. 

First  we prove some lemmas. 

L e m m a  34. The automorphism v = (e, 7)(7 conjugates the subgroup Hc into H~. The groups G, G are layer 
groups. 

Proof. Let a = (g, a)  E G~. Then  a T = (g, a)  T = (g, a~) ~ = (a T, g) E Ge. 
The proof  of the second assertion is a routine mat ter .  

L e m m a  35. Let a E Fo,1 be a circuitous automorphism.  Then a is one of four  types: a = (g, a )  E Gc, 
a = (a, g) E G-~, a = (g, a)(7 E Gc~', a = (a, g)(7 E T-1Gc. 

P r o o f .  By  definition, a = (g ,a )  E Go. For a = (a ,g ) ,  we have /3  = VaT -1 = (g, Tct~ --~) E G c  and so 
a E ~--1G~-. For a = (g,a)(7, we have a~ --I  = (g,a~ --~) E G~ and so a E Gc~-. For a =- (a,g)(7, we have 
Ta = (g, 7a)  E Gc and a E ~--1Gc. 
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L e m m a  36. Let p E Fo,~ and let p = h a h ~ . . . d h " 7  be a word of minimum, syllable length s, where 
a , ~ , . . .  ,d, 7 are circuitous, h , h ' , . . . , h "  E G. Then a,~3 . . . .  ,d, 7 E Q(p). Furthermore, there exists a 
level l such that p = p~ q, where p~ is an element of the Ith stabilizer subgroup, q E G0,t-~, and where the vector" 
of nonbase entries of p' is a permuted form, of (a, f l , . . .  , d, 7)- 

P r o o f .  The states Po,P: are words in c~, /3, . . . ,  5, 7 and certain base elements such tha t  the sum of the syllable 
lengths of Po,P~ is at most  s. By Lemma 17, there exists a minimum level l where p factors as p = p'q, where 
p' is an element of the l th stabilizer subgroup, q E G0,t-1, and where for each index v, p'(v) is a circuitous 
automorphism or a base element. Let the number of circuitous p'(v)'s be s'. The s' <_ s. Now as we had 
observed in See. 3.1, p' is a word of syllable length at most s' in the circuitous p'(v)'s and certain base 
elements. Therefore s = s ~ and the subvector of p' formed by the circuitous p'(v)'s is a permuted  form of 

P r o o f  o f  T h e o r e m  33. Given c~ E F0,1 there exists a level l such that  a = h(a~ . . . .  ,a~ . . . .  )g, where 
u , . . .  , v , . . .  are indices of length l, c ~ , . . .  , a~ are circuitous automorphisms of the four types mentioned in 
Lemma 35, and h, g E G. Thus a ,  E @)Go@} and (C~u . . . .  , ct,) E T ( c t ' , . . . ,  C~'v)T , where (~'~,,..., ct' v EGc.  
Now, (a'~,,. . . ,  a',) E d and therefore we conclude tha t  a E T G T .  

Let ^/E T n G and assume tha t  7 ~ G. Then for some tree level l we have a first form for 7, 7 = 7'P, 
where 3" E ~ ( Y ,  @)), p E G0j t. Since 7 E G, by Lemma 36, there exists a tree level l' such tha t  7 = ?"P', 
where ~" is an element of the l 'th stabilizer subgroup, 7"(v) E G~ tO G for all indices v of length l', and 
p E G0.t-1; this is the second form for 7- Both forms can be developed to a common level l". Thus we may 
assume that  l = l' = l" and 

 J)p = . . . ,  

Therefore p = q, and since (r) intersects G~ trivially, it follows that  7 E G. 
The proof of the last s ta tement  G A G = G proceeds similarly. 

5.2. L o c a l l y  f in i t e  s u b g r o u p s  o f  F0,t. 

T h e o r e m  37. The base group G is a maximal locally finite subgroup of Fo,1. 

First, some criteria for finitely generated subgroups to be infinite will be developed. For the case of the 
binary tree, Proi)osition 19 reads: 

L e m m a  38. Let a E Fo,1 be an active circuitous a'utomorphism. Then a has infinite order. 

P r o p o s i t i o n  39. Let c~ E Fo,1 be a nonbase element and let H = (Q(a)}. Then H is an infinite group. 
Furthermore, i f  H is a 2-group, then a E (G, G~, Ge). 

P r o o f .  Assume tha t  H is a finite group. There exists a level k such that  a = 7q, where ~/= ( a , , . . .  , aw) is 
an element of the k th  stabilizer subgroup with entries which are base or circuitous automorphisms and where 
q E G0,~-t permutes the nontrivial circuitous entries of 7. As H is a finite group, a , , . . .  , c~,, E G U Gc O G~. 
Now since Q ( a , 0 u . . . u Q ( a w )  _c. Q(a),  we may assume a circuitous, a = (g, a).  Therefore, Q(a) = {a}uQ(.q), 
and since g is nontrivial, a E Q(9). The 1st level stabilizer subgroup h i  is a proper subgroup of K and is 
generated by {c~, a ~ } U {g,, 9~, for all indices u} if 9, is inactive, and by {a, a ~ } U {g,~r, ag~, for all indices 
u} if g,, is active. These generating sets project in their second coordinates onto {a, g} U {g,~, g~0 ] I tt] _> 0}, 
which is none other than  the generating set of K:  a contradiction is reached. 

P r o o f  o f  T h e o r e m  37. Assume tha t  G is not maximal  locally finite and let p = ah!3h ' . . ,  h"Th"' E Fo,~\G 
be of minimum syllable length such that  H = (G, p} is locally finite. There exists a depth k such that  p = 
(P~,. . .  , Pw)q, where the set of circuitous entries of ( p ~ , . . . ,  p~,) coincides with {a, ~ , . . . ,  7} and q E G0,~-~. 
Then (G, p , } , . . .  , (G, p=,) are locally finite, and in particular (G, a } , . . .  , (G, ~} are locally finite. However, 
by Proposition 39, (Q(c~)} is an infinite subgroup of (G, @; a contradiction is reached. 

Another  criterion for the infiniteness of a finitely generated subgroup is: 

L e m m a  40. Let g, h E G be active elements and let c~ = (g, c~). Then, K = (h, (.~} is an infinite group. 
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P r o o f .  Write K(h)  = K = (h ,a ) .  From h = (ho, hl)a,  we calculate a h = (ah~,gh~ Let L(h) = (a, ah). 
Then L(h) is a proper subgroup of K(h) ,  and L(h) projects in the second coordinate onto K ( g  h~ = (ghO, a). 
Successive applications of this process produce g~, where x E (Q(h)uQ(g) ) ,  which is a finite group. Therefore 
at some stage we have a repeti t ion from which fact it follows that  K is an infinite group. 

P r o b l e m  3. Let a E F0,1 be a nonbase element. By Proposit ion 39, H = (Q(a))  is a finitely generated 
infinite group. Define necessary and sufficient conditions which a has to satisfy for H to be a 2-group. 

5.3.  N o n t o r s i o n  s u b g r o u p s .  We consider in this subsection some criteria for subgroups of F0,~ to be 
nontorsion. The following notat ion will be useful. 

(i) Let c = (a, b)a ~ E A ,  i = 0, 1. If i = 0, then  we indicate the projection of c on its first coordinate 
a by c _+1 a, and on its second coordinate b by c _+2 b. On the other hand,  if i - 1, then  we indicate the 
projection of c 2 on its first coordinate by c _~sl ab and on its second coordinate by c __+s2 ba. 

(ii) Let (~ = (g, a) .  Let also h = (h0' h~)cr ~ E G, i = 0, 1. If i = 0, then  a h  = (gho, ah~) _+2 ahl ,  while if 
i = 1, then a h  = (gh0, ahl)cr _+~2 ah lgho .When  g is fixed we simplify the notat ion by writ ing h -+ hi in the 
first case and h -+ hlgho in the second. 

L e m m a  41. Let g E G such that g~ is inactive for  all indices u = r 1 , . . .  , 1 k, and assume that gl~+~ = or. 
Let a = (g, a) E G~. Then o(ag) is infinite. 

P r o o f .  We easily see tha t  ag  _+2 c~gl _+2 . . .  _+2 act _+~2 ag,  and this repeti t ion proves our claim. 

L e m m a  42. Let g E G having total character t}(g) = }-~.{0i(g) " i _> 1} -- 1 and let a = (g,a)  E Gc. 
Furthermore, let ~ = II{g~ I g, E Q(g)},  where the product is taken in some order. Then o(a~) is infinite. 

P r o o f .  Since 0(g) ~ 0, it follows tha t  9 is active. We have ~ -+ h = glggo, which is an active element since 
it is ~ in a pe rmuted  form. Successive projections of ~ produce active elements from the finite group (Q(g)), 
and so at some point a repeti t ion occurs. Therefore o(a~)) is infinite. 

P r o p o s i t i o n  43. Let g E G,g  # e , a  = (g,a)  E Gc. Also, let I f  = (Q(g)), H = (Q(a)) .  I f  K is an abelian 
or dihedral group, then H is not a 2-group. 

P r o o f .  We use the description of K in Proposit ion 3. 
(i) Assume tha t  K = (Q(g)) is abelian. Then (Q(g)) is a subgroup of tile abelian group (a (i) I i _> 0). 

If g is active, then  go = gl,go = e. Now ag  has infinite order since ag __+s2 ag~ggo = aglgog = c~g. On the 
other hand, if g is inactive, then  there exists a first u = 1 1 . . .  1 such tha t  g~ is active and we apply L e m m a  41 
to conclude tha t  ag has infinite order. 

(ii) Let K = (Q(g)} be nonabelian. Then g is active. Now g2 = (a, or), c~ 2 = (g2, a2), and a2g 2 has 
infinite order since c~2g 2 -+ c~2~ _+s2 c~292. 

R e m a r k .  We make some observations about  some elements g E (C2wrC2)wrC2 with total  character  value 
t~(g) = ~--~{~i(g) : i _> 1} = 0. (i) Let g = (a, (a, e)a)cr, a = (g, a). Then, o(g) = 4. The following calculations 
show tha t  o(ag ~) is finite for i = 1, 2, 3, yet  o(agl) is infinite: 

g - +  g gg0 = ( ( e ,  -+  g(e, = (gl , e )  - +  e ,  

g2 = ((e, (o, e)) -+ e) -+ e, 

g-1 = ((e, o-)o', or)o" --4 crg(e, o')o = ((o, e)cr, e)cr --4 eg(cr, e)a = ((7, (or, e)) --4 (c L e) --4 e, 

g l  = (o-, e )o -  - +  e . g .o -  = -+ 

Is B = (g, a) a 2-gxoup? 

(ii) Let g = ((a, or), a ) a  and a = (g, a) .  Then,  g2 = ((a, a)a ,  (or, or)a). The following calculation shows 
tha t  o(a2g 2) is infinite: 

g2 -+ (a, ~ )a  --+ r = g2. 
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(iii) Let b = ((a, e), e)a and a = (b, a) E G~. Then K = (O(g)} = (C.,.wrC2)wrC2. Consider the group 
B = (K, a).  We have checked tha t  the elements in the set ( a}K have finite order. I s /3  is a 2-group? 

5 .4 .  W o r d - l e n g t h  s t a b i l i t y .  Considerations concerning elements of infinite order lead to the following 
notion of word-length stability. 

D e f i n i t i o n  44. Let a, b , . . . ,  g E G such tha t  O(ab. . .  g) = 0. Let a = (a, a) ,  ~3 = (b,/3), . . . ,  3, = (g, ~') E G~, 
and h, h ' , . . .  , h", h "  E G. The element w = a h / 3 h ' . . ,  h"~/h ''' of syllable length s is said to be (length) stable 
provided that:  

(i) if w = (w0, wl), then its second coordinate wt = a h o . . ,  has syllable length s and is stable, 
(ii) if w = (Wo, W~)cr, then w '~ = (WoW~,W~Wo) and its second coordinate W~Wo = a l t o . . ,  has syllable 

length s and is stable. 

Any element produced from a stable w by i terated application of projection 7r2 on the second coordinate, 
or from squaring composed with lr~, has the same syllable length as w. Denote the set of elements produced 
from w using this process by J ( w ) .  

L e m m a  45. Let w = a h ~ h  ~ . . .  h"~/h "' be a word of syllable length s and assume that it is stable. I f  w is 
inactive, then h, h ' , . . .  , h'" are all inactive. 

P r o o f .  If h is active, then ah/3 = (aho,~3, ahlb)cr, and therefore the second coordinate of w has syllable length 
less than  s, in contradiction with the stabili ty of w. In this manner  h, h ' , . . ,  h." are inactive, and so it follows 
that  h'" is inactive as well. 

P r o p o s i t i o n  46. Let c~, /3, . . . , % It, h ' ,  . . . , h.", and w be as above. A s s u m e  that w is stable and assume that 
O(ab . . . g )  = O. Then there ez~sts art element in J ( w )  which is inactive. 

P r o o f .  Assume that  all elements of J ( w )  are active. In particular w is active; here we have 0~(w) = 
O, ( h h . ' .  . . / ," ' )  = + . . .  + = 1. 

On expanding w, we get w = (wa, u,~)cr, where 

Wo E a{ho, h , }{b ,~}{h 'o ,  h i } . . .  {9, ' /}{ho' ,h '[ '  }, 

h ; }  . . .  

That  is, if h.0 appears after a in Wo, then h.1 appears after a in wl, and so on. The exact form of w0 is 
determined by the act ivi ty of each of the elements h, h . ' , . . .  , h". Also, given the form of wo, the form of 'w~ 
is determined as is suggested by the displayed expressions. Observe that  the sum of the syllable lengths of 

I I I1' I I I  the words w0, wl is at most s. Also, the G-terms are words in ho, hi, h o, h i , . . .  , h o , h I , a ;  b ; . . .  , g ;  thus the 
depth of the h-terms in w0, w~ is smaller than  those in the original word w. 

Now w 2 = (WOW1, wlw0), where w0'w~ is conjugate to WtWo and has syllable length s. VV'e note from the 
formulas for w0, w~ that ,  irrespective of the different possibilities for their forms, the activity of WtWo is 

01(w,'wo) = (~1('wl) + 01(w0) = (01(a) + 01(b) + . . .  + 01(g)) + (0.~(h) + . . .  + 02(h")) = 1. 

Applying the process of squaring and projection rn times leads us to a word of the same syllable length as 
~he original w with activity 

~ { 0 i ( a )  I 1 < l < , ~ } + ~ { 0 z ( b )  1 1 < I < ' ~ } + . . .  

I 1 < l < m }  + ( 0 m . l ( h . ) +  . . .  ' - O m + l ( h " ) )  = 1. 

Now let t be the max imum depth of the elements h , . . .  , h."'. Then for all m _> t, we have 

~ { 0 l ( a )  l 1 < 1 < m} + ]~-'~.{t~l(b)] 1 < l < m } - - . . .  + ~ { t ? l ( g )  l 1 < l < m} = 1, 

which becomes O(ab. . .  9) after passing the max imum depth of the elements a, b , . . .  , g- However~ this con- 
tradicts the hypothesis O(ab. . .  g) = O. 

The above proof implies 
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C o r o l l a r y  47. Let a E Fo,t and H = (Q(a)) .  Then H is a 2-group if  and only if (G, a) is a 2-group. 

5.5. Burns ide  2 - s u b g r o u p s .  

P r o p o s i t i o n  48. Let b E G,b 7 ~ e ,~  = (b,/3) E G~, and B = (Q(/3)). Furthermore, let K = (Q(b)) and 
Kt  be the first-level stabilizer subgroup of K .  Then B is a Burnside 2-group if  and only i f  O(b) = 0 and 
W =  (13, K1) is a 2-group. 

P r o o f .  We already know that  B is a finitely generated infinite group and that  0(b) = 0 is a necessary 
condition for B to be a 2-group. 

Assume tha t  O(b) = 0 and W = (/3, K~} is a 2-group, yet B is not a 2-group. Let w E B have infinite 
order of shortest  syllable length, w = /3k /3k ' . . .  ~k". Therefore w is stable. 

Now this w is active; otherwise by Lemma  45, k, k ' , . . .  , k" E Kt and therefore w E W, which has finite 
order. Since t~(b) = 0, by Proposition 46, at some stage in the squaring-projection process we arrive at an 
inactive w' E J(w) ,  and so w' has finite order. Hence w has finite order as well, which is a contradiction.  

The following is the first Burnside 2-group that  appears in F0,1. 

T h e o r e m  49. Let b = (o (~), e) E G, ~ = (b,/3) E G~, and B = {Q(/3)}. Then B is a Burnside 2-group. 

P r o o f .  Firstly, the set of states of '3 is Q(/3) = {/3, b, cr (1), a}, and the first-level stabilizer in B is B1 = 
</3,/3~, b, or(l)>. It is easy to see that  BI projects onto B and therefore B has infinite order. Secondly, Q(b) 
generates K = <b, o> �9 (a(~)>, where <b, a> is dihedral of order  8 and (bo)'-' = 0 (2). Also, the first-level stabilizer 
in K is Kt  = (0 (2), a (1), b}. 

Note that  Zb = b/3 and that  0(/30) = o(/30 (1)) = 4. 
We verify that. W = (/3, h~> is a finite group: 
(i) l J / =  (~,K1) = {/3, o(:), c~(l), b) ~ K • V. where V = {/3, a(1),cr}; 
(ii) V = (Z3, o(1),o} <_ (U • U)(a), where U = (/3, b, 0); 
(iii) U = {~,b,o} <_ (T • T)(o}, where T = (/3, b, a (1)) -- (/3, o (1)} ~ (b}. 
The  proof is concluded by applying Proposition 48. 

C o r o l l a r y  50. ~Yth the above notation, (~3, bo (1), o} and (/3o (1), bo} are Burnside subgroups of B .  

P r o o f .  The  proof is a routine exercise in calculating the first-level stabilizer and in project ing on the 
coordinates. 

The Burnside group in the above theorem generalizes as follows. 

T h e o r e m  51. Let n > 1, b = (a (~), e) E G,/3 = (b,/3) E Go, and B = <Q(/3)). Then B is a Burnside 2-group. 

P r o o f .  We imitate  the proof of the previous theorem. The  set of states of/3 is Q(/3) = {/3, b, cA'~),... , a (1), or}, 
and the first-level stabilizer in B is 

B1 = {/3, Y ,  b, b ~, o('~),.. .  , or(l)), 

which projects  onto B. Secondly, Q(b) generates 

K = (b,a} �9 @(n) , . . .  ,a(1)}, 

where (b, a)  is dihedral of order 8 and (ba) 2 = a ('~+1). Also, 

K1 = <o "(n+l), cr(n),...  , 0 "(I), b}. 

W~ check tha t /3b  -- 5/3, o(r = o(/3a (i)) = 4. 
Now it is sufficient to prove that  the  subgroup W = <#, KI> is finite. We observe that:  
(i) W = {/3, a ( '~+l ) , . . . ,  c ~(1), b} < K • V, where Y = {/3, a ( " ) : . . .  , o}; 
(ii) V = ( ~ , o  (n), . . .  ,a} < ( g  • U)(a>, where Y = (f3, b ,a  (~-~) . . . .  ,a>; 
(iii) Y = (/3, b , a ( " - l ) , . . .  ,a} < (T x T)(a},  where T = </3:b,a("),o(n-'2),... ,or}; 
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(iv) the embeddings proceed until we reach the factor (/3, b, cr ('~), O ' ( n - i ) , . . .  , (7 (i)> which is embedded in 
(b, or(n),... , or} x (/3, a('~-t),... , a); 

(v) the second factor in the previous step may replace V in step (ii). These steps can be iterated until 
we reach the factor (/3, @, which is finite. 

The proof concludes as in the previous theorem. 
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