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Isothermal diffusion controlled phase growth in ternary systems has been modeled u s i n g
the Crank-Nicolson finite difference equations. Loca l equilibrium at phase boundaries
and one dimensional growth a r e assumed. The m o d e l includes a method of determining
phase growth velocity and interface compositions consistent with the diffusion r a t e s of
both elements. It also considers the effects of finite or overlapping diffusion fields (im-
pingement). The growth of phosphide, (FeNi)sP, in ~ f e r r i t e in the Fe-Ni-19 system was
chosen for the simulation. Interface compositions are predicted t o change with t i m e ,
controlled by the necessity t o balance the two solute (Ni and 19) fluxes which c a u s e the
precipitate to grow. Diffusion controls the growth process although during initial growth

Feinterface structure may be important. The r a t i o of the m a j o r ternary coefficients Dpp//
DNiNi F e controls the amount of shift of the precipitate interface composition from the tie
line through the bulk composition. D u r i n g the m a j o r period of growth the Ni interface
compositions in phosphide and c~ r e m a i n constant and a s q u a r e root of time, t1/2, depend-
ence for growth is predicted. The practical effect of impingement is to d e c r e a s e phase
growth and to allow the interface compositions t o shift towards the tie line through the
bulk composition.

ANALYTICAL solutions for the genera l case of iso-
t h e r m a l ternary diffusion controlled growth have
been developed by Kirkaldy1 and Coates.2,3 T h e s e
solutions a s s u m e that interface compositions r e m a i n
constant during growth and do not consider the ef-
fect of overlapping diffusion fields or impingement.
Commonly, however, growing phases are a finite dis-
tance apart and diffusion fields in the m a t r i x o v e r -
lap or impinge. In t h e s e situations impingement can
be important during the l a t e r stages of growth. Speci-
fically, it may change the interface compositions and
the growth rate of the precipitate phase. Impinge-
ment effects have been approximated in certain c a s e s .4

Numerical models for diffusion controlled growth
can accurately handle the problem of impingement in
binary systems as demonstrated by Tanzilli and
Heckel ~ and Hickl and Heckel.6 Recently the same
capability was demonstrated for ternary systems by
Randich and Goldstein.7 The ternary model uses a
computer solution for nonisothermal t e r n a r y diffusion
controlled phase growth. Both analytical and nu-
mer i ca l models for t e r n a r y systems a s s u m e loca l
equilibrium at the precipitate//matrix interface for
the calculation of the interface velocity and the in-
t e r f a c e tie line compositions.

The purpose of this paper is: 1) t o describe a
n u m e r i c a l method for treating the isothermal two
phase, diffusion controlled, moving interface problem
in ternary systems and; 2) t o investigate the v a r i a -
tion of precipitate m a t r i x interface compositions
d u r i n g the initial stages of growth and d u r i n g the late
stages of growth w h e r e impingement is important.
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ASSUMPTIONS AND
MATHEMATICAL FORMULATION

Diffusion in ternary or h ighe r o r d e r systems may
be determined with the aid of Onsager's extension
of F i c k ' s f i r s t law.8 For a t e r n a r y system9 the
generalized Fick equations for the flux of elements
1 and 2 in t e r m s of the concentration gradients in a
given phase are:

~C1 ~C2 [la]J l = -Dll ~ - D12 ~X

~C2 aCl [lb]J2 = - D 2 2 ~ - D 2 1 aX"

Separate sets of equations are necessary for each
phase.

The flux balances at the matrix-precipitate (M/P)
interface for components 1 and 2 are given by:

I2bl

w h e r e ~ is the spatial position of the MJP interface,
' C" C"C1, C'2 and 1, 2 are the tie line compositions in the

m a t r i x and precipitate phase respectively and jM+,
-,JM+ and - --,~J~-,J~- are the mass fluxes of elements
1 and 2 just at the M//P interface. The two flux bal-
ances a r e r e l a t e d t o each other s i n c e the rate of
movement of the interface, d~/dt, must be the same
for each component; that is:

d ~ _ d~2 _ d~ [3]
dt dt dt "

At any given time the two mass balances, Eqs. [2a]
and [2b], can be simultaneously satisfied through Eq.
[3] by selection of an appropriate tie line and inter-
face velocity.~,~,~°
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Kirl~&ldy x and Coates ~ have a s s u m e d the m a t r i x
p h a s e t o be infinite in extent and that the interface
compositions C'a, C~', C~ and C~ are constant d u r i n g
growth. However the interface compositions may vary
if boundary conditions change, that is, if impinge-
ment of diffusion fields occurs. T o explore this q u e s -
tion of varying interface compositions in more d e t a i l
and t o calculate Eqs. [1] t o [3] allowing for the effect
of impingement, a n u m e r i c a l solution is employed.

A Crank-Nicolson finite difference method has
been used t o obtain n u m e r i c a l solutions for Eqs. [1]
t o [3]. The method is very s i m i l a r t o that employed
by Randich and Goldstein~ for nonisothermal ternary
diffusion controlled growth and is described in detail
in t h e i r paper. Fig. 1 is a schematic representation
of the s~ace concentration grid of the model. ~XM
and AX~- are the grid spacings in the m a t r i x and
precipitate used for the finite difference method.
T h e r e are N points in the space grid of which r-2
points are contained in the precipitate phase. The as-
sumptions of the method are: 1) ternary coefficients
independent of concentration; 2) one dimensional,
planar front interface movement; and 3) local equili-
b r i u m at the two phase M//P interface during the dif-
fusion process.

In the computer method, the interface tie line com-
positions are allowed to vary for each time step in
the Crank-Nicoison finite difference treatment. Tie
line compositions at the M/P interface a r e chosen
t o satisfy the mass balance equations for elements
1 and 2. The fluxes jM÷,jM,~,~+,j~_,j~_ are c a l c u -
lated from the compositional gradients generated
d u r i n g the previous time step and the compatible
interface tie line compositions and precipitate
growth rate d~/dt a r e calculated from a combination
of Eqs. [2] and [3]. By this method the tie line can
shift to satisfy Eqs. [2] and [3] and the growth rate
d~/dt is predicted directly. Compositional g rad i -
ents which may develop in the precipitate phase due
t o changing tie line compositions are also calcu-
lated. The model is applied from the center of the
precipitate phase t o the center of the m a t r i x phase.
Within this diffusion distance, L, (see Fig. 1) a mass
balance of elements 1 and 2 is preserved. Zero
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Fig. l--Schematic representation of the space concentration
grid used for the numerical analysis. The matrix M/precipi-
tate P interface is positioned at the distance ~ from the center
of the precipitate phase.

mass transfer boundary conditions, OCJOX = 0C2/
OX = 0, are set at the center of the m a t r i x phase and
at the center of the growing precipitate.

APPLICATION OF THE NUMERICAL METHOD-
ISOTHERMAL GROWTH OF PHOSPHIDE

IN THE F e - N i - P SYSTEM

The phase transformation ~ ~ ~ + Ph in the Fe-
Ni-P system was chosen for the calculation. Com-
ponents 1 and 2 may be taken as P and Ni respec-
tively. The Ph or phosphide is the precipitate phase
and has the chemical formula (Fe, Ni)3P. The ~ is the
m a t r i x phase and is bcc F e - N i . This transforma-
tion was chosen for computer modeling b e c a u s e
ternary diffusion coefficients in the F e - N i - P system
have been measured as a function of temperature. 11'~2
The f a s t e r diffusing element is P and the r a t i o of the
diffusion coefficients Dt~P to D~iNi va r i e s between 5
and 10. The c r o s s coefficients DI~Ni and D~i p are es-
sentially z e r o .n The v a l u e of the r a t i o DPNihNi t o D~iNi
is approximately 0.05.~2 The transformation ~ ~
+ Ph was also chosen for computer modeling because
the tie l ines in the a + Ph phase field have been ex-
perimentally determined. ~s The phosphide phase is
stoichiometric in P and the Fe and Ni are inter-
changeable. Since each ~ + Ph tie line is unique the
variations in all four interface compositions, C~, C;',
C~', C~', can be determined by calculating only the
variation of one of t h e s e values. For simplicity we
used C~' the Ni interface composition of the Ph t o
describe the variation of the interface composition.

Ph growth was simulated for a nominal 2 wt pet Ni,
2 wt pct P, 96 wt pct Fe alloy. The simulation
started with a 0.01 ~tm nucleus of Ph in a homogene-
ous ~ phase and growth proceeded isothermally at
750°C. Fig. 2 shows the low Ni reg ion of the Fe-l~Ii-P
system at 750°C. The bulk composition of the alloy
lies in the two-phase a + Ph reg ion at 750°C and Ls
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Fig. 2--Low Ni region of the Fe-Ni-P phase diagram at 750°C.
The bulk composition of our test alloy 2P-2Ni-96Fe is identi-
fied by • on the figure.
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identified by the solid c i r c l e on the figure. At this
temperature the alloy is supersaturated in P and
the Ph phase will nucleate and grow. Fig. 3 shows
the microstructure of a nominal 2P-2Ni-96Fe alloy
a f t e r slow cooling from 875°C and an isothermal
treatment for two weeks at 750°C (Ref. 12). Generally
the Ph grows as a plate and the average impinge-
ment distance is ~50 ~m.

The tie l ines in the ~ + Ph phase field will define
the local interface matrix/precipitate ( a / P h ) com-
positions during growth. The tie line called the
equilibrium tie line (ETL) goes through the bulk al-
loy composition (see Fig. 2). The a and Ph composi-
tions given by the ETL will be observed in an e q u i -
librated alloy. The no partition tie line represents
the condition where the Ni content of the growing
phosphide and the bulk composition of the alloy are
the s a m e . The no partition tie line gives the lowest
permissible phosphide Ni content, when considering
the bulk Ni content of the alloy. The no partition tie
line s t i l l r e t a i n s equilibrium between a and Ph at
the two phase interface. The concept of the no parti-
tion tie line or pile up model was introduced by Hillert
and others. 1'14'15

Since D ~ > D~eNi in the m a t r i x a, the P growth
rate d~Jdt will in genera l be h ighe r than that of the
~li, d~Jdt. T o satisfy Eq. [3], tie line shifts from the
ETL towards the no partition tie line are predicted.
This shift will d e c r e a s e the Ni interface compositions
C~', C~' in the ~ and lah (Fig. 1). Therefore the Ni flux
J~,2,~* into the M/P interface will i n c r e a s e and J ~ -
away from the M/P interface will d e c r e a s e . In this
manner, the growth rate d~Jdt will be increased, Eq.
[2b], and the interface velocity relationship Eq. [3]
will be satisfied.

The composition gradients of Ni and P predicted
by the simulation are shown in Fig. 4. The length of
the space g r id , L, from the center of the phosphide
t o the center of the a phase was 50 ~m and a grid
spacing of approximately 0.5 pm in the m a t r i x ~ phase
was used. Ni and P gradients a r e shown for four
growth t i m e s , 1 h, 1 day, 5 days and the total growth

Fig. 3--Microstrueture of a nominal 2P-2Ni-96Fe alloy after
slow cooling from 875°C and an isothermal treatment for two
weeks at 750°C. Ph generally precipitates as long plates in
the a matrix. Grain boundary nucleated Ph is observed on
the left side of the photomicrograph. Magnification marker
116.8 ~tm.
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Fig. 4--Ni and 1~ composition gradients predicted by the nu-
merical model for a 2P-2Ni-96Fe alloy heat treated at 750°C.
Diffusion gradients at several growth times, 1 h, 1 day,
5 days and 80 days are given.

time of 80 days. In this example the interface com-
positions a s s u m e d for the f i r s t increment of growth
were those g iven by the ETL (Fig . 1): 1.94 wt pct Ni
in ~, 2.76 wt pct Ni in Ph. At 1 h of growth, ~ = 0.35
/~m and the P depletion in the m a t r i x a is much more
extensive than that of the Ni. This reflects the la rge r
diffusion coefficient of the phosphorus. The v a l u e of
the Ni interface compositions is less than that g iven
by the ETL allowing the Ni interface fluxes to in-
c r e a s e and the growth rate d~Jdt, Eq. [2b] t o i n c r e a s e
t o that due t o the P flux. The 1a interface composi-
tion in a r e m a i n s constant at 0.903 wt pct d u r i n g the
growth process s i n c e the 1a solubility l imi t in ~ is in-
dependent of Ni content (F ig . 2).

Impingement of P o c c u r s 50 ~m from the nuclea-
tion point a f t e r only 3 h. Ni impingement o c c u r s
a f t e r about 2 days. When Ni impingement o c c u r s the
impingement of P has already depleted the a m a t r i x
by over half of the P which was originally available
for Ph growth. Between 5 and 80 days little lah growth
occurs (~ changes from 3.5 t o 3.75 /~m). However
d u r i n g this l a t e r period of impingement the Ni con-
tents of the lah and ~ at the a / P h interface C2", C'2
rise t o the v a l u e predicted by the ETL. This l a t e r
effect occurs b e c a u s e the P flux in ~ has d e c r e a s e d
due t o impingement (see Fig. 3). This c a u s e s the
growth rate d~Jdt t o d e c r e a s e . The Ni interface com-
positions can rise because the Ni interface fluxes
need no longe r support a large Ph growth r a t e . Dur-
ing the f i n a l growth period Ni and 1a gradients are re-
adjusted so that a condition of chemica l equilibrium
throughout the alloy system is obtained.

The predicted variation of the phosphide Ni i n t e r -
face composition with time is shown in Fig. 5. T o ex-
amine how initial conditions affect phosphide growth
s e v e r a l tie lines, ETL, 2.3 wt pct Ni and no partition,
were chosen as starting compositions for the phos-
phide phase. After about 1/2 h or about 0.25 /~m of
growth, a phosphide Ni interface composition of 2.62
± 0.02 wt pct is chosen for further growth. This in-
t e r f a c e Ni concentration apparently balances the
phosphide growth rate as predicted by the Ni and P
mass balances as long as impingement is not s e v e r e .
This r e s u l t supports the method of Coates,2 which
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Fig. 5--Predicted variation of C~', the phosphide interface Ni
content, with time for three different phosphide starting com-
positions.

uses constant velocity or interface compositions
determined by tie line compositions and relative
diffusion coefficients. His method appears t o be
quite acceptable as long as impingement of the fast
diffusing element is not significant. Once P impinge-
ment becomes s e v e r e , a f t e r 2 days of growth, and the
P flux at the two phase interface approaches zero,
the interface tie line moves back t o h ighe r Ni contents
and approaches the ETL.

T h r e e s t a g e s of growth a r e therefore observed in
this example. 1) Initial growth stage. During this
stage, which t a k e s less than 0.1 pct of the time n e c e s -
sary t o achieve bulk chemical equilibrium, the a / P h
interface Ni compositions cannot be uniquely speci-
fied. 2) Major growth stage. Growth o c c u r s until im-
pingement of the f a s t e r diffusing element becomes
s e v e r e . In addition the Ni interface compositions in
c~ and Ph do not vary d u r i n g growth. 3) F i n a l growth
s t a g e . Little growth o c c u r s , Ni contents of the Ph and
c~ a r e adjusted t o the equilibrium values and gradients
in the ~ and Ph phase disappear. The initial growth
s tage could possibly be an artifact of the numerical
solution used in the model. Using f i n e r grid spacings
in the m a t r i x ~ phase allows a more exact modeling
of the diffusional process. As Fig. 6 shows, f i n e r
m a t r i x grid spacings, AX shorten the initial growth
s tage by as much as an o r d e r of magnitude, i . e . , from
g r e a t e r than 1000 s t o less than 100 s.

Fig. 7 shows the predicted variation of phosphide
width with growth time for the 2Ni-2P-96Fe alloy at
750°C. Calculations of growth r a t e s during the
initial growth s tage vary according t o the starting
composition and computer grid spacings in the m a t r i x
~. However the predictions of growth during Stage 2,
the m a j o r growth period, are independent of the as-
s u m e d starting composition. A s q u a r e root of t i m e ,
t '/2, dependence for growth is predicted for Stage 2.
This rate dependence is observed until P impinge-
ment becomes s e v e r e (~2 days). In Stage 3 growth
slows and the Ni interface values i n c r e a s e . Ni im-
pingement only becomes significant a f t e r 20 days of
growth and total phase equilibrium is achieved in 80
days.

The time dependence of phosphide growth in two
other alloys of s i m i l a r Ni content are shown in Fig.
7. Although l e s s e r or g r e a t e r amounts of growth oc-
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Fig. 6--Influence of matrix grid spacing size A X M on the
phosphide interface Ni content.
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Fig. 7--Predicted variation of phosphide width with growth
Lime at 750°C. Three alloy compositions 2Ni-l.2P-96.8Fe,
2Ni-2P-96Fe and 2Ni-3P-95Fe are investigated.

cur, a t 1/2 diffusion controlled dependence d u r i n g
Stage 2 is observed. In addition la rge r or s m a l l e r
amounts of undercooling do not change the t 1/2 r e l a -
tionship for growth of the phosphide phase.

DISCUSSION

T h r e e stages of growth are predicted by the com-
puter model for phosphide growth in the ~ m a t r i x
phase. The initial growth s tage is quite sensitive
t o the assumed starting composition and t o the grid
size in the c~ phase used for the Crank-Nicolson
method. Reduction of m a t r i x grid spacing below 0.05
pm might yield more accurate results. However,
poor stability of the numerical solution under these
conditions and extremely long computational t i m e s
have not permitted us t o r e d u c e grid spacing below
0.05 p.m. The calculation also s t a r t s with a phos-
phide nucleus of finite size (0.01 tzm). This artificial
nucleus size adds t o the uncertainty of results during
the initial growth stage. F i n e r grid spacings and a
s m a l l e r nucleus size may shorten or eliminate the
initial growth stage. At the present time the com-
puter calculation is not of sufficient accuracy t o de-
t e r m i n e the details of the initial growth s tage (0 t o
3000 s). It is possible that the initial growth stage,
or a goodly portion of it is an artifact of the numeri-
cal solution.
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T h e m o d e l a s s u m e s l o c a l equ i l i b r ium a t t h e M / P
i n t e r f a c e a n d t h a t d i f f u s i o n i s t h e r a t e c o n t r o l l i n g
s t e p . S t r u c t u r a l e f f e c t s a t t h e i n t e r f a c e a r e n o t c o n -
s i d e r e d . In t h e i n i t i a l g r o w t h s t a g e t h e i n t e r f a c e
s t r u c t u r e c o u l d be m o s t i m p o r t a n t .~6 A t s h o r t t i m e s ,
the c o m p o s i t i o n s p i k e o f N i f o r m e d in ~ a t t h e ~ / P h
i n t e r f a c e m a y be u n r e a l i s t i c a l l y s m a l l , of a t o m i c d i -
m e n s i o n s . I n t e r f a c e c o n t r o l l e d g r o w t h , p e r h a p s by
s t r u c t u r a l d e f e c t s a t t h e i n t e r f a c e , l r m a y o c c u r .
C o a t e s 2 s u g g e s t s that t h e c o m p o s i t i o n s p i k e a t t h e
i n t e r f a c e m u s t be > 5 n m (50A) in s i z e t o a l l o w l o c a l
e q u i l i b r i u m . T h e s m a l l e s t c o m p u t e r g r id s p a c i n g
u s e d in t h i s s t u d y was 50 n m (500/~). T h e r e f o r e we
w e r e not a b l e t o i n v e s t i g a t e t h i s p r o b l e m .

D u r i n g t h e s e c o n d s t a g e o f g r o w t h t h e g r o w t h r a t e
s h o w s a / ~ / 2 d e p e n d e n c e . I n a d d i t i o n t h e a a n d P h
i n t e r f a c e c o m p o s i t i o n s a r e e s s e n t i a l l y i n d e p e n d e n t
of a n y a s s u m e d s t a r t i n g c o m p o s i t i o n f o r t h e p h o s -
p h i d e n u c l e u s . T h e c o m p u t e r m o d e l p r e d i c t s c o n s t a n t
i n t e r f a c e c o m p o s i t i o n s d u r i n g t h i s p e r i o d o f g r o w t h .
T h e r e f o r e t h e i n t e r f a c e c o m p o s i t i o n c o n t o u r s of
C o a t e s 2 o r t h e i t e r a t i v e t e c h n i q u e of K i r k a l d y x wi l l be
a p p l i c a b l e d u r i n g t h i s g r o w t h s t a g e .

T h e f a s t e r m o v i n g e l e m e n t P b e g i n s t o b e c o m e d e -
p l e t e d a t t h e i m p i n g e m e n t d i s t a n c e L e a r l y in s e c o n d
s t a g e g r o w t h . H o w e v e r t h i s d e p l e t i o n d o e s n o t a p p e a r
to m e a s u r a b l y c h a n g e t h e t i m e d e p e n d e n c e of g r o w t h
o r t h e i n t e r f a c e c o m p o s i t i o n s . A p p a r e n t l y P d e -
p l e t i o n m u s t be s e v e r e , > 50 p c t o f t h e a v a i l a b l e s u p -
ply, b e f o r e t h e e f f e c t o f i m p i n g e m e n t s u b s t a n t i a l l y
c h a n g e s t h e g r o w t h r a t e a n d i n t e r f a c e c o m p o s i t i o n s .
T h e a n a l y t i c a l c a l c u l a t i o n t e c h n i q u e s ~'2 a r e t h e r e f o r e
a p p l i c a b l e e v e n d u r i n g i n i t i a l i m p i n g e m e n t . D u r i n g
f i n a l s t a g e g r o w t h , i m p i n g e m e n t e f f e c t s b e c o m e
s e v e r e , g r o w t h d e c r e a s e s , a n d t h e i n t e r f a c e c o m p o s i -
t i o n s c h a n g e s i g n i f i c a n t l y w i t h t i m e . T h e a n a l y t i c a l
c a l c u l a t i o n t e c h n i q u e s a r e t h e r e f o r e not a p p l i c a b l e in
t h i s g r o w t h r e g i o n .

T h e c a l c u l a t i o n o f f e r r i t e o r c a r b i d e g r o w t h in
t e r n a r y F e - C - X a l l o y s , w h e r e X is a s u b s t i t u t i o n a l
m e t a l l i c e l e m e n t , m u s t be c o n s i d e r e d a s a s p e c i a l
c a s e . T h e d i f f u s i o n r a t e o f C is 104 t o 106 t i m e s
f a s t e r than t h e m a j o r s u b s t i t u t i o n a l e l e m e n t ( s ) . T o
c a l c u l a t e p r e c i p i t a t e g r o w t h , a s s u m p t i o n s o f p a r a -
e q u i l i b r i u m , ~8,19,26 that i s t h e l a c k o f l o c a l e q u i l i b r i u m
of c o m p o n e n t X a t t h e 2 p h a s e i n t e r f a c e , h a v e b e e n
i n v o k e d . 5,a°,2~ U n f o r t u n a t e l y a t t h e p r e s e n t t i m e , t h e
R a n d i c h - G o l d s t e i n c o m p u t e r m o d e l4 c a n n o t c a l c u l a t e
p h a s e g r o w t h in t e r n a r y s y s t e m s w h e n t h e d i f f u s i o n
r a t e o f o n e s o l u t e i s m o r e t h a n 102 t i m e s f a s t e r t h a n
t h e d i f f u s i o n r a t e of t h e o t h e r s o l u t e e l e m e n t . T h i s
l i m i t a t i o n i s due t o t h e f a c t that t h e g r id s i z e u s e d in
t h e c o m p u t e r m o d e l m u s t be t h e s a m e f o r b o t h d i f -
f u s i n g e l e m e n t s . If o n e o f t h e s o l u t e e l e m e n t s d i f f u s e s
m u c h s l o w e r t h a n t h e o t h e r , t h e g r id s i z e m u s t be
k e p t q u i t e s m a l l in o r d e r t o a l l o w t h e d e t a i l s o f t h e
d i f f u s i o n p r o c e s s to be c a l c u l a t e d a n d to a s s u r e s t a -
b i l i t y o f t h e n u m e r i c a l t e c h n i q u e . T h i s s i t u a t i o n l e a d s
t o u n r e a s o n a b l y l o n g c o m p u t a t i o n t i m e s .

A t t e m p t s c a n be m a d e t o g e n e r a l i z e t h e R a n d i c h -
G o l d s t e i n c o m p u t e r a n a l y s i s f o r t e r n a r y s y s t e m s in
w h i c h t h e t i e l i n e s a n d d i f f u s i o n c o e f f i c i e n t s h a v e n o t
b e e n m e a s u r e d . W e h a v e a t t e m p t e d t h i s g e n e r a l i z a -
t i o n a n d in m o s t c a s e s we g e t u n r e a l i s t i c a n s w e r s .
S i n c e d i f f u s i o n c o e f f i c i e n t s a r e i n f l u e n c e d g r e a t l y
by t h e t h e r m o d y n a m i c s o f a g i v e n s y s t e m , a r b i t r a r y
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v a l u e s o f D ' s o r t w o p h a s e t i e l i n e s do not l e a d to
s a t i s f a c t o r y s i m u l a t i o n s o f p h a s e g r o w t h . T h e c o m -
p u t e r m o d e l c a n be a p p l i e d m o r e e x t e n s i v e l y a s t i e
l i n e s a n d d i f f u s i o n c o e f f i c i e n t s a r e m e a s u r e d f o r m o r e
t e r n a r y s y s t e m s .

S U M M A R Y A N D C O N C L U D I N G R E M A R K S

In s u m m a r y we h a v e b e e n a b l e t o s i m u l a t e t h e i s o -
t h e r m a l p h a s e g r o w t h p r o c e s s in a t e r n a r y a l l o y
u s i n g a d i f f u s i o n t h e o r y . I n t e r f a c e c o m p o s i t i o n s a r e
p r e d i c t e d t o c h a n g e w i t h t i m e , c o n t r o l l e d by t h e
n e c e s s i t y t o b a l a n c e t h e t w o s o l u t e f l u x e s w h i c h c a u s e
t h e p r e c i p i t a t e t o g r o w . It i s d i f f u s i o n w h i c h a c t u a l l y
c o n t r o l s t h e g r o w t h p r o c e s s a l t h o u g h d u r i n g i n i t i a l
g r o w t h i n t e r f a c e s t r u c t u r e m a y be i m p o r t a n t . T h e
r a t i o of Dll /D22 c o n t r o l s t h e a m o u n t o f m o v e m e n t o f
t h e p r e c i p i t a t e i n t e r f a c e c o m p o s i t i o n f r o m t h e E T L .
T h e p r a c t i c a l e f f e c t o f i m p i n g e m e n t i s to d e c r e a s e
p h a s e g r o w t h a n d a l l o w t h e i n t e r f a c e c o m p o s i t i o n s
t o m o v e b a c k t o w a r d s t h e E T L . It s h o u l d n o t be s u r -
p r i s i n g t h e r e f o r e i f p r e c i p i t a t e s in t h e s a m e t e r n a r y
a l l o y h a v e d i f f e r e n t c o m p o s i t i o n s . I f t h e r e a r e d i f f e r -
e n t i m p i n g e m e n t d i s t a n c e s in t h e a l l o y , p r e c i p i t a t e
c o m p o s i t i o n s m i g h t v e r y we l l be d i f f e r e n t f o r t h e
s a m e g r o w t h t i m e .

T h e a u t h o r s ' n u m e r i c a l m o d e l c o n s i d e r s p l a n a r
i n t e r f a c e g e o m e t r y o n l y . H o w e v e r t h e m o d i f i c a t i o n
f o r c y l i n d r i c a l o r s p h e r i c a l g e o m e t r i e s a r e s t r a i g h t -
f o r w a r d a n d m e t h o d s t o do t h i s a r e r e a d i l y a v a i l a b l e
in t h e l i t e r a t u r e . 5 T h e a p p r o a c h p r e s e n t e d s h o u l d
a l l o w o t h e r i n v e s t i g a t o r s t o a p p l y t h e m o d e l t o t e r n a r y
s y s t e m s w h i c h h a v e we l l c h a r a c t e r i z e d p h a s e d i a g r a m s
a n d a d e q u a t e d i f f u s i o n c o e f f i c i e n t d a t a .
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T h e a u t h o r s wish t o a c k n o w l e d g e t h e f i n a n c i a l s u p -
p o r t o f t h i s w o r k by t h e N a t i o n a l S c i e n c e F o u n d a t i o n ,
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