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P u n c t u a l  H i l b e r t  S c h e m e s  o f  S m a l l  L e n g t h  in D i m e n s i o n s  2 a n d  3 

S. A. T i k h o m i r o v  UDC 517.2 

ABSTRACT. The  biregular geometry of punc tua l  Hilbert  schemes in dimensions 2 and 3, i.e., of  schemes 
parametrizing fixed-length zero-dimensional subschemes supported at  a given point  on a smooth surface or a 
smooth three-dimensional variety, is studied. A precise biregular descript ion of these schemes has only  been 
known for the tr ivial  cases of lengths 3 and 4 in dimension 2. The next case of length 5 in dimension 2 and 
the two first nontrivial  cases of lengths 3 and 4 in dimension 3 are considered. A detailed descr ipt ion of  the 
biregular properties of punctual  Hilbert schemes and of their  natural  desingularizations by varieties of  complete  
punctual  flags is given. 

KEY WORDS: punctual  Hilbert  scheme, comple te  punctual  flag, biregular description, desingutarization, E x t -  
groups, Stein expansion, Brianqon classification. 

I n t r o d u c t i o n  

The punctual Hilbert scheme of length d on a surface (in a space) is the Hilbert scheme 

Hal(O) = Hilb d Spec k[[x, Y]]red (Hd(0) = Hilb d Spec k[[x, y, Z]]red, respectively), 

which parametrizes the zero-dimensional subschemes of length d supported at a given point 0 on the 
surface (in the space, respectively); for brevity, we denote it also by Hilb d k[[x, y]] (by Hilb d k[[x, y, z]], 
respectively). The study of" general properties of the sctmmes Hd(O) was initiated by Brian~on [1], Iar- 
robino [2], Granger [3], and others and continued by many authors (see, e.g., the surveys [4, 5]). But a 
precise biregular description of these schemes was only known in the trivial cases of d = 1 and 2 and in 
the first nontrivial cases d = 3 and 4 in dimension 2 (see [6]). In this paper, we consider the next case 
d = 5 in dimension 2 and the two first nontrivial cases d = 3 and 4 in dimension 3. We examine in 
detail the biregular geometry of the schemes Hd(O) and their natural  desingularizations by varieties of 
complete punctual flags in these cases. Our main method of study is to obtain sclmmes Zd supported at 
the point 0 front the schemes Zd-1 by the operation of "adding the point 0"; in the language of schemes, 
this operation is expressed by the exact triple 

0 -+ k(O) -~ Oz~ ~ Oz~_, --+ O. 

All such extensions, which are clmssified according to the corresponding Ext-gvoups, give the description 
of the punctual Hilbert schemes Hd(O). The base field k is assmned to be algebraically closed. 

1. T h e  p u n c t u a l  H i l b e r t  scheme Hilb 5 k[[x, y]] 

1.1. P r e l i m i n a r i e s .  In this section, we consider the case of dimension 2. As the initial surface, for 
convenience we take the projective plane p2 .  First, we cite some known results on the punctual  Hilbert 
schemes/ /5 (0) = Hilb 5 k[[x, y]] and varieties X4 of complete punctual flags (their definition is given later 
on), which are used in what follows. Brianqon [1] classified the zero-dimensional punctual  schemes of 
length 5 in dimension 2 into the following five isomorphism classes, which tu'e determined by the ideals 27 
of the schemes in the ring k[[x, y]]: 

(i) z = (y, ~5);  
(ii) Z = (y2 + x ~ ' xy) ; 

(iii) z = (y2, xy ,  ~'); 
(iv) I = (x 2 + y2, x2y,  z3); 
(v) 27 = (y2, x2y, x3). 
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Tile set 
H~(0) = {Z5 E Hh(0) I Z5 is a scheme of type (i), i.e., a curvilinear scheme} 

is dense and open in Hh(0), and according to Granger [3], 

SingHh(0) = Hh(0) \ HI(0 ) = {Z5 e/-/5(0) [ Z5 is a scheme of one of types (ii)-(v) } 

is the closure ill H5 (0) of tile set 

SingHh(0)* = {Z5 E Hh(O) IZ5 is a scheme of type (ii)}; 

we have codimg.~(o)Sing//5 (0) = 1, and tile variety //5(0) is analytically isomorphic to Sing//5(0) x C,  
where C is the curve given by the equation {x 2 + y3 __ 0} ill A 2 , in a neighborhood of a generic poizlt 
fl'om Sing/-/5(0). In addition, 

K := {Z~ E Hh(0) [ Z5 is a scheme of type (v) } 

is an irreducible curve isomorphic to p1.  
Next, for any d > 1, 

H~(0) := {Zd E Hal(O) ]Zd is a curviliuear scheme} 

is a smooth irreducible variety which is a dense open subset of Hd(O) [1, 3]. Thereby 

X~ := {(Z2,  Z3, . . . ,  Zd) E I-I~(0) x H~(O) x . . .  x H~(O) [ Z2 C Z3 C "" C Zd} 

is also a smooth irreducible variety. Its closure Xd ill H2(O) x H3(0) x --- x Hd(O) is callcd the variety 
of complete punctual flags of length <_ d. Obviously, X1 is tlle one-point set {0}. According to the main 
result of [6], we have tile isomorphism of varieties Xd --~ F'(C~_z) for d -- 2, 3, and 4; here 

~d--1 := ~:gtl (OTd_, k(O) [~OXa_t ) p2 

is a locally fYee sheaf of r~mk 2, Td-z C p2 x Xd-1 is tile universal cycle of length d - 1 over Xd-1,  
and p2 : p2 x Xd-1 -+ Xd-1 is tile projection. Uuder this isomorphism, the natural projection (forgetful 
morphism) 

X,~ --+ X d - l  : (Z~, Z~.,... , Zd) ~ (Zl ,  Z2 , . . .  , Zd-1) 
coincides with the structural morphism ~rd: P(C~_I) -+ Xd-1.  

Now, consider the wn'iety )(4 of complete pmlctual flags of length < 4 in inore detail. On X4, we have 
the standard invertible sheaves O~'4 = Oxdx.~(1), Or3 = Ir,~Ox3/x~(1), and OT2 = (7r3" 7r4)*OX2/Xx(1) 
and the universal flag 

{0} x X 4 = T 1  c T 2  C T 3  CT4- - -T4 ,  

where T2 and T3 are lifted from p2 x X2 ,and p2 x X3, respectively. In particular, T3 = (1 x 7ra)-l(T3), 
and tlle projection is as in the diagram 

p2 x X 4 i×~4> P2 x X 3 

l "  ~ i v2 

X4 ~r,, > X3 
Accordhlg to [6, Sec. 1.2], the triple 

(1) 

0 --+ k(O) [] Ox4 (T4) -+ OT, -+ OT3 --~ 0 (2) 

is exact. 
Finally, consider tile closed subsets 

Wi = {(Z2, Z3, Z4) E X4 [ Zi is not a locally complete intersection}, 

where i = 3, 4, of X4. By the main theorem fl'om [6], W3 and Wa are irreducible divisors on X4. Note 
that, if (Z2, Z3, Z4) E W3 is a generic point, then the zero-dimensional scheme Z4 is determined by an 
ideal in k[[x, y]] isomorphic to tile ideal 

27 = (x 2 , y2). (3) 
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1.2. Basic  eva lua t ion .  Let us apply the functor £xt~,~(- k(O) [] Ox~) to the triple (2). Denote 

~4 1 = £xt ~ (OT,, k(O) [] Ox,) ,  

~ = ~zt  ~ (or~, ~(0) [] Ox~), 

The obvious isomorphisnm 

~4 2 = £zt p~ (OT,, k(0) [] Ox~), 

J:~ = Czt l (OT~, k(O) [] Ox~). 

t 9 Ezt t (k(0) [] Ox, (~,), k(0) [] Ox,) _~ Cx 7~._, (k(0) [] Ox, (~-~), k(O) [] Ox,)  = Ox° (-~-~). 

Ezt ~ (~:(0) [] Ox, (~~), k(o) ~ Ox,) ~- ~Ox, ( - ~ ) ,  

cxt ° ~ ~ ¢zt°~(oT, k(O)[]Ox,) p~ (OT~, k(0) [] Ox,) -- Ox,  - 

and the equ~flities 

which are obtained by change of base in diagram (1), give the exact sequence 

o -+ ox ,  (-~4) ~ ~:,¢~ --+ c4 L 2Ox, (-~-,) -~ ~:~:F3 -h .~  -~ Ox, (-~~) - ,  o. 

Consider the divisor 

W -- {(2"2, Z3, Z4) 6 X4 [ Z4 is not a locally complete intersection} 

on X4. By co,mtruction, W is a section of the projection 1r4 : X4 --+ X3 ; hence 

Ox4 (IV) = Ox~ (~'4 + £) ,  £ = 7r~L, L e Pic X3. 

L e m m a  1. We have 

7~ ® k(x) ~ { k 
-- Ext '(Oz4, k(0)) = k2 

i/ x = ( z~., z3, z4) ~ w ,  
i/ z = (z2, z3, z4) e w. 

(4) 

(5) 

Proof .  (i) If Z4 is a curvilhmar scheme, then, obviously, Horn(k(0), Oz4) = k, and by the Serre 
duality on S [7], Ext2(Oz, ,  k(0)) = k. If Z4 is not a curvilinear scheme but  still is a locally complete 
hltersection, then its ideal Iz4 in the local ring k[[x, y]] is isonmrphic to (x 2, y2); therefore, any nonzero 

morphism k(0) -~ Oz4 can be extended to the exact triple 

o ~ k(o) 2+ Oz,  ~ Oz., -~ o, 

where Oz3 = 0 (1) is the first infinitesimal neighborhood of the point 0 and the morphism r is neces- 
sarily proportional to tile restriction morphism • ® O0(1). Thereby we again obtain the required equality 
Horn(k(0), Oz4) = k. 

(ii) Now, suppose that  the scheme Za is not a locally complete intersection; then its ideal %z4 is 
isomorphic to (x 3, xy, yS). In this case, the cokernel of any nonzero morphism fl'om Hom(k(0),  Oz,) 
is a sheaf (Pz.~ with Z3 tangent to the line y ---- 0 at 0; since all such Z3 are parametrized by the 
projective line p1,  which is isomorphic to P(Hom(k(0) ,  Oz~)), we have Horn(k(0), Oz4) = k s, and by 
Serre duality [7], ExtS(Oz4, k(0)) = k s. 

Finally, the equality .T 4 ® k(x) -- ExtS(Oz4, k(0)), where x = (Z2, Z3, Z4) E X4, is a base change 
isomorphism for the relative £xt  pz-sheaf 9v4. [] 

Using Lemma i and the epimorphisnl e in the long exact sequence (4), we obtahl the following assertion. 
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C o r o l l a r y  1. The epi'moTphism ~ in (4) coincides with the canonical map ~4 ~-~ ~ v  
Tors(~q=4) = ker(can) is an invertible sheaf on some scheme W with support W .  

P r o o f i  Indeed,  since the sheaf 5=~ v is invertible, we have 

, and its kernel 

Tor°~X'(Yvv,k(x))  = TorV~X'(Ox,(-r4) ,k(x))  =O, x e X4. 

Therefore, considering tile tensor products  of the exact triple 

o -~ 7"o~s(~'4) -~ ~'4 ~ '  ~'~'~ ~ o 

and k(x) for x E X4 and applying Lemma 1, we obtain Supp(7"ors(~4)) -- W and Tots(St4) ® k(x) -- k 
for x E W;  thus  tile sheaf 7"ors(.T4) is invertible on a suitable scheme W with suppor t  W.  [] 

Suppose tha t  T is a maximal subsheaf of dimension < 1 in 7-ors(~4) and M :=  7"ors(~Ca)/T, i.e., the 
triple 

o ~ T -~ Tor.s(J=4) -5 M -~ 0 (6) 

is exact. Corollary 1 implies tha t  M is an invertible sheaf on a divisor of W of multiplicity n for some 
n > 1, i.e., on the  subscheme Wn in X4 deternfined by the sheaf  of ideals Zw,~,x4 = Ox4 ( - n W ) .  This, 

in pm'ticular, implies Tor°~ x" ( M ,  k(x))  = k for x e ~V. Therefore,  if Y :--- S u p p T  ~ O, then the tensor 
multiplication of the exact triple (6) by k(x) , x E Y ,  gives the exact  sequence k --+ T ® k ( x )  --+ k --> k --+ O, 
whence T ® k(x )  --~ k ; so T is an invertible sheaf on some scheme with support  Y .  Thus  we ot)tain the 
following assertion. 

C o r o l l a r y  2. There ez'ist sheaves M and T such that M is an invertible sheaf  on a divisor of W 
of multiplicity n for  some n >_ 1, i.e., on the subscheme Wn in )(4 determined by the sheaf of  ideals 
Zw~,x4 -~ O x ,  ( - n W ) ;  T is either zero or inveT~tible on some subscheme Y of  dimension < 1 'with 
Supp Y C W ;  and we have the exact triple (6). 

Consider the  triple 

o -~ oo(-T~.)  ~4 ~ 3  -% Ox~(-~-3) ~ o, (7) 

where D is a divisor on X4 of the  form 

D = ~r~-l(10) = {(Z2, Z3, Z4) E X4 [ Z3 is not a locally complete intersection} 

for an exceptional  line l0 on X3. According to [6, Proposition 2.2], this triple is exact.  In particular, by 
the main T h e o r e m  from [6], we have 

Ox~(D) = Ox~(~'3 - 2~2). (8) 

Next, consider the curve C = D A W .  Tile divisors D and W m'e irreducible and  intersect along C 
tr~msversally; hence, by Corollary 1, the composition of morphisms 

Oo(-r2) 24 ~r~$'3 2~ Tors($'4) -5 M 

(see (4), (7), and  (6)) is zero, and we can define a morphism hi: OD(- -~ )  -+ T such tha t  i .  h' = h . e l  
and, accordingly, an epilnorphism h ~t : Ox4 (-v3)  -~ J~4 such tha t  h t~ - e2 = e .  h .  
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Thus we have M = Ow,, (-;'3) by Corollary 2, and the triples (7) and (6) are included in the commu- 
tative diagram 

0 0 0 

h" 
o --+ Iv,,.o(--;-~.) --+ OD(--r2)  -' > T 

I ,i 
0 --+ img --+ ~r~'3 --~ Tors(gV4) ---+ 0 

h n' 

) Ow~(-;-a) 

1 
0 

o ~ O x , ( - ; - 3 - n W )  --+ O x , ( - ; - 3 )  

1 1 
eoker h' 0 

1 
0 

--+ cokerh'  ---+ 0 

0 

(9) 

where cokerh' = T[Y' (by Corollary 2) and Y' is a subscheme (possibly empty) of dimension _< 1 
in Y; accordingly, im h' = Ov,, (-;-2) and Y" is a subscheme (possibly empty) of dimension _< 1 in D, 
and SuppY D SuppY".  The left vertical sequence in diagrazn (9) gives the isomorphism cokerh' = 
Ox4 (-T3 - n W ) I Y '  azld the exact triple 

0 --+ Zy,,,D(--~) - ~ i m g  £ Zv,,x4 (-;-3 - nW) -+ 0, 

which, together with the morphism g, gives the exact triples 

0 -+ ker(8-g) -+ 2Ox4 (-;-4) e.g> ZY,,X4(-;-3 - n W )  -+ O, 

0 --+ kerg --+ ker(8, g) --+ Iy,,,D(--T2) -+ O. 

(10) 
(11) 

Since dim Y' < 1, (10) implies that ker(8, g) is an invertible sheaf on X4. Moreover, the condition n > 1 
and equality (5) give n = 1 ; therefore, ker(8, g) = Ox4 (-;-4 + ;-3 +/2)- This equality, the triple (11), and 
the condition dim Y" _< 1 readily imply dim Y" = 1 ; thus Y" is a divisor on D.  Taking into account (8), 
we obtain the equalities 

ZY,,,D(--T2) = OD(--v2 -- Y") = OD(--T4 + r3 + P-), kerg = Ox4(--T4 + 2;-2 + £). (12) 

Next, according to Lemma 1.6 from [6], £3 is a reflexive and, hence, is a locally free sheaf of rank 2. A 
repetition of the proof of this lemma shows that £4 is also a reflexive sheaf of rank 2 (on X4). According 
to (4), k e r f  is a sheaf of rank 1 on X4; by virtue of the relation i m f  = kerg and the second equality 
in (12), it is included in the exact triple 

0 --+ ker f -+ $a --+ Ox4 ( - r4  + 21"o. + £) -+ O. 

Since Ca is reflexive, this sheaf is locally frec. This proves the following proposition. 

P r o p o s i t i o n  1. E4 = Cxt ~,,(Ow,, k(O) [] Ox4) is a locally free sheaf of rank 2 on )(4. 
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1.3. A descr ipt ion  o f  t h e  forgetful m o r p h i s m  a: X5 --> Hh(0). Consider the variety X5 of 
complete punctual flags of length <_ 5. Proposition I and [6, Secs. 1.2, 3] give the isomorphism X5 --~ ]P(£~) 
of smooth varieties; under this isomorphism, the natural projection (forgetful morphism) 

71"5: X 5 - ~ X 4 :  (Z2, Z3, Z4, Zs) ~t (Z2, Z3, Z4) 

coincides with the structural morphism ~r5 : P(E~') --+ X4. 
To describe the forgetful morptlism a: X5 --+ H5(0): (Z2, Z3, Z4, Z5) ~ Z5, consider the irreducible 

divisors 

Vi = 7r~-l(W~) = {(Zo_, Z3, Z4, Z~) E X5 [ Z,i is not a locally complete intersection}, 

where i -- 3, 4, on Xh. The Bria~l~on classification of zero-dimensional schemes of length 5 (see 1.1) and 
formulas (3) directly imply that, if (Zo, Z3, Z4, Zh) • D3 is a generic point, then the scheme Z5 is of 
type (v); hence a(D3) = K ~- p1.  Thus the forgetful morphism a contracts the divisor D3. 

Next, consider the dense open set 

X~ -- {(Z2, Z3, Z4) E )(4 [ Z4 is a cm'vilinear scheme} ---- X4 \ (W3 tJ W4) 

in X4 azld the closure D2 of the set 

D~ = {(Z2, Z3, Z4, Zh) • 7r51(X~) [ Z5 is a noncurvilinear scheme} 

in X5 • A simple local evaluation shows that, for azl az'bitrary point w = (Z2, Z3, Z4) • X*4, D2 A 7r51 (w) 
is the point (Z2, Z3, Z4, Zh), where Z5 is a scheme of type (iii). Therefore, D2 is a divisor on Xh. 
According to Brianqon [1], the set 

S := {Z5 • Hh(0) [ Z5 is a scheme of type (iii) } 

is of dimension 2, and a(D~) C S; in addition, it is easy to see that a(D~) = S.  Therefore, ~r(D2) = S, 
i.e., the morphisnl a contracts the divisor D2. 

By the definitions of the divisors Do, 03, 04, the set 

X~ = {(Z2, Z3, Z4, Zh) e ~r51(X~). [ Z5 is a curvilinear scheme} 

coincides with X5 \ (Do U D3 U D4), and 

aIX~: X~ --> Hg(0) = Hh(0) \ SingHh(0) 

is an isomorphism (recall that codimHh(O} SingHh(0) = 1). Since D4 is an irreducible divisor on X5 
and the morphism cr contracts D2 and D3, we obtain SingHh(0) = a(D4). The description of X5 
in a neighborhood of SingHh(0) (see 1.1) readily implies that a iD4 :D4  -+ SingHh(0) is a birational 
morphism; therefore, the morphism a has a Stein expansion of the form a -- g - ~ ,  where a ~ is a 
contraction of the divisors D2 and D3 and g: at(Xh) --+/-/5(0) is the normalization morphism along the 
divisor a'(D4). 

Collecting the above assertions, we obtain the following result. 

T h e o r e m  1. (i) The vaT"iety X5 of complete punctual flags of length ~_ 5 in dimension 2 is a smooth 
irreducible variety isomorphic to P ( ~ ) ,  where C4 = Cxt~..(()w4, k(O) [] (-9x4) is a locally free sheaf of 
rank 2 on )(4, and the forgetful morphism 

7r5 : X4: (Z.o, Z3, Z4, (z2, Z3, 

coincides with the structural morphism P(C~) --> Xa.  
(ii) The birational forgetful morphism 

a: X5-+ Hs(0): (Z2,Z3,Z4,  Zs)~-~Z5 

has a Stein expansion of the form ~ = v.  ~ ,  where ~r ~ is the contraction of the divisor.s D3 and D4 and 
v: ~r~(Xh) -+ Hh(0) is the morphism of normalization along the divisor a'(Do-); here Do is the closure 
in X5 of the set 

{(Z2, Z3, Z4, Zh) • X5 I Za 'is a curvilinear scheme and Z5 is a scheme of type (iii) }, 

and Di --- {(Z2, Z3, Z4, Zh) • X5 ] Z.~ is not a locally convlete intersection} for i = 3, 4. 
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2. The  p u n c t u a l  H i l b e r t  scheme Hilb 3 k[[x, y, z]] 

2.1. P r e l i m i n a r y  evaluat ions .  In this and the next sections, as the base three-dimensional variety, 
for convenience we take the projective space p3 iu which a point 0 is fixed. By G :-- G(1, 3), we denote 
the Grassmannian of lines in p3; p = {l 6 G I l ~ 0} -~ P(ToP 3) is the a-plane on G; 

~ = { ( v , I , Y )  E P a x G x p 3 [ o E 1 C Y ~ v } ;  H={( I ,Y )  E G x ~ ' 3 1 O E I c Y } ;  

r={( ,v ,Y)  E P 3 x ~ ' 3 [ v E Y g O } ;  II~-F~P--~F, ~,~-£F-Z,p 3, 

and pr 2 : p3 x P --+ P eu'e the natm'al projections; {0 Ix  P = T1 C T2 is a universal flag of subscheums 
of length < 2 in p3 × p ; enid T1 C T2 is the universal flag of subschemes of length _< 2 in ~ defined by 
Ti = pri-~(T~) for i -- 1, 2, where 

P r 1 2 : ~ D - - + p 3 x p :  ( v , l ,  Y) ~+ (v, l) 

is the projection. We also use the notation 

o(l,.~,,~)=op~(O[]op(m)[]op(n)l~, V(m,n):=Op(m)~Op(n)]~, l,m, neZ. 
On F., we have the exact triple 0 -~ OT,(0, 1, 0) -+ OT2 -'+ OW, --+ 0. Applyiug the functor Cxt " ( - ,  OT~ ) 
to this triple, we obtain 

o -+ E~t°(OT,, OT,) -+ ~xtO(OT~, OT,) -+ S~t O(OT, (0, 1, 0), OT,) 

C~t ~(OT,, OT,) ~ E~t ~(0~., OT,) A ~ t  ~(OT, (0, 1, 0), OT,) 

~+ C~t ~(OT,, OT,) --+ E~ ~(OT~, 0~,) -% C~t ~(OT, (0, 1, 0), OT,) -+ 0. (13) 

Obviously, ~2,t0(0T,(0, 1,0),0T,) = On(-l,0) aad Ext°(OT~ , OT,) = On. Since TI = P2--Z(Po), 
where P0 = P-l({0}) -~ IT,, it is easy to see that the triple 

0 --+ Tr /plPo --+ T0P 3 ®Op --+ O~,(1) -+ 0, 

which coincides with the exact Euter sequence on t ' ,  is exact; hence Tr/plP 0 _~ 12p(1). On the other 

haud, clearly, Tr/~lPo ~ ~xt~o(Opo , Opo) is an isonlorphism. This gives ~xt ~ ~.o(Opo, OPo) "~ ~p(1). 
Using the notation P2 for tile projection YI --+ ~' and applying the projection formula and base change, 
we obtain 

g := ~.~ ~(OT,, OT, ) = p~Sxt ~o (VPo, OPo) = Op [ ]  ~p(1)In. 
Therefore, det g = O(0, -1 ) .  This implies that  the morphism f in (13) is injective and 

img = Oi l ,  - 1 ) ,  ~xt~(VT, (0, 1,0), OT,) -- g(- - l ,  0). (14) 

Now, wr/f~ ~-- Op3(-3)  [] Op(1)]F; hence wr/plP o ~- Op(1), and thereby wr./nlT~ = ~ ( w r / p l P o ) .  Tile 
relative Serre duality for the flat smooth morphisln ~r and the projection formula give 

~xt~(OT~, OT,)  ----- ~x t  = = = 0(OT,, OT, (0, 1))v ((0,1)®~xtO(OT,,OT~)) v ((0, I) ® On) v 0(0, --1) 

and show that the morphism e in (13) is azl isomorphism. Therefore, (13) and (14) imply 
~- ) )®-~ imh = det g ( - 1 ,  0) ® (Ext~(OT~, OT~ = 0(--2,  0), 

i.e., the triple 0 --+ O(1, -1 )  -+ Q -+ 0( - -2 ,  0) --+ 0, where Ea := Ext~(OT.,, OT~), is exact. By virtue 
of tile obvious equalities 

Ext'(O(-2, 0), O( i , - I ) )  = H 1 (7-la, n o~, (0(-2, 0), O( i , - i ) ) )  = H~(O(3, - I ) )  = 0, 

this triple splits, i.e., 
~3 - -  ~X~ ~(OT.,, OT, ) "~-- 0(1, --1) 6) 0(- -2,  0). (15) 

Now, let us apply the caaonical identification H~(0) --% P: Z2 ~-~ l : Span Z2. Using the local beeness 
of tile sheaf ~3, tile relative Serreduality for the projection ~r, and the results of [6, Sec. 1.2], we obtain 
the following proposition just as in the two-dimensional case (cf. 1.3). 
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P r o p o s i t i o n  2. The smooth variety P(~3) = P(O(2, 0) • C0(-1, 1)) coincides with the variety 

23 = {(z~, z3, r )  ~ Ho_(0) × H3(0) × P I Z~ c Z3 c r } ,  

and the structural morphism It : P(~3) -'+ E coincides with the forgetful morphism )(3 --+ H: (Z2, Z3, Y) ~+ 
(l = Span Z2, Y). 

2.2.  S o m e  Ext -g roups .  In what follows, we need to know the dimensions of certain Ext-groups 
on p3.  They are given by the following lemma. 

L e m m a  2. The following formulas hold: 

Exti(k(0), k(0)) = { 

Exti(Oz.~, k(0)) = { 

Ext~(Oz3, k(0)) = { 

k~ i =  

k 3, i =  

k, i =  
k 3, i = 

k, i=O,  
k 4, i =  1, 

k 5, i = 2, 

k'- i = 3  

k, i = 0 , 3 ,  
0, 3, Ext~(Oz2, k(0)) : k3 
1,2, , i = 1 , 2 ,  
0,3, 

i f  Z3 q~ Sing Ha (0), 
1,2 

i f  Z3 6 SingH3(0). 

Proof .  Consider two cases: 
(i) Z is one of the schemes k(0), Z2, and Z3, where Z3 ~ SingH3(0); 

(ii) Z = Z3 E SingH3(0).  
(i) Obviously; in this case, Z has the free resolvent 

K ° : 0 -~ Ou 

in a suitable neighborhood U C p3 of 
complex K ° , i.e., taking the complex /~'* 

-~ 30u -~ 30u -~ Ou ~4 0 z  -~ 0 

the point 0. Applying the functor 7/am~gv(- , k(0)) to the 
dual to K ° and multiplying it by k(0), we obtain the complex 

o - ,  k(0) o,~_~k(o) k(o) 3 ~.~®.~io) k(o)~ o:,®k/o) k(o) ~'®~t °) o, 

in which all the differentials 0i ® k(0) are obviously zero. Since the cohomology of this complex is formed 
by the sheaves Ext ov (Oz ,  k(0)), we have 

k(0), i = 0, 3, 
E x t ° u ( O z ' k ( O ) ) =  k(O) 3, i = 1 , 2 .  

This and the spectral sequence of local and global Ext ' s  (which, obviously, degenerates, because the 
sheaves $xt  ~v (Oz,  k(0)) have zero-dimensional supports) give the required formulas for the Ext-groups. 

(ii) In this case, Z coincides with the transvcrsal intersection Y N l (1) , where Y = Span Z is the plaim 
containing the scheme Z and l (1) is the first infinitesimal neighborhood of a line l in p3 that intersects 
the plane Y at 0. It is easy to see that, in a suitable neighborhood U C p 3  of 0, we have the free 
resolvents 

K~ : 0 -+ Ou -+ Ou - 4 0 v n u  -+ O, K :  : 0 -+ 20u  -+ 30u  -+ Ou -40l(1)nu -+ 0 

of" the sheaves Oynu and Oz(1)nu. Since the intersection Z = Y N t (D is tra~lsversal, the resolvent of the 
sheaf Oznu is the total complex 

K" = to t (g t  ® A':): 0 ~ 2Ou 94 5Ou ~ 40~ ~ O~ 5 Ozn~ - +  0. 

A repetition of the tu'gument from (i) for tile complex K" give the required formulas for the Ext-groups. 
This completes the proof of the lenmm. [] 
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2.3. A desc r ip t ion  o f  t he  scheme //3(0) a n d  t h e  var ie ty  X3 of  c o m p l e t e  p u n c t u a l  flags. Let 
p ~2_ H ~ P be the natural projections. For an arbitrary line l ~ P through 0, we have 

[ := p~l(1) ~_ p2p~l(l) ~_ pi. 

Put Et = ~r-~([) and w~ = ~r]E~. Let Z~ = Z2(/) 6 H.~(O) be the zero-dimensional scheme of length 2 
corresponding to the line l under the canonical isonmrphism H2 (0) --% P ; then 

We denote 

T2 xr, ~ = T~ ~E~ -~ Z2 x P~. 

&(1) = Cx., ~, (Oz=(oxP,, O{o}xP, ). 

By Lemma 2, for any plane Y 6 P ,  the dimensions of the spaces Ext~.(k(0), k(0)) with 0 < i < 2 do not 
depend on the point Y; taking into account Proposition 2, we obtain the base change isomorphisms 

C3(/) ----- gall ----- Op, ( - I )  $ Opt,  

g3 ® k ( {Y } )  = g3(/) ® k ( {Y } )  -:> Ext~-(Oz._,(0, k(0)), Y E [- -  p1. (17) 

Consider the surface Sz := P(~3(/)) = P(Op~ (1) $ O p ,  ), the structural morphism iLz : Sl -~ [ ---- p1,  and a 
Grothendieck sheaf Os, (1) such that #~.(Os, (1)) = ~3(/). Note that, for any point Y E P ,  the natural 
I n a p  

1 1 Extz(Oz.,(0, k(0)) --+ Extpz(Oz2(0, k(0)) 

is a nmnonmrphism; hence we have the embedding 

P(Ext~(Oz~.(O, k(0))) ~ P(Ext~3(Oz2(o, k(0))), 

which, together with the isomorphism P(C3 (1)l{Y}) ~- P(Ext~ (Oz2(o, k(O))), determines the following 
embedding fl: 

/~-Z({y} )  = p(E3(1)l{y}) ~ p2 := P(Ext~3(Oz2(o, k(0))). 

Here by Lemma 2, p2 is the projective plane, which is naturally embedded in the w~riety 

x~ = { ( ~ ,  z3) e H.~(0) x H3(0) I Z2 c Z3} 

(indeed, to each point k~ E P(Extp3(Oz2(o, k(0))) considered as an extension ( : 0  --+ k(0) --+ Oz3 -~ 
Oz2(o -'+ 0 corresponds the point (Z~ (/), Z3) E X3). The map f~ can be globalized to the morphism 
fl : Sl ~ p2,  which by construction coincides with the forgetful morphism 

/,: sz -~ P~ c x 3 :  (z~(l), z3, Y) ~ (z_~q), z3). (18) 

Let Z3(/) E /-/3(0) be a zero-dimensional subscheme of length 3 on the line l (we also refer to this 
subscheme as th,~e collinear points). Since Sl is a surface of type IF1, description (18) directly implies 
that fl is a blow-up of the projective plane P~ at the point (Z2(l), Z3(I)), i.e., the map determined by 
the complete linear series of the sheaf [Os, (1)[. Thus we obtain the cazmifical isomorphism 

P~ ~- P ( H ° ( O s , ( 1 ) ) )  = P ( (p l l q ) .Os , (1 ) ) ) .  (19) 

Since X3 = [.JleP p2 and Os, (1) = O~(g3 ) (1)[St, obviously, the isomorphism (19) can be globalized to the 
isomorphism 

X3 "~ P((pl#,).O~($3)(1)) = P(~3) = P(pl.(O(2, 0) @ O ( - 1 ,  1)) = P(Sr3), 
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where Y3 = Op(2) ~ t ip( l )  is a bundle of rank 3 on P .  (We have used Proposition 2 and the equality 
p l . O ( - 1 ,  1) -- Op( -1 )  ®pl.p~O~,(1) = ~p(1)). Accordingly, -~3 = (-Jzep Sl, and by virtue of (18), the 
morphism fl is globalized to the forgetflfl morphism 

f :  Y~3 -~ x3 : ( z , . , z 3 , Y )  ~ ( z~ , z3) ,  

whidl is determined by the relative (over P) complete linear series of the she'M O~(~)(1) and contracts 
the divisor 

W - {(Z2, Z3, Y) E -~3 I Z3 is three collinear points}. 

Finally, the forgetfifl morphism g: Xa = ?(Y3) --+//3(0): (Z2, Z3) ~+ Z3 is nothing but the contraction 
of the divisor D on Xa, which is the isonmrphic image under the morphism f of the divisor 

b = {(z=,  z~, Y) 6 )~31 z3 - 0 (~) is the first infinitesimal neigtlborhood of 0 in the plane Y}.  

Clearly, g(D) = Sing/-/3(0). In addition, it is easy to verify that  Ox:, (D) = O~(ys ) (1) ® u*Op(-2) ,  where 
g: P(Ys) --+ P is the structural morphism and O~(y~)(1) = (.OZ3/p(1) is a Grothendieck sheaf such that 
g.Oz3/p(1) = Y3; we also have h°(Oxa (D)) = 1. Thus the following theorem is valid. 

T h e o r e m  2. The punctual Hilbert scheme //3(0) = Hilb 3 k[[x, y, z]] is the image of the variety 

x3  = {(z.~, z3) e H2(0) × g3(0)  I Z~. c Z3} 

of complete punctual flags (which is isomorphic to the smooth irreducible variety ~(Op (2)(9 ~p  (1))) under 
the birational forgetful morphism g: )(3 "-+ H3(0) cont~ucting the divisor 

D = {(Z2, Z3, Y) E X3 ] Z3 is the first i,,finit.esimal neighborhood of 0 in some plane, 

i.e., Zs is not a locally complete intersection}. 

The divisor D is uniquely determined as the unique divisor of the linear series [Ox3/p(1) ® p*Op(-2)[ ,  
where v: ~(Ov(2) ~ ~p(1)) --+ P is the structural moTThism. In addition, g(D) = SingHa(0) -~ P ,  
and the scheme 1t3(0) is analytically isomoTphic to the direct product of P and the cone over a cubic 
normcurve in a neighborhood of any point Z3 6 Sing//3 (0). 

R e m a r k  1. Obviously, the divisor D on X3 is isomorphic to the variety Fo,2 C P x P of flags "(point, 
plane)", and the morphism g[D: D -~ Sing/-/3(0) coincides with the projection map pr 2 [Fo,2 : Fo,2 ~ 15 • 

3. T h e  p u n c t u a l  H i l b e r t  s c h e m e  Hilb 4 k[[x, y,  z]] 

3.1. P r e l i m i n a r y  eva lua t ions .  Let X3 be the variety of punctual flags of zero-dimensional sub- 
schemes of length 3 in p 3  that  is mentioned in the statement of Theorem 2. We use the standm-d 
notation Ox3(m, n) := Ox3/p(1) ®m ® v*Op(n) for m, n 6 Z.  Consider the universal flag of punctual 
families {0} x X3 = T1 C T2 C T3 E p3 x )(3, where T3 is the universal three-point space with 
SuppT3 -- {0} x X3. Since T1 ~ )(3, we caa put OWl (m, n) := Oz3(m, n) for m, n E Z. We have the 
exact triples 

0 -+ OT1 (0, 1) -+ OT2 --+ (-~Tl ~ 0, 0 --+ (-~T1 (a, b) ~ (-~Ts -~ OT,_, -+ 0. (20) 

The first triple is evident. To find a and b in the second triple, consider $ = ker(res : (-~T3 --+ OTt )" The 
triples (20) give the exact triple 

0 -'~ OT1 (a, b) ~ S ---+ OT1 (0, 1) --). 0, (21) 
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and the description of D as the set {(Z2, Z3) 6 X3 I scheme Z3 is not a locally complete intersection 
in p3} (see Theorem 2) implies 

D = {z = (Z2, Z3) E X3 ] dim(S ® k(0, z)) --- 2}. (22) 

Let us apply the functor £x t "  (OT~ (0, 1), --) to (21) and consider the first connecting homomorphism 5 OT~ 
in the resulting long exact sequence; taking into account the obvious equality 

Sxt 1 (OT, (0, 1), OT, (a, b)) = ToP 3 ® OT, (a, b - 1) -- 3C)T, (a, b - 1), 
O T  1 

we obtain 6: OT, --+ 3OT, (a, b -  1). By virtue of (22), 5 vanishes "along D being a section (as previously, 
we identify T1 with X3). Taking into account (21) and Theorem 2, we see that  (a, b - 1) = (1, 0), i.e., 

a = b - 1. (23) 

Let us denote the projection p3 × X3 -+ X3 by p2 and apply the functor $Xtip~ ( - ,  ~)Wl ) to the 
sheaves OT~, i = 1, 2, 3, and the second triple in (20). Using Lemma 2 and the properties of base change 
for relative $xt-sheaves [8], we obtain the following lemma. 

L e m m a  3. (i) rkExtip.(OT3, (gT,) = 3 for i =  1,2 ,  and rk$xtap..,(OW3, 0W~) = 1. 
(ii) The Ox3 -sheaves 6Xtp~_ (OW, (1, 1), OT~ ) and Cxtip. (OT.,, OT~ ), where i > O, are locally free, and 

for an arbitrary point z = ({0}, Z2, Z3) E X3,  the corresponding base change homomo~phisms 

6xtip2(OT~(1,1) and OT,)®k(z)--+ Exti(k(O),k(O)), 

where i > O, are isomorphisms. Inparticular, the Ox3-sheaves 

are invertible for i = 0 and 3, and the natural morphism 

Ext° (OT , OT,) E tt.(OT , OT,) 

is an isomorphism. Si'milarly, the sheaf Ext°2(OTa, OTI ) is invertible. 
(iii) In the base change diagram 

Ext ° (OT~ (1, 1), OW,) ® k(z) 

Ext°(k(0), k(0)) > Extl(Oz2, k(0)) 

the lower horizontal map is injective for any z 6 Xs  , and hence, coker 01 is a loc~dly flee sheaf of rank 2. 

3.2. T h e  p rope r t i e s  of  t h e  sheaf  £ = $xtlp2 (OT3, OT1) and  t he  v a r i e t y  )(3 = P(6) of  p u n c t u a l  
flags of  lengths  2, 3, a n d  4. Let us apply the functor $xt~2(-  , OWl) to the second triple in (20); 
taking into account (23), we obtain the long exact sequence 

0 -+ Ext°.~(OT2, OT,) -~ Exti°~(OT3, OT,) ~ gxt 0.(OT~ (1, 1), OT,) 

94 .1  E ti (OT , 5 (OT  (1, 1), 

Cxtp (Ow . Ow,)  xt .(Ow3,ow,) t 2 , ¢ x  ~,._, (OT,  (1,  1) ,  OT, ) 

~i~ Ext 3 (OT., ' OT,) ~_~ £Xtp~.(OTa, OT,) ~ Cxt3 . (OT,(1 ,1) ,  OT,) _+ O (24). 
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Consider the morphism 02 iu this sequence. Lemma 3 directly implics rk ker 02 = 1; therefore, ker 02 
is invertible ~s the kernel of a morphism of locally free sheaves. Note that, by virtue of (20), (21), and (23), 
the morphism 02 is iucluded in the commutative diagram 

3dOx3 ( -1 ,  -1 )  > 

11 
gxt  1 (O,r, (1, 1), doT, ) ~ 

t ~ > 
0.., 

Now, Theorem 2 implies that e is decomposed as 

3OXa (0, -1)  

"t 2 ~X p~ (doT1 (0, 1), (~)Wl) 

E z t  ( doTo. , OT , ) 

e ! 3 O x 3 ( - 1 , - 1 )  :-~ 3Ox3(0 , -1 )  --~ 3Ox~(0 , -1 ) ,  

where e' is a bundle morphism (i.e., e' ® k(z) has the sazne razlk at all points z E X3). Therefore, the 
sheaf coke," e has homological dimension < 1. On the other hand, the first triple in (20) gives 

coker(A : Ext~..,(OT..,, doT,) -~ Ext~._,(OT, (0, 1), doT,)) = Ext3..,(dOT,, OT,)  -- OX3, 

and assertion (ii) of Lemma 3 implies the invertibil i ty of the sheaf 

/: := ker(A: Ext~:(OT..,, doT,) -+ gxt~..,(dOT, (0, 1), LOT,)), 

which together with the preceding diagrmn gives the exact sequence 

0 --+ £: -+ coker 02 -+ c0ker e -+ doXa -+ O. 

This and tim condition hd(coker e) < 1 implies hd(coker 02) <_ 1 ; therefore, 

Tor°X~(cokerO2,k(z)) = 0 ,  z • X3. (25) 

Now, by (24) and Lemma 3, 

Ext 1., (OT, (1, 1), OT,) ~4 EXt2p2 (doT~_ , doT,) 

is a morphism of locally fl'ee sheaves of razlk 3, azld rk 02 ---- 2; hence tile sheaf ker (_0 2 is invertible. 
Moreover, by (25) this sheaf is a subbundle in E:rt~,(doT1 (1, 1), dOT,). This, (24), and assertion (iii) of 
Lemma 3 imply that  the sheaf £xt~,((-OT3, dOT,) is locally free azld has rank 3. Thus, we have proved 
the following proposition. 

P r o p o s i t i o n  3. (i) The sheaf £ := £xt  ~_.(dOT3, C0w~) is a locally free sheaf of rank 3, and the exact 
sequence of bundles on X3 

0 -+ impel --~ E ~ im/31 ~ 0, (26) 

where rk im [Jl = 1, hohts. 
(ii) The base change morphism 

b(z): E ® k(z) -+ Ext l (Oz , ,  k(0)) 

is mjective ]or arbitrary z = ({0}, Z2, Z3) E X3. 

This proposition and the irreducibility of the variety /-/4(0) (see [1, 2]) imply the following assertion. 
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C o r o l l a r y  3. (i) The scheme X4 := P($) = F(~) parametrizing the punctual flags z = (Z2, Z3, Z4), 
{0} E Z2 C Z3 C Z4, is a smooth irreducible variety, and the projection 

71"4:X4 -)" X3 : (Z2, Z3, Z4) ~ (Z2, Z3) 

coincides with the structural morphism P(£) -+ X3.  
(ii) The forgetful morphism 

o': X4 -)" H4(0) : (Z2, Z3, Z4) ~ Z4 (27) 

is surjective, and it is a desingularization of the variety H4(0). 
3.3. T h e  p roper t i e s  of  t h e  sheaf  £[D a n d  t h e  var ie t ies  XD a n d  :Y. Consider an eu'bitraxy 

point z = ({0}, Z2, Z3) E D.  Description (22) implies that  the triple 

0 - ,  k(O) 2 -+ Oz~ ~ k(O) -~ 0 (28)  

is exact. Applying the functor E x t ' ( - ,  k(0)) to (28), we obtain the exact sequence 

0 ) Horn(k(0), k(0)) "~o=> Hom(Oz3, k(0)) > Horn(k(0) 2, k(0)) 

o'5 ExtZ(k(0), k(0)) ~=> ExtZ(Oz~, k(0)). 

Here, obviously, %.- is an isomorphism, and by (28) and the identification ExtZ(k(0), k(0)) = To P3 , we 
have im0zz -- ToZ3 ~- k2; therefore, imc: ~ k, and for any vector ~ E ExtZ(k(0), k(0)) \ hnOlz,  the 
corresponding extension ~ : 0 --+ k(0) --+ Oz.. -+ k(O) --~ 0 determines a scheme Z2(~) such that 

Span(ToZ3, ToZ2) = ExtZ(k(0), k(0)) = ToP 3. (29) 

For this vector ~, the nonzero vector ¢z (~) E Ext 1 (Oz3, k(0)) determines a nonzero extension 

e,~((. ) : 0 ~ k(O) ~ O z ,  --+ Oz~ -~ O, 

which, together with (28) and the last triple, is included in the diagram 

0 ~ k(O) 2 

I 
0 ) k(0) -~ > 

0 0 

T T 
Oza > k(O) ---+ 0 

T T 
Oz,  > Oz~ ~ 0 

T 
k(0) k(0) 

0 0 

(30) 

Here Z3 C Z4 D Z2 by construction. By virtue of (29), we have I(P 1 N Za) _> 2 for aa~y line p1 C p3 
through the point 0. The condition l(Za) = 4 makes the last inequality into an equality; hence Oz4 -= 
0 3 / m  2 , where m = Zo:p3 is the sheaf of ideals of the (reduced) point 0. In other words, 

Za -- Spec(O3/m 2) = Spec(k[[x, y, z]]/(x, y, z) 2) - ToP 3. (31) 

Since 
Extl (k(0), k(0)) 1 = Extp:(OT,, OT,) ® k(z) ~-- 30x3 ® k(z) ~-- 30z) ® k(z), 

we can easily show that the image im eD of the morphism 

gD: 3 0 9  = Extpl2(OTl, OT, ) ID --+ EXtZP2 (OTa , OT, ) iD = EiD 

of OD -sheaves, which is a globalization of the homomorphism Ext ~ (k(0), k(0)) -~4 Extl(Oz3, k(0)), is the 
canonical quotient sheaf of 3 0 9 ,  i.e., im eD is isomorphic to g~ 0@ (1), where gm := g[D: D --+ Sing Ha (0) 
is the projection (see Remark 1). Taking into account Corollary 3, we obtain the following proposition. 
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Propos i t ion  4. (i) The morphism of locally free 0 D -sheaves 

ED : 30D = Cxt ~.~(OT, , OT, )ID ~ £1D 

induced by the surjection OW3 ~ OW, is a morphism of rank 3 bundles on D and has rank 1, and 

imso  = g~Op(1). (32) 

Thus the embedding of the subvariety y := P((imED) v) into the variety XD := X4 X x3 D is the section 

D "--+ XD: (Z2, Z3) ~ (Z2, Z3, Za), 

where Za = ToP 3 , of the projection 7rD = rralXD : XD --+ D.  
(ii) Let a: Xa --+/-/4(0): (Z.9, Z3, Z4) ~-+ Z4 be the forgetful morphism (27). Then a (y )  = {ToP a} is 

a point. 

3.4. The  v a r i e t y  Xp,,¢ of p lane  noncurv i l i nea r  flags. Consider the set of plane noncur'vilinear 
puimtual flags 

Xpnc :~-~ {(Z2, Z3, Z4) ~ H_~(0) x H3(0 ) × /-/4(0) [ dimToZa = 2 

and Z4 lies in some plane passing through {0}, i.e., dim Span(Z4) -- 2}. From Corolh~ry 3, by contimfity 
we see that Xpnc is a subvariety in 24. In addition, it is easy to see that Xpnc ~- P(9 v) -- ]P(9~), where 9 v 
is some subbundle of rank 2 iu the bundle $1D, so the natural projection (forgetful morphisln) 

7q = 7ro[Xpn¢: Xp,,¢ -+ D: (Z2, Z3, Za) ~ Za 

coincides with the structure morphism P(~)  --+ D. 
Consider the projection go := g[D: D -+ SiugH3(0). As follows fi'om [6, Proposition 2.7], for an 

arbitrary plane Y E P ,  the fiber Qy = (gvTrl)-l( {Y}  ). is a quadric, and the morphism (rlQy, where ~ is 
the forgetful morphism (27), coincides with the double covering crz : Qy --+ p(S2(ToY)) branched in the 
couic-Veronese image of P(ToY) ¢-+ p(S2(ToY)) .  Note that p(S2(ToY)) is the fiber of the projection 
T: Hilb2 P --+ P:  z ~ SpauZ, which coincides with thc structural rnorphism lt~(S212p) --+ P under tim 
natural isomorphism 

Hilb -9 P ~-- P(Ad(Tp( -1 ) ) )  ~- p(S212p). 

Therefore, the morphism ~r[Xpne coincides with the double covering crl: Xp,~c --+ Hilb2 P branched in a 
divisor of the diagonal A = {z E Hilb'- P [ Supp Z = {pt}}. Thus we have proved the following assertion. 

P ropos i t ion  5. The fo~yetful morphism a[Xpn¢ coincides with the double covering Xp,~¢ --+ Hilb-~P 
branched in a divisor of the diagonal A ---- {z E nilb'~ P ] S u p p Z - -  {pt}}. 

3.5. A d e s c r i p t i o n  of t he  m o r p h i s m  a[ZD. Consider the complement X ~  := XD \ {Y  U Xp~c} of 
the union y U Xpnc ial X o .  Proposition 4 shows that 

X~ -- {(Z2, Z3, Za) E XD [ dimToZ4 --- 2, dim Span(Z4) = 3}. (33) 

Take an arbitrary point (Z2, Z3, Za) E X~ .  It is easy to see that the conditions 

dim ToZ4 = 2, dim Span(Za) = 3 

on tile scheme Za mean that Za lies on the germ (Qza, 0) of some quadric passing through 0 and specified 
by tile equatiou 

9 9 
Qz4 = { z = a x - + b x y + c Y ' ,  a,b, c E k }  (34) 

in suitable local coordinates x, y, z iu a neighborhood of the point 0; Yz4 := T'ToZ4 = {z = 0} E P is a 
projective plane in p3 such that YzaNZ4 = Yz4 NQz4 = Z3. Note that the projection (x, y, z) ~+ (0, y, z) 

361 



implemeuts the analytic isomorphism (Qz4, O) --~ (Yz.,, 0). This and Proposition 5 readily imply that 
the morphism tr]Xpnc can be extended to the double covering tr](X~ U Xp,,c) = tr](XD \ Y). Taking 
into account Proposition 4 (ii), we see that alXD is factored through the double covering trD in the 
commutative diagram that extends the double covering trl: Xpa¢ -+ Hilb2 P _,2 P(.Ad (Tp(-1))):  

Xpnc '---)" XD 

P(Ad(Tp(-1))) & P(Ad(Tf,(-1))$Op(m)) 

(35) 

Thus we have the commutative diagram 

D ~-- 32 ,-+ XD 

{ToP a } E tr(XD) 

R e m a r k  2. The cone o'(XD) over Hilb2P contains a divisor subcone Kzx over the divisor A, and 
by construction, Ka  = {Z4 E//4(0) I Z4 is not a locally complete intersection in p3}.  

3.6.  T h e  e x c e p t i o n a l  d iv i sor  W on  Xa a n d  t h e  c o n t r a c t i o n  of  W u n d e r  t h e  m o r p h i s m  tr. 
Let us consider the variety X~ := X3 \ D and an arbitrary point z = (Z2, Z3) E X~. By definition, Z3 
is a curvilinear scheme (i.e., it lies oil a smooth curve); thus the triple 

~ : 0 --+ Oz2 -'+ Oz3 ~ )  k(O) -~ 0 (38) 

The first is exact. Applying the functor E x t ' ( - ,  k(0)) to this triple, we obt~tin a long exact sequence. 
connecting homomorphism 

01: Horn(Oz.,, k(0)) -+ Extl(k(0),  k(0)) 

in this sequence is injective by Lemma 2; therefore, the image inl a l  of tile homomorphism 

a l :  Extl(k(0), k(0)) -+ Extl(Oz3,  k(0)) 
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(37) 

where the embedding j is induced by the embeddiug of tim first term in the direct sum 

Ad(Tp(-1)) ~ Op(m) 

and m is an integer. Tiros trIXm decomposes as 

a]XD = cry " trD, (36) 

where, by construction, try: trD(XD) = P(Ad (Tp(-1)) ~ Ot,(m)) --+ ~'(XD) is the coutraction i,lto the 
point {To Pal of the section P(Op(m)) of tile structural projection 

P(Ad(Tp(-1)) * Op(m)). 

Therefore, tr(XD) is the cone with vertex at the point {ToP 3} over the w~riety 

P(Ad (Tp( -1 ) ) )  -2_ Hilb 2 P .  



that follows 01 is two-dimensional. By Lemma 2 and Proposition 3 (ii), 

P(Ext  ~ (Oz2, k(0))) = 7r4~(z), (39) 

where re4:X4 -+ X3 is the projection; hence W= := P( imaz)  -~ p1 is a divisor in ~r;Z(z). We put 
W* := U=ex.; Wz ; let W := W * be the closure of W* in X4. By construction, W is a divisor on X4. 

Let us describe an arbitrary point w = (Z2, Z3, Z4) E W*. For this purpose, we identify the points 
in Ext '(k(0),  k(0)) = ToP 3 with zero-dimensioiml schemes of length 2 supported at 0 and, taking into 
account identification (39), consider an arbitrary scheme (of length 2) Z~ 6 Ext 1 (k(0), k(0)) \ (ira 01) 
(i.e., Z~ # Z2) such that  P(kal(Z~)) = w.  By the defi,fitions of the maps 01 and a l ,  we have the 
conunutative diagram of extensions 

: 0 > Oz~ 

0 ~ Oz~_ 

0 0 

T T 
> Oz~ ~ k(O) 

T T 
> Oz~ > Oz~ 

T T 
k(O) ~ k(O) 

T 
0 0 

> 0  

~ o  (40) 

R e m a r k  3. Diagram (40) and the condition Z" ¢ Z 2 ,  where we have Z2, ~ C Z4 by construction, 
imply dim ToZ4 = 2. Therefore, Z4 lies on the germ (Qz4,0) of some quadric of form (34) (or, in a 
special case, of the plane), and it is not a locally complete intersection in (Qz4,0).  The last condition 
and the middle horizontal triple in (40) (or, equiwflcntly, the pair (Qz , ,  Z2)) uniquely determines the 
scheme Z4 (see [6, Secs. 2.5-6]). 

Next, for the chosen point w = (Z2, Z3, Z4), consider the point z = (Z2, Z3) = 7r4(w). By construction, 
there is a one-to-one correspondence between the point w e zr41(z) and the subspace Span(Z2, Z2' ) 
in ToP 3 , which is a plane passing tlu'ough the li,m PToZ2, or, equivalently, a point v(w) of the divisor D 
on X3 lying in the fiber "yi-l(Z2), where 71: D --+ P is the imtural projection. In the plane u- l (Z2) ,  
consider the projective line l(w) = Span(z, v(w)) and its open subset l*(w) = l(w) \ {v(w)} .  Simple 
calculations involving equation (34) of the germ Qz4 show that 

l*(.w) = {(z~, z~, z4) e w* I z~ c Qz, a Y, z_o c Y e g,3, ToY # ToQz.,}. (41) 

Obviously, the condition Z~ C Qz4 N Y uniquely deternfines the scheme Z~. Therefore, the line 

m*(~) := {(z.o, z~, z~) e w* I (z.o, z~) e l*(~)} 

through the point w -- (Z2, Z3, Z4) is determined uniquely, and a(m*(w))  = {Za} = Z4. Let re(w) be 
the closure of m*(w) in W;  then re(w) ~_ p1 .  We have cr(m(w)) = Z4. By virtue of Remarks 2 ~md 3, 
Z4 E K ~ ,  and, as is easy to see, the map cr: W -+ K ~  is surjective. Thus the following proposition is 
valid. 

P r o p o s i t i o n  6. The morphism a:  X4 -+ H4(0) contracts the divisor W on X4 onto the four- 
dimensional cone A'z~ = {Z4 E/-/4(0) I Za is not a locally complete intersection in p3}.  
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R e m a r k  4. It is easy to see that W contains the section :)) = {(Z2, Z3, Z4) E ){4 I Z4 = ToP 3} of 
the projection ~ro : XD -~ D (see Proposition 4), and the diagram 

is commutative. 

:Y ~ W 

{ToP 3} E K a  

(42) 

Collecting Propositions 3, 4, and 6, Corollary 3, Remark 4, and the description of the morphism cr[Xo 
(see (35)-(37)), we obtain the main result of this section. 

T h e o r e m  3. (i) Let X3 be the variety of punctual flags of length 3 in space. Consider the projection 
P 2 : P S x X 3  -+ X3 and put ~ := Ext ~ ( OT3 , OWl). Then ~ is a locally free sheaf of rank 3 and )(4 = P(£) 
is a smooth irreducible variety that parametrizes the punctual flags z = (Z2, -73, Z4), {0) E Z2 C Z3 C Z4, 
of lengths 2, 3, and 4 and whose projection 

7r4: X 4 - - ) . X 3 :  ( Z 2 , Z 3 ,  Z4) .-.-), (Z2,  Z3) 

coincides with the structure morphism P(£) -+ X3. 
(ii) Consider the divisors 

XD = ~r~i(D) = {(Z2, Z3, Z4) E X4 ] Za is not a locally complete intersection), 

W -- {(Z2, Za, Z4) E X4 I Z4 is not a locally complete intersection) 

on the variety X4. I f  o: Xa --+ //4(0): (Z2, Z3, Z4) ~-+ Z4 is the forgetful morphism, then cr is a 
birational morphism decomposed as o = o2 • 01, where oi is the contraction of the divisor W and o2 is 
the normalization morphism (glueing along the divisor crl(XD) ), so that q[XD: XD --+ o(XD) is a double 
covering at a generic point. In addition, 

K~ = a(W) = {Za E Ha(0) I Z4 is not a locally complete intersection), 

a(XD) = {Z4 E Ha(0) I Z4 /s not a carvilinear scheme (i.e., does not lie on a smooth curve)}. 

Moreover, a(XD) is a cone over Hilb2p in which KA is the subcone over the diagonal A C Hilb2p,  
and a(XD) is the set of singularities of the variety H4(0): o ( Z o )  = SingHa(0). 

This research was supported in part by INTAS-OPEN under grant No. 97-2072. 

References 

1. J. Brianqon, "Description de Hilb n C{x, y} ," Invent. Math., 41, 45-89 (1977). 
2. A. Iarrobino, Punctual Hilbert Schemes, Vol. 10, Memoires of the Amer. Math. Society (1977). 
3. M. Granger, "Gdomdtrie de schemas de Hilbert ponctuels," Mermoire Soc. Math. France Nouv. sdr. n°9/10, 111, No. 3, 

l-S4 (i9Si). 
4. A. Iarrobino, "Compressed algebras and components of the punctual Hilbert scheme," in: Sitges, 1983, Vol. 1124, Lecture 

Notes in Math, Springer, Berlin (1985), pp. 146-165. 
5. A. Iarrobino, "Hilbert schemes of points: overview of last ten years," in: Proc. of Amer. ~/ath. Soc., Providence, R.L, 

Vol. 46, Syrup. in Pure Math. (Algebraic Geometry, Bowdoin, 1985) (1987), pp. 297-320. 
6. A. S. Tikhomirov, "A smooth model of punctual Hilbert schemes of a surface," Trudy Afar. Inst. Steklov [Proc. Steklov 

Inst. Math.], 208, 318-334 (1995). 
7. M. Drezet and Potier J. Le, "Fibr6s stables et fibrds exceptionnels sur P2 ," Ann. scient. /~c. Norm. Sap., 4 s~rie, 18, 

193-244 (1985). 
8. C. B~ic~,, M. Putinar, and G. Schumacher, "Variation der globalen Ext and Deformationen kompakter komplexen 

Raume," /$fath. Ann., 250, 135-155 (1980). 

K. D. USHINSKII YAROSLAVL STATE PEDAGOGICAL UNIVERSITY 
E-mail address: alexandr~tikho.yaroslavl.su 

364 


