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Punctual Hilbert Schemes of Small Length in Dimensions 2 and 3
S. A. Tikhomirov UDC 517.2

ABSTRACT. The biregular geometry of punctual Hilbert schemes in dimensions 2 and 3, ie., of schemes
parametrizing fixed-length zero-dimensional subschemes supported at a given point or a smooth surface or a
smooth three-dimensional variety, is studied. A precise biregular description of these schemes has only been
known for the trivial cases of lengths 3 and 4 in dimension 2. The next case of length 5 in dimension 2 and
the two first nontrivial cases of lengths 3 and 4 in dimension 3 are considered. A detailed description of the
biregular properties of punctual Hilbert schemes and of their natural desingularizations by varieties of complete
punctual flags is given.
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Introduction

The punctual Hilbert scheme of length d on a surface (in a space) is the Hilbert scheme

H4(0) = Hilb® Speck|[z, ¥]lrea (Ha(0) = Hilb? Spec k[[z, ¥, 2]]rea, respectively),
which parametrizes the zero-dimensional subschemes of length d supported at a given point 0 on the
surface (in the space, respectively); for brevity, we denote it also by Hilb?k[[z, ] (by Hilb?k{[z, v, 2]],
respectively). The study of general properties of the schemes Hy(0) was initiated by Briangon [1], Tar-
robino [2], Granger [3], and others and continued by many authors (see, e.g., the surveys [4, 5]). But a
precise biregular description of these schemes was only known in the trivial cases of d =1 and 2 and in
the first nontrivial cases d = 3 and 4 in dimension 2 (see [6]). In this paper, we consider the next case
d = 5 in dimension 2 and the two first nontrivial cases d = 3 and 4 in dimension 3. We examine in
detail the biregular geometry of the schemes Hy(0) and their natural desingularizations by varieties of
complete punctual flags in these cases. Our main method of study is to obtain schemes Z; supported at
the point 0 from the schemes Z_; by the operation of “adding the point 0”; in the langnage of schemes,
this operation is expressed by the exact triple

0— k(0) » Oz, = Oz,_, 0.

All such extensions, which are classified according to the corresponding Ext-groups, give the description
of the punctual Hilbert schemes H;(0). The base field % is assumed to be algebraically closed.

1. The punctual Hilbert scheme Hilb® k[[z, y]]

1.1. Preliminaries. In this section, we consider the case of dimension 2. As the initial surface, for
convenience we take the projective plane P2. First, we cite some known results on the punctual Hilbert
schemes Hj(0) = Hilb® k[[z, y]] and varieties X, of complete punctual flags (their definition is given later
on), which are used in what follows. Briangon [1] classified the zero-dimensional punctual schemes of
length 5 in dimension 2 into the following five isomorphism classes, which are determined by the ideals
of the schemes in the ring k[[z, y]):

(i) I=(y,=°);

(i) T=(y>+2% zy);

(i) = (y> 2y, z%);

(iv) = (2> +y°, 2%y,2%;

(v) IT=(y* 2%,2°%).

Translated from Matematicheskie Zametki, Vol. 67, No. 3, pp. 414-432, March, 2000.
Original article submitted September 13, 1999.

348 0001-4346/2000/6734-0348$25.00 (c)2000 Kluwer Academic/Plenum Publishers



The set
HE(0) = {Z5s € H5(0) | Z5 is a scheme of type (i), i.e., a curvilinear scheme}

is dense and open in Hj(0), and according to Granger [3],
Sing H5(0) = Hs(0) \ HE(0) = {Zs € H5(0) | Z5 is a scheme of one of types (ii)-(v) }
is the closure in H3(0) of the set
Sing Hs(0)* = {Z5 € Hs(0) | Zy is a scheme of type (ii) };
we have codim g, (o) Sing Hs(0) = 1, and the variety Hs(0) is analytically isomorphic to Sing Hs(0) x C,

where C is the curve given by the equation {z? +y* = 0} in A2, in a neighborhood of a generic point
from Sing H5(0). In addition,

K = {Z5 € H5(0) | Zy is a scheme of type (v)}
is an irreducible curve isomorphic to P!.
Next, for any d > 1,
H(0) := {Zg € Hy(0) | Z is a curvilinear scheme }

is a smooth irreducible variety which is a dense open subset of Hy(0) [1, 3]. Thereby

X:i: = {(Z’_),Z3,... ,Zd) EH;(O) XHg(O) X -+ X Hg(O) l Zo CZ3C -+ CZd}
is also a smooth irreducible variety. Its closure X; in H3(0) x H3(0) x --- x Hg(0) is called the variety
of complete punctual flags of length < d. Obviously, .X; is the one-point set {0}. According to the main
result of [6], we have the isomorphism of varieties X4 ~ P()_;) for d =2, 3, and 4; here

E4-1 :=Ext,(Og,_,, k(0) ®Ox,_,)

is a locally free sheaf of rank 2, Ty_, C P? x X,_; is the universal cycle of length d — 1 over X4_1,
and pe: P2 x X4_1 = X4, is the projection. Under this isomorphism, the natural projection (forgetful
morphisim)

Xg—=Xa1: (Z1,23,...,24) v (Z1,Z3,...,24-1)
coincides with the structural morphism 74: P(E)_;) = Xg-1.

Now, consider the variety X4 of complete punctual flags of length < 4 in more detail. On X,, we have
the standard invertible sheaves Oty = Ox,/x,(1), Or3 = m{Ox,/x,(1), and Oy = (73 - 74)*Ox,/x, (1)
and the universal flag

{0} XxXy=T1CTeCT3CTy=Ty,
where T3 and T3 are lifted from P? x X, and P2 x X3, respectively. In particular, T3 = (1 x m3)~1(T3),
and the projection is as in the diagram

1
P2x X, =, P2 x X,

|- | W

Xy —— X3
According to [6, Sec. 1.2], the triple
0— k(O) & OX4(T4) - OT4 B OT3 -0 (2)

is exact.
Finally, consider the closed subsets

W; ={(Z2, Z3, Z4) € X4 | Z; is not a locally complete intersection },

where ¢ = 3,4, of X,. By the main theorem from [6], W3 and W, are irreducible divisors on Xs. Note
that, if (22, Z3, Z4) € W3 is a generic point, then the zero-dimensional scheme Z; is determined by an
ideal in k[[z, y]] isomorphic to the ideal

I=(z*,9%. (3)
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1.2. Basic evaluation. Let us apply the functor £xt? (-, k(0) ® Ox,) to the triple (2). Denote

P2

Ea=Ext) (01, ,k(0)BOx,), Fi=E&xtl,(O1,,k(0)BOx,),
& = Ext , (Og,, k(0) ® Ox,), Fs = Ext2,(Ory, k(0) B Oxy,).

The obvious isomorphisms

Ext, (H0) B Ox, (), K0) B Ox,) = Eat 3, (K0) B Ox, (rs), 0) B Ox,) = O (~1a),
£:ct11,2 (L(O) 2y OX‘I (T4)’ ]"(0) X OXq) = 20X4 (_T4)a
£xt, (O, k(0) R Ox,) = Ox, = £2t0,(Ox,, k(0) B Ox,)

and the equalities
Ext) (Or,, k(0) R Ox,) =m€,  Extl (Or1,,k(0) R Ox,) = 7} Fs,

which are obtained by change of base in diagram (1), give the exact sequence

0= Ox, (—7a) = T3 = 4 D 205, (—12) S M Fs B Fu 5 Ox, (~74) = 0. @)

Cousider the divisor
W = {(Z2, Z3, Z;) € X4 | Z4 is not a locally complete intersection }
on X4. By construction, W is a section of the projection 74: X4 — X3; hence
Ox,(W)=0x,(ra + L), L=n;L, L é€PicXs;. (5)

Lemma 1. We have

k if$=(Z2,Z3,Z4)¢W,

Fu® k(x) = Ext*(0z,, k(0)) = { K ifz=(22,2s,2s) €W.

Proof. (i) If Z; is a curvilinear scheme, then, obviously, Hom(k(0), Oz,) = k, and by the Serre
duality on S [7], Ext*(Ogz,, k(0)) = k. If Z4 is not a curvilinear scheme but still is a locally complete
intersection, then its ideal Zz, in the local ring k{[x, y]] is isomorphic to (z2, y?); therefore, any nonzero

morphism k(0) BN Oz, can be extended to the exact triple
0— k(0) 5 Oz, 5 Oz, = 0,

where Oz, = 01 is the first infinitesimal neighborhood of the point 0 and the morphism = is neces-
sarily proportional to the restriction morphism - ® Oy). Thereby we again obtain the required equality
Hom(k(0), Oz,) =k.

(ii) Now, suppose that the scheme Z; is not a locally complete intersection; then its ideal Tz, is
isomorphic to (z3,zy,%?). In this case, the cokernel of any nonzero morphism from Hom(k(0), Oz,)
is a sheaf Oz, with Zs tangent to the line y = 0 at 0; since all such Z3 are parametrized by the
projective line P!, which is isomorphic to P(Hom(k(0), Oz,)), we have Hom(k(0), Oz,) = k*, and by
Serre duality [7], Ext*(Oz,, k(0)) = k2.

Finally, the equality F; ® k(z) = Ext?‘(qu , k(0)), where z = (23, Z3, Z4) € X4, is a base change
isomorphism for the relative £zt ,,-sheaf 7. 0O

Using Lemma 1 and the epimorphism ¢ in the long exact sequence (4), we obtain the following assertion.
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Corollary 1. The epimorphism € in (4) coincides with the canonical map Fy = FYV, and its kernel
Tors(F4) = ker(can) is an invertible sheaf on some scheme W with support W .

Proof. Indeed, since the sheaf F)'V is invertible, we have

TorO* (FYY, k(z)) = Tory * (Ox,(—7a), k(@) =0,  z € X4

Therefore, considering the tensor products of the exact triple
0= Tors(Fy) » Fa S FV =0

and k(z) for z € X, and applying Lemma 1, we obtain Supp(7ors(F,)) =W and Tors(Fs) @ k(zx) =k

for £ € W ; thus the sheaf Tors(F,) is invertible on a suitable scheme W with support W. O

Suppose that T is a maximal subsheaf of dimension <1 in Tors(F,;) and M := Tors(F,)/T, ie., the
triple
0T 5 Tors(Fa) S M =0 (6)

is exact. Corollary 1 implies that M is an invertible sheaf on a divisor of W of multiplicity n for some
n > 1, i.e., on the subscheme W,, in X, determined by the sheaf of ideals Zw, x, = Ox,(-nW). This,

in particular, implies Tor?x“ (M, k(z)) =k for € W. Therefore, if Y := SuppT # @, then the tensor
multiplication of the exact triple (6) by k(z), = € Y, gives the exact sequence k — T'®k(z) = k - k — 0,
whence T ® k(z) ~ k; so T is an invertible sheaf on some scheme with support Y. Thus we obtain the
following assertion.

Corollary 2. There exist sheaves M and T such that M is an invertible sheaf on a divisor of W
of multiplicity n for some n > 1, i.e., on the subscheme W, in X4 determined by the sheaf of ideals

Iw,.x. = Ox,(—nW); T is either zero or invertible on some subscheme Y of dimension < 1 with
SuppY C W; and we have the ezxact triple (6).

Consider the triple
0 — Op(—7) = i Fz 3 Ox,(—73) = 0, (1)

where D is a divisor on X, of the form
D = n;Y(lo) = {(Z2, Z3, Z4) € X4 | Z3 is not a locally complete intersection }

for an exceptional line ly on X3. According to [6, Proposition 2.2], this triple is exact. In particular, by
the main Theorem from [6], we have

Ox,(D) = Ox, (13 — 212). 8

Next, consider the curve C = DN W. The divisors D and W are irreducible and intersect along C
transversally; hence, by Corollary 1, the composition of morphisms

Op(~—7) & 1 Fs 3 Tors(Fy) S M

(see (4), (7), and (6)) is zero, and we can define a morphism h’: Op(—72) = T such that i-h' =h-e;
and, accordingly, an epimorphism A”: Ox,(—73) -» M such that h”-e; =e€-h.
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Thus we have M = Ow, (—73) by Corollary 2, and the triples (7) and (6) are included in the commu-
tative diagram

0 0 0
0 —  Zyvp(~m) — Op(-72) LN T — cokerh’ — 0
el 1
0 — img — 733 LN Tors(Fy) — 0
€2 e ? (9)
0 — Ox, (=75 —~nW) — Ox,(=73) = Ow. (-73) — 0
coker h' 0 0
0

where coker i’ = T|Y’ (by Corollary 2) and Y’ is a subscheme (possibly empty) of dimension < 1
in Y'; accordingly, imh’ = Oyn(—72) and Y" is a subscheme (possibly empty) of dimension <1 in D,
and SuppY D SuppY”. The left vertical sequence in diagram (9) gives the isomorphism coker A’ =
Ox,(—73 —nW)|Y” and the exact triple

0= Tyn p(—72) = img > Tyr x,(—75 —nW) — 0,

which, together with the morphism g, gives the exact triples

0 — ker(8 - g) = 20x,(—~72) 25 Tyr x,(~73 ~ nW) = 0, (10)
0 — kerg — ker(6 - g) = Zy~» p(—72) = 0. (11)

Since dimY”’ < 1, (10) implies that ker(f-g) is an invertible sheaf on X4. Moreover, the condition n > 1
and equality (5) give n = 1; therefore, ker(6 - g) = Ox,(—74 + 73 + L£). This equality, the triple (11), and
the condition dimY"” < 1 readily imply dimY” = 1; thus Y is a divisor on D. Taking into account (8),
we obtain the equalities

Iyu,D(-'Tg) = OD(—TQ —Y”) = OD(—’T4+T3+[,), kerg = OX4(—T4+2T2+£). (12)
Next, according to Lemma 1.6 from [6], &3 is a reflexive and, hence, is a locally free sheaf of rank 2. A
repetition of the proof of this lemma shows that &£, is also a reflexive sheaf of rank 2 (on X;). According
to (4), ker f is a sheaf of rank 1 on Xj; by virtue of the relation im f = ker g and the second equality
in (12), it is included in the exact triple
O—okerf—& — Ox,(~14+2m+ L) - 0.

Since &, is reflexive, this sheaf is locally free. This proves the following proposition.

Proposition 1. & = Ext}, (Or,, k(0) B Ox,) is a locally free sheaf of rank 2 on X, .



1.3. A description of the forgetful morphism o: X5 — Hy(0). Consider the variety X5 of
complete punctual flags of length < 5. Proposition 1 and [6, Secs. 1.2, 3] give the isomorphism X5 ~ P(£})
of smooth varieties; under this isomorphism, the natural projection (forgetful morphism)

Ty . XS - X4: (Z27 Z37 Z47 Z5) = (Z27 237 Z4)

coincides with the structural morphism w5: P(£)) — X,.

To describe the forgetful morphism o: X5 — H5(0): (Z2, Zs, Z4, Zs) — Z5, consider the irreducible
divisors

D, =g Y W) = {(2, Zs, Z4, Zs5) € X5 | Z; is not a locally complete intersection },

where 7 = 3,4, on X5. The Briangon classification of zero-dimensional schemes of length 5 (see 1.1) and
formulas (3) directly imply that, if (Z2, Z3, Z4, Z5) € D3 is a generic point, then the scheme Zj is of
type (v); hence o(D3) = K ~ P!. Thus the forgetful morphism o contracts the divisor Dj.

Next, consider the dense open set

X; ={(Za, Z3,Z4) € X4 | Z4 is a curvilinear scheme} = X, \ (W3 U Wy)
in X4 and the closure Dy of the set
D3 = {(22, Z3, Z4, Z5) € 75 *(X}) | Z5 is a noncurvilinear scheme }
in X5. A simple local evaluation shows that, for an arbitrary point w = (Z2, Z3, Z4) € X}, D2 Nyt (w)
is the point (Z2, Z3, Z4, Zs), where Z5 is a scheme of type (iii). Therefore, D, is a divisor on Xj.
According to Briangon [1], the set
S = {Z5 € H;(0) | Zs is a scheme of type (iii) }

is of dimension 2, and o(D3) C S; in addition, it is easy to see that o(D3) = S. Therefore, o(D2) = 3,
i.e., the morphism ¢ contracts the divisor Dy.

By the defiuitions of the divisors Dy, D3, Dy, the set

X¢ = {(2Z2, Z3, Z4, Zs) € 75 1(X}).| Zs is a curvilinear scheme}
coincides with X5 \ (D2 U D3 U Dy), and
o|X3: X§ — HE(0) = H5(0) \ Sing H5(0)

is an isomorphism (recall that codimp, ) Sing H5(0) = 1). Since D4 is an irreducible divisor on X;
and the morphism o contracts D; and D3, we obtain Sing H5(0) = o(D4). The description of X5
in a neighborhood of Sing H5(0) (see 1.1) readily implies that o|D4: Dy — Sing H5(0) is a birational
morphism; therefore, the morphism ¢ has a Stein expansion of the form ¢ = v -¢’, where ¢/ is a
contraction of the divisors Do and D3 and v: o/(X5) — H;(0) is the normalization morphism along the
divisor ¢/(Dy4).

Collecting the above assertions, we obtain the following result.

Theorem 1. (i) The variety X5 of complete punctual flags of length < 5 in dimension 2 is a smooth
irreducible variety isomorphic to P(E)), where E4 = Ext, (Or,, k(0) ® Ox,) is a locally free sheaf of
rank 2 on X4, and the forgetful morphism

M5 < XS _>X4: (ZZ:Z37 Z47 Z5) — (227 Z37 Z4)

coincides with the structural morphism P(E)) — X4.
(ii) The birational forgetful morphism

o: X5 — Hs(O) (Zg, Z3,Z4,Z5) — Zsg

has a Stein expansion of the form o =v-o', where o’ is the contraction of the divisors D3 and D4 and
v: o'(Xs) — Hs(0) is the morphism of normalization along the divisor o’(Ds); here Do is the closure
in X5 of the set

{(Z5,23,24,Z5) € X5 | Z, is a curvilinear scheme and Zy is a scheme of type (iil) },
and D; = {(Z2, Z3, 24, Zs) € X5 | Z; iis not a locally complete intersection} for i =3,4.
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2. The punctual Hilbert scheme Hilb3 k[[z,y, z]]

2.1. Preliminary evaluations. In this and the next sections, as the base three-dimensional variety,
for convenience we take the projective space P in which a point 0 is fixed. By G := G(1, 3), we denote
the Grassmannian of lines in P3; P = {l € G |l 3 0} ~ P(T,P3) is the a-plane on G;

S={{,Y)eP’xGxP3|0e€lCY 3v}; O={(1,Y)eGxP?|0elcCcY};
F={(,Y)eP®xP3|lveY>0}; O&xHBr, PRrAps
and pry: P3 x P — P are the natural projections; {0} x P =73 C T is a universal flag of subschemes

of length < 2 in P3 x P; and T; C T, is the universal flag of subschemes of length < 2 in ¥ defined by
T; = pri5(T;) for i =1, 2, where

prio: 2= PP xP: (v,1,Y) = (v,1)
is the projection. We also use the notation
O(l,m,n) = Ops(l) ®Op(m) B Op(n)ls, O@mn,n):= Op(m) B Op(n)ix, l,m,n¢€Z.
On X, we have the exact triple 0 — O,(0, 1, 0) = O, = O, — 0. Applying the functor £zt (-, Or,)
to this triple, we obtain
0 — £xt2(Or,, O1,) = Ext2(Or,, O1,) = E2t (O, (0, 1,0), Or,)

L ot 1(Or,, 0r,) S €2t 1(Or,, O1,) B €2t 1(Or, (0, 1,0), Or,)

2y £xt2(Or,, O1,) = Ext2(Or,, Or,) S E2t2(O1,(0,1,0), Op,) — 0. (13)
Obviously, £zt%(0r,(0,1,0),O0r,) = On(-1,0) and £zt%(Or,, O1,) = On. Since T; = 75 (Po),
where Pg = p~1({0}) B P, it is easy to see that the triple

0 — Ty p/Po = ToP* ® Op = Op(1) = 0,

which coincides with the exact Euler sequence on P, is exact; hence Ty /6/Po = Qp(1). On the other
hand, clearly, Tr /pIPo o Ext ,1(0 (Op,, Op,) is an isomorphism. This gives £zt ,lro((’)p0 ,Op,) ~ Qp(1).

Using the notation p, for the projection II — P and applying the projection formula and base change,

we obtain
G := &zt (O1,,01,) = paéxt ,lro(Opo ,Op,) = Op B Qp(1)|IL.

Therefore, det G = O(0, —1). This implies that the morphism f in (13) is injective and
img = O(1, 1), Ext 1 (O, (0,1,0), Or,) = G(~1,0). (14)

Now, wr,p = Ops(—3) ® Op(1)|T'; hence wr;p|Po =~ Op(1), and thereby wg/n|T1 = p3(wr p|Po). The
relative Serre duality for the flat smooth morphism 7 and the projection formula give

Ext3(O1,, Or,) = Ext3(Ox,, O, (0, 1)) = ((0, 1) ® E2t (O, Or,))Y = ((0,1) ® On)¥ = O(0, -1)
and show that the morphism e in (13) is an isomorphism. Therefore, (13) and (14) imply
imh =detG(~1,0) ® (Ext(Or,, 01,))®"! = O(-2,0),
i.e., the triple 0 = O(1, 1) = & — O(~2,0) — 0, where &; = ExtL(O,, O1,), is exact. By virtue
of the obvious equalities
Ext'(0(-2,0), O(1, -1)) = H (Homn 0, (0(-2,0), O(1, —=1))) = H{(O(3, 1)) =0,

this triple splits, i.e.,

& = Extl(Or,, Or,) ~O(1, -1) ® O(-2, 0). (15)

Now, let us apply the canonical identification H»(0) = P: Z5 — | = Span Z,. Using the local freeness
of the sheaf &3, the relative Serre duality for the projection 7, and the results of [6, Sec. 1.2], we obtain
the following proposition just as in the two-dimensional case (cf. 1.3).
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Proposition 2. The smooth variety P(€3) = P(O(2, 0) ® O(—1,1)) coincides with the variety
X3 ={(22,25,Y) € H2(0) x H3(0) x P | Zy C Z3 C Y},

and the structural morphism pu: P(€3) = T coincides with the forgetful morphism X3 — 1I: (Z2,23,Y) —
(I=Spanz,,Y).

2.2. Some Ext-groups. In what follows, we need to know the dimensions of certain Ext-groups
on P2. They are given by the following lemma.

Lemma 2. The following formulas hold:

. k, i=0,3, . k, i=0,3,
Ext’(k(0), £(0)) = Ext"(Oz,, k(0)) =
w0 ={n iZ)y  EOmsoy={ 5 [V
. k, .=0’37 . .
B0z, M) = { 13 ZVy 7 ¢ Singa(0),
.7 1= ’
k, i=0,
i k4: 1=1, . .
Ext'(Ogz,, k(0)) = - if Z3 € Sing H3(0).
Ty, 1= g,
k2, i=3

Proof. Consider two cases:

(i) Z is one of the schemes k(0), Z,, and Z3, where Z3 ¢ Sing H3(0);
(i) Z = Z3 € Sing H3(0).
(i) Obviously; in this case, Z has the free resolvent

K.O—)Ouﬂ3OU04'3OUgOUgOZ—)O

in a suitable neighborhood U C P3 of the point 0. Applying the functor Hom g, (—, k(0)) to the
complex A*, i.e., taking the complex K* dual to K* and multiplying it by k(0), we obtain the complex

) 64%0)

0 — k(0) 225 103 #2H k(0)3 P2 k(0 0,

in which all the diﬁe_zrentials d; ® k(0) are obviously zero. Since the cohomology of this complex is formed
by the sheaves £ztt, (Oz, k(0)), we have

k(0), i=0,3,

Exth,(0z, k(0)) = { K0P, im0

This and the spectral sequence of local and global E£zt’s (which, obviously, degenerates, because the
sheaves £zt {,, (Oz, k(0)) have zero-dimensional supports) give the required formulas for the Ext-groups.

(i) In this case, Z coincides with the transversal intersection Y N1V, where Y = Span Z is the plane
containing the scheme Z and (1) is the first infinitesimal neighborhood of a line ! in P?® that intersects
the plane Y at 0. It is easy to see that, in a suitable neighborhood U C P3 of 0, we have the free
resolvents

K?:0—- 0y — Oy = Oyny =0, K3 :0—=20y =30y = Oy = Oy — 0

of the sheaves Oyny and Ojuyqy - Since the intersection Z =Y N 1Y) is transversal, the resolvent of the
sheaf Oz~y is the total complex

K* = tot(K: @ K3): 0 - 20y 250y 840, B3 0y B 0zny — 0.

A repetition of the argument from (i) for the complex K*® give the required formulas for the Ext-groups.
This completes the proof of the lemma. O



2.3. A description of the scheme H3(0) and the variety X; of complete punctual flags. Let
P 2 11 B P be the natural projections. For an arbitrary line I € P through 0, we have

[:=p7 (1) = papy'()) = PV,

Put ¥; = #~1(I) and m = 7|%;. Let Z; = Z5(l) € H3(0) be the zero-dimensional scheme of length 2
corresponding to the line ! under the canonical isomorphism Hs(0) = P; then

Ty ><221=T2021’_VZ2XP1.

We denote )
E3(1) = Ext 5, (Oz,yxpr, Ofopxpr)-
By Lemma 2, for any plane Y € P, the dimensions of the spaces Ext} (k(0), k(0)) with 0 <4 < 2 do not
depend on the point Y'; taking into account Proposition 2, we obtain the base change isomorphisms
53(l) >~ 83[[ >~ Opx (-—1) @ Opl y (16)
E@k({Y)) =&(1) @ k({Y'}) 3 Exty(Oz,qy, k(0)), Y el~PL (17)
Consider the surface S) := P(£3(1)) = P(Op:(1) & Op1), the structural morphism 4 : S _>.i ~P! and a
Grothendieck sheaf Og, (1) such that p;.(Os, (1)) = £3(1). Note that, for any point Y € P, the natural

map
Ext3-(Oz,q1), k(0)) = Extps(Oz,q), k(0))

is a monomorphism; hence we have the embedding
P(Exty(Oz,q), k(0))) < P(Extps(Oz,q), k(0))),

which, together with the isomorphism P(£3(1)|{Y'}) =~ P(Exty(Oz,q), k(0))), determines the following
embedding f;:
s (YY) = P(E(DI{Y)) <= PP = P(Extps(Oz,q), k(0))).

Here by Lemma 2, P} is the projective plane, which is naturally embedded in the variety
X3 ={(Z2, Z3) € H3(0) x H3(0) | Z» C Z5}

(indeed, to each point k§ € P(Extps(Ogz,(y, k(0))) considered as an extension § : 0 — k(0) — Oz, —
Oz,) — 0 corresponds the point (Z3(!), Z3) € X3). The map f; can be globalized to the morphism
fi: S = P?, which by construction coincides with the forgetful morphism

fi: 5 =P}CcXs: (22(1),23,Y) = (22(1), Z3). (18)

Let Zs(l) € H3(0) be a zero-dimensional subscheme of length 3 on the line [ (we also refer to this
subscheme as three collinear points). Since S is a surface of type Fy, description (18) directly implies
that f; is a blow-up of the projective plane P? at the point (Z,(I), Z3([)), i.e., the map determined by
the complete linear series of the sheaf |Og,(1)|. Thus we obtain the canonical isomorphism

P} = P(H%(Os,(1))) = P((p111)+ Os,(1)))- (19)

Since X3 = J;cp P7 and Og,(1) = Op(&,)(1)|S1, obviously, the isomorphism (19) can be globalized to the
isomorphism

X3 22 P((pr1u)Opig,) (1)) = P(€3) = P(p1.(O(2, 0) ® O(~1,1)) = P(F3),
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where F3 = Op(2) ® Qp(1) is a bundle of rank 3 on P. (We have used Proposition 2 and the equality
P 0(=1,1) = Op(-1) ® p1.p30p(1) = Qp(1)). Accordingly, X3 = |J;cp Si, and by virtue of (18), the
morphism f; is globalized to the forgetful morphism

f:Xs— X3:(Z2,23,Y) = (22, Z3),

which is determined by the relative (over P) complete linear series of the sheaf Opz,)(1) and contracts

the divisor 5
W ={(22,23,Y) € X3 | Z3 is three collinear points}.

Finally, the forgetful morphism g: X3 = P(F3) — H3(0): (Z2, Zs) — Z3 is nothing but the contraction
of the divisor D on X3, which is the isomorphic image under the morphism f of the divisor

D= {(Z5,25,Y) € X3 | Z3 = 01 is the first infinitesimal neighborhood of 0 in the plane Y}.

Clearly, g(D) = Sing H3(0). In addition, it is easy to verify that Ox,(D) = Op(x,)(1) @ v*Op(—2), where
v: P(F3) — P is the structural morphism and Op(x,)(1) = Ox,,p(1) is a Grothendieck sheaf such that
Ox,/p(1) = F3; we also have h®(Ox, (D)) = 1. Thus the following theorem is valid.

Theorem 2. The punctual Hilbert scheme Hs(0) = Hilb® k[[x, y, 2]] is the image of the variety
X3 = {(Z2, Z3) € Ha(0) x H3(0) | Z» C Z3}

of complete punctual flags (which is isomorphic to the smooth irreducible variety P(Op(2)®Qp(1))) under
the birational forgetful morphism g: X3 — H3(0) contracting the divisor

D ={(2,,23,Y) e X3 | Z3 is the first infinitesimal neighborhood of 0 in some plane,

i.e., Z3 15 not a locally complete intersection}.

The divisor D is uniquely determined as the unique divisor of the linear series |Ox,,p(1) ® v*Op(-2)|,
where v: P(Op(2) ® Qp(1)) — P is the structural morphism. In addition, g(D) = Sing H3(0) ~ P,
and the scheme H3(0) is analytically isomorphic to the direct product of P and the cone over a cubic
normcurve in a neighborhood of any point Z3 € Sing H3(0).

Remark 1. Obviously, the divisor D on X3 is isomorphic to the variety I'g o C P x P of flags “(point,
plane)”, and the morphism g|D: D — Sing H3(0) coincides with the projection map pry |I'g,2: g2 — P.
3. The punctual Hilbert scheme Hilb*k{[z, y, 2]]

3.1. Preliminary evaluations. Let X3 be the variety of punctual flags of zero-dimensional sub-
schemes of length 3 in P3 that is mentioned in the statement of Theorem 2. We use the standard
notation Ox,(m,n) = Ox,/p(1)®™ @ v*Op(n) for m,n € Z. Consider the universal flag of punctual
families {0} x X3 = T; € T2 C T3 € P3 x X3, where T3 is the universal three-point space with
SuppT3 = {0} x X3. Since T; ~ X3, we can put O, (m,n) := Ox,(m,n) for m,n € Z. We have the
exact triples

0— Or,(0,1) = Og, = Or, =0, 0— Or,(a,b) - O, = O, — 0. (20)

The first triple is evident. To find a and b in the second triple, consider S = ker(res : Op, — Or,). The
triples (20) give the exact triple

0 - Or,(a,b) -8 = Or,(0,1) =0, (21)

357



and the description of D as the set {(Z3, Z3) € X3 |scheme Z3 is not a locally complete intersection
in P3} (see Theorem 2) implies

D ={z= (2., Z3) € X3 | dim(S ® k(0, 2)) = 2}. (22)

Let us apply the functor £zt ¢, (Or,(0,1), —) to (21) and consider the first connecting homomorphism §
1
in the resulting long exact sequence; taking into account the obvious equality

Extl_ (Or,(0,1),0r,(e,b)) = ToP* ® Ox,(a, b~ 1) = 307, (2,5~ 1),

we obtain §: Op, = 301, (a, b—1). By virtue of (22), § vanishes along D being a section (as previously,
we identify T; with X3). Taking into account (21) and Theorem 2, we see that (a,b—1) = (1, 0), i.e,

a=b=1 (23)

Let us denote the projection P® x X3 — X3 by p» and apply the functor £at; (—,Or,) to the
sheaves O, , i =1, 2, 3, and the second triple in (20). Using Lemma 2 and the properties of base change
for relative Ext -sheaves [8], we obtain the following lemma.

Lemma 3. (i) rk€xt? (Or,,O0r1,) =3 for i=1,2, and tk&xt3 (Or,,Or,) = 1.
(ii) The Ox, -sheaves Ext}, (Or,(1,1), Or,) and Ext}, (Or,, Or,), where i > 0, are locally free, and
for an arbitrary point z = ({0}, Z», Z3) € X3, the corresponding base change homomorphisms
Extl (O1,(1,1) and  Or,)®k(z) = Ext*(k(0), k(0)),
where i > 0, are isomorphisms. In particular, the Ox, -sheaves
€xtf,2(0T,(1, 1), Or,), Ezcti,z((’)T._,, Ox,)
are invertible for i =0 and 3, and the natural morphism

ap: Extd (O, , O,) = Etd, (Or,, O1,)

is an isomorphism. Similarly, the sheaf Ext 22 (Or,, Or,) is invertible.
(iii) In the base change diagram

Ext9 (Or,(1,1),01,) @ k(z) 22, g4t (Or,, Or,) ® k(2)
4 U, ,
Ext®(k(0), k(0)) — Ext'(Og,, k(0))

the lower horizontal map is injective for any z € X3, and hence, coker 8y is a locally free sheaf of rank 2.

3.2. The properties of the sheaf £ = £xt 11,2 (O, ,Or,) and the variety X3 = P(£) of punctual
flags of lengths 2, 3, and 4. Let us apply the functor £xtj (-, Or,) to the second triple in (20);
taking into account (23), we obtain the long exact sequence

0— Extd (O1,, O1,) =3 Ext), )
% £2tl (Or,, O1,) B Ext] (Ox,, Ox,)
% £2t2 (Or,, Or,) % Ext2 (Ox,, Or,)

)

—'3 Emt?&(o'rg , OT!) 3 Extp,_, (OT;; ) OTx

(Ox,, O1,) = Extd (Or,(1, 1), Or,)
Ext} ».(Or, (1, 1), O1,)
3 Ext? 507, (1,1),071))
3 £

.I‘t3 (OT1 (1, 1), OTI) — 0. (24).

12 1= &

&
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Consider the morphism 0s in this sequence. Lemma 3 directly implies rkker 9, = 1; therefore, ker 9,
is invertible as the kernel of a morphism of locally free sheaves. Note that, by virtue of (20}, (21), and (23),
the morphism J; is included in the commutative diagram

30)(3(—1,—1)  — 3(9;{3(0, -1)

Il |

Emtgl)g(OTl (11 1), OT[) — Eztgg(OTH (07 1), OT])

| R

5271511,,_, (Or,(1,1), O,) —-L?i-——) g.’l.'t?,z (Or,,O01,)

Now, Theorem 2 implies that e is decomposed as
30x,(—1, —1) 3 30x,(0, 1) % 30x,(0, 1),

where €’ is a bundle morphism (i.e., € @ k(z) has the same rank at all points z € X3). Therefore, the
sheaf coker e has homological dimension < 1. On the other hand, the first triple in (20) gives

coker(: €zt (Or,, Or,) = Ext 2, (01,(0,1), O1,)) = Ext3,(O1,, O1,) = Ox,,
and assertion (ii) of Lemma 3 implies the invertibility of the sheaf
L :=ker(A: E:L‘t;",,_, (Or,, O1,) = S.’L‘t:';,_, (Or,(0,1), Ox,)),
which together with the preceding diagram gives the exact sequence
0 — £ — coker 2 — cokere =+ Ox, — 0.

This and the condition hd(coker e) <1 implies hd(coker 03) < 1; therefore,
Tory*s (coker Dz, k(2)) =0,  z € Xa. (25)
Now, by (24) and Lemma 3,

gxtl (Or,(1,1),01,) & €2t2, (Ox,, Or,)

is a morphism of locally free sheaves of rank 3, and rkd> = 2; hence the sheaf kerd, is invertible.
Moreover, by (25) this sheaf is a subbundle in €t} (O, (1,1), Ot,). This, (24), and assertion (iii) of

Lemma 3 imply that the sheaf Eut 11,2 (Or,,01,) is ‘iocaﬂy free and has rank 3. Thus, we have proved
the following proposition.

Proposition 3. (i) The sheaf £ := Ext,(Ox,, O1,) 5 a locally free sheaf of rank 3, and the ezact
sequence of bundles on X3
0—=ima; - & —imB; — 0, (26)

where tkim 3, = 1, holds.
(ii) The base change morphism

b(z2): £ @ k(z) = Ext'(Oz,, k(0))

is injective for arbitrary z = ({0}, Z», Z3) € X3.
This proposition and the irreducibility of the variety H4(0) (see [1, 2]) imply the following assertion.
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Corollary 3. (i) The scheme X, := P(E) = P(£) parametrizing the punctual flags z = (Z2, Z3, Z4),
{0} € Z5 C Z3 C Z,, is a smooth irreducible variety, and the projection

wa: Xy = X3: (22, 23, Z4) — (22, Z3)
coincides with the structural morphism P(£) = X3 .
(ii) The forgetful morphism
o: Xy Hy(0): (Z2,2Z5,2,) > 2, (27)
is surjective, and it is o desingularization of the variety Hy(0).

3.3. The properties of the sheaf £|D and the varieties Xp and ). Consider an arbitrary
point z = ({0}, Z», Z3) € D. Description (22) implies that the triple

0= k(0)2 = Oz, = k(0) =0 (28)
is exact. Applying the functor Ext*(—, k(0)) to (28), we obtain the exact sequence
0 — Hom(k(0), k(0)) 225 Hom(Oz, , k(0)) — Hom(k(0)?, k(0))
25 Bxt? (k(0), £(0)) =2 Ext'(Oz, , k(0)).

Here, obviously, 7. is an isomorphism, and by (28) and the identification Ext!(k(0), k(0)) = ToP3, we
have im 9y, = TpZs ~ k?; therefore, ime. ~ k, and for any vector ¢ € Ext*(k(0), k(0)) \ im 8y, the
corresponding extension £ : 0 = k(0) = Oz, — k(0) — 0 determines a scheme Z3(£) such that

Span(TyZs, ToZs) = Ext (k(0), k(0)) = ToP3. (29)
For this vector £, the nonzero vector ¢ (¢) € Ext'(Oz,, k(0)) determines a nonzero extension
€2(€) : 0= k(0) = Oz, = Oz, =0,

which, together with (28) and the last triple, is included in the diagram
0 0

7~ ~

0 — k(02 — Oz, — k(0) — 0

LT

0 — k(0)2 — Oz, — Oz, — 0 (30)
k(0) — k(0)
0 0

Here Zs C Z4 D Z» by construction. By virtue of (29), we have (P! N Z;) > 2 for any line P* ¢ P3
through the point 0. The condition i(Z;) = 4 makes the last inequality into an equality; hence Oz, =
O3 /m?, where m = Ty, ps is the sheaf of ideals of the (reduced) point 0. In other words,

Zy= Spec(Og/mz) = Spec(k[[:l:, Y, z]]/($1 Y, 3)2) = T0P3- (31)

Since
Ext'(k(0), k(0)) = Extl,(Or,, Or,) ® k(2) =~ 30x, ® k(z) ~ 30p ® k(2),

we can easily show that the imnage imep of the morphism

ep:30p = 5.’11'&'11)2(0'1*1 , O )|D — gtlitll,g(OTx, Or))|D=E|D

of Op -sheaves, which is a globalization of the homomorphism Ext*(k(0), ¥(0)) = Ext*(O,, k(0)), is the
canonical quotient sheaf of 30p , i.e., imep is isomorphic to g5 Op(1), where gp := g|D: D — Sing H3(0)
is the projection (see Remark 1). Taking into account Corollary 3, we obtain the following proposition.
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Proposition 4. (i) The morphism of locally free Op -sheaves
ep: 30p = Ext,, (Or,, Ox,)|D — E|D
induced by the surjection Oy, - O, is a morphism of rank 3 bundles on D and has rank 1, and
imep = gpO0p(1). (32)
Thus the embedding of the subvariety ) :=P((imep)V) into the variety Xp := X4 x x, D is the section
D Xp: (Z5,23) — (22, 23, Z,),

where Z, = ToP3, of the projection np = m4|Xp: Xp — D.

(ii) Let o: Xq — Hy4(0): (22, Z3, Z4) — Z4 be the forgetful morphism (27). Then o(Y) = {ToP3} is
a point.

3.4. The variety X, of plane noncurvilinear flags. Counsider the set of plane noncurvilinear
punctual flags

Xpnc = {(Z27 Z3s Z4) € HQ(O) X HS(O) X H4(0) I di111T0Z4 =2

and Z4 lies in some plane passing through {0}, i.e., dim Span(Z,) = 2}. From Corollary 3, by continuity
we see that X, is a subvariety in Xy4. In addition, it is easy to see that X, ~ P(F) = P(F), where F
is some subbundle of rank 2 in the bundle £|D, so the natural projection (forgetful morphism)

m = 7T'Dl)(pnc: Xpnc — D: (Z27 Z3, Z4) > Zy

coincides with the structure morphism P(F) — D.

Consider the projection gp := g|D: D — Sing H3(0). As follows from [6, Proposition 2.7], for an
arbitrary plane Y € P, the fiber Qy = (gpm;) 1({Y}).is a quadric, and the morphism o|Qy , where o is
the forgetful morphism (27), coincides with the double covering oy : Qy — P(S?*(T3Y)) branched in the
conic-Veronese image of P(T,Y) < P(S*(TpY)). Note that P(S%(TyY)) is the fiber of the projection
7: Hilb’ P — P: z — Span Z, which coincides with the structural morphism P(S2Qp) — P under the

natural isomorphism
Hilb® P ~ P(Ad (Tp(-1))) ~ P(5%Qp).

Therefore, the morphism o|Xp,,c coincides with the double covering o;: Xppe — Hilb> P branched in a
divisor of the diagonal A = {z € Hilb>P | Supp Z = {pt}}. Thus we have proved the following assertion.

Proposition 5. The forgetful morphism o|Xp, coincides with the double covering Xpn. — Hilb> P
branched in o divisor of the diagonal A = {z € Hilb* P | Supp Z = {pt}}.

3.5. A description of the morphism ¢|Xp. Consider the complement X7, := Xp \ {YU Xpnc} of
the union Y U Xpne in Xp. Proposition 4 shows that

Xp={(22,23,2Z4) € Xp | dimTpZ4 = 2, dim Span(Z,) = 3}. (33)
Take an arbitrary point (Z,, Z3, Z4) € X}, . It is easy to see that the conditions
dimTpZy =2, dim Span(Zy) = 3

on the scheme Z; mean that Z; lies on the germ (Qz,,0) of some quadric passing through 0 and specified

by the equation
Qz, = {z = ax® + bzy + cy®, a,b,cek} (34)

in suitable local coordinates z,y, z in a neighborhood of the point 0; Yz, := PTpZs = {z =0} € Pisa
projective plane in P? such that Yz,NZ4 = Yz,NQ z, = Z3. Note that the projection (z, y, z) — (0, y, 2)
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implements the analytic isomorphism (Qz,,0) = (Yz,,0). This and Proposition 5 readily imply that
the morphism ¢|Xpn: can be extended to the double covering o|(Xp U Xpne) = o|(Xp \ V). Taking
into account Proposition 4 (ii), we see that o|Xp is factored through the double covering op in the
commutative diagram that extends the double covering o1 : Xpne — Hilb? P ~ P(Ad (Tp(-1))):

Xpnc — X D

lal lap , (35)
P(Ad(Tp(-1))) < P(Ad(Tp(~1)) & Op(m))
where the embedding j is induced by the embedding of the first term in the direct sum
Ad(Tp(-1)) ® Op(m)
and m is an integer. Thus o|{Xp decomposes as

o|Xp =0y -0op, (36)

where, by construction, oy: op(Xp) = P(Ad(Tp(—1)) @ Op(m)) — o(Xp) is the contraction into the
point {ToP3} of the section P(Op(m)) of the structural projection

P(Ad(Tp(-1)) © Op(m)).
Therefore, 0(Xp) is the cone with vertex at the point {ToP3} over the variety
P(Ad (Ts(—1))) ~ Hilb* P.

Thus we have the commutative diagram

D =~ y — Xp
P =~ P(Op(m)) — P(Ad(Tp(-1))®Op(m)) . (37)
{TLP3} € o(Xp)

Remark 2. The cone o(Xp) over Hilb> P contains a divisor subcone Ka over the divisor A, and
by construction, K = {Z4 € Hy(0) | Z, is not a locally complete intersection in P3}.

3.6. The exceptional divisor W on X; and the contraction of W under the morphism o.
Let us consider the variety X3 := X3\ D and an arbitrary point z = (Z,, Z3) € X§. By definition, Z3
is a curvilinear scheme (i.e., it lies on a smooth curve); thus the triple

£: 0= Oz = 0z, L 10) = 0 (38)

is exact. Applying the functor Ext*(—, k£(0)) to this triple, we obtain a long exact sequence. The first

connecting homomorphism
d;: Hom(Oz,, k(0)) — Ext'(k(0), k(0))

in this sequence is injective by Lemma 2; therefore, the image im ; of the homomorphism

ay: Ext!(k(0), k(0)) — Ext*(Og,, k(0))



that follows 8, is two-dimensional. By Lemma 2 and Proposition 3 (ii),
P(Ext'(Oz,, k(0))) = 77 (), (39)

where 74: X4 — X3 is the projection; hence W, := P(imay) ~ P! is a divisor in Ty 1(z). We put
W =, X; W, ; let W := W= be the closure of W* in X4. By construction, W is a divisor on Xj.

Let us describe an arbitrary point w = (2>, Z3, Z4) € W*. For this purpose, we identify the points
in Ext!(k(0), k(0)) = ToP?® with zero-dimensional schemes of length 2 supported at 0 and, taking into
account identification (39), consider an arbitrary scheme (of length 2) Z € Ext!(k(0), £(0)) \ (imd;)
(i.e., Z) # Zs) such that P(koy(Z3)) = w. By the definitions of the maps 8, and o;, we have the
commutative diagram of extensions

0 — Oz, — Oz, — Oz, — 0 (40)
k(0) — k(0)
0 0

Remark 3. Diagram (40) and the condition Z5 # Z,, where we have Z,, Z5 C Z, by construction,
imply dimTgZ, = 2. Therefore, Z4 lies on the germ (Qz,,0) of some quadric of form (34) (or, in a
special case, of the plane), and it is not a locally complete intersection in (Qz,,0). The last condition
and the middle horizontal triple in (40) (or, equivalently, the pair (Qz,, Z2)) uniquely determines the
scheme Z; (see [6, Secs. 2.5-6]).

Next, for the chosen point w = (22, Z3, Z4), consider the point z = (Z2, Z3) = m4(w). By construction,
there is a one-to-one correspondence between the point w € m7'(z) and the subspace Span(Z., Z})
in ToP?, which is a plane passing through the line PTZ-, or, equivalently, a point v(w) of the divisor D
on X3 lying in the fiber 77 !(Z), where v;: D — P is the natural projection. In the plane v~1(Z,),
consider the projective line I{w) = Span(z, v{w)) and its open subset I*(w) = l(w) \ {v(w)}. Simple
calculations involving equation (34) of the germ @z, show that

"(w) = {(Z2,25,2,) eW* | 25 C Qz,NY, ZoCY € P?, TyY # T0Qz,}- (41)
Obviously, the condition Z4 C @z, NY uniquely determines the scheme Z3. Therefore, the line
m*(w) = {(Z2, Z3, Zs) € W™ | (22, Z3) € I"(w)}
through the point w = (Zs, Z3, Z,) is determined uniquely, and o(m*(w)) = {Zs} = Z4. Let m(w) be
the closure of m*(w) in W ; then m(w) =~ P!. We have o(m{w)) = Z;. By virtue of Remarks 2 and 3,

Zy € Ka, and, as is easy to see, the map o: W — Ka is surjective. Thus the following proposition is
valid.

Proposition 6. The morphism o: X4 — Hy(0) contracts the divisor W on X4 onto the four-
dimensional cone Ka = {Z4 € Hy(0) | Z4 is not a locally complete intersection in P3}.

363



Remark 4. It is easy to see that W contains the section Y = {(Z3,Z3, 2Z4) € X4 | Z4 = TyP3} of
the projection 7p: Xp — D (see Proposition 4), and the diagram

y — W

[l (42)

{T0P3} € Ka
is commutative.

Collecting Propositions 3, 4, and 6, Corollary 3, Remark 4, and the description of the morphism ¢|Xp
(see (35)—(37)), we obtain the main result of this section.

Theorem 3. (i) Let X3 be the variety of punctual flags of length 3 in space. Consider the projection
pa: PPx X3 = X3 and put £ := Ext} (Or,,Or,). Then & is a locally free sheaf of rank 3 and X, = P(£)
is a smooth irreducible variety that parametrizes the punctual flags z = (25, Z3, Z4), {0} € Z2 C Z5 C Z4,
of lengths 2, 3, and 4 and whose projection

(Y’ X4 - XS: (Z2: Z37 Z4) - (ZQ) Z3)

coincides with the structure morphism P(£) — X3.
(ii) Consider the divisors

Xp =nY(D) = {(22, Z3, Z4) € X4 | Z3 is not a locally complete intersection},
W = {(Z2, 23, Z4) € X4 | Z4 is not a locally complete intersection}
on the variety Xy. If 0: X4 — Hy(0): (Z2,Z23,Z4) — Z4 is the forgetful morphism, then o is a
birational morphism decomposed as o = o3 - 01, where oy is the contraction of the divisor W and oo is

the normalization morphism (glueing along the divisor o1(Xp)), so that o|Xp: Xp — o(Xp) is a double
covering at a generic point. In addition,

Ka =0(W)={Z, € Hy(0) | Z4 is not a locally complete intersection},
o0(Xp) = {Z4 € H4(0) | Z4 is not a curvilinear scheme (i.e., does not lie on a smooth curve)}.
Moreover, o(Xp) is a cone over Hilb®> P in which Ka is the subcone over the diagonal A C Hilb*P,
and o(Xp) is the set of singularities of the variety Hy(0): o(Xp) = Sing H4(0).
This research was supported in part by INTAS-OPEN under grant No. 97-2072.
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