Punctual Hilbert Schemes of Small Length in Dimensions 2 and 3

S. A. Tikhomirov

UDC 517.2

ABSTRACT. The biregular geometry of punctual Hilbert schemes in dimensions 2 and 3, i.e., of schemes parametrizing fixed-length zero-dimensional subschemes supported at a given point on a smooth surface or a smooth three-dimensional variety, is studied. A precise biregular description of these schemes has only been known for the trivial cases of lengths 3 and 4 in dimension 2. The next case of length 5 in dimension 2 and the two first nontrivial cases of lengths 3 and 4 in dimension 3 are considered. A detailed description of the biregular properties of punctual Hilbert schemes and of their natural desingularizations by varieties of complete punctual flags is given.

KEY WORDS: punctual Hilbert scheme, complete punctual flag, biregular description, desingularization, Extgroups, Stein expansion, Briançon classification.

Introduction

The punctual Hilbert scheme of length d on a surface (in a space) is the Hilbert scheme

 $H_d(0) = \operatorname{Hilb}^d \operatorname{Spec} k[[x, y]]_{\operatorname{red}} \quad (H_d(0) = \operatorname{Hilb}^d \operatorname{Spec} k[[x, y, z]]_{\operatorname{red}}, \operatorname{respectively}),$

which parametrizes the zero-dimensional subschemes of length d supported at a given point 0 on the surface (in the space, respectively); for brevity, we denote it also by $\operatorname{Hilb}^d k[[x, y]]$ (by $\operatorname{Hilb}^d k[[x, y, z]]$, respectively). The study of general properties of the schemes $H_d(0)$ was initiated by Briançon [1], Iarrobino [2], Granger [3], and others and continued by many authors (see, e.g., the surveys [4, 5]). But a precise biregular description of these schemes was only known in the trivial cases of d = 1 and 2 and in the first nontrivial cases d = 3 and 4 in dimension 2 (see [6]). In this paper, we consider the next case d = 5 in dimension 2 and the two first nontrivial cases d = 3 and 4 in dimension 3. We examine in detail the biregular geometry of the schemes $H_d(0)$ and their natural desingularizations by varieties of complete punctual flags in these cases. Our main method of study is to obtain schemes Z_d supported at the point 0 from the schemes Z_{d-1} by the operation of "adding the point 0"; in the language of schemes, this operation is expressed by the exact triple

$$0 \to k(0) \to \mathcal{O}_{Z_d} \to \mathcal{O}_{Z_{d-1}} \to 0.$$

All such extensions, which are classified according to the corresponding Ext-groups, give the description of the punctual Hilbert schemes $H_d(0)$. The base field k is assumed to be algebraically closed.

1. The punctual Hilbert scheme Hilb⁵ k[[x, y]]

1.1. Preliminaries. In this section, we consider the case of dimension 2. As the initial surface, for convenience we take the projective plane \mathbf{P}^2 . First, we cite some known results on the punctual Hilbert schemes $H_5(0) = \text{Hilb}^5 k[[x, y]]$ and varieties X_4 of complete punctual flags (their definition is given later on), which are used in what follows. Briançon [1] classified the zero-dimensional punctual schemes of length 5 in dimension 2 into the following five isomorphism classes, which are determined by the ideals \mathcal{I} of the schemes in the ring k[[x, y]]:

(i) $\mathcal{I} = (y, x^5);$ (ii) $\mathcal{I} = (y^2 + x^3, xy);$ (iii) $\mathcal{I} = (y^2, xy, x^4);$ (iv) $\mathcal{I} = (x^2 + y^2, x^2y, x^3);$ (v) $\mathcal{I} = (y^2, x^2y, x^3).$

Translated from Matematicheskie Zametki, Vol. 67, No. 3, pp. 414–432, March, 2000. Original article submitted September 13, 1999.

The set

 $H_5^c(0) = \{Z_5 \in H_5(0) \mid Z_5 \text{ is a scheme of type (i), i.e., a curvilinear scheme}\}$

is dense and open in $H_5(0)$, and according to Granger [3],

Sing $H_5(0) = H_5(0) \setminus H_5^c(0) = \{Z_5 \in H_5(0) \mid Z_5 \text{ is a scheme of one of types (ii)-(v)}\}$

is the closure in $H_5(0)$ of the set

Sing $H_5(0)^* = \{Z_5 \in H_5(0) \mid Z_5 \text{ is a scheme of type (ii)}\};$

we have $\operatorname{codim}_{H_5(0)}\operatorname{Sing} H_5(0) = 1$, and the variety $H_5(0)$ is analytically isomorphic to $\operatorname{Sing} H_5(0) \times C$, where C is the curve given by the equation $\{x^2 + y^3 = 0\}$ in \mathbf{A}^2 , in a neighborhood of a generic point from $\operatorname{Sing} H_5(0)$. In addition,

 $K := \{Z_5 \in H_5(0) \mid Z_5 \text{ is a scheme of type } (\mathbf{v})\}\$

is an irreducible curve isomorphic to P^1 .

Next, for any $d \ge 1$,

 $H_d^c(0) := \{ Z_d \in H_d(0) \mid Z_d \text{ is a curvilinear scheme} \}$

is a smooth irreducible variety which is a dense open subset of $H_d(0)$ [1, 3]. Thereby

$$X_d^c := \{ (Z_2, Z_3, \dots, Z_d) \in H_2^c(0) \times H_3^c(0) \times \dots \times H_d^c(0) \mid Z_2 \subset Z_3 \subset \dots \subset Z_d \}$$

is also a smooth irreducible variety. Its closure X_d in $H_2(0) \times H_3(0) \times \cdots \times H_d(0)$ is called the variety of complete punctual flags of length $\leq d$. Obviously, X_1 is the one-point set $\{0\}$. According to the main result of [6], we have the isomorphism of varieties $X_d \simeq \mathbb{P}(\mathcal{E}_{d-1}^{\vee})$ for d = 2, 3, and 4; here

$$\mathcal{E}_{d-1} := \mathcal{E}xt^{1}_{p_2}(\mathcal{O}_{T_{d-1}}, k(0) \boxtimes \mathcal{O}_{X_{d-1}})$$

is a locally free sheaf of rank 2, $T_{d-1} \subset \mathbf{P}^2 \times X_{d-1}$ is the universal cycle of length d-1 over X_{d-1} , and $p_2: \mathbf{P}^2 \times X_{d-1} \to X_{d-1}$ is the projection. Under this isomorphism, the natural projection (forgetful morphism)

$$X_d \rightarrow X_{d-1} \colon (Z_1, Z_2, \dots, Z_d) \mapsto (Z_1, Z_2, \dots, Z_{d-1})$$

coincides with the structural morphism $\pi_d \colon \mathbb{P}(\mathcal{E}_{d-1}^{\vee}) \to X_{d-1}$.

Now, consider the variety X_4 of complete punctual flags of length ≤ 4 in more detail. On X_4 , we have the standard invertible sheaves $\mathcal{O}\tau_4 = \mathcal{O}_{X_4/X_3}(1)$, $\mathcal{O}\tau_3 = \pi_4^* \mathcal{O}_{X_3/X_2}(1)$, and $\mathcal{O}\tau_2 = (\pi_3 \cdot \pi_4)^* \mathcal{O}_{X_2/X_1}(1)$ and the universal flag

$$\{0\} \times X_4 = \mathbf{T}_1 \subset \mathbf{T}_2 \subset \mathbf{T}_3 \subset \mathbf{T}_4 = T_4$$

where \mathbf{T}_2 and \mathbf{T}_3 are lifted from $\mathbf{P}^2 \times X_2$ and $\mathbf{P}^2 \times X_3$, respectively. In particular, $\mathbf{T}_3 = (1 \times \pi_4)^{-1}(T_3)$, and the projection is as in the diagram

According to [6, Sec. 1.2], the triple

$$0 \to k(0) \boxtimes \mathcal{O}_{X_4}(\tau_4) \to \mathcal{O}_{\mathbf{T}_4} \to \mathcal{O}_{\mathbf{T}_3} \to 0$$
⁽²⁾

is exact.

Finally, consider the closed subsets

$$W_i = \{(Z_2, Z_3, Z_4) \in X_4 \mid Z_i \text{ is not a locally complete intersection}\}$$

where i = 3, 4, of X_4 . By the main theorem from [6], W_3 and W_4 are irreducible divisors on X_4 . Note that, if $(Z_2, Z_3, Z_4) \in W_3$ is a generic point, then the zero-dimensional scheme Z_4 is determined by an ideal in k[[x, y]] isomorphic to the ideal

$$\mathcal{I} = (x^2, y^2). \tag{3}$$

349

1.2. Basic evaluation. Let us apply the functor $\mathcal{E}xt^{\bullet}_{p_2}(-, k(0) \boxtimes \mathcal{O}_{X_4})$ to the triple (2). Denote

$$\begin{split} \mathcal{E}_4 &= \mathcal{E}xt \, {}^1_{p_2}(\mathcal{O}_{\mathbf{T}_4}, k(0) \boxtimes \mathcal{O}_{X_4}), \qquad \mathcal{F}_4 &= \mathcal{E}xt \, {}^2_{p_2}(\mathcal{O}_{\mathbf{T}_4}, k(0) \boxtimes \mathcal{O}_{X_4}), \\ \mathcal{E}_3 &= \mathcal{E}xt \, {}^1_{p_2}(\mathcal{O}_{T_3}, k(0) \boxtimes \mathcal{O}_{X_3}), \qquad \mathcal{F}_3 &= \mathcal{E}xt \, {}^2_{p_2}(\mathcal{O}_{T_3}, k(0) \boxtimes \mathcal{O}_{X_3}). \end{split}$$

The obvious isomorphisms

$$\begin{aligned} & \mathcal{E}xt^{0}_{p_{2}}(k(0)\boxtimes\mathcal{O}_{X_{4}}(\tau_{4}), k(0)\boxtimes\mathcal{O}_{X_{4}})\simeq\mathcal{E}xt^{2}_{p_{2}}(k(0)\boxtimes\mathcal{O}_{X_{4}}(\tau_{4}), k(0)\boxtimes\mathcal{O}_{X_{4}})\simeq\mathcal{O}_{X_{4}}(-\tau_{4}), \\ & \mathcal{E}xt^{1}_{p_{2}}(k(0)\boxtimes\mathcal{O}_{X_{4}}(\tau_{4}), k(0)\boxtimes\mathcal{O}_{X_{4}})\simeq2\mathcal{O}_{X_{4}}(-\tau_{4}), \\ & \mathcal{E}xt^{0}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{3}}, k(0)\boxtimes\mathcal{O}_{X_{4}})\simeq\mathcal{O}_{X_{4}}\simeq\mathcal{E}xt^{0}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{4}}, k(0)\boxtimes\mathcal{O}_{X_{4}}) \end{aligned}$$

and the equalities

$$\mathcal{E}xt^{1}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{3}}, k(0) \boxtimes \mathcal{O}_{X_{4}}) = \pi_{4}^{*}\mathcal{E}_{3}, \qquad \mathcal{E}xt^{2}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{3}}, k(0) \boxtimes \mathcal{O}_{X_{4}}) = \pi_{4}^{*}\mathcal{F}_{3},$$

which are obtained by change of base in diagram (1), give the exact sequence

$$0 \to \mathcal{O}_{X_4}(-\tau_4) \to \pi_4^* \mathcal{E}_3 \to \mathcal{E}_4 \xrightarrow{f} 2\mathcal{O}_{X_4}(-\tau_4) \xrightarrow{g} \pi_4^* \mathcal{F}_3 \xrightarrow{h} \mathcal{F}_4 \xrightarrow{\varepsilon} \mathcal{O}_{X_4}(-\tau_4) \to 0.$$
(4)

Consider the divisor

 $W = \{(Z_2, Z_3, Z_4) \in X_4 \mid Z_4 \text{ is not a locally complete intersection}\}\$

on X_4 . By construction, W is a section of the projection $\pi_4: X_4 \to X_3$; hence

$$\mathcal{O}_{X_4}(W) = \mathcal{O}_{X_4}(\tau_4 + \mathcal{L}), \qquad \mathcal{L} = \pi_4^* L, \quad L \in \operatorname{Pic} X_3.$$
(5)

Lemma 1. We have

$$\mathcal{F}_4 \otimes k(x) = \text{Ext}^2(\mathcal{O}_{Z_4}, k(0)) = \begin{cases} k & \text{if } x = (Z_2, Z_3, Z_4) \notin W, \\ k^2 & \text{if } x = (Z_2, Z_3, Z_4) \in W. \end{cases}$$

Proof. (i) If Z_4 is a curvilinear scheme, then, obviously, $\operatorname{Hom}(k(0), \mathcal{O}_{Z_4}) = k$, and by the Serre duality on S [7], $\operatorname{Ext}^2(\mathcal{O}_{Z_4}, k(0)) = k$. If Z_4 is not a curvilinear scheme but still is a locally complete intersection, then its ideal \mathcal{I}_{Z_4} in the local ring k[[x, y]] is isomorphic to (x^2, y^2) ; therefore, any nonzero morphism $k(0) \xrightarrow{i} \mathcal{O}_{Z_4}$ can be extended to the exact triple

$$0 \to k(0) \xrightarrow{i} \mathcal{O}_{Z_4} \xrightarrow{r} \mathcal{O}_{Z_3} \to 0,$$

where $\mathcal{O}_{Z_3} = 0^{(1)}$ is the first infinitesimal neighborhood of the point 0 and the morphism r is necessarily proportional to the restriction morphism $\cdot \otimes \mathcal{O}_{0^{(1)}}$. Thereby we again obtain the required equality $\operatorname{Hom}(k(0), \mathcal{O}_{Z_4}) = k$.

(ii) Now, suppose that the scheme Z_4 is not a locally complete intersection; then its ideal \mathcal{I}_{Z_4} is isomorphic to (x^3, xy, y^2) . In this case, the cokernel of any nonzero morphism from $\operatorname{Hom}(k(0), \mathcal{O}_{Z_4})$ is a sheaf \mathcal{O}_{Z_3} with Z_3 tangent to the line y = 0 at 0; since all such Z_3 are parametrized by the projective line \mathbf{P}^1 , which is isomorphic to $P(\operatorname{Hom}(k(0), \mathcal{O}_{Z_4}))$, we have $\operatorname{Hom}(k(0), \mathcal{O}_{Z_4}) = k^2$, and by Serre duality [7], $\operatorname{Ext}^2(\mathcal{O}_{Z_4}, k(0)) = k^2$.

Finally, the equality $\mathcal{F}_4 \otimes k(x) = \text{Ext}^2(\mathcal{O}_{Z_4}, k(0))$, where $x = (Z_2, Z_3, Z_4) \in X_4$, is a base change isomorphism for the relative $\mathcal{E}xt_{p_2}$ -sheaf \mathcal{F}_4 . \Box

Using Lemma 1 and the epimorphism ε in the long exact sequence (4), we obtain the following assertion.

Corollary 1. The epimorphism ε in (4) coincides with the canonical map $\mathcal{F}_4 \xrightarrow{\operatorname{can}} \mathcal{F}_4^{\vee \vee}$, and its kernel $\mathcal{T}ors(\mathcal{F}_4) = \ker(\operatorname{can})$ is an invertible sheaf on some scheme \overline{W} with support W.

Proof. Indeed, since the sheaf $\mathcal{F}_4^{\vee\vee}$ is invertible, we have

$$\mathcal{T}or_1^{\mathcal{O}_{X_4}}(\mathcal{F}_4^{\vee\vee}, k(x)) = \mathcal{T}or_1^{\mathcal{O}_{X_4}}(\mathcal{O}_{X_4}(-\tau_4), k(x)) = 0, \qquad x \in X_4.$$

Therefore, considering the tensor products of the exact triple

$$0 \to \mathcal{T}ors(\mathcal{F}_4) \to \mathcal{F}_4 \stackrel{\mathrm{can}}{\to} \mathcal{F}_4^{\vee \vee} \to 0$$

and k(x) for $x \in X_4$ and applying Lemma 1, we obtain $\text{Supp}(\mathcal{T}ors(\mathcal{F}_4)) = W$ and $\mathcal{T}ors(\mathcal{F}_4) \otimes k(x) = k$ for $x \in W$; thus the sheaf $\mathcal{T}ors(\mathcal{F}_4)$ is invertible on a suitable scheme \overline{W} with support W. \Box

Suppose that T is a maximal subsheaf of dimension ≤ 1 in $Tors(\mathcal{F}_4)$ and $\mathcal{M} := Tors(\mathcal{F}_4)/T$, i.e., the triple

$$0 \to T \xrightarrow{i} \mathcal{T}ors(\mathcal{F}_4) \xrightarrow{e} \mathcal{M} \to 0 \tag{6}$$

is exact. Corollary 1 implies that \mathcal{M} is an invertible sheaf on a divisor of W of multiplicity n for some $n \geq 1$, i.e., on the subscheme W_n in X_4 determined by the sheaf of ideals $\mathcal{I}_{W_n, X_4} = \mathcal{O}_{X_4}(-nW)$. This, in particular, implies $\mathcal{T}or_1^{\mathcal{O}_{X_4}}(\mathcal{M}, k(x)) = k$ for $x \in W$. Therefore, if $Y := \text{Supp } T \neq \emptyset$, then the tensor multiplication of the exact triple (6) by $k(x), x \in Y$, gives the exact sequence $k \to T \otimes k(x) \to k \to k \to 0$, whence $T \otimes k(x) \simeq k$; so T is an invertible sheaf on some scheme with support Y. Thus we obtain the following assertion.

Corollary 2. There exist sheaves \mathcal{M} and T such that \mathcal{M} is an invertible sheaf on a divisor of W of multiplicity n for some $n \geq 1$, i.e., on the subscheme W_n in X_4 determined by the sheaf of ideals $\mathcal{I}_{W_n,X_4} = \mathcal{O}_{X_4}(-nW)$; T is either zero or invertible on some subscheme Y of dimension ≤ 1 with $\operatorname{Supp} Y \subset W$; and we have the exact triple (6).

Consider the triple

$$0 \to \mathcal{O}_D(-\tau_2) \xrightarrow{e_1} \pi_4^* \mathcal{F}_3 \xrightarrow{e_2} \mathcal{O}_{X_4}(-\tau_3) \to 0, \tag{7}$$

where D is a divisor on X_4 of the form

$$D = \pi_4^{-1}(l_0) = \{(Z_2, Z_3, Z_4) \in X_4 \mid Z_3 \text{ is not a locally complete intersection}\}$$

for an exceptional line l_0 on X_3 . According to [6, Proposition 2.2], this triple is exact. In particular, by the main Theorem from [6], we have

$$\mathcal{O}_{X_4}(D) = \mathcal{O}_{X_4}(\tau_3 - 2\tau_2).$$
 (8)

Next, consider the curve $C = D \cap W$. The divisors D and W are irreducible and intersect along C transversally; hence, by Corollary 1, the composition of morphisms

$$\mathcal{O}_D(-\tau_2) \xrightarrow{e_1} \pi_4^* \mathcal{F}_3 \xrightarrow{h} \mathcal{T}ors(\mathcal{F}_4) \xrightarrow{e} \mathcal{M}$$

(see (4), (7), and (6)) is zero, and we can define a morphism $h': \mathcal{O}_D(-\tau_2) \to T$ such that $i \cdot h' = h \cdot e_1$ and, accordingly, an epimorphism $h'': \mathcal{O}_{X_4}(-\tau_3) \twoheadrightarrow \mathcal{M}$ such that $h'' \cdot e_2 = e \cdot h$. Thus we have $\mathcal{M} = \mathcal{O}_{W_n}(-\tau_3)$ by Corollary 2, and the triples (7) and (6) are included in the commutative diagram

where coker h' = T|Y' (by Corollary 2) and Y' is a subscheme (possibly empty) of dimension ≤ 1 in Y; accordingly, im $h' = \mathcal{O}_{Y''}(-\tau_2)$ and Y'' is a subscheme (possibly empty) of dimension ≤ 1 in D, and Supp $Y \supset$ Supp Y''. The left vertical sequence in diagram (9) gives the isomorphism coker $h' = \mathcal{O}_{X_4}(-\tau_3 - nW)|Y'$ and the exact triple

$$0 \to \mathcal{I}_{Y'',D}(-\tau_2) \to \operatorname{im} g \xrightarrow{\theta} \mathcal{I}_{Y',X_4}(-\tau_3 - nW) \to 0,$$

which, together with the morphism g, gives the exact triples

$$0 \to \ker(\theta \cdot g) \to 2\mathcal{O}_{X_4}(-\tau_4) \xrightarrow{\theta \cdot g} \mathcal{I}_{Y',X_4}(-\tau_3 - nW) \to 0, \tag{10}$$

$$0 \to \ker g \to \ker(\theta \cdot g) \to \mathcal{I}_{Y'',D}(-\tau_2) \to 0.$$
⁽¹¹⁾

Since dim $Y' \leq 1$, (10) implies that ker $(\theta \cdot g)$ is an invertible sheaf on X_4 . Moreover, the condition $n \geq 1$ and equality (5) give n = 1; therefore, ker $(\theta \cdot g) = \mathcal{O}_{X_4}(-\tau_4 + \tau_3 + \mathcal{L})$. This equality, the triple (11), and the condition dim $Y'' \leq 1$ readily imply dim Y'' = 1; thus Y'' is a divisor on D. Taking into account (8), we obtain the equalities

$$\mathcal{I}_{Y'',D}(-\tau_2) = \mathcal{O}_D(-\tau_2 - Y'') = \mathcal{O}_D(-\tau_4 + \tau_3 + \mathcal{L}), \quad \ker g = \mathcal{O}_{X_4}(-\tau_4 + 2\tau_2 + \mathcal{L}).$$
(12)

Next, according to Lemma 1.6 from [6], \mathcal{E}_3 is a reflexive and, hence, is a locally free sheaf of rank 2. A repetition of the proof of this lemma shows that \mathcal{E}_4 is also a reflexive sheaf of rank 2 (on X_4). According to (4), ker f is a sheaf of rank 1 on X_4 ; by virtue of the relation im $f = \ker g$ and the second equality in (12), it is included in the exact triple

$$0 \to \ker f \to \mathcal{E}_4 \to \mathcal{O}_{X_4}(-\tau_4 + 2\tau_2 + \mathcal{L}) \to 0.$$

Since \mathcal{E}_4 is reflexive, this sheaf is locally free. This proves the following proposition.

Proposition 1. $\mathcal{E}_4 = \mathcal{E}xt^1_{p_2}(\mathcal{O}_{\mathbf{T}_4}, k(0) \boxtimes \mathcal{O}_{X_4})$ is a locally free sheaf of rank 2 on X_4 .

1.3. A description of the forgetful morphism $\sigma: X_5 \to H_5(0)$. Consider the variety X_5 of complete punctual flags of length ≤ 5 . Proposition 1 and [6, Secs. 1.2, 3] give the isomorphism $X_5 \simeq \mathbb{P}(\mathcal{E}_4^{\vee})$ of smooth varieties; under this isomorphism, the natural projection (forgetful morphism)

$$\pi_5: X_5 \to X_4: (Z_2, Z_3, Z_4, Z_5) \mapsto (Z_2, Z_3, Z_4)$$

coincides with the structural morphism $\pi_5 \colon \mathbb{P}(\mathcal{E}_4^{\vee}) \to X_4$.

To describe the forgetful morphism $\sigma: X_5 \to H_5(0): (Z_2, Z_3, Z_4, Z_5) \mapsto Z_5$, consider the irreducible divisors

 $D_i = \pi_5^{-1}(W_i) = \{ (Z_2, Z_3, Z_4, Z_5) \in X_5 \mid Z_i \text{ is not a locally complete intersection} \},\$

where i = 3, 4, on X_5 . The Briançon classification of zero-dimensional schemes of length 5 (see 1.1) and formulas (3) directly imply that, if $(Z_2, Z_3, Z_4, Z_5) \in D_3$ is a generic point, then the scheme Z_5 is of type (v); hence $\sigma(D_3) = K \simeq \mathbf{P}^1$. Thus the forgetful morphism σ contracts the divisor D_3 .

Next, consider the dense open set

 $X_4^* = \{(Z_2, Z_3, Z_4) \in X_4 \mid Z_4 \text{ is a curvilinear scheme}\} = X_4 \setminus (W_3 \cup W_4)$

in X_4 and the closure D_2 of the set

 $D_2^* = \{(Z_2, Z_3, Z_4, Z_5) \in \pi_5^{-1}(X_4^*) \mid Z_5 \text{ is a noncurvilinear scheme}\}$

in X_5 . A simple local evaluation shows that, for an arbitrary point $w = (Z_2, Z_3, Z_4) \in X_4^*$, $D_2 \cap \pi_5^{-1}(w)$ is the point (Z_2, Z_3, Z_4, Z_5) , where Z_5 is a scheme of type (iii). Therefore, D_2 is a divisor on X_5 . According to Briançon [1], the set

 $S := \{Z_5 \in H_5(0) \mid Z_5 \text{ is a scheme of type (iii)}\}\$

is of dimension 2, and $\sigma(D_2^*) \subset S$; in addition, it is easy to see that $\sigma(D_2^*) = S$. Therefore, $\sigma(D_2) = S$, i.e., the morphism σ contracts the divisor D_2 .

By the definitions of the divisors D_2, D_3, D_4 , the set

 $X_5^c = \{(Z_2, Z_3, Z_4, Z_5) \in \pi_5^{-1}(X_4^*) \mid Z_5 \text{ is a curvilinear scheme}\}$

coincides with $X_5 \setminus (D_2 \cup D_3 \cup D_4)$, and

$$\sigma|X_5^*\colon X_5^*\to H_5^c(0)=H_5(0)\setminus\operatorname{Sing} H_5(0)$$

is an isomorphism (recall that $\operatorname{codim}_{H_5(0)}\operatorname{Sing} H_5(0) = 1$). Since D_4 is an irreducible divisor on X_5 and the morphism σ contracts D_2 and D_3 , we obtain $\operatorname{Sing} H_5(0) = \sigma(D_4)$. The description of X_5 in a neighborhood of $\operatorname{Sing} H_5(0)$ (see 1.1) readily implies that $\sigma|D_4: D_4 \to \operatorname{Sing} H_5(0)$ is a birational morphism; therefore, the morphism σ has a Stein expansion of the form $\sigma = \nu \cdot \sigma'$, where σ' is a contraction of the divisors D_2 and D_3 and $\nu: \sigma'(X_5) \to H_5(0)$ is the normalization morphism along the divisor $\sigma'(D_4)$.

Collecting the above assertions, we obtain the following result.

Theorem 1. (i) The variety X_5 of complete punctual flags of length ≤ 5 in dimension 2 is a smooth irreducible variety isomorphic to $\mathbb{P}(\mathcal{E}_4^{\vee})$, where $\mathcal{E}_4 = \mathcal{E}xt_{p_2}^1(\mathcal{O}_{\mathbf{T}_4}, k(0) \boxtimes \mathcal{O}_{X_4})$ is a locally free sheaf of rank 2 on X_4 , and the forgetful morphism

$$\pi_5: X_5 \to X_4: (Z_2, Z_3, Z_4, Z_5) \mapsto (Z_2, Z_3, Z_4)$$

coincides with the structural morphism $\mathbb{P}(\mathcal{E}_4^{\vee}) \to X_4$.

(ii) The birational forgetful morphism

$$\sigma: X_5 \to H_5(0): (Z_2, Z_3, Z_4, Z_5) \mapsto Z_5$$

has a Stein expansion of the form $\sigma = \nu \cdot \sigma'$, where σ' is the contraction of the divisors D_3 and D_4 and $\nu : \sigma'(X_5) \to H_5(0)$ is the morphism of normalization along the divisor $\sigma'(D_2)$; here D_2 is the closure in X_5 of the set

 $\{(Z_2, Z_3, Z_4, Z_5) \in X_5 \mid Z_4 \text{ is a curvilinear scheme and } Z_5 \text{ is a scheme of type (iii)}\},\$ and $D_i = \{(Z_2, Z_3, Z_4, Z_5) \in X_5 \mid Z_i \text{ is not a locally complete intersection}\}\$ for i = 3, 4.

2. The punctual Hilbert scheme $Hilb^3 k[[x, y, z]]$

2.1. Preliminary evaluations. In this and the next sections, as the base three-dimensional variety, for convenience we take the projective space \mathbf{P}^3 in which a point 0 is fixed. By G := G(1, 3), we denote the Grassmannian of lines in \mathbf{P}^3 ; $\mathbf{P} = \{l \in G \mid l \ni 0\} \simeq P(T_0 \mathbf{P}^3)$ is the α -plane on G;

$$\begin{split} \Sigma &= \{ (v, l, Y) \in \mathbf{P}^3 \times G \times \check{\mathbf{P}}^3 \mid 0 \in l \subset Y \ni v \} \,; \qquad \Pi = \{ (l, Y) \in G \times \check{\mathbf{P}}^3 \mid 0 \in l \subset Y \} \,; \\ \Gamma &= \{ (v, Y) \in \mathbf{P}^3 \times \check{\mathbf{P}}^3 \mid v \in Y \ni 0 \} \,; \qquad \Pi \xleftarrow{\pi} \Sigma \xrightarrow{\tilde{p}_2} \Gamma \,, \qquad \check{\mathbf{P}} \xleftarrow{\pi_0} \Gamma \xrightarrow{\rho} \mathbf{P}^3 \,, \end{split}$$

and $\operatorname{pr}_2: \mathbf{P}^3 \times \mathbf{P} \to \mathbf{P}$ are the natural projections; $\{0\} \times \mathbf{P} = T_1 \subset T_2$ is a universal flag of subschemes of length ≤ 2 in $\mathbf{P}^3 \times \mathbf{P}$; and $\mathbf{T}_1 \subset \mathbf{T}_2$ is the universal flag of subschemes of length ≤ 2 in Σ defined by $\mathbf{T}_i = \operatorname{pr}_{12}^{-1}(T_i)$ for i = 1, 2, where

$$\operatorname{pr}_{12}: \Sigma \to \mathbf{P}^3 \times \mathbf{P}: \ (v, l, Y) \mapsto (v, l)$$

is the projection. We also use the notation

$$\mathcal{O}(l,m,n) = \mathcal{O}_{\mathbf{P}^3}(l) \boxtimes \mathcal{O}_{\mathbf{P}}(m) \boxtimes \mathcal{O}_{\mathbf{\check{P}}}(n)|_{\Sigma}, \quad \mathcal{O}(m,n) := \mathcal{O}_{\mathbf{P}}(m) \boxtimes \mathcal{O}_{\mathbf{\check{P}}}(n)|_{\Pi}, \qquad l,m,n \in \mathbb{Z}$$

On Σ , we have the exact triple $0 \to \mathcal{O}_{\mathbf{T}_1}(0, 1, 0) \to \mathcal{O}_{\mathbf{T}_2} \to \mathcal{O}_{\mathbf{T}_1} \to 0$. Applying the functor $\mathcal{E}xt^{\bullet}_{\pi}(-, \mathcal{O}_{\mathbf{T}_1})$ to this triple, we obtain

$$0 \to \mathcal{E}xt^{0}_{\pi}(\mathcal{O}_{\mathbf{T}_{1}}, \mathcal{O}_{\mathbf{T}_{1}}) \to \mathcal{E}xt^{0}_{\pi}(\mathcal{O}_{\mathbf{T}_{2}}, \mathcal{O}_{\mathbf{T}_{1}}) \to \mathcal{E}xt^{0}_{\pi}(\mathcal{O}_{\mathbf{T}_{1}}(0, 1, 0), \mathcal{O}_{\mathbf{T}_{1}})$$

$$\xrightarrow{f} \mathcal{E}xt^{1}_{\pi}(\mathcal{O}_{\mathbf{T}_{1}}, \mathcal{O}_{\mathbf{T}_{1}}) \xrightarrow{g} \mathcal{E}xt^{1}_{\pi}(\mathcal{O}_{\mathbf{T}_{2}}, \mathcal{O}_{\mathbf{T}_{1}}) \xrightarrow{h} \mathcal{E}xt^{1}_{\pi}(\mathcal{O}_{\mathbf{T}_{1}}(0, 1, 0), \mathcal{O}_{\mathbf{T}_{1}})$$

$$\xrightarrow{j} \mathcal{E}xt^{2}_{\pi}(\mathcal{O}_{\mathbf{T}_{1}}, \mathcal{O}_{\mathbf{T}_{1}}) \to \mathcal{E}xt^{2}_{\pi}(\mathcal{O}_{\mathbf{T}_{2}}, \mathcal{O}_{\mathbf{T}_{1}}) \xrightarrow{e} \mathcal{E}xt^{2}_{\pi}(\mathcal{O}_{\mathbf{T}_{1}}(0, 1, 0), \mathcal{O}_{\mathbf{T}_{1}}) \to 0.$$
(13)

Obviously, $\mathcal{E}xt^0_{\pi}(\mathcal{O}_{\mathbf{T}_1}(0,1,0),\mathcal{O}_{\mathbf{T}_1}) = \mathcal{O}_{\Pi}(-1,0)$ and $\mathcal{E}xt^0_{\pi}(\mathcal{O}_{\mathbf{T}_1},\mathcal{O}_{\mathbf{T}_1}) = \mathcal{O}_{\Pi}$. Since $\mathbf{T}_1 = \tilde{p}_2^{-1}(\mathbf{P}_0)$, where $\mathbf{P}_0 = \rho^{-1}(\{0\}) \xrightarrow{\pi_0} \check{\mathbf{P}}$, it is easy to see that the triple

$$0 \to T_{\Gamma/\check{\mathbf{P}}} | \mathbf{P}_0 \to T_0 \mathbf{P}^3 \otimes \mathcal{O}_{\check{\mathbf{P}}} \to \mathcal{O}_{\check{\mathbf{P}}}(1) \to 0,$$

which coincides with the exact Euler sequence on $\check{\mathbf{P}}$, is exact; hence $T_{\Gamma/\check{\mathbf{P}}}|\mathbf{P}_0 \simeq \Omega_{\check{\mathbf{P}}}(1)$. On the other hand, clearly, $T_{\Gamma/\check{\mathbf{P}}}|\mathbf{P}_0 \xrightarrow{\pi_{0*}} \mathcal{E}xt_{\pi_0}^1(\mathcal{O}_{\mathbf{P}_0}, \mathcal{O}_{\mathbf{P}_0})$ is an isomorphism. This gives $\mathcal{E}xt_{\pi_0}^1(\mathcal{O}_{\mathbf{P}_0}, \mathcal{O}_{\mathbf{P}_0}) \simeq \Omega_{\check{\mathbf{P}}}(1)$. Using the notation p_2 for the projection $\Pi \to \check{\mathbf{P}}$ and applying the projection formula and base change, we obtain

$$\mathcal{G} := \mathcal{E}xt^{1}_{\pi}(\mathcal{O}_{\mathbf{T}_{1}}, \mathcal{O}_{\mathbf{T}_{1}}) = p_{2}^{*}\mathcal{E}xt^{1}_{\pi_{0}}(\mathcal{O}_{\mathbf{P}_{0}}, \mathcal{O}_{\mathbf{P}_{0}}) = \mathcal{O}_{\mathbf{P}} \boxtimes \Omega_{\check{\mathbf{P}}}(1) | \Pi.$$

Therefore, det $\mathcal{G} = \mathcal{O}(0, -1)$. This implies that the morphism f in (13) is injective and

im
$$g = \mathcal{O}(1, -1),$$
 $\mathcal{E}xt^{1}_{\pi}(\mathcal{O}_{\mathbf{T}_{1}}(0, 1, 0), \mathcal{O}_{\mathbf{T}_{1}}) = \mathcal{G}(-1, 0).$ (14)

Now, $\omega_{\Gamma/\check{\mathbf{P}}} \simeq \mathcal{O}_{\mathbf{P}^3}(-3) \boxtimes \mathcal{O}_{\check{\mathbf{P}}}(1) | \Gamma$; hence $\omega_{\Gamma/\check{\mathbf{P}}} | \mathbf{P}_0 \simeq \mathcal{O}_{\check{\mathbf{P}}}(1)$, and thereby $\omega_{\Sigma/\Pi} | \mathbf{T}_1 = \tilde{p}_2^*(\omega_{\Gamma/\check{\mathbf{P}}} | \mathbf{P}_0)$. The relative Serre duality for the flat smooth morphism π and the projection formula give

$$\mathcal{E}xt_{\pi}^{2}(\mathcal{O}_{\mathbf{T}_{1}},\mathcal{O}_{\mathbf{T}_{1}}) \simeq \mathcal{E}xt_{\pi}^{0}(\mathcal{O}_{\mathbf{T}_{1}},\mathcal{O}_{\mathbf{T}_{1}}(0,1))^{\vee} = ((0,1) \otimes \mathcal{E}xt_{\pi}^{0}(\mathcal{O}_{\mathbf{T}_{1}},\mathcal{O}_{\mathbf{T}_{1}}))^{\vee} = ((0,1) \otimes \mathcal{O}_{\Pi})^{\vee} = \mathcal{O}(0,-1)$$

and show that the morphism e in (13) is an isomorphism. Therefore, (13) and (14) imply

$$\operatorname{im} h = \det \mathcal{G}(-1, 0) \otimes (\mathcal{E}xt_{\pi}^{2}(\mathcal{O}_{\mathbf{T}_{1}}, \mathcal{O}_{\mathbf{T}_{1}}))^{\otimes -1} = \mathcal{O}(-2, 0)$$

i.e., the triple $0 \to \mathcal{O}(1, -1) \to \mathcal{E}_3 \to \mathcal{O}(-2, 0) \to 0$, where $\mathcal{E}_3 := \mathcal{E}xt_{\pi}^1(\mathcal{O}_{\mathbf{T}_2}, \mathcal{O}_{\mathbf{T}_1})$, is exact. By virtue of the obvious equalities

$$\operatorname{Ext}^{1}(\mathcal{O}(-2,0),\mathcal{O}(1,-1)) = H^{1}(\operatorname{Hom}_{\mathcal{O}_{\Pi}}(\mathcal{O}(-2,0),\mathcal{O}(1,-1))) = H^{1}(\mathcal{O}(3,-1)) = 0$$

this triple splits, i.e.,

$$\mathcal{E}_{3} = \mathcal{E}xt_{\pi}^{1}(\mathcal{O}_{\mathbf{T}_{2}}, \mathcal{O}_{\mathbf{T}_{1}}) \simeq \mathcal{O}(1, -1) \oplus \mathcal{O}(-2, 0).$$
(15)

Now, let us apply the canonical identification $H_2(0) \xrightarrow{\sim} \mathbf{P}$: $Z_2 \mapsto l = \text{Span} Z_2$. Using the local freeness of the sheaf \mathcal{E}_3 , the relative Serre duality for the projection π , and the results of [6, Sec. 1.2], we obtain the following proposition just as in the two-dimensional case (cf. 1.3).

Proposition 2. The smooth variety $\mathbb{P}(\check{\mathcal{E}}_3) = \mathbb{P}(\mathcal{O}(2,0) \oplus \mathcal{O}(-1,1))$ coincides with the variety

$$\tilde{X}_3 = \{ (Z_2, Z_3, Y) \in H_2(0) \times H_3(0) \times \check{\mathbf{P}} \mid Z_2 \subset Z_3 \subset Y \},\$$

and the structural morphism $\mu \colon \mathbb{P}(\check{\mathcal{E}}_3) \to \Sigma$ coincides with the forgetful morphism $\widetilde{X}_3 \to \Pi \colon (Z_2, Z_3, Y) \mapsto (l = \operatorname{Span} Z_2, Y)$.

2.2. Some Ext-groups. In what follows, we need to know the dimensions of certain Ext-groups on \mathbf{P}^3 . They are given by the following lemma.

Lemma 2. The following formulas hold:

$$\begin{aligned} \operatorname{Ext}^{i}(k(0), k(0)) &= \begin{cases} k, & i = 0, 3, \\ k^{3}, & i = 1, 2, \end{cases} & \operatorname{Ext}^{i}(\mathcal{O}_{Z_{2}}, k(0)) &= \begin{cases} k, & i = 0, 3, \\ k^{3}, & i = 1, 2, \end{cases} \\ \operatorname{Ext}^{i}(\mathcal{O}_{Z_{3}}, k(0)) &= \begin{cases} k, & i = 0, 3, \\ k^{3}, & i = 1, 2, \end{cases} & if Z_{3} \notin \operatorname{Sing} H_{3}(0), \\ k^{4}, & i = 1, \\ k^{5}, & i = 2, \\ k^{2}, & i = 3 \end{cases} & if Z_{3} \in \operatorname{Sing} H_{3}(0). \end{aligned}$$

Proof. Consider two cases:

- (i) Z is one of the schemes k(0), Z_2 , and Z_3 , where $Z_3 \notin \text{Sing } H_3(0)$;
- (ii) $Z = Z_3 \in \text{Sing } H_3(0)$.

(i) Obviously; in this case, Z has the free resolvent

$$K^{\bullet}: 0 \to \mathcal{O}_U \xrightarrow{\partial_1} 3\mathcal{O}_U \xrightarrow{\partial_3} 3\mathcal{O}_U \xrightarrow{\partial_2} \mathcal{O}_U \xrightarrow{\partial_1} \mathcal{O}_Z \to 0$$

in a suitable neighborhood $U \subset \mathbf{P}^3$ of the point 0. Applying the functor $\mathcal{H}om_{\mathcal{O}_U}^{\bullet}(-, k(0))$ to the complex K^{\bullet} , i.e., taking the complex \check{K}^{\bullet} dual to K^{\bullet} and multiplying it by k(0), we obtain the complex

$$0 \to k(0) \stackrel{\check{\partial}_1 \otimes k(0)}{\longrightarrow} k(0)^3 \stackrel{\check{\partial}_2 \otimes k(0)}{\longrightarrow} k(0)^3 \stackrel{\check{\partial}_3 \otimes k(0)}{\longrightarrow} k(0) \stackrel{\check{\partial}_4 \otimes k(0)}{\longrightarrow} 0,$$

in which all the differentials $\check{\partial}_i \otimes k(0)$ are obviously zero. Since the cohomology of this complex is formed by the sheaves $\mathcal{E}xt^i_{\mathcal{O}_U}(\mathcal{O}_Z, k(0))$, we have

$$\mathcal{E}xt^{i}_{\mathcal{O}_{U}}(\mathcal{O}_{Z}, k(0)) = \begin{cases} k(0), & i = 0, 3, \\ k(0)^{3}, & i = 1, 2. \end{cases}$$

This and the spectral sequence of local and global $\mathcal{E}xt$'s (which, obviously, degenerates, because the sheaves $\mathcal{E}xt^{i}_{\mathcal{O}_{I}}(\mathcal{O}_{Z}, k(0))$ have zero-dimensional supports) give the required formulas for the Ext-groups.

(ii) In this case, Z coincides with the transversal intersection $Y \cap l^{(1)}$, where $Y = \operatorname{Span} Z$ is the plane containing the scheme Z and $l^{(1)}$ is the first infinitesimal neighborhood of a line l in \mathbf{P}^3 that intersects the plane Y at 0. It is easy to see that, in a suitable neighborhood $U \subset \mathbf{P}^3$ of 0, we have the free resolvents

$$K_1^{\bullet}: 0 \to \mathcal{O}_U \to \mathcal{O}_U \to \mathcal{O}_{Y \cap U} \to 0, \qquad K_2^{\bullet}: 0 \to 2\mathcal{O}_U \to 3\mathcal{O}_U \to \mathcal{O}_U \to \mathcal{O}_{l^{(1)} \cap U} \to 0$$

of the sheaves $\mathcal{O}_{Y \cap U}$ and $\mathcal{O}_{l^{(1)} \cap U}$. Since the intersection $Z = Y \cap l^{(1)}$ is transversal, the resolvent of the sheaf $\mathcal{O}_{Z \cap U}$ is the total complex

$$K^{\bullet} = \operatorname{tot}(K_1^{\bullet} \otimes K_2^{\bullet}) : 0 \to 2\mathcal{O}_U \xrightarrow{\partial_1} 5\mathcal{O}_U \xrightarrow{\partial_3} 4\mathcal{O}_U \xrightarrow{\partial_2} \mathcal{O}_U \xrightarrow{\partial_1} \mathcal{O}_{Z \cap U} \to 0.$$

A repetition of the argument from (i) for the complex K^{\bullet} give the required formulas for the Ext-groups. This completes the proof of the lemma. \Box **2.3.** A description of the scheme $H_3(0)$ and the variety X_3 of complete punctual flags. Let $\mathbf{P} \stackrel{p_1}{\leftarrow} \prod \stackrel{p_2}{\to} \tilde{\mathbf{P}}$ be the natural projections. For an arbitrary line $l \in \mathbf{P}$ through 0, we have

$$\check{l} := p_1^{-1}(l) \simeq p_2 p_1^{-1}(l) \simeq \mathbf{P}^1.$$

Put $\Sigma_l = \pi^{-1}(\tilde{l})$ and $\pi_l = \pi | \Sigma_l$. Let $Z_2 = Z_2(l) \in H_2(0)$ be the zero-dimensional scheme of length 2 corresponding to the line l under the canonical isomorphism $H_2(0) \xrightarrow{\sim} \mathbf{P}$; then

$$\mathbf{T}_2 \times_{\Sigma} \Sigma_l = \mathbf{T}_2 \cap \Sigma_l \simeq Z_2 \times \mathbf{P}^1.$$

We denote

$$\mathcal{E}_{3}(l) = \mathcal{E}xt^{i}_{\pi_{l}}(\mathcal{O}_{Z_{2}(l)\times\mathbf{P}^{1}}, \mathcal{O}_{\{0\}\times\mathbf{P}^{1}}).$$

By Lemma 2, for any plane $Y \in \check{\mathbf{P}}$, the dimensions of the spaces $\operatorname{Ext}_Y^i(k(0), k(0))$ with $0 \le i \le 2$ do not depend on the point Y; taking into account Proposition 2, we obtain the base change isomorphisms

 $\mathcal{E}_{3}(l) \simeq \mathcal{E}_{3}|\check{l} \simeq \mathcal{O}_{\mathbf{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbf{P}^{1}}, \qquad (16)$

$$\mathcal{E}_3 \otimes k(\{Y\}) = \mathcal{E}_3(l) \otimes k(\{Y\}) \xrightarrow{\sim} \operatorname{Ext}^1_Y(\mathcal{O}_{Z_2(l)}, k(0)), \qquad Y \in \check{l} \simeq \mathbf{P}^1.$$
(17)

Consider the surface $S_l := \mathbb{P}(\check{\mathcal{E}}_3(l)) = \mathbb{P}(\mathcal{O}_{\mathbf{P}^1}(1) \oplus \mathcal{O}_{\mathbf{P}^1})$, the structural morphism $\mu_l : S_l \to \check{l} \simeq \mathbf{P}^1$, and a Grothendieck sheaf $\mathcal{O}_{S_l}(1)$ such that $\mu_{l*}(\mathcal{O}_{S_l}(1)) = \check{\mathcal{E}}_3(l)$. Note that, for any point $Y \in \check{\mathbf{P}}$, the natural map

$$\operatorname{Ext}_{Y}^{1}(\mathcal{O}_{Z_{2}(l)}, k(0)) \to \operatorname{Ext}_{\mathbf{P}^{3}}^{1}(\mathcal{O}_{Z_{2}(l)}, k(0))$$

is a monomorphism; hence we have the embedding

$$P(\operatorname{Ext}^{1}_{Y}(\mathcal{O}_{Z_{2}(l)}, k(0))) \hookrightarrow P(\operatorname{Ext}^{1}_{\mathbf{P}^{3}}(\mathcal{O}_{Z_{2}(l)}, k(0))),$$

which, together with the isomorphism $P(\mathcal{E}_3(l)|\{Y\}) \simeq P(\operatorname{Ext}^1_Y(\mathcal{O}_{Z_2(l)}, k(0)))$, determines the following embedding f_l :

$$\mu_l^{-1}(\{Y\}) = P(\mathcal{E}_3(l)|\{Y\}) \hookrightarrow \mathbf{P}_l^2 := P(\operatorname{Ext}^1_{\mathbf{P}^3}(\mathcal{O}_{Z_2(l)}, k(0))).$$

Here by Lemma 2, \mathbf{P}_l^2 is the projective plane, which is naturally embedded in the variety

$$X_3 = \{ (Z_2, Z_3) \in H_2(0) \times H_3(0) \mid Z_2 \subset Z_3 \}$$

(indeed, to each point $k\xi \in P(\operatorname{Ext}_{\mathbf{P}^3}(\mathcal{O}_{Z_2(l)}, k(0)))$ considered as an extension $\xi : 0 \to k(0) \to \mathcal{O}_{Z_3} \to \mathcal{O}_{Z_2(l)} \to 0$ corresponds the point $(Z_2(l), Z_3) \in X_3$). The map f_l can be globalized to the morphism $f_l: S_l \to \mathbf{P}_l^2$, which by construction coincides with the forgetful morphism

$$f_l: S_l \to \mathbf{P}_l^2 \subset X_3: \quad (Z_2(l), Z_3, Y) \mapsto (Z_2(l), Z_3).$$
 (18)

Let $Z_3(l) \in H_3(0)$ be a zero-dimensional subscheme of length 3 on the line l (we also refer to this subscheme as three collinear points). Since S_l is a surface of type \mathbb{F}_1 , description (18) directly implies that f_l is a blow-up of the projective plane \mathbb{P}_l^2 at the point $(Z_2(l), Z_3(l))$, i.e., the map determined by the complete linear series of the sheaf $|\mathcal{O}_{S_l}(1)|$. Thus we obtain the canonical isomorphism

$$\mathbf{P}_l^2 \simeq \mathbb{P}(H^0(\mathcal{O}_{S_l}(1))) = \mathbb{P}((p_1\mu_l)_*\mathcal{O}_{S_l}(1))).$$
⁽¹⁹⁾

Since $X_3 = \bigcup_{l \in \mathbf{P}} \mathbf{P}_l^2$ and $\mathcal{O}_{S_l}(1) = \mathcal{O}_{\mathbb{P}(\tilde{\mathcal{E}}_3)}(1) | S_l$, obviously, the isomorphism (19) can be globalized to the isomorphism

$$X_3 \simeq \mathbb{P}((p_1\mu_l)_*\mathcal{O}_{\mathbb{P}(\check{\mathcal{E}}_3)}(1)) = \mathbb{P}(\check{\mathcal{E}}_3) = \mathbb{P}(p_{1*}(\mathcal{O}(2,0) \oplus \mathcal{O}(-1,1)) = \mathbb{P}(\mathcal{F}_3),$$

where $\mathcal{F}_3 = \mathcal{O}_{\mathbf{P}}(2) \oplus \Omega_{\mathbf{P}}(1)$ is a bundle of rank 3 on P. (We have used Proposition 2 and the equality $p_{1*}\mathcal{O}(-1,1) = \mathcal{O}_{\mathbf{P}}(-1) \otimes p_{1*}p_2^*\mathcal{O}_{\mathbf{P}}(1) = \Omega_{\mathbf{P}}(1)$). Accordingly, $\tilde{X}_3 = \bigcup_{l \in \mathbf{P}} S_l$, and by virtue of (18), the morphism f_l is globalized to the forgetful morphism

$$f\colon \widetilde{X}_3 \to X_3: (Z_2, Z_3, Y) \mapsto (Z_2, Z_3),$$

which is determined by the relative (over **P**) complete linear series of the sheaf $\mathcal{O}_{\mathbb{P}(\tilde{\mathcal{E}}_3)}(1)$ and contracts the divisor

 $W = \{ (Z_2, Z_3, Y) \in \widetilde{X}_3 \mid Z_3 \text{ is three collinear points} \}.$

Finally, the forgetful morphism $g: X_3 = \mathbb{P}(\mathcal{F}_3) \to H_3(0): (Z_2, Z_3) \mapsto Z_3$ is nothing but the contraction of the divisor D on X_3 , which is the isomorphic image under the morphism f of the divisor

 $\widetilde{D} = \{(Z_2, Z_3, Y) \in \widetilde{X}_3 \mid Z_3 = 0^{(1)} \text{ is the first infinitesimal neighborhood of } 0 \text{ in the plane } Y\}.$

Clearly, $g(D) = \text{Sing } H_3(0)$. In addition, it is easy to verify that $\mathcal{O}_{X_3}(D) = \mathcal{O}_{\mathbb{P}(\mathcal{F}_3)}(1) \otimes \nu^* \mathcal{O}_{\mathbb{P}}(-2)$, where $\nu : \mathbb{P}(\mathcal{F}_3) \to \mathbb{P}$ is the structural morphism and $\mathcal{O}_{\mathbb{P}(\mathcal{F}_3)}(1) = \mathcal{O}_{X_3/\mathbb{P}}(1)$ is a Grothendieck sheaf such that $\nu_* \mathcal{O}_{X_3/\mathbb{P}}(1) = \mathcal{F}_3$; we also have $h^0(\mathcal{O}_{X_3}(D)) = 1$. Thus the following theorem is valid.

Theorem 2. The punctual Hilbert scheme $H_3(0) = \text{Hilb}^3 k[[x, y, z]]$ is the image of the variety

$$X_3 = \{ (Z_2, Z_3) \in H_2(0) \times H_3(0) \mid Z_2 \subset Z_3 \}$$

of complete punctual flags (which is isomorphic to the smooth irreducible variety $\mathbb{P}(\mathcal{O}_{\mathbf{P}}(2) \oplus \Omega_{\mathbf{P}}(1))$) under the birational forgetful morphism $g: X_3 \to H_3(0)$ contracting the divisor

 $D = \{(Z_2, Z_3, Y) \in \widetilde{X}_3 \mid Z_3 \text{ is the first infinitesimal neighborhood of 0 in some plane,} i.e., Z_3 \text{ is not a locally complete intersection}\}.$

The divisor D is uniquely determined as the unique divisor of the linear series $|\mathcal{O}_{X_3/\mathbf{P}}(1) \otimes \nu^* \mathcal{O}_{\mathbf{P}}(-2)|$, where $\nu \colon \mathbb{P}(\mathcal{O}_{\mathbf{P}}(2) \oplus \Omega_{\mathbf{P}}(1)) \to \mathbf{P}$ is the structural morphism. In addition, $g(D) = \operatorname{Sing} H_3(0) \simeq \check{\mathbf{P}}$, and the scheme $H_3(0)$ is analytically isomorphic to the direct product of $\check{\mathbf{P}}$ and the cone over a cubic normcurve in a neighborhood of any point $Z_3 \in \operatorname{Sing} H_3(0)$.

Remark 1. Obviously, the divisor D on X_3 is isomorphic to the variety $\Gamma_{0,2} \subset \mathbf{P} \times \dot{\mathbf{P}}$ of flags "(point, plane)", and the morphism $g|D: D \to \text{Sing } H_3(0)$ coincides with the projection map $\operatorname{pr}_2|\Gamma_{0,2}: \Gamma_{0,2} \to \check{\mathbf{P}}$.

3. The punctual Hilbert scheme Hilb⁴ k[[x, y, z]]

3.1. Preliminary evaluations. Let X_3 be the variety of punctual flags of zero-dimensional subschemes of length 3 in \mathbf{P}^3 that is mentioned in the statement of Theorem 2. We use the standard notation $\mathcal{O}_{X_3}(m,n) := \mathcal{O}_{X_3/\mathbf{P}}(1)^{\otimes m} \otimes \nu^* \mathcal{O}_{\mathbf{P}}(n)$ for $m, n \in \mathbb{Z}$. Consider the universal flag of punctual families $\{0\} \times X_3 = \mathbf{T}_1 \subset \mathbf{T}_2 \subset \mathbf{T}_3 \in \mathbf{P}^3 \times X_3$, where \mathbf{T}_3 is the universal three-point space with Supp $\mathbf{T}_3 = \{0\} \times X_3$. Since $\mathbf{T}_1 \simeq X_3$, we can put $\mathcal{O}_{\mathbf{T}_1}(m,n) := \mathcal{O}_{X_3}(m,n)$ for $m, n \in \mathbb{Z}$. We have the exact triples

$$0 \to \mathcal{O}_{\mathbf{T}_1}(0,1) \to \mathcal{O}_{\mathbf{T}_2} \to \mathcal{O}_{\mathbf{T}_1} \to 0, \qquad 0 \to \mathcal{O}_{\mathbf{T}_1}(a,b) \to \mathcal{O}_{\mathbf{T}_3} \to \mathcal{O}_{\mathbf{T}_2} \to 0.$$
(20)

The first triple is evident. To find a and b in the second triple, consider $S = \text{ker}(\text{res} : \mathcal{O}_{\mathbf{T}_3} \to \mathcal{O}_{\mathbf{T}_1})$. The triples (20) give the exact triple

$$0 \to \mathcal{O}_{\mathbf{T}_1}(a, b) \to \mathcal{S} \to \mathcal{O}_{\mathbf{T}_1}(0, 1) \to 0, \tag{21}$$

357

and the description of D as the set $\{(Z_2, Z_3) \in X_3 \mid \text{scheme } Z_3 \text{ is not a locally complete intersection}\}$ in \mathbf{P}^3 (see Theorem 2) implies

$$D = \{ z = (Z_2, Z_3) \in X_3 \mid \dim(S \otimes k(0, z)) = 2 \}.$$
(22)

Let us apply the functor $\mathcal{E}xt^{\bullet}_{\mathcal{O}_{\mathbf{T}_1}}(\mathcal{O}_{\mathbf{T}_1}(0,1),-)$ to (21) and consider the first connecting homomorphism δ in the resulting long exact sequence; taking into account the obvious equality

$$\mathcal{E}xt^{1}_{\mathcal{O}_{\mathbf{T}_{1}}}(\mathcal{O}_{\mathbf{T}_{1}}(0,1),\mathcal{O}_{\mathbf{T}_{1}}(a,b))=T_{0}\mathbf{P}^{3}\otimes\mathcal{O}_{\mathbf{T}_{1}}(a,b-1)\simeq 3\mathcal{O}_{\mathbf{T}_{1}}(a,b-1),$$

we obtain $\delta: \mathcal{O}_{\mathbf{T}_1} \to 3\mathcal{O}_{\mathbf{T}_1}(a, b-1)$. By virtue of (22), δ vanishes along D being a section (as previously, we identify T_1 with X_3). Taking into account (21) and Theorem 2, we see that (a, b-1) = (1, 0), i.e.,

$$a = b = 1. \tag{23}$$

,

Let us denote the projection $\mathbf{P}^3 \times X_3 \to X_3$ by p_2 and apply the functor $\mathcal{E}xt^i_{p_2}(-, \mathcal{O}_{\mathbf{T}_1})$ to the sheaves $\mathcal{O}_{\mathbf{T}_i}$, i = 1, 2, 3, and the second triple in (20). Using Lemma 2 and the properties of base change for relative $\mathcal{E}xt$ -sheaves [8], we obtain the following lemma.

Lemma 3. (i) $\operatorname{rk} \operatorname{\mathcal{E}xt}_{p_2}^i(\mathcal{O}_{\mathbf{T}_3}, \mathcal{O}_{\mathbf{T}_1}) = 3$ for i = 1, 2, and $\operatorname{rk} \operatorname{\mathcal{E}xt}_{p_2}^3(\mathcal{O}_{\mathbf{T}_3}, \mathcal{O}_{\mathbf{T}_1}) = 1$. (ii) The \mathcal{O}_{X_3} -sheaves $\operatorname{\mathcal{E}xt}_{p_2}^i(\mathcal{O}_{\mathbf{T}_1}(1, 1), \mathcal{O}_{\mathbf{T}_1})$ and $\operatorname{\mathcal{E}xt}_{p_2}^i(\mathcal{O}_{\mathbf{T}_2}, \mathcal{O}_{\mathbf{T}_1})$, where $i \ge 0$, are locally free, and for an arbitrary point $z = (\{0\}, Z_2, Z_3) \in X_3$, the corresponding base change homomorphisms

 $\mathcal{E}xt^{i}_{m}(\mathcal{O}_{\mathbf{T}},(1,1))$ and $\mathcal{O}_{\mathbf{T}})\otimes k(z) \to \operatorname{Ext}^{i}(k(0),k(0)),$

where $i \geq 0$, are isomorphisms. In particular, the \mathcal{O}_{X_3} -sheaves

$$\mathcal{E}xt^{i}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{1}}(1,1),\mathcal{O}_{\mathbf{T}_{1}}), \qquad \mathcal{E}xt^{i}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{2}},\mathcal{O}_{\mathbf{T}_{1}})$$

are invertible for i = 0 and 3, and the natural morphism

$$\alpha_0: \mathcal{E}xt^0_{p_2}(\mathcal{O}_{\mathbf{T}_2}, \mathcal{O}_{\mathbf{T}_1}) \to \mathcal{E}xt^0_{p_2}(\mathcal{O}_{\mathbf{T}_3}, \mathcal{O}_{\mathbf{T}_1})$$

is an isomorphism. Similarly, the sheaf $\mathcal{E}xt^{0}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{3}},\mathcal{O}_{\mathbf{T}_{1}})$ is invertible.

(iii) In the base change diagram

the lower horizontal map is injective for any $z \in X_3$, and hence, coker ∂_1 is a locally free sheaf of rank 2.

3.2. The properties of the sheaf $\mathcal{E} = \mathcal{E}xt_{p_2}^1(\mathcal{O}_{\mathbf{T}_3}, \mathcal{O}_{\mathbf{T}_1})$ and the variety $X_3 = \mathbb{P}(\check{\mathcal{E}})$ of punctual flags of lengths 2, 3, and 4. Let us apply the functor $\mathcal{E}xt^{\bullet}_{p_2}(-,\mathcal{O}_{\mathbf{T}_1})$ to the second triple in (20); taking into account (23), we obtain the long exact sequence

$$0 \to \mathcal{E}xt^{0}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{2}}, \mathcal{O}_{\mathbf{T}_{1}}) \xrightarrow{\alpha_{0}} \mathcal{E}xt^{0}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{3}}, \mathcal{O}_{\mathbf{T}_{1}}) \xrightarrow{\beta_{0}} \mathcal{E}xt^{0}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{1}}(1, 1), \mathcal{O}_{\mathbf{T}_{1}}) \xrightarrow{\partial_{1}} \mathcal{E}xt^{1}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{2}}, \mathcal{O}_{\mathbf{T}_{1}}) \xrightarrow{\alpha_{1}} \mathcal{E}xt^{1}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{3}}, \mathcal{O}_{\mathbf{T}_{1}}) \xrightarrow{\beta_{1}} \mathcal{E}xt^{1}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{1}}(1, 1), \mathcal{O}_{\mathbf{T}_{1}}) \xrightarrow{\partial_{2}} \mathcal{E}xt^{2}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{2}}, \mathcal{O}_{\mathbf{T}_{1}}) \xrightarrow{\alpha_{2}} \mathcal{E}xt^{2}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{3}}, \mathcal{O}_{\mathbf{T}_{1}}) \xrightarrow{\beta_{2}} \mathcal{E}xt^{2}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{1}}(1, 1), \mathcal{O}_{\mathbf{T}_{1}}) \xrightarrow{\partial_{3}} \mathcal{E}xt^{3}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{2}}, \mathcal{O}_{\mathbf{T}_{1}}) \xrightarrow{\alpha_{3}} \mathcal{E}xt^{3}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{3}}, \mathcal{O}_{\mathbf{T}_{1}}) \xrightarrow{\beta_{3}} \mathcal{E}xt^{3}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{1}}(1, 1), \mathcal{O}_{\mathbf{T}_{1}}) \to 0.$$
(24).

Consider the morphism ∂_2 in this sequence. Lemma 3 directly implies rk ker $\partial_2 = 1$; therefore, ker ∂_2 is invertible as the kernel of a morphism of locally free sheaves. Note that, by virtue of (20), (21), and (23), the morphism ∂_2 is included in the commutative diagram

Now, Theorem 2 implies that e is decomposed as

$$3\mathcal{O}_{X_3}(-1,-1) \xrightarrow{\cdot D} 3\mathcal{O}_{X_3}(0,-1) \xrightarrow{e'} 3\mathcal{O}_{X_3}(0,-1),$$

where e' is a bundle morphism (i.e., $e' \otimes k(z)$ has the same rank at all points $z \in X_3$). Therefore, the sheaf coker e has homological dimension ≤ 1 . On the other hand, the first triple in (20) gives

$$\operatorname{coker}(\lambda: \operatorname{\mathcal{E}xt}_{p_2}^2(\mathcal{O}_{\mathbf{T}_2}, \mathcal{O}_{\mathbf{T}_1}) \to \operatorname{\mathcal{E}xt}_{p_2}^2(\mathcal{O}_{\mathbf{T}_1}(0, 1), \mathcal{O}_{\mathbf{T}_1})) = \operatorname{\mathcal{E}xt}_{p_2}^3(\mathcal{O}_{\mathbf{T}_1}, \mathcal{O}_{\mathbf{T}_1}) \simeq \mathcal{O}_{X_3}$$

and assertion (ii) of Lemma 3 implies the invertibility of the sheaf

$$\mathcal{L} := \ker(\lambda \colon \mathcal{E}xt^{2}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{2}}, \mathcal{O}_{\mathbf{T}_{1}}) \to \mathcal{E}xt^{2}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{1}}(0, 1), \mathcal{O}_{\mathbf{T}_{1}})),$$

which together with the preceding diagram gives the exact sequence

$$0 \to \mathcal{L} \to \operatorname{coker} \partial_2 \to \operatorname{coker} e \to \mathcal{O}_{X_3} \to 0.$$

This and the condition $hd(\operatorname{coker} e) \leq 1$ implies $hd(\operatorname{coker} \partial_2) \leq 1$; therefore,

$$\mathcal{T}or_2^{\mathcal{O}_{X_3}}(\operatorname{coker} \partial_2, k(z)) = 0, \qquad z \in X_3.$$
⁽²⁵⁾

Now, by (24) and Lemma 3,

$$\mathcal{E}xt^{1}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{1}}(1,1),\mathcal{O}_{\mathbf{T}_{1}}) \xrightarrow{\partial_{2}} \mathcal{E}xt^{2}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{2}},\mathcal{O}_{\mathbf{T}_{1}})$$

is a morphism of locally free sheaves of rank 3, and $\operatorname{rk} \partial_2 = 2$; hence the sheaf $\operatorname{ker} \partial_2$ is invertible. Moreover, by (25) this sheaf is a subbundle in $\operatorname{\mathcal{E}xt}_{p_2}^1(\mathcal{O}_{\mathbf{T}_1}(1,1),\mathcal{O}_{\mathbf{T}_1})$. This, (24), and assertion (iii) of Lemma 3 imply that the sheaf $\operatorname{\mathcal{E}xt}_{p_2}^1(\mathcal{O}_{\mathbf{T}_3},\mathcal{O}_{\mathbf{T}_1})$ is locally free and has rank 3. Thus, we have proved the following proposition.

Proposition 3. (i) The sheaf $\mathcal{E} := \mathcal{E}xt_{p_2}^1(\mathcal{O}_{\mathbf{T}_3}, \mathcal{O}_{\mathbf{T}_1})$ is a locally free sheaf of rank 3, and the exact sequence of bundles on X_3

$$0 \to \operatorname{im} \alpha_1 \to \mathcal{E} \to \operatorname{im} \beta_1 \to 0, \tag{26}$$

where $\operatorname{rk} \operatorname{im} \beta_1 = 1$, holds.

(ii) The base change morphism

$$b(z) \colon \mathcal{E} \otimes k(z) \to \operatorname{Ext}^1(\mathcal{O}_{Z_3}, k(0))$$

is injective for arbitrary $z = (\{0\}, Z_2, Z_3) \in X_3$.

This proposition and the irreducibility of the variety $H_4(0)$ (see [1, 2]) imply the following assertion.

Corollary 3. (i) The scheme $X_4 := P(\mathcal{E}) = \mathbb{P}(\mathcal{E})$ parametrizing the punctual flags $z = (Z_2, Z_3, Z_4)$, $\{0\} \in Z_2 \subset Z_3 \subset Z_4$, is a smooth irreducible variety, and the projection

$$\pi_4 \colon X_4 \to X_3 \colon (Z_2, Z_3, Z_4) \to (Z_2, Z_3)$$

coincides with the structural morphism $\mathbb{P}(\mathcal{E}) \to X_3$.

(ii) The forgetful morphism

$$\sigma: X_4 \to H_4(0): \quad (Z_2, Z_3, Z_4) \to Z_4$$
 (27)

is surjective, and it is a desingularization of the variety $H_4(0)$.

3.3. The properties of the sheaf $\mathcal{E}|D$ and the varieties X_D and \mathcal{Y} . Consider an arbitrary point $z = (\{0\}, Z_2, Z_3) \in D$. Description (22) implies that the triple

$$0 \to k(0)^2 \to \mathcal{O}_{Z_3} \to k(0) \to 0$$
 (28)

is exact. Applying the functor $\text{Ext}^{\bullet}(-, k(0))$ to (28), we obtain the exact sequence

$$0 \longrightarrow \operatorname{Hom}(k(0), k(0)) \xrightarrow{\gamma_{0_{z}}} \operatorname{Hom}(\mathcal{O}_{Z_{3}}, k(0)) \longrightarrow \operatorname{Hom}(k(0)^{2}, k(0))$$
$$\xrightarrow{\partial_{1_{z}}} \operatorname{Ext}^{1}(k(0), k(0)) \xrightarrow{\varepsilon_{z}} \operatorname{Ext}^{1}(\mathcal{O}_{Z_{3}}, k(0)).$$

Here, obviously, γ_{0z} is an isomorphism, and by (28) and the identification $\operatorname{Ext}^1(k(0), k(0)) = T_0 \mathbf{P}^3$, we have $\operatorname{im} \partial_{1z} = T_0 Z_3 \simeq k^2$; therefore, $\operatorname{im} \varepsilon_z \simeq k$, and for any vector $\xi \in \operatorname{Ext}^1(k(0), k(0)) \setminus \operatorname{im} \partial_{1z}$, the corresponding extension $\xi : 0 \to k(0) \to \mathcal{O}_{Z_2} \to k(0) \to 0$ determines a scheme $Z_2(\xi)$ such that

$$Span(T_0Z_3, T_0Z_2) = Ext^1(k(0), k(0)) = T_0\mathbf{P}^3.$$
(29)

For this vector ξ , the nonzero vector $\varepsilon_z(\xi) \in \operatorname{Ext}^1(\mathcal{O}_{\mathbb{Z}_3}, k(0))$ determines a nonzero extension

$$\varepsilon_{\boldsymbol{z}}(\xi): 0 o k(0) o \mathcal{O}_{\boldsymbol{Z_4}} o \mathcal{O}_{\boldsymbol{Z_3}} o 0$$

which, together with (28) and the last triple, is included in the diagram

Here $Z_3 \subset Z_4 \supset Z_2$ by construction. By virtue of (29), we have $l(\mathbf{P}^1 \cap Z_4) \ge 2$ for any line $\mathbf{P}^1 \subset \mathbf{P}^3$ through the point 0. The condition $l(Z_4) = 4$ makes the last inequality into an equality; hence $\mathcal{O}_{Z_4} = \mathcal{O}_{\mathbf{P}}^3/m^2$, where $m = \mathcal{I}_{0,\mathbf{P}^3}$ is the sheaf of ideals of the (reduced) point 0. In other words,

$$Z_4 = \operatorname{Spec}(\mathcal{O}_{\mathbf{P}}^3/m^2) = \operatorname{Spec}(k[[x, y, z]]/(x, y, z)^2) = T_0 \mathbf{P}^3.$$
(31)

Since

$$\operatorname{Ext}^{1}(k(0), k(0)) = \operatorname{Ext}^{1}_{p_{2}}(\mathcal{O}_{\mathbf{T}_{1}}, \mathcal{O}_{\mathbf{T}_{1}}) \otimes k(z) \simeq 3\mathcal{O}_{X_{3}} \otimes k(z) \simeq 3\mathcal{O}_{D} \otimes k(z),$$

we can easily show that the image $\operatorname{im} \varepsilon_D$ of the morphism

$$\varepsilon_D: 3\mathcal{O}_D = \mathcal{E}xt^1_{p_2}(\mathcal{O}_{\mathbf{T}_1}, \mathcal{O}_{\mathbf{T}_1})|D \to \mathcal{E}xt^1_{p_2}(\mathcal{O}_{\mathbf{T}_3}, \mathcal{O}_{\mathbf{T}_1})|D = \mathcal{E}|D$$

of \mathcal{O}_D -sheaves, which is a globalization of the homomorphism $\operatorname{Ext}^1(k(0), k(0)) \xrightarrow{\varepsilon_2} \operatorname{Ext}^1(\mathcal{O}_{Z_3}, k(0))$, is the canonical quotient sheaf of $3\mathcal{O}_D$, i.e., $\operatorname{im} \varepsilon_D$ is isomorphic to $g_D^*\mathcal{O}_{\mathbf{P}}(1)$, where $g_D := g|D: D \to \operatorname{Sing} H_3(0)$ is the projection (see Remark 1). Taking into account Corollary 3, we obtain the following proposition.

Proposition 4. (i) The morphism of locally free \mathcal{O}_D -sheaves

$$\varepsilon_D: 3\mathcal{O}_D = \mathcal{E}xt^1_{p_2}(\mathcal{O}_{\mathbf{T}_1}, \mathcal{O}_{\mathbf{T}_1})|D \to \mathcal{E}|D$$

induced by the surjection $\mathcal{O}_{\mathbf{T}_3} \twoheadrightarrow \mathcal{O}_{\mathbf{T}_1}$ is a morphism of rank 3 bundles on D and has rank 1, and

$$\operatorname{im} \varepsilon_D = g_D^* \mathcal{O}_{\check{\mathbf{P}}}(1). \tag{32}$$

Thus the embedding of the subvariety $\mathcal{Y} := \mathbb{P}((\operatorname{im} \varepsilon_D)^{\vee})$ into the variety $X_D := X_4 \times_{X_3} D$ is the section

$$D \hookrightarrow X_D \colon (Z_2, Z_3) \mapsto (Z_2, Z_3, Z_4),$$

where $Z_4 = T_0 \mathbf{P}^3$, of the projection $\pi_D = \pi_4 | X_D \colon X_D \to D$.

(ii) Let $\sigma: X_4 \to H_4(0): (Z_2, Z_3, Z_4) \mapsto Z_4$ be the forgetful morphism (27). Then $\sigma(\mathcal{Y}) = \{T_0 \mathbf{P}^3\}$ is a point.

3.4. The variety X_{pnc} of plane noncurvilinear flags. Consider the set of plane noncurvilinear punctual flags

$$X_{\text{pnc}} := \{ (Z_2, Z_3, Z_4) \in H_2(0) \times H_3(0) \times H_4(0) \mid \dim T_0 Z_4 = 2 \}$$

and Z_4 lies in some plane passing through $\{0\}$, i.e., dim Span $(Z_4) = 2\}$. From Corollary 3, by continuity we see that X_{pnc} is a subvariety in X_4 . In addition, it is easy to see that $X_{pnc} \simeq P(\mathcal{F}) = \mathbb{P}(\check{\mathcal{F}})$, where \mathcal{F} is some subbundle of rank 2 in the bundle $\mathcal{E}|D$, so the natural projection (forgetful morphism)

$$\pi_1 = \pi_D | X_{\text{pnc}} \colon X_{\text{pnc}} \to D \colon (Z_2, Z_3, Z_4) \mapsto Z_4$$

coincides with the structure morphism $\mathbb{P}(\check{\mathcal{F}}) \to D$.

Consider the projection $g_D := g|D: D \to \text{Sing } H_3(0)$. As follows from [6, Proposition 2.7], for an arbitrary plane $Y \in \check{\mathbf{P}}$, the fiber $Q_Y = (g_D \pi_1)^{-1}(\{Y\})$ is a quadric, and the morphism $\sigma|Q_Y$, where σ is the forgetful morphism (27), coincides with the double covering $\sigma_Y : Q_Y \to P(S^2(T_0Y))$ branched in the conic-Veronese image of $P(T_0Y) \hookrightarrow P(S^2(T_0Y))$. Note that $P(S^2(T_0Y))$ is the fiber of the projection $\tau : \text{Hilb}^2 \mathbf{P} \to \check{\mathbf{P}} : z \mapsto \text{Span } Z$, which coincides with the structural morphism $\mathbb{P}(S^2\Omega_{\check{\mathbf{P}}}) \to \check{\mathbf{P}}$ under the natural isomorphism

$$\operatorname{Hilb}^{2} \mathbf{P} \simeq P(\mathcal{A}d\left(T_{\check{\mathbf{P}}}(-1)\right)) \simeq \mathbb{P}(S^{2}\Omega_{\check{\mathbf{P}}}).$$

Therefore, the morphism $\sigma | X_{\text{pnc}}$ coincides with the double covering $\sigma_1 \colon X_{\text{pnc}} \to \text{Hilb}^2 \mathbf{P}$ branched in a divisor of the diagonal $\Delta = \{z \in \text{Hilb}^2 \mathbf{P} \mid \text{Supp } Z = \{pt\}\}$. Thus we have proved the following assertion.

Proposition 5. The forgetful morphism $\sigma | X_{\text{pnc}}$ coincides with the double covering $X_{\text{pnc}} \to \text{Hilb}^2 \mathbf{P}$ branched in a divisor of the diagonal $\Delta = \{z \in \text{Hilb}^2 \mathbf{P} \mid \text{Supp } Z = \{pt\}\}.$

3.5. A description of the morphism $\sigma|X_D$. Consider the complement $X_D^* := X_D \setminus \{\mathcal{Y} \cup X_{pnc}\}$ of the union $\mathcal{Y} \cup X_{pnc}$ in X_D . Proposition 4 shows that

$$X_D^* = \{ (Z_2, Z_3, Z_4) \in X_D \mid \dim T_0 Z_4 = 2, \ \dim \operatorname{Span}(Z_4) = 3 \}.$$
(33)

Take an arbitrary point $(Z_2, Z_3, Z_4) \in X_D^*$. It is easy to see that the conditions

$$\dim T_0 Z_4 = 2, \qquad \dim \operatorname{Span}(Z_4) = 3$$

on the scheme Z_4 mean that Z_4 lies on the germ $(Q_{Z_4}, 0)$ of some quadric passing through 0 and specified by the equation

$$Q_{Z_4} = \{ z = ax^2 + bxy + cy^2, \ a, b, c \in k \}$$
(34)

in suitable local coordinates x, y, z in a neighborhood of the point 0; $Y_{Z_4} := \mathcal{P}T_0Z_4 = \{z = 0\} \in \check{\mathbf{P}}$ is a projective plane in \mathbf{P}^3 such that $Y_{Z_4} \cap Z_4 = Y_{Z_4} \cap Q_{Z_4} = Z_3$. Note that the projection $(x, y, z) \mapsto (0, y, z)$

implements the analytic isomorphism $(Q_{Z_4}, 0) \xrightarrow{\simeq} (Y_{Z_4}, 0)$. This and Proposition 5 readily imply that the morphism $\sigma | X_{pnc}$ can be extended to the double covering $\sigma | (X_D^* \cup X_{pnc}) = \sigma | (X_D \setminus \mathcal{Y})$. Taking into account Proposition 4 (ii), we see that $\sigma | X_D$ is factored through the double covering σ_D in the commutative diagram that extends the double covering $\sigma_1 \colon X_{pnc} \to \operatorname{Hilb}^2 \mathbf{P} \simeq P(\mathcal{A}d(T_{\mathbf{P}}(-1)))$:

where the embedding j is induced by the embedding of the first term in the direct sum

$$\mathcal{A}d\left(T_{\check{\mathbf{P}}}(-1)\right)\oplus\mathcal{O}_{\check{\mathbf{P}}}(m)$$

and m is an integer. Thus $\sigma | X_D$ decomposes as

$$\sigma | X_D = \sigma_Y \cdot \sigma_D, \tag{36}$$

where, by construction, $\sigma_Y : \sigma_D(X_D) = P(\mathcal{A}d(T_{\mathbf{P}}(-1)) \oplus \mathcal{O}_{\mathbf{P}}(m)) \to \sigma(X_D)$ is the contraction into the point $\{T_0\mathbf{P}^3\}$ of the section $P(\mathcal{O}_{\mathbf{P}}(m))$ of the structural projection

$$P(\mathcal{A}d(T_{\check{\mathbf{P}}}(-1))\oplus \mathcal{O}_{\check{\mathbf{P}}}(m))$$

Therefore, $\sigma(X_D)$ is the cone with vertex at the point $\{T_0\mathbf{P}^3\}$ over the variety

$$P(\mathcal{A}d(T_{\check{\mathbf{P}}}(-1))) \simeq \operatorname{Hilb}^2 \mathbf{P}.$$

Thus we have the commutative diagram

$$D \simeq \mathcal{Y} \hookrightarrow X_{D}$$

$$\downarrow^{g_{D}} \qquad \downarrow^{\sigma_{D}} \qquad \qquad \downarrow^{\sigma_{D}}$$

$$\check{\mathbf{P}} \simeq P(\mathcal{O}_{\check{\mathbf{P}}}(m)) \hookrightarrow P(\mathcal{A}d(T_{\check{\mathbf{P}}}(-1)) \oplus \mathcal{O}_{\check{\mathbf{P}}}(m)) \quad . \tag{37}$$

$$\downarrow^{\sigma_{Y}} \qquad \qquad \qquad \downarrow^{\sigma_{Y}}$$

$$\{T_{0}\mathbf{P}^{3}\} \in \sigma(X_{D})$$

Remark 2. The cone $\sigma(X_D)$ over $\text{Hilb}^2 \mathbf{P}$ contains a divisor subcone K_Δ over the divisor Δ , and by construction, $K_\Delta = \{Z_4 \in H_4(0) \mid Z_4 \text{ is not a locally complete intersection in } \mathbf{P}^3\}$.

3.6. The exceptional divisor W on X_4 and the contraction of W under the morphism σ . Let us consider the variety $X_3^* := X_3 \setminus D$ and an arbitrary point $z = (Z_2, Z_3) \in X_3^*$. By definition, Z_3 is a curvilinear scheme (i.e., it lies on a smooth curve); thus the triple

$$\xi: \quad 0 \to \mathcal{O}_{Z_2} \to \mathcal{O}_{Z_3} \xrightarrow{\otimes k(0)} k(0) \to 0 \tag{38}$$

is exact. Applying the functor $\text{Ext}^{\bullet}(-, k(0))$ to this triple, we obtain a long exact sequence. The first connecting homomorphism

$$\partial_1 \colon \operatorname{Hom}(\mathcal{O}_{Z_2}, k(0)) \to \operatorname{Ext}^1(k(0), k(0))$$

in this sequence is injective by Lemma 2; therefore, the image im α_1 of the homomorphism

$$\alpha_1 \colon \operatorname{Ext}^1(k(0), k(0)) \to \operatorname{Ext}^1(\mathcal{O}_{Z_3}, k(0))$$

that follows ∂_1 is two-dimensional. By Lemma 2 and Proposition 3 (ii),

$$P(\text{Ext}^{1}(\mathcal{O}_{Z_{2}}, k(0))) = \pi_{4}^{-1}(z),$$
(39)

where $\pi_4: X_4 \to X_3$ is the projection; hence $W_z := P(\operatorname{in} \alpha_1) \simeq \mathbf{P}^1$ is a divisor in $\pi_4^{-1}(z)$. We put $W^* := \bigcup_{z \in X_3^*} W_z$; let $W := \overline{W^*}$ be the closure of W^* in X_4 . By construction, W is a divisor on X_4 .

Let us describe an arbitrary point $w = (Z_2, Z_3, Z_4) \in W^*$. For this purpose, we identify the points in $\operatorname{Ext}^1(k(0), k(0)) = T_0 \mathbf{P}^3$ with zero-dimensional schemes of length 2 supported at 0 and, taking into account identification (39), consider an arbitrary scheme (of length 2) $Z'_2 \in \operatorname{Ext}^1(k(0), k(0)) \setminus (\operatorname{im} \partial_1)$ (i.e., $Z'_2 \neq Z_2$) such that $P(k\alpha_1(Z'_2)) = w$. By the definitions of the maps ∂_1 and α_1 , we have the commutative diagram of extensions

Remark 3. Diagram (40) and the condition $Z'_2 \neq Z_2$, where we have $Z_2, Z'_2 \subset Z_4$ by construction, imply dim $T_0Z_4 = 2$. Therefore, Z_4 lies on the germ $(Q_{Z_4}, 0)$ of some quadric of form (34) (or, in a special case, of the plane), and it is not a locally complete intersection in $(Q_{Z_4}, 0)$. The last condition and the middle horizontal triple in (40) (or, equivalently, the pair (Q_{Z_4}, Z_2)) uniquely determines the scheme Z_4 (see [6, Secs. 2.5–6]).

Next, for the chosen point $w = (Z_2, Z_3, Z_4)$, consider the point $z = (Z_2, Z_3) = \pi_4(w)$. By construction, there is a one-to-one correspondence between the point $w \in \pi_4^{-1}(z)$ and the subspace $\text{Span}(Z_2, Z_2')$ in $T_0 \mathbf{P}^3$, which is a plane passing through the line $\mathcal{P}T_0Z_2$, or, equivalently, a point v(w) of the divisor Don X_3 lying in the fiber $\gamma_1^{-1}(Z_2)$, where $\gamma_1: D \to \mathbf{P}$ is the natural projection. In the plane $\nu^{-1}(Z_2)$, consider the projective line l(w) = Span(z, v(w)) and its open subset $l^*(w) = l(w) \setminus \{v(w)\}$. Simple calculations involving equation (34) of the germ Q_{Z_4} show that

$$l^{*}(w) = \{ (Z_{2}, Z_{3}', Z_{4}) \in W^{*} \mid Z_{3}' \subset Q_{Z_{4}} \cap Y, \ Z_{2} \subset Y \in \mathbf{\dot{P}}^{3}, \ T_{0}Y \neq T_{0}Q_{Z_{4}} \}.$$

$$(41)$$

Obviously, the condition $Z'_3 \subset Q_{Z_4} \cap Y$ uniquely determines the scheme Z'_3 . Therefore, the line

$$m^*(w) := \{ (Z_2, Z'_3, Z_4) \in W^* \mid (Z_2, Z'_3) \in l^*(w) \}$$

through the point $w = (Z_2, Z_3, Z_4)$ is determined uniquely, and $\sigma(m^*(w)) = \{Z_4\} = Z_4$. Let m(w) be the closure of $m^*(w)$ in W; then $m(w) \simeq \mathbf{P}^1$. We have $\sigma(m(w)) = Z_4$. By virtue of Remarks 2 and 3, $Z_4 \in K_{\Delta}$, and, as is easy to see, the map $\sigma: W \to K_{\Delta}$ is surjective. Thus the following proposition is valid.

Proposition 6. The morphism $\sigma: X_4 \to H_4(0)$ contracts the divisor W on X_4 onto the fourdimensional cone $K_{\Delta} = \{Z_4 \in H_4(0) \mid Z_4 \text{ is not a locally complete intersection in } \mathbf{P}^3\}$. **Remark 4.** It is easy to see that W contains the section $\mathcal{Y} = \{(Z_2, Z_3, Z_4) \in X_4 \mid Z_4 = T_0 \mathbf{P}^3\}$ of the projection $\pi_D \colon X_D \to D$ (see Proposition 4), and the diagram

is commutative.

Collecting Propositions 3, 4, and 6, Corollary 3, Remark 4, and the description of the morphism $\sigma | X_D$ (see (35)–(37)), we obtain the main result of this section.

Theorem 3. (i) Let X_3 be the variety of punctual flags of length 3 in space. Consider the projection $p_2: \mathbb{P}^3 \times X_3 \to X_3$ and put $\mathcal{E} := \mathcal{E}xt_{p_2}^1(\mathcal{O}_{\mathbf{T}_3}, \mathcal{O}_{\mathbf{T}_1})$. Then \mathcal{E} is a locally free sheaf of rank 3 and $X_4 = \mathbb{P}(\check{\mathcal{E}})$ is a smooth irreducible variety that parametrizes the punctual flags $z = (Z_2, Z_3, Z_4)$, $\{0\} \in Z_2 \subset Z_3 \subset Z_4$, of lengths 2, 3, and 4 and whose projection

$$\pi_4 \colon X_4 \to X_3 \colon (Z_2, Z_3, Z_4) \to (Z_2, Z_3)$$

coincides with the structure morphism $\mathbb{P}(\check{\mathcal{E}}) \to X_3$.

(ii) Consider the divisors

$$X_D = \pi_4^{-1}(D) = \{ (Z_2, Z_3, Z_4) \in X_4 \mid Z_3 \text{ is not a locally complete intersection} \}, W = \{ (Z_2, Z_3, Z_4) \in X_4 \mid Z_4 \text{ is not a locally complete intersection} \}$$

on the variety X_4 . If $\sigma: X_4 \to H_4(0): (Z_2, Z_3, Z_4) \mapsto Z_4$ is the forgetful morphism, then σ is a birational morphism decomposed as $\sigma = \sigma_2 \cdot \sigma_1$, where σ_1 is the contraction of the divisor W and σ_2 is the normalization morphism (glueing along the divisor $\sigma_1(X_D)$), so that $\sigma|X_D: X_D \to \sigma(X_D)$ is a double covering at a generic point. In addition,

$$K_{\Delta} = \sigma(W) = \{ Z_4 \in H_4(0) \mid Z_4 \text{ is not a locally complete intersection} \},\$$

 $\sigma(X_D) = \{Z_4 \in H_4(0) \mid Z_4 \text{ is not a curvilinear scheme (i.e., does not lie on a smooth curve})\}.$

Moreover, $\sigma(X_D)$ is a cone over $\operatorname{Hilb}^2 \mathbf{P}$ in which K_Δ is the subcone over the diagonal $\Delta \subset \operatorname{Hilb}^2 \mathbf{P}$, and $\sigma(X_D)$ is the set of singularities of the variety $H_4(0)$: $\sigma(X_D) = \operatorname{Sing} H_4(0)$.

This research was supported in part by INTAS-OPEN under grant No. 97-2072.

References

- 1. J. Briançon, "Description de Hilbⁿ C $\{x, y\}$," Invent. Math., 41, 45-89 (1977).
- 2. A. Iarrobino, Punctual Hilbert Schemes, Vol. 10, Memoires of the Amer. Math. Society (1977).
- M. Granger, "Géométrie de schémas de Hilbert ponctuels," Mermoire Soc. Math. France Nouv. sér. n°9/10, 111, No. 3, 1-84 (1981).
- A. Iarrobino, "Compressed algebras and components of the punctual Hilbert scheme," in: Sitges, 1983, Vol. 1124, Lecture Notes in Math, Springer, Berlin (1985), pp. 146-165.
- A. Iarrobino, "Hilbert schemes of points: overview of last ten years," in: Proc. of Amer. Math. Soc., Providence, R.I., Vol. 46, Symp. in Pure Math. (Algebraic Geometry, Bowdoin, 1985) (1987), pp. 297-320.
- A. S. Tikhomirov, "A smooth model of punctual Hilbert schemes of a surface," Trudy Mat. Inst. Steklov [Proc. Steklov Inst. Math.], 208, 318-334 (1995).
- M. Drezet and Potier J. Le, "Fibrés stables et fibrés exceptionnels sur P₂," Ann. scient. Éc. Norm. Sup., 4 série, 18, 193-244 (1985).
- 8. C. Bănică, M. Putinar, and G. Schumacher, "Variation der globalen Ext and Deformationen kompakter komplexen Raume," Math. Ann., 250, 135-155 (1980).

K. D. USHINSKII YAROSLAVL STATE PEDAGOGICAL UNIVERSITY *E-mail address*: alexandr@tikho.yaroslavl.su